
Breaking BAD: A Data Serving Vision for Big Active Data

Michael J. Carey
Univ. of California, Irvine
mjcarey@ics.uci.edu

Steven Jacobs
Univ. of California, Riverside

sjaco002@ucr.edu

Vassilis J. Tsotras
Univ. of California, Riverside

tsotras@cs.ucr.edu

ABSTRACT
Virtually all of today’s Big Data systems are passive in na-
ture. Here we describe a project to shift Big Data platforms
from passive to active. We detail a vision for a scalable sys-
tem that can continuously and reliably capture Big Data to
enable timely and automatic delivery of new information to
a large pool of interested users as well as supporting anal-
yses of historical information. We are currently building
a Big Active Data (BAD) system by extending an existing
scalable open-source BDMS (AsterixDB) in this active direc-
tion. This first paper zooms in on the Data Serving piece of
the BAD puzzle, including its key concepts and user model.

CCS Concepts
•Information systems → Database management system
engines;

Keywords
Big Data, Active Data, Parallel Databases, Pub/Sub.

1. INTRODUCTION
We are past the time where “Big Data” simply refers to

many computers holding data. Huge amounts of data are
generated daily by social, mobile, and Web platforms and
applications. In the emerging age of the Internet of Things
(IoT), data is being collected, held, and used by an increas-
ingly diverse set of devices. It is thus critical to find ways
to ingest, analyze, and deliver information and insights from
this massively growing sea of data to millions of users in real
time. It is time to enter the era of Big Active Data.

Some active software platforms, such as Publish/Subscribe
(Pub/Sub) systems and Streaming Query Systems, exist to-
day. However, these systems fail to satisfy what we view as
key requirements for Big Active Data management because
of significant limits on the capabilities of the data and/or
queries. Pub/Sub and Streaming Query systems, for exam-
ple, scale by limiting their queries to examining one of (or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DEBS ’16, June 20-24, 2016, Irvine, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4021-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2933267.2933313

a window of) the incoming records in isolation rather than
the overall collection of data. In our view, such limitations
lead to existing systems falling short in the following ways:

1. Incoming data items might not be important in isola-
tion, but in their relationships to other items in the
data as a whole. Subscriptions should consider data
in context, not just newly arrived items’ content.

2. Important information for users is likely to be absent
in incoming data items, yet exist elsewhere in the data
as a whole. Results delivered to users should be able
to be enriched with other existing data in order to
provide actionable notifications.

3. In addition to “in the moment” processing, it can be
important to perform later queries and analyses over
the collected data as a whole. Thus, retrospective Big
Data analytics must also be well-supported.

We argue here for Big Active Data (BAD) as the future
of Big Data systems. A BAD system should leverage the
benefits of state-of-the-art Big Data Management Systems
(BDMSs), including their scalability, declarative query lan-
guage, flexible data model, and support for parallel data an-
alytics. It should also leverage ideas from current Pub/Sub
and streaming query systems. We envision a world where
data is published by a large number of sources, and where it
should be retained for later analyses. We envision millions
of data subscribers who desire notifications that involve not
just the incoming data, but the current state of other static
or infrequently-changing data. Our goal is to enable the ac-
cumulation and monitoring of petabytes of data of potential
interest to millions of end users; when“interesting”new data
appears, actionable notifications should be delivered to the
users in time frames measured in (100’s of) milliseconds.

2. BAD SYSTEM OVERVIEW
Figure 1 provides our high level vision for how a scalable

BAD platform should look. Outside of the platform are the
data sources (Data Publishers) and end users (Data Sub-
scribers). Within the system itself, its components provide
two broad areas of functionality – Big Data monitoring and
management (handled by the BAD Data Cluster) and noti-
fication management and distribution (handled by the BAD
Broker Network). Before we further elaborate on the roles
or details of these cooperating components, let us quickly
consider the nature of a “typical” BAD use case.

2.1 Use Cases
Many application domains have “active needs” that could

benefit from a BAD software platform rather than hav-

181

Figure 1: Big Active Data – System Overview.

ing to awkwardly glue together multiple existing systems.
These include emergency management, homeland security,
public health monitoring, product marketing and manage-
ment, and national mood monitoring in a Presidential elec-
tion year, to name but a few of the possibilities. As an ex-
ample consider the USGS ShakeCast service [3], which was
created to collect sensor data about earthquakes in real-time
from thousands of sources and to deliver“ShakeMap”reports
to subscribing agencies and facilities. A BAD platform could
facilitate the creation of a richer, future, ShakeCast++.

In addition to sensor data, ShakeCast++ could use geo-
tagged social data. As it arrives, its earthquake emergency
relevance could be evaluated not only based on its direct con-
tent, but by combining it with other, more static, geographic
and law enforcement data sets. ShakeCast++ could push
enriched notifications, with information like nearby hospi-
tals and shelters, in a timely manner to a large mobile user
base. A data-oriented BAD subscription language would
enable hundreds of non-government agencies (e.g., the Red
Cross) and private entities (e.g., utility companies, hospi-
tals, schools) to each register appropriate data subscription
profiles. Notifications could be “personalized” by subscriber,
using additional data sets, to enable each one to meet their
individual response needs based on the information in their
notifications. Rapid delivery of such information could be
crucial to neutralizing hazards as well as of ensuring safety
for first responders and the populous within the vicinity.

2.2 Requirements and Approach
Returning to Figure 1, the BAD platform must have ex-

tensible support for a variety of high-volume data feeds so
that data from many different Data Publishers can be con-
tinuously and reliably ingested and stored for use by BAD
applications. Given a set of registered data interests from
the universe of Data Subscribers, the BAD platform must
capture and monitor their potentially many interests against
the evolving state of the stored data – in an efficient, shared,
and scalable manner – in order to detect the need to gener-
ate and send out new notifications. To that end, the plat-
form can provide a notion of information channels, based
on application-defined parameterized queries, that can be
subscribed to by users. In our BAD architectural vision, as
shown in Figure 1, these are the data-serving responsibilities
of the subsystem referred to as the BAD Data Cluster.

Figure 1 shows a second major subsystem, the BAD Bro-
ker Network. When new notifications are generated by the
BAD Data Cluster, they must be disseminated to their tar-
get users. Users will be geographically distributed and may
connect to a given BAD application via a variety of mobile

and Web-based devices. The data distribution responsibili-
ties of the BAD platform are handled by a network of cooper-
ating BAD brokers which manage the system’s connections
and communications with end users and their devices.

3. RELATED WORK
Our model for Big Active Data builds on knowledge from

several areas, including modern Big Data platforms, early
active database systems, and more recent active platform
work on both Pub/Sub systems and Streaming Query sys-
tems. Figure 2 summarizes how we see our BAD vision as
fitting into the overall active systems platform space.

Figure 2: BAD in the context of other systems.

3.1 Big Data
First-generation Big Data projects resulted in MapReduce-

based frameworks and languages, many based on Hadoop for
long-running data analytics; key-value storage management
systems (e.g., [14]) for simple but high-performance record
management; and various specialized systems tailored to
tasks such as scalable graph analysis or data stream analyt-
ics (e.g., [4, 9, 15, 17]). With the exception of data streams,
these developments have been “passive” in nature. Recent
projects such as Apache Flink [2], Spark [28], and Aster-
ixDB [1] have moved from MapReduce to algebraic runtime
systems but they are essentially all still passive systems.

3.2 Active Data
The HiPac Project [13] pioneered an approach (ECA rules)

that is also seen in later systems, including TriggerMan [21],
Ariel [20], Postgres [25], and Starburst [27]. Big Active Data
is a descendant of ECA rules and Triggers, but they have
two key problems. First, Triggers and ECA rules are re-
ally a “procedural sledgehammer” for a system: when event
A happens, perform action B. We seek a more declarative
(optimizable) way of making Big Data active and detect-
ing complex events of interest. Second, to the best of our
knowledge, no one has scaled an implementation of Triggers
or ECA rules to the degree required for Big Data (in terms
of the number of rules or the scaled-out nature of the data).

A Materialized View [6, 24] is a cached result of a given
query that is made available for querying like a stored table.
Materialized view implementations have been designed to
scale on the order of the number of tables and have not
addressed the level of scale that we expect for the number
of data subscriptions in the BAD platform context.

3.3 Publish/Subscribe Systems
Pub/Sub Systems address a basic use case: data arrives in

the form of publications, and publications are of interest to
specific users. Pub/Sub systems seek to optimize the prob-
lems of identifying relevant publications and delivering them

182

to users in a scalable way. Modern Pub/Sub systems [16,
23, 29] provide a rich, content-based subscription language.
Our BAD platform vision goes beyond this in two ways:
First, whether or not newly arrived data is of interest to a
user can be based on its relationship to other data. Second,
the resulting notification(s) can include information based
on other data. [26] studied the integration of Pub/Sub with
Databases, but no scalability issues were addressed.

3.4 Continuous Query Engines
The seminal work on Continuous Queries was Tapestry

[18], which defined Continuous Queries over append-only
databases, including a definition of monotonic queries. Most
of the subsequent work has focused on streaming data (e.g.,
STREAM [8], Borealis [5], Aurora [4], TelegraphCQ [11],
and PIPES [22]). These systems build specialized data flows
to process queries as new data is streamed through the sys-
tem. Not designed to work with permanent storage, their
queries relate to individual records or to windows of records.

3.4.1 NiagaraCQ and Spatial Alarms
NiagaraCQ [12] turned queries into data by finding groups

of queries that do selections on the same attribute but dif-
fer by the constant(s) of interest (e.g., age=19 vs. age=25).
Given these groups, they create a dataset of the constants
and join it with incoming data to produce results for multiple
users via a single join. This data-centric approach of treat-
ing continuous queries as data has inspired our own subscrip-
tion scaling work. Spatial Alarms [10] also used this idea.
Spatial Alarms issue alerts to users based on objects that
meet spatial predicates. The spatial predicates are stored
as objects in an R-Tree, and incoming updates are spatially
joined with this R-Tree of standing queries.

4. WHAT’S BAD FOR USERS?

4.1 Classes of Users
We envision three different kinds of BAD users.
As indicated earlier in Figure 1, the first category of users

are data publishers who provide data in the form of streams
of incoming records. These streams enter the Data Cluster
via data feeds. In a typical use case, the data publishers will
be known/trusted sources of data (e.g., news sites, social me-
dia data streams, or government agencies) and the incoming
data will be broadly relevant to a given BAD application
(e.g. emergency reports and weather broadcasts).

The second category of BAD users are application man-
agers. They know about the data stored in the Data Cluster
for their applications. Based on the expected user interests,
an application manager will create and manage parameter-
ized channels that can be subscribed to in their application.

The third category is data subscribers, who are aware
of the channels created for a BAD application and subscribe
to one or more of them. A subscription can be created for a
specific channel and indicates the parameter values of inter-
est. Each subscription will be registered in the BAD Data
Cluster with a subscription id. After its creation, a subscrip-
tion will begin to receive new results from the channel.

4.2 Data Cluster vs. Broker Responsibilities
To support many data subscriptions and subscribers, the

BAD architecture has a distributed Broker Network as the
scalable interface between subscribers and the Data Cluster

as well as distributing notification results produced by the
Data Cluster to the geographically distributed subscribers.

A data consumer, the end user of a given BAD applica-
tion, will see a user-friendly list of the available channels
on his/her device (cell phone, tablet, etc.) and may sub-
scribe, for example, to the EmergencyWatch channel. This
channel’s parameters might be the type of emergency (tor-
nado, fire, ...) and the location (city) of interest. Using
the application, the data consumer might specify interest in
tornadoes in Iowa City. The application would then com-
municate via the Broker network to create the correspond-
ing subscription at the Data Cluster. Given the presence
of the Broker network, the data consumers are abstracted
away from the Data Cluster. Rather than managing de-
tails about end users, the Data Cluster just needs to issue
subscription ids and keep track of the Broker responsible
for receiving and forwarding the notifications for each sub-
scription. Thus, data consumers are users from the Broker
Network’s perspective but not from the Data Cluster’s per-
spective. The Data Cluster’s “users” are just the Brokers
themselves.

Our BAD architecture separates result creation (which
occurs within the Data Cluster) from result delivery (which
is the responsibility of the Brokers). With this separation,
data consumers can be allocated to different brokers as they
move around, and Brokers can make notification delivery
decisions based on factors such as data consumer availabil-
ity (online/offline), location, battery consumption, or cur-
rent device. (The Broker network could also make decisions
about whether to aggregate data subscriptions and/or noti-
fications for groups of users, etc.) In the remainder of this
paper we will focus primarily on the features required of
an active Data Cluster and its interactions with the data
publishers, the application managers, and the Brokers.

5. A BAD USER EXPERIENCE
Consider a scenario where users (data subscribers) are

interested in getting information about emergency reports
near some user-specified location. Emergency reports are
created continuously and include both temporal and spatial
attributes. Data publishers in this case could include News
Broadcasters, Weather Forecasters, Government Agencies,
and Police Departments. In addition to emergency reports,
subscribers would like the system to include other useful in-
formation related to the emergency (e.g., the location of the
nearest shelter for an emergency) in its notifications. To this
end, the application maintains additional data sets (which
are relatively static) containing locations and other informa-
tion about Emergency Shelters.

5.1 Leveraging AsterixDB
Instead of starting from scratch, we are using an existing

BDMS and adding features to make it active. We selected
Apache AsterixDB [1, 7] as a foundation for BAD because
it is openly available, intended for others to use for research,
and has the following technical benefits:

1. A rich, declarative query language (AQL)
2. A scalable distributed dataflow platform (runtime)
3. Rich data types (including semi-structured data)
4. A fast data ingestion mechanism (data feeds)

Figure 3 gives AsterixDB DDL for two data sets for our ex-
ample application: EmergencyReports and EmergencyShel-

183

ters. It shows AsterixDB’s rich data types, including sup-
port for nested records (EmergencyReport.reportingStation),
unordered lists (EmergencyShelter.amenities) and optional
fields (EmergencyReport.affectedCities). This is important
for the kinds of BAD applications that we envision. Op-
tional fields enable support for data where record contents
can vary (e.g., some reports may not have all information
or may have extra); nesting permits embedding subrecords
within notifications to support enhanced notifications.

create type ReportingStation as
{id:uuid, name:string?, location :point}

create type EmergencyReport as {
id :uuid, emergencyType:string, impactZone:circle,
state : string , affectedCities :{{string}}?,
message:string, severityLevel : int , timestamp:datetime,
expirationTime:datetime, reportingStation:ReportingStation
}

create type EmergencyShelter as
{id:uuid, name:string, location :point, amenities:{{string}}}

create dataset EmergencyShelters(EmergencyShelter)
primary key id;

create dataset EmergencyReports(EmergencyReport)
primary key id;

Figure 3: DDL to create datasets.

5.2 Data Feeds
To deliver Emergency Reports for rapid ingestion, a BAD

data producer can create a data feed adapter to stream in-
coming reports directly into AsterixDB, and it can be used
to feed the EmergencyReports dataset. The DDL to create
a data feed using AsterixDB’s data feed support would be:

create EmergencyFeed using EmergencyFeedAdapter;
connect feed EmergencyFeed to dataset EmergencyReports;

The create statement defines the Emergency Report feed,
and the connect statement starts the continuous flow of data
into the target data set. For more on data feeds, see [19].

5.3 Channels
Based on the expected interests of their users, as men-

tioned earlier, a BAD application manager will create a set
of channels – continuous queries with parameters – that the
users can subscribe to. Since we are building upon Aster-
ixDB, we can leverage another of its features: AQL user-
defined functions (UDFs). UDFs allow AQL queries with
parameters to be defined and named for later reuse, so we
can utilize them to specify the queries for BAD channels.

As an example of an AQL UDF, consider the following
English query: “Select the message and impact zone for tor-
nadoes occurring within the last week within my state.” We
can encapsulate such a query in AsterixDB as the function
tornadoesInStateLastWeek in Figure 4. This function takes
an argument to indicate the state where the caller resides.
Its query body uses a temporal clause to select emergency
reports from within the last seven days, filters them by state
and type “tornado”, and returns the requested fields. (Note
that we could also have made the emergency type a param-
eter rather than specializing the function for tornadoes.)

AQL UDFs provide a nice basis for our BAD channel
DDL. Channel definitions can be based on functions, and
subscriptions can be specified by identifying a channel and
the parameter value(s) of interest. A subscription represents

create function tornadoesInStateLastWeek($state) {
from $report in dataset EmergencyReports
let $historyStart :=

current−datetime() − day−time−duration(”P7D”)
where $report.timestamp >= $historyStart
and $report.emergencyType = ”tornado”
and $report.state = $state
select {

”message”:$report.message,
”impactZone”:$report.impactZone
}
};

Figure 4: DDL to Create an AQL function.

a parameterized version of a function that will continue to
execute over time; a channel query can be compiled and
optimized once and shared by all subscriptions.

Based on use cases we see two useful types of channels:
Repetitive and Continuous. A Repetitive Channel is like
a “data chron job”: it executes the channel function pe-
riodically (e.g., every five minutes) starting at its time of
creation. The resulting notifications contain the full result
of the function at the time of each execution. In contrast,
a Continuous Channel can be thought of as executing
whenever any of its underlying data sets change; it checks
whether the changes contribute new results and, if so, it
issues notifications containing only the differential results.

5.3.1 Repetitive Channels
To elaborate on the semantics of repetitive channels, as-

sume that a user is interested in the following query: “Every
week, give me the list of all tornadoes that occurred in my
state that week.” The DDL for this channel appears in Fig-
ure 5(a) and uses the function tornadoesInStateLastWeek.
The DDL provides a name for the new channel and indicates
the function upon which the channel is based (i.e., the func-
tion tornadoesInStateLastWeek with one parameter1). The
channel definition DDL also specifies how often the chan-
nel will run (“P7D” stands for seven days). Once created,
this channel will continue to produce new results every seven
days for all of the created subscriptions. In general a repet-
itive channel’s function may be based on any AQL query.

create repetitive channel tornadoesInState
using tornadoesInStateLastWeek@1 period duration(”P7D”);

(a)

subscribe to tornadoesInState(”IA”) on Broker1;
subscribe to tornadoesInState(”KS”) on Broker2;
subscribe to tornadoesInState(”WI”) on Broker1;

(b)

Figure 5: (a) Repetitive Channel; (b) Subscriptions.

Recall that a user will connect through a broker to cre-
ate subscriptions. Thus, a subscription request includes the
name of the responsible broker, the channel name and the
parameter values. Figure 5 (b) shows DDL requests for three
subscriptions from user(s) interested in tornadoes in Iowa,
Kansas, and Wisconsin; two originated through Broker1 and
one through Broker2. Running each subscription DDL will
return the ID for the newly created subscription, which is
unique per channel and serves as the key by which the Bro-
ker can reference the subscription in the future.

1AsterixDB permits function name overloading: the unique name
for a function is its given name plus a parameter count indicator.

184

5.3.2 Continuous Channels
Suppose that a user is interested in the query: “When-

ever I’m in the impact zone of some emergency, notify me
with the message for the emergency, its impact zone, and all
emergency shelters that are within that impact zone.” This
user is interested in emergencies as they happen, so we use a
continuous channel. This channel analyzes changes as they
occur and delivers new results as they are produced. In ad-
dition, users here are essentially also data publishers, as they
will update their locations as they move around. Location
tracking is achieved by creating a new data set and a data
feed for User Locations, as shown in Figure 6. User devices
can continuously update their locations by having the appli-
cation send them to the User Locations data feed. With this
data feed in place, UserLocations becomes yet another data
set that can be referred to in a channel function’s query.

create type UserLocation as
{id:uuid, userId: int , location :point, timestamp:datetime}

create dataset UserLocations(UserLocation) primary key id;

create feed UserLocationsFeed using UserLocationsFeedAdapter
connect feed UserLocationsFeed to dataset UserLocations;

Figure 6: BAD DDL for User Location Tracking.

The function EmergenciesNearUser in Figure 7 takes a
single parameter (the id of the user who subscribes) and per-
forms a spatial join between three datasets. In addition to
joining Emergency Reports with User Locations – using the
userid parameter to find the user’s current location, which
is checked for inclusion in the emergency’s impact area –
this channel enhances the notification results by giving the
subscribing user a list of nearby shelters.

create function EmergenciesNearUser($userid) {
from $emergency in dataset EmergencyReports
from $userlocation in dataset UserLocations
where $userlocation.user−id = $userid

and spatial−intersect(
$emergency.impactZone,$userlocation.location)

and $userlocation.timestamp >= $emergency.timestamp
and $userlocation.timestamp <= $emergency.expirationTime

select {
”message”:$emergency.message,
”impactZone”:$emergency.impactZone,
”shelter locations ”:
from $shelter in dataset EmergencyShelters
where spatial−intersect

($emergency.impactZone,$shelter.location)
select $shelter . location

}};

create continuous channel EmergenciesNearUserChannel
using EmergenciesNearUser@1;

subscribe to EmergenciesNearUserChannel(”12345”) on Broker3;

Figure 7: Continuous Channel.

Our continuous channel semantics follow Tapestry’s [18] in
several ways. We focus on append-only datasets, where new
tuples can be added but existing tuples are not deleted or
modified (or else corresponding notifications are not needed).
An example is UserLocations, which is essentially a times-
tamped log of users’ locations. Moreover, we focus on mono-
tonic queries where previous query results cannot be invali-
dated by considering new tuples. Given that three datasets
are joined in our example, there are three distinct ways that
new results could be produced for a given user:

1. The user enters the impact zone of an active emergency
(new location added to UserLocations dataset).

2. A new emergency arises with the user’s location in its
impact zone (new report added to EmergencyReports).

3. A triage center is set up in the impact zone of an active
emergency (new shelter in EmergencyShelters).

This illustrates the BAD advantage of subscribing to data.
Pub/Sub, in contrast, is based on filtering individual events
(i.e., the arrival of a new tuple in a stream) and cannot
detect these sorts of events (which involve data joins) – at
least not without gluing together additional systems.

5.4 Brokers
As explained earlier, brokers provide a go-between layer

between the BAD Data Cluster and the actual, geographi-
cally distributed, end users of a given BAD application.

Figure 8: The BAD Data Cluster

Figure 8 provides an overview of the interactions between
the BAD Data Cluster and the brokers as well as the datasets
involved in our emergency-related BAD example applica-
tion. In addition to the three application datasets, execu-
tion of the create channel and create broker statements add
entries about new channels and new brokers to the system’s
Channels and Brokers datasets, respectively. Whenever a
new channel is created, two other datasets are also created
internally to support the individual channel, namely: Chan-
nel Subscriptions and Channel Results (shown for two chan-
nels in the Staged Data Layer). The schema for each chan-
nel’s Channel Subscriptions dataset includes the parameter
values for that subscription as well as the subscriptionId and
the name of the current hosting Broker for the subscription.
The schema for each channel’s Channel Results dataset con-
tains the subscriptionId, the deliveryTime, and the individ-
ual result value for each subscription to the channel.

Brokers use the channel and subscription DDL to commu-
nicate with the BAD Data Cluster’s API. When results are
produced for a given subscription, a notification will be sent
to the broker hosting that subscription. It can then retrieve
the results from the channel’s results dataset when it wishes.

5.5 Data, Channel, and Subscription Data
To clarify all of these concepts, let us look at how they are

represented in terms of datasets in the BAD Data Cluster.
Figure 9 shows our example application’s datasets’ con-

tents at a point in time. Figure 10 shows the subscriptions
to the repetitive channel tornadoesInState and results from
datetime (“2015-11-25 15:10:00”). There were three torna-
does in the last week, two in Kansas and one in Iowa. The
Kansas subscription yielded two results (subscriptionId: “...-

185

Figure 9: Application Datasets

Figure 10: Repetitive Channel Datasets

Figure 11: Continuous Channel Datasets

ec778db67af6”), one per Kansas tornado. The Iowa tornado
led to one result for each of the two Iowa subscriptions.

Figure 11 shows the subscriptions and results for the Emer-
genciesNearUserChannel. Two emergencies have matched
existing subscriptions. An Iowa tornado (at datetime(“2015-
11-25 09:02:00”)) was near the location of user 1 (subscrip-
tionId“...7dc98721a977”), yielding the first result. An earth-
quake (at datetime(“2015-11-25 09:05:00”)) was near both
users and led to a result record for each subscription.

6. CONCLUSIONS
We have called for a shift from passive Big Data to an

era of Big Active Data and shared a vision for addressing
the challenges of a BAD world. We described how we are
building a BAD platform by adding active capabilities to
Apache AsterixDB. We presented language extensions to
support brokers, channels, and subscriptions in the BAD
Data Cluster component of the platform and the Broker
Network layer. Our initial version of the BAD Data Clus-
ter – “BAD Asterix” – has support for creating a broker,
creating/subscribing/unsubscribing/retrieving results from
a repetitive channel, and dropping brokers and channels.

Acknowledgments: This work was partially supported by
NSF grants: IIS-1447826 and IIS-1447720.

7. REFERENCES
[1] Apache AsterixDB. https://asterixdb.apache.org.

[2] Apache Flink. https://flink.apache.org.

[3] U.S. geological survey – Shakecast, 2014.
http://earthquake.usgs.gov/research/software/

shakecast/.

[4] D. J. Abadi et al. Aurora: a new model and archi-
tecture for data stream management. VLDB J., 2003.

[5] D. J. Abadi et al. The design of the Borealis stream
processing engine. In CIDR, 2005.

[6] P. Agrawal et al. Asynchronous view maintenance for
VLSD databases. In ACM SIGMOD, 2009.

[7] S. Alsubaiee et al. AsterixDB: A scalable, open source
BDMS. Proc. VLDB Endowment, 2014.

[8] A. Arasu et al. Stream: The Stanford stream data
manager. IEEE Data Eng. Bull., 2003.

[9] S. Babu and J. Widom. Continuous queries over data
streams. ACM SIGMOD Record, 30(3), 2001.

[10] B. Bamba, L. Liu, P. S. Yu, G. Zhang, and M. Doo.
Scalable processing of spatial alarms. In HiPC. 2008.

[11] S. Chandrasekaran et al. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In CIDR,
2003.

[12] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: a scalable continuous query system for
internet databases. In ACM SIGMOD, 2000.

[13] U. Dayal et al. The HiPAC project: Combining active
databases and timing constraints. ACM SIGMOD
Record, 17(1), 1988.

[14] G. DeCandia et al. Dynamo: Amazon’s highly
available key-value store. In ACM SOSP, 2007.

[15] N. Dindar et al. DejaVu: Declarative pattern
matching over live and archived streams of events. In
ACM SIGMOD, 2009.

[16] P. T. Eugster et al. The many faces of publish/
subscribe. ACM Comput. Surv., 35(2), 2003.

[17] B. Gedik et al. Spade: the System S declarative
stream processing engine. In ACM SIGMOD, 2008.

[18] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
Tapestry. Comm. of the ACM, 35(12), 1992.

[19] R. Grover and M. J. Carey. Data ingestion in
AsterixDB. In EDBT Conf., 2015.

[20] E. N. Hanson. The design and implementation of the
Ariel active database rule system. IEEE Trans.
Knowl. Data Eng., 8(1), 1996.

[21] E. N. Hanson et al. Scalable trigger processing. In
IEEE ICDE, 1999.

[22] J. Krämer and B. Seeger. Pipes: a public infrastru-
cture for processing and exploring streams. In ACM
SIGMOD, 2004.

[23] T. Milo, T. Zur, and E. Verbin. Boosting topic-based
Publish-Subscribe systems with dynamic clustering. In
ACM SIGMOD, 2007.

[24] D. Quass and J. Widom. On-line warehouse view
maintenance. ACM SIGMOD Record, 26(2), 1997.

[25] M. Stonebraker and L. A. Rowe. The design of
POSTGRES. In ACM SIGMOD, 1986.

[26] L. Vargas, J. Bacon, and K. Moody. Event-driven
database information sharing. In BNCOD, 2008.

[27] J. Widom, R. Cochrane, and B. Lindsay.
Implementing set-oriented production rules as an
extension to Starburst. In VLDB, 1991.

[28] M. Zaharia et al. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

[29] Y. Zhao, K. Kim, and N. Venkatasubramanian.
DYNATOPS: A dynamic topic-based publish/
subscribe architecture. In DEBS, 2013.

186

