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Abstract—In this paper, we introduce SmartSource, a crowd-
sourcing based mobile Question & Answer (Q&A) system that
aims to provide mobile information seekers with timely, trust-
worthy and accurate answers while ensuring that information
providers are not inappropriately burdened. We tackle this
challenge by taking advantage of both static and dynamic
context and semantics from mobile users (e.g., geolocation, social
network, expertise/interest, device sensor profiles, battery level)
to identify sources of information (i.e., workers) that are trusted
by the user and accurate enough for the questions at hand.
Given a question, the SmartSource broker middleware executes
a scalable and efficient worker selection algorithm that uses a
Lyapunov optimization framework to maximize the utility of
worker selection while guaranteeing the stability of the overall
system. An associated assignor selection is used to scale the
selection process to a large number of users. We implement
the SmartSource prototype system on an Android testbed and
thoroughly evaluate the system using real world applications and
data, in particular those that involve geospatial questions and
answers. Evaluation results indicate that SmartSource is efficient
and provides superior worker selection compared to baseline
approaches. SmartSource is also highly customizable: it employs
a general utility function and provides a control knob to tradeoff
the optimality and responding time. We believe that SmartSource
will pave a way for new mechanisms of interaction among mobile
users.

Index Terms—Q&A systems, middleware, mobile computing,
crowdsourcing, crowdsensing, performance optimization

I. INTRODUCTION

Mobile devices, such as smartphones, tablets, glasses, and

smartwatches, are getting extremely popular in our daily life.

For example, a market report [4] points out that more than

70% of Americans have access to smartphones as of 2014

- this allows for anytime, anywhere access to information

through the mobile Internet for many users. We conjecture that

this rapid increase in smartphone penetration worldwide will

enable a new level of interactivity in information exchange. In

particular, we anticipate that the time is ripe for the rise of an

interactive Mobile Question and Answer (Q&A) ecosystem that

dynamically connects information seekers (i.e., humans with

questions) to the best possible information providers (other

humans who can provide timely and accurate answers). Unlike

existing information retrieval systems (e.g., search engines)

and web-based Question and Answer (Q&A) systems (e.g.,

AskJeeves), we argue for a novel mobile Q&A paradigm that

provides fine-grained information that is personalized to the

current needs of the information seeker. The envisioned mobile

(Q&A) system will allow users to ask specific questions, such

as: 1) “Is it raining outside Bren Hall right now?”, 2) “What’s

the current south-bound speed at exit 7 of I-405?”, and 3)

“How long is the line at the on-campus MacDonald’s?”; and

to use a combination of methods (including responses from

multiple other users) to provide answers to these questions.

In this paper, we propose such a flexible and interactive mo-

bile Q&A middleware, called SmartSource that intelligently

leverages crowdsourcing mechanisms to provide accurate and

timely responses to questions.

Adapting search-driven Q&A systems in mobile settings is

fairly challenging, primarily due to highly dynamic and diverse

mobile user needs and contexts. For example, propagating

a question about the road conditions near Corona Del Mar

Beach to a broader population, e.g., mobile users in Orange

County, California is not useful. Careful selection of the target

recipients of a question is essential to (a) ensure that users

can participate meaningfully (indeed, noisy apps are typically

turned off or deleted by the user) and (b) lower resource

consumption in the end-devices and networks. Additionally,

mobile users may only want to receive answers from other

trusted users such as his/her Facebook friends who are capable

of responding.

The use of crowdsourcing as a driving mechanism to build

Q&A systems is promising. Crowdsourcing refers to public

platforms (e.g., Amazon Mechanical Turk (AMT) [1] and

CrowdFlower [2]) that allow users to hire others to perform

certain tasks; example applications include voting systems,

image retrieval and assesment of image searches [37], mul-

timedia annotations, information sharing, and social games.

Enabling such crowdsourcing in mobile devices [8], [21], [37],

[32], [17], [38], [9], [10] has been a growing area of study.

A recent large-scale measurement study with 85 smartphone

users [8] reveals that a small number of smartphone users can

provide an impressive coverage of a big city. Recent work

in crowdsensing explores the use of on-board and external

sensing mechanisms, including efficient user localization [32]

for a range of applications such as air quality monitoring [17],

determining transportation times [38], building occupancy [9]

and parking spot availability [10]; such content may further

be piggybacked on other messages, calls or applications for

efficient resource usage [21]. Several of the crowdsourcing ex-

amples above are intended to be used in a highly asynchronous
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manner where responses may arrive in the order of hours/days;

the crowdsensing apps on the other hand are intended to work

without any human intervention.

In contrast to the above efforts, the crowdsourcing based

mobile Q&A system must be general purpose (usable for

multiple applications), interactive (exploit human-in-the-loop),

dynamic (near real-time responses in an asynchronous setting

where participants join and leave at will) and opportunistic

(aims to use the best possible responders for the question

available). The SmartSource mobile crowdsourcing middle-

ware achieves the above requirements through a combina-

tion of strategies. First, SmartSource provides relevant and

trustworthy answers through careful selection of responders

(e.g., nearby users for location based questions). Secondly,

SmartSource enables dynamic/flexible interactions by allowing

mobile users to ask/answer questions anywhere and anytime,

and choose whose questions to answer and whose answers to

take. Finally, the SmartSource implementation supports cost-

effective deployment by reducing end-to-end system overhead

(e.g., do not distribute questions to less relevant responders)

and being cognizant of device capabilities and resources (e.g.,

residual battery capacity). More detailed comparisons among

SmartSource and the work in the literature can be found in

Section VI.

Key contributions of this paper include:

• Design of a generic mobile Q&A architecture that brings

together information seekers and providers to answer a

broad range of questions that involve spatial-temporal

context and expertise of users.

• Formulation of optimization problems (cast as worker

selection and assignor selection problems) to balance the

multiple design goals of accuracy, trustworthiness and

overhead cost, at scale.

• Design of stable algorithms for worker selection and

assignor selection using the Lyapunov queuing frame-

work [13], [15].

• Implementation of a prototype SmartSource system on a

smartphone testbed and evaluating it through both user

studies (for usage) and simulations (for scalability).

II. MIDDLEWARE DESIGN OVERVIEW

In SmartSource, a key design problem is how to target

potential information providers to answer questions so that

providers are not burdened inappropriately and information

requester can obtain trustworthy and timely information. The

solution lies in identifying sources of information that are

trusted enough for the question at hand; the choice of infor-

mation sources uses multiple factors including : a) Experts

- individual with expertise in the question domain are more

trusted when questions are knowledge-driven; b) Friends and

family networks - A requester is more likely to trust the

answers coming from a close friend or family member as

compared to a random responder; c) Those in the vicinity

of a location are potentially more suitable candidates to

answer location-based questions; and d) A combination of the

above. Furthermore, because some questions may require to

be answered by sensors embedded in smartphones of users

who act as information providers (e.g., pollution sensors can

be used to answer questions such as “how’s the air quality?”);

in such cases, we need to target mobile users equipped with

capable sensors and enough residual energy to answer the

questions.

SmartSource uses both static and dynamic contexts and

semantics from mobile users (and their smartphones) to rec-

ommend potential information providers for questions through

a novel utility-driven worker selection algorithm. The contexts

include: mobile users’ geolocation, social network connec-

tions, expertise and interests, profiling of device sensors, and

device battery levels. Moreover, our design keeps scalabil-

ity and stability in mind. We accommodate a distributed

environment, and develop fine-grained control mechanisms

based on the Lyapunov optimization framework [13], [15] that

maximizes the utility of worker selection while maintaining a

stabilized load of the middleware. We present an overview on

the design in the rest of this section.

A. SmartSource Architecture

Figure 1 depicts the overview of the SmartSource architec-

ture. It consists of querists, workers, and Q/A broker(s).

Fig. 1. Overview of the SmartSource system.

Querists: Querists are registered users. They send queries

to the broker system to request for specific information they

want know. This can be done through either a mobile app or

web portal of the system. In general a query may consist of: 1)

question, 2) location and time specifications, 3) requirements,

and 4) reward. The question indicates what information the

querist wants to get. Some questions may be location spe-

cific, such as “How many sea lions are at Pier 39?”. The

location specification may be a stadium, a park, a room, or

(more general) a tuple of longitude, latitude, and altitude.

Also questions have time specification since querists usually

request for information at current time or in near future.

Time specification indicates the time frame of the requested

information, such as “within an hour from now” or “from 1pm

to 5pm”. Requirements can be the quality and quantity of the

requested information such as the accuracy and the number of

answers that the querist desires. In crowdsourcing applications,

querists may put reward (as promised monetary or virtual

benefit) into their queries to motivate unknown workers to

work on their queries.
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Workers: Workers are registered users as well. Typically

they are mobile users with a mobile app of the system

installed on their smartphones. In Q&A and crowdsourcing

applications, workers can receive and decide what queries

to answer or to work on in three ways: 1) Q&A applica-

tions publicly publish submitted queries onto web portals

and workers can browse and search questions to answer; 2)

to improve targeting, many Q&A applications incorporate a

subscription service where workers subscribe to interested

topics/fields and applications present queries matching their

subscriptions on the workers’ home/wall page; 3) workers no-

tify the applications when they are available and applications

send notifications on recommended questions to workers. In

this work, we focus on the enabling techniques for the third

approach.

Broker(s): The key coordination is performed at a broker -

smartphone users need to register with the Q&A applications

at the broker for the brokerage service. The broker keeps track

of smartphone users’ static and dynamic contexts and carefully

select potential workers for submitted queries. Depending on

a query’s requirement the broker may select one or multiple

workers to sent the query to. To descriptively differentiate

queries submitted to the broker and copies sent to workers

in notifications, we call the copies of queries sent to workers

as information tasks. Since workers may refuse to take the

recommended tasks and eligible workers may not exist all

the time, the brokerage service needs to re-select workers for

unassigned queries when new workers are available.

We illustrate the Q&A brokerage service of SmartSource in

an example. Consider that Alice is going to a night market,

however, she wants to know which booths are popular and how

long are the lines for them. She wants the answers back in an

hour, so she sends a query to the broker as a querist. Some

registered smartphone users located close to the night market

are available to answer questions and they become potential

workers of the query. The broker notifies the workers on their

smartphones with respect to the task and they interact to accept

or reject it. If they accept to answer, they may walk to the night

market and take pictures of the booths and lines as answers and

return them to Alice by the broker. Otherwise, if they reject

the task, the broker keeps looking for new workers before the

query expires.

Figure 2 shows the major software modules in the Smart-

Source broker middleware. The query receiver receives new

queries from querists and put them into the worker selection

queue. The mobile user information collector monitors the

static and dynamic contexts of mobile users and maintains

the mobile user information and social relation information

databases. The crux of the middleware is the worker selection

algorithm that determines the best candidate workers for

queries in the worker selection queue based on the query

requirements and worker status from the databases. The task

assignment module interacts with the selected workers to

notify them of the queried tasks and let them decide whether to

accept the task. The middleware requires workers to confirm

the assignment (e.g., by clicking an “accept” button) within

a certain period after receiving the notification, if they are

willing to provide answers. Otherwise, it is considered as not

assigned. The task assignment module monitors the acceptance

of tasks. Once a query is accepted by enough workers it is

removed from the worker selection queue. It is important to

maintain a stable size of the worker selection queue to keep

the broker middleware operational. In this work, we design the

worker selection algorithm such that it maximizes the utility

of worker selection while maintaining a stabilized size of the

queue.

Query  
Receiver

Worker 
Selection 
Algorithm

Query 
Assignment 

Module

Mobile User 
Information 

Collector

Worker Selection 
Queue

Mobile User 
Information

Social Relation 
Information

SmartSource Broker Middleware

Fig. 2. Software modules in SmartSource broker middleware.

B. Scalability Consideration

Assignors and relays: To support scalable information

crowdsourcing to a large number of geographically distributed

mobile users, we envision a distributed broker network where

each broker takes responsibility for mobile users in a specific

region. To be able to flexibly adjust to the distribution of users

and provide an efficient structure for information exchanges

among brokers, we adopt a distributed hierarchical geo-overlay

to connect brokers. More specifically, we apply the RRTree

protocol [20] to construct a geo-based nested tree structure

consisting of non-leaf brokers, we call them relays, and leaf

brokers, we call them assignors, as illustrated in Figure 3.

Fig. 3. Geo-based nested tree structure.

In the RRTree structure each node (i.e., broker) is respon-

sible for a rectangular geographical region called Responsible

Region (RR), and inherently maintains the following property.

A parent RR in the tree subsumes the regions covered by

its child RRs, and the root of the tree covers the global

geography that is supported by the system. The structure is

flexible and scalable, and handles the non-uniform distribution

of users gracefully by allowing smaller RRs and denser broker

deployment in highly populated locations.

Leaf brokers or assignors, are responsible for receiving

queries from and assigning tasks to mobile users located inside

their responsible regions. The key function of assignors is

worker selection. The software module is the one indicated in

147



Figure 2. Non-leaf brokers or relays, as ancestors of assignors

in the geo-based tree, are responsible for forwarding queries

across regions to different assignors for worker selection. We

identify following applications that desire forwarding queries

to different assignors: 1) in spatial Q&A, if the responsible

region of the current assignor does not cover the requested

locations of the location-based queries (e.g., querists whose

requested locations are not in the same region), the queries

need to be forwarded to the right assignors for worker se-

lection; 2) in non-spatial Q&A where queries do not have

restrictions on workers’ locations, queries can be forwarded

from heavily loaded assignors to less loaded ones to achieve

load balancing and allow faster query assignment.

The RRTree overlay implements a geographical routing

protocol inherent to the geo-aware structure (see [20] for

details). We incorporate the routing into the middleware to

support query forwarding for spatial Q&A applications. On the

other hand, to provide efficient load balancing for non-spatial

Q&A applications, we design a distributed assignor selection

algorithm for relays to determine best assignors for queries.

The beauty of the algorithm is that it does not compromise the

long term utility achieved by the worker selection algorithm.

Figure 3 illustrates the software modules of a relay. The

routing module incorporates the geographical routing inherent

to the RRTree structure to provide efficient query forwarding

for spatial Q&A applications. To support scalable non-spatial

Q&A with efficient load balancing in distributed environments,

each relay keeps track of the backlogs of queues for a

randomized subset of assignors in the overlay through the

assignor manager. This can be easily achieved through peer

sampling services such as [29]. Each relay has an assignor

selection queue to hold non-location-based queries and the

assignor selection algorithm determines for each query in the

queue which assignor it should be sent to for worker selection.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We focus on the worker selection problem at assignor

brokers first. The assignor selection problem on relay brokers

is presented in Section IV-C.

A. System Models

We first present general models used in our system design.

Query model: Let Π be the class of questions. We consider

a general information query r from a querist qr with following

optional attributes: 1) hr ⊆ Π as the requested question; 2) gr
as the location(s) of the question; 3) Tr =< T start

r , T end
r > as

the time frame of the question in interest; 4) for information

collection queries, dr as the required duration of collection

and it must be smaller than the time frame of the question; 5)

kr as the number of workers or answers the querist desires to

get; 6) br as reward or benefit (money or virtual credit) the

querist promises to each worker.

Task model: To send queries to workers, SmartSource first

converts queries to information tasks. A task is essentially the

same as a query except that each task can be performed by a

single worker independently. Worker cooperation and collabo-

ration are out of the scope of this paper. Thus, for a query that

desires kr answers the middleware creates kr identical tasks

and select kr workers to send them to. Moreover, to ensure that

workers only receive tasks that can be answered or worked on

shortly, a query is considered inactive for worker selection if

the start time of the interested context T start
r is too far in the

future. We define a time interval Tθ as the preparation period

and convert a query to active tasks at the first time instance t
when t + Tθ ≥ T start

r . Inactive queries are simply cached at

their receiving brokers.

Worker model: The middleware maintains up-to-date static

and dynamic contexts of workers. A worker w’s profile con-

tains the following information: 1) yw ⊆ Π as the capability

of the worker to answer various questions. It could be the

expertise for knowledge-oriented questions, or the capability

of device sensors for information collection questions; 2)

iw ⊆ Π as the interest of the worker to answer; 3) lw as the

current location of the worker; 4) Ew as the current energy

level of the worker’s smartphone; 5) nw as the number of tasks

the worker wants to receive, and nw = 0 means the worker

currently can take no more tasks (e.g., because the worker

is already occupied); 6) fw as the desired labor reward per

unit time; 7) Fw is the friend circle of the worker, which

is derived from the worker’s online social networks upon

registration. Here we consider 1-hop friends only, but it can

be readily extended to include multi-hop friends. Besides the

above information, the system also maintains Rw as a list of

rejected queries that the worker refuses to work on. This is

required by the worker selection algorithm to ensure that the

worker won’t receive the same task again once he/she rejects

it. Let Qi denote the task queue at an assignor broker i for

worker selection. We divide time into slots (e.g., 10 minutes),

and model dynamics of the queue at the brokers.

Task arrival: Let λi(t) be the number of new tasks arriving

to broker i’s worker selection queue at t. Assume that λi(t)
is finite and limited by λmax, i.e., λi(t) ≤ λmax∀t. The

time averaged task arrival rate can be written as λi �

limt→∞
1
t

∑t−1
τ=0 E{λi(τ)}.

Task-worker selection and assignment: Every time slot,

assignor brokers run the worker selection algorithm (presented

in Section IV-B) to select workers for tasks in their queues, and

send the tasks to the workers. Let μi(t) be the number of tasks

at assignor i that have their workers selected at t; let μr(t) be

the number of selected tasks of the same query r, μw(t) be the

number of selected tasks to the same worker w, and μr,w(t)
be the number of selected tasks of query r to worker w. We

assume μi(t) is limited by μmax, i.e., μi(t) ≤ μmax∀t. Again,

the time averaged rate is μi � limt→∞
1
t

∑t−1
τ=0 E{μi(τ)}.

A worker, upon receiving a task, decides whether or not

to accept the task. If the worker accepts the task, the task

is considered as successfully assigned and removed from the

worker selection queue. Also, nw, as the number of tasks

the worker wants to receive, is reduced by 1. If the worker

rejects the task, the task is kept in the queue and considered

for worker selection in next time slot. Also, the query is added

to the worker’s rejected query list Rw, so the worker will not

get the task again. We require the worker to response his/her
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decision (accept or reject) within the same time slot when

he/she receives the task, otherwise the assignment is aborted

and the task is considered for worker selection again in next

slot. Let ai(t) be the number of accepted/assigned tasks by

assignor i at t. We have ai(t) ≤ μi(t)∀t. The time average rate

is ai � limt→∞
1
t

∑t−1
τ=0 E{ai(τ)}, and ai ≤ μi. We assume

ai ≥ ε · μi where 0 < ε < 1, which can be arbitrarily small.

This is to ensure a positive worker selection feedback that at

least some portion of the selected tasks can be successfully

assigned.

Task dropping: Tasks that couldn’t get assigned for a

long time in the system or have expired (i.e., the interested

time frame of the context has passed) need to be dropped

from the worker selection queue. Let xi(t) be the number of

tasks to drop at assignor i at t, and its time average rate is

xi � limt→∞
1
t

∑t−1
τ=0 E{xi(τ)}. Therefore, the evolution of

the queue at an assignor broker i is written as:

Qi(t+ 1) � [Qi(t) + λi(t)− ai(t)− xi(t)]
+, (1)

where [π]+ � max(0, π). We define the stability of the queue

as:

Qi � lim
t→∞

sup
1

t

t−1∑
τ=0

E{Qi(τ)} <∞. (2)

At t = 0 we set Qi(t) = 0. The queue is stable as long as

λi ≤ ai + xi.

B. Problem Formulation

Considering a task of query r and a worker w at time t, we

first design working criteria to test the feasibility of assigning

the worker onto the task. The criteria includes many factors

that can be applied to many mobile Q&A applications: 1)

Ew ≥ Eθ where Eθ is the energy threshold for a worker to

receive new tasks; 2) nw > 0 as the worker wants to receive

new tasks; 3) r /∈ Rw as the query is not in the worker’s reject

list; 4) hr ⊆ yw as the w’s expertise or capability is able to

answer the requested question; 5) let T̂r,w be the estimated

time duration for w to complete the task of r, and for spatial

sensing questions, it can be evaluated as T̂r,w = dr + Tmov
r,w ,

where dr is the required sensing duration and Tmov
r,w is the

estimated time for the worker to move from his/her current

location to the nearest requested location, which can be derived

from services such as Google Map [3]. Then we require t +
T̂r,w < T end

r as the worker has enough time to complete the

task before the task expires; 6) br ≥ fw · T̂r,w as the reward

provided by the querist for the worker who meets the demand.

Utility function: We propose a general utility function of

assigning a task to a worker that can accommodate many

mobile Q&A applications as follows:

UA
r,w(t) = [Ir,w + α · Sr,w − β ·Mr,w − γ · Cr,w]

+, (3)

where Ir,w is the interest similarity of query r and worker

w, Sr,w is the social closeness of the querist qr and w,

Mr,w and Cr,w are the estimated moving cost and energy

cost respectively for spatial crowdsourcing applications. In-

terest similarity Ir,w is evaluated using the Jaccard similarity

coefficient on hr as the requested question of r and iw as the

interested question of w, i.e., Ir,w = |hr ∩ iw|/|hr ∪ iw|. The

social closeness between the querist and the worker directly

affects the willingness of the worker to work on the query

and affects the trust of the querist to the worker’s work.

Recent work has studied how to effectively calculate the social

closeness between two users. It can be either explicitly from

users’ rating or implicitly from users’ social communications

[26], [25]. We evaluate moving cost Mr,w = Tmov
r,w as the

time that the worker has to spend on moving to the desired

location(s) of the task. Furthermore, we estimate energy cost

Cr,w from the energy profile of w’s device sensors and the

requested sensing question hr.

To avoid overflowing the queues, in every time slot the

system also determines tasks to drop. Dropped tasks will lose

the chance for worker selection in the future. We capture the

loss of dropping a task of query r at t as: UD
r (t) = [d·Pr(t)]

+,
where d is a constant and Pr(t) is time decay function, such as:

Pr(t) = 1−e−(T end

r
−t). Thus, the system prefers to drop tasks

approaching their deadlines because they have less chance to

find workers before expire.

Problem formulation: We consider the following formula-

tion with a long term goal for worker selection in the system.

max: Ū = lim
t→∞

1

t

t−1∑
τ=0

E

{
UA(τ) − UD(τ)

}
; (4a)

st: λ̄i ≤ āi + x̄i ∀i; (4b)

μr,w(t) ≤ 1 ∀t; (4c)

μw(t) ≤ nw. (4d)

The objective function in Eq. (4a) maximizes the long term

utility of selecting workers and minimizes the loss of dropping

tasks. The constraint in Eq. (4b) stabilizes the system. The

constraint in Eq. (4c) ensures that the system will not send

more than one task of the same query to a worker. The

constraint in Eq. (4d) makes sure that the number of tasks

assigned to a worker is no more than the number of tasks the

worker wants to receive.

IV. SMARTSOURCE ALGORITHMS

We design optimal algorithms to solve the problem formu-

lated in Eqs. (4a)-(4d) based on Lyapunov optimization [13],

[15], which is useful for solving long-term optimization prob-

lems. We start by presenting our design principles.

A. Design Principles

We design a novel mechanism to take into account task

urgency in worker selection, i.e., to prioritize tasks with ap-

proaching expiration deadlines over other tasks. We maintain

a dynamic priority-weight uk(t) for each unassigned task k in

queue Qi as an exponential function written as:

uk(t) = c · e−(T end

r
−t). (5)

For a new task k arrives or activates at tk, its priority-weight

is initialized as uk(tk) = c·e−(T end

r
−tk). When the task expires
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at t = T end
r , the weight is uk(T

end
r ) = c. We can write the

time evolution of uk(t) as:

uk(t+ 1) = uk(t) · e = uk(t) + uk(t)(e − 1). (6)

We use a novel virtual priority-weight queue Zi at each

broker holding the priority-weights of the unassigned tasks.

Once a task is successfully assigned or dropped, its weight is

removed from the virtual queue. In practice, the virtual queue

is simply a counter as the sum of the weights:

Zi(t) =
∑

k∈Qi(t)

uk(t). (7)

Therefore, we can write the queuing dynamics of Zi based

on that of Qi as follows:

Zi(t+ 1) � [Zi(t) + ρi(t) + λ′i(t)− a
′

i(t)− x
′

i(t)]
+, (8)

where ρi(t) =
∑

k∈Qi(t)
uk(t)(e − 1), λ′i(t) =∑

k∈λi(t)
uk(tk), π′i(t) =

∑
k∈πi(t)

uk(t) · e, and π is a

replacer for symbol μ, a and x.

The stability of the virtual queue can be defined as:

Zi � lim
t→∞

sup
1

t

t−1∑
τ=0

E{Zi(τ)} <∞. (9)

From Eq. (7), we see Zi(t) = 0 when t = 0. Also, the virtual

queue is stable when the real queue Qi is stable and uk(t) is

limited.

Define Θ(t) � (Q(t), Z(t)) as the concatenated vector of

the real and virtual queues. We define a quadratic Lyapunov

function:

L(Θ(t)) �
1

2

∑
i

(Qi(t)
2 + Zi(t)

2). (10)

A one-step Lyapunov drift is defined as:

Δ(Θ(t)) � E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}. (11)

Intuitively, to stabilize the system, we want to maintain

Δ(Θ(t)) as small as possible, so that L(Θ(t)) is small. This is

done by maximizing the number of tasks to assign as well as

to drop in a time slot regardless of utility. To take into account

the utility and the long term goal we defined in Eq. (4a), we

construct the following per-slot objective:

min : Δ(Θ(t))− V E{UA(t)− UD(t)|Θ(t)}, (12)

where V is a weight that controls the relevant importance of

the utility optimization over the stability of the queues.

From the queuing dynamics of Q and Z (Eqs. (1) and (8))

and the definition of the Lyapunov drift (Eq. (11)) we derive

the following bound on the drift.

Lemma 4.1 (Lyapunov Drift): The one-step Lyapunov drift

satisfies the following constraint at any time slot regardless of

algorithms to control the system:

Δ(Θ(t)) = E{L(Θ(t+ 1)) − L(Θ(t))|Θ(t)}

≤ B +
∑

i

E{Qi(t)λi(t) + Zi(t)(ρi(t) + λ
′

i(t))|Θ(t)}

−
∑

i

E{Qi(t)ai(t) + Zi(t)a
′

i(t)|Θ(t)}

−
∑

i

E{Qi(t)xi(t) + Zi(t)x
′

t(t)|Θ(t)},

(13)

where B is a carefully chosen constant.

By applying the lemma to Eq. (12), we derive the following

lemma (some derivations of our lemmas are omitted due to the

space limitations).

Lemma 4.2 (Optimization): The minimization problem pre-

sented in Eq. (12) can be solved through the maximization

problem max : Φ(t), where Φ(t) is defined as follows:

Φ(t) =
∑

i

E{V UA
i (t) + ε(Qi(t)μi(t) + Zi(t)μ

′

i(t))|Θ(t)}

+
∑

i

E{Qi(t)xi(t) + Zi(t)x
′

i(t)− V U
D
i (t)|Θ(t)}.

(14)

B. Worker Selection Algorithm

Based on the above lemma, we propose the following

worker selection algorithm (Algorithm 1) running at each

assignor to maximize Φ(t).

Algorithm 1: Worker Selection Algorithm for Assignor

In time slot t at assignor broker i, let Wi(t) be the set of
available workers, then determine 1) worker selection
μk,w(t) = {0, 1} for tasks k ∈ Qi(t) and w ∈Wi(t); and 2)
task dropping xk(t) = {0, 1} for tasks k ∈ Qi(t) by solving
the following optimization problem (r as the query of the task):

max:
∑

k∈Qi(t),w∈Wi(t)

Y
A
r,w(t)μk,w(t) +

∑

k∈Qi(t)

Y
D
r (t)xk(t)

st: μ
r,w(t) =

∑

k∈r

μk,w(t) ≤ 1;

μ
w(t) =

∑

k∈Qi(t)

μk,w(t) ≤ nw ,

(15)

where Y
A
r,w(t) =V U

A
r,w(t) + ε · Yr(t);

Y
D
r (t) =[Yr(t)− V U

D
r (t)]+;

Yr(t) =Qi(t) + Zi(t) · ur(t) · e.

(16)

Note: since all tasks k of the same query r must have the same
uk(t), here we use ur(t) in the above equation.

The worker selection algorithm: Algorithm 1 selects (task,

worker) pairs μk,w and tasks to drop xk(t) from the queue to

maximize the objective function in Eq. (15). The objective

function contains two parts: one for worker selection Y A
r,w(t),

one for task dropping Y D
r (t). Both Y A

r,w(t) and Y D
r (t) take

into account the backlogs of queues (i.e., Q(t) and Z(t)).
Moreover, Y A

r,w(t) takes into account the assignment utility

UA
r,w(t), and UD

r (t) takes into account the dropping utility

UD
r (t). The optimization is subject to two constraints. The first
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constraint guarantees that the tasks sent to a worker are not

the same. The second constraint guarantees that the number

of tasks sent to a worker is no more than what he/she asks

for.

The optimization problem can be reduced to the minimum

cost maximum flow problem as we show in Figure 4. In the

figure we illustrate an example of the worker selection problem

with 6 tasks from 3 queries (query 1 has 2 tasks, query 2 has

3, and query 3 has 1) and 4 workers each of which desires to

receive a certain number of tasks. To construct the problem,

we create a source node S, a destination node D, a drop node

X , and model queries and workers by additional nodes. We

form edges from the source node to all queries, edges from a

query r to the drop node if UD
r (t) > 0, edges from a query r

to a worker w if Y A
r,w(t) > 0, edges from all workers to the

destination and an edge from the drop node to the destination.

We show the (capacity, cost) pair for each edge in the graph.

The capacity from the source to a query is the number of

tasks of the query, and its cost is always 0. The capacity from

a query to a worker is 1 since only 1 task of the same query is

allowed to be assigned to a worker, and its cost is −Y A
r,w(t).

The capacity from a query to the drop node is ∞ so there is

no limit on the number of tasks can be dropped, and its cost is

−Y D
r (t). The capacity from a worker to the destination is the

number of tasks the worker can receive and its cost is always

0. Finally the capacity from the drop node to the destination

is ∞ and cost is 0.
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Fig. 4. The representation of a sample optimization problem as a minimum
cost maximum flow problem.

By reducing to the minimum cost maximum flow problem

we can now use any algorithm for that problem to solve our

worker selection problem and it is known that the problem

can be optimally solved in polynomial time. One of the

well-known algorithms is the Successive Shortest Path and

Capacity Scaling algorithm by Edmonds and Karp, which is

a generalization of the Ford-Fulkerson algorithm [14]. The

time complexity of the algorithm is O(|V |4 ·maxcost) where

maxcost is the maximum edge cost (relative to 0 as the

minimum edge cost).

C. Assignor Selection Algorithm

In this section, we present our design of the assignor

selection algorithm, which runs at relays to provide load

balancing. Again, we use Lyapunov optimization to design

the algorithm, and the beauty of the design is that the system

long term goal defined in Eqs. (4a)-(4d) are not compromised

by the addition of the algorithm.

We revisit the queuing dynamics of the brokers by taking

into account the task flows from relays to assignors. Again,

let Qi denote the task queue at broker i (and the broker could

be either an assignor or a relay). λi(t) is the number of new

tasks arriving to broker i. For non-spatial Q&A applications

desiring worker selection load balancing, new tasks first arrive

at relays for assignor selection. So, λi(t) = 0 for assignors.

Task assignor selection: Every time slot, relay brokers run

the assignor selection algorithm to determine assignors for

tasks in their queues. Once selected, the tasks are removed

from queues at the relay, sent to their selected assignors

and put into the queues at the assignors. Let ωi,j(t) be the

number of tasks at relay i selected to assignor j at t. Let

ωj(t) =
∑

i∈Rl ωi,j(t) be the total number of tasks received by

assignor j from relays at t and ψi(t) =
∑

j∈As ωi,j(t) be the

total number of tasks sent out of relay i at t. Rl and As denote

the sets of relays and assignors in the system. Both ωj(t) and

ψi(t) must be finite. We assume they are limited by ωmax and

ψmax respectively, i.e., ωj(t) ≤ ωmax and ψi(t) ≤ ψmax∀t.
The time averaged rates are ωi � limt→∞

1
t

∑t−1
τ=0 E{ωi(τ)}

and ψi � limt→∞
1
t

∑t−1
τ=0 E{ψi(τ)}.

A generalized queuing dynamics for Qi at a broker i
(indifferent for relays and assignors) is:

Qi(t+ 1) � [Qi(t) + λi(t) + ωi(t)− ψi(t)− ai(t)− xi(t)]
+,

(17)

where ωi(t) = ai(t) = μi(t) = xi(t) = 0 if i is a relay, and

λi(t) = ψi(t) = 0 if i is a assignor.
Relay brokers maintain virtual queue Zi, the same as we

presented earlier. When a task is sent from a relay broker to an
assignor broker, its priority-weight is transferred to the virtual
queue of the assignor broker from that of the relay broker as
well. Therefore, a generalized queuing dynamics for Zi can
be written as:

Zi(t+1) � [Zi(t)+ρi(t)+λ
′

i(t)+ω
′

i(t)−ψ
′

i(t)−a
′

i(t)−x
′

i(t)]
+
.

(18)

We update the system Lyapunov function to include Q and

Z at relays as well. Using the generalized queuing dynamics

in Eqs. (17) and (18), the Lyapunov drift bound is given below.

Lemma 4.3 (Lyapunov Drift): The one-step conditional

Lyapunov drift for the entire system of both relays and

assignors satisfies the following constraint at any time slot:

Δ(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}

≤ B
′ +

∑

i

E{Qi(t)λi(t) + Zi(t)(ρi(t) + λ
′

i(t))|Θ(t)}

−
∑

i∈Rl

∑

j∈As

E{∇Q
i,j(t)ωi,j(t) +∇

Z
i,j(t)ω

′

i,j(t)|Θ(t)}

−
∑

i∈As

E{Qi(t)ai(t) + Zi(t)a
′

i(t)|Θ(t)}

−
∑

i∈As

E{Qi(t)xi(t) + Zi(t)x
′

t(t)|Θ(t)},

151



where B′ is a constant,∇Q
i,j(t) = Qi(t)−Qj(t) and ∇Z

i,j(t) =
Zi(t)− Zj(t).

We consider the same per-slot objective in Eq. (12) and

by applying the lemma we derive an additional optimization

problem specific for relays besides the original optimization

defined in Lemma 4.2.

Lemma 4.4 (Optimization): The minimization problem pre-

sented in Eq. (12) can be divided and solved through two

maximization problems max : Φ(t) and max : Φ′(t) where

Φ(t) is defined in Lemma 4.2 and Φ′(t) is defined as follows:

Φ′(t) =
∑
i∈Rl

∑
j∈As

E{∇Q
i,j(t)ωi,j(t) +∇

Z
i,j(t)ω

′

i,j(t)|Θ(t)}.

(19)

It is not hard to see that the above optimization problem

for relays is aligned with the optimization for assignors in

Lemma 4.2 and they together stabilize the queues and optimize

the global long term objective of the system. We propose the

assignor selection algorithm (Algorithm 2) running at each

relay to maximize Φ′(t).

Algorithm 2: Assignor Selection Algorithm for Relay

Let Ai denote the set of candidate assignors for a relay i. In
time slot t at relay broker i, for each task k ∈ Qi(t) select
j ∈ Ai that the following objective is satisfied:

max: Vk = (Qi(t)−Qj(t))+(Zi(t)−Zj(t)) ·uk(t) ·e. (20)

If Vk > 0 then send the task k to j. Otherwise, keep k in Qi

and do not send.

The assignor selection algorithm: Algorithm 2 takes

O(mn) time, where m is the number of candidate assignors of

the relay broker and n is the number of tasks in the assignor

selection queue. We can see that the selection decisions are

made based on the backlogs at assignors. Intuitively, by

maximizing Eq. (20) the algorithm achieves load balancing

since it prefers assignors with smaller backlogs. Also, if all

candidate assignors are loaded (i.e., Vk < 0) the tasks are

better off held by the relay before they are less loaded.

Last, we omit the performance bounds of our algorithms

due to the space limitations.

V. IMPLEMENTATION AND PERFORMANCE EVALUATION

In this section, we evaluate our proposed solution using both

real implementations and extensive trace-driven simulations.
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Fig. 5. Prototype architecture.

(a) (b) (c)

Fig. 6. Screenshots of our prototype: (a) submit a question, (b) display
recommended questions, and (c) answer a question.

A. SmartSource Implementation

We implemented a prototype system for spatial mobile

Q&A and collected real traces from users. The system consists

of (i) broker, as a Java application deployed on a Linux server

and (ii) client, as an Android application distributed to mobile

users. Figure 5 shows the architecture of our prototype, and

Figure 6 shows the screenshots of the client app. Mobile users

interact with the app to ask and answer questions. The front-

end user interface embeds the Google Map service to allow

users to easily target locations for questions (Figure 6(a)). The

app provides five predefined questions such as “are the shops

open?” and “is crowded?” to allow users to ask questions

in a click, or they can type in customized questions. The

submitted questions and answers are stored in the database

at the server side. Moreover, the client app records the user’s

location and energy, and periodically reports to the broker.

The information is stored in the database as well. The worker

selection algorithm is implemented at the broker and recom-

mended questions are shown as markers on the map at the

client (Figure 6(b)). Users can click on a marker to answer

the question (Figure 6(c)). Users can also check the answers

of their own questions.
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Fig. 7. Prototype usages statistics.

We distributed the client app to 7 students at National

Tsing Hua University to use for a week. Some statistic results

are shown in Figure 7. Figure 7(a) presents the number of

submitted and answered questions for every 8 hours period.

The results show that over 80% questions are answered. Also,

the peak usage periods are noons and evenings. Figure 7(b)

shows the average delay for a question to get answered since

it is asked. We observe that most of the time the queries can

get the answers in less than 10 hours. This could be a sign that
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users use the system very frequently since they benefit (receive

answers) from the system. We also collect the feedback from

the users by questionnaires. The feedback shows that they use

the application each day. Most of the users say that the answers

are useful to them.

Although we implemented the prototype system to be used

in real life, the number of users and questions are still few

and cannot provide enough information to understand the

performance of the solution. Therefore, we conducted exten-

sive simulations to evaluate the performance of our proposed

middleware and algorithms.

B. Performance Evaluation

We conducted several experiments on real-world data. Be-

low we first discuss our trace collection and experimental

methodology. We then present our experimental results.

1) Trace Collection: We collected two real-world datasets

for the evaluations. The first dataset is obtained from PTT

[5], a Taiwan based Bulletin Board System (BBS). It is

arguably the largest BBS in the world with more than 1.5

million registered users. We collected 5700 posts in 10 days

period from April 11 to April 20, 2014, and treat them as

queries. We assume the PTT users as workers. To simulate

spatial-temporal Q&A, we extract locations of the posts and

users. We assume the location of the author of a post is

the requested location of the query. We approximate users’

locations from their IPs using triangulation [36], [35]: we

recruited three servers in Taiwan and let them ping the IPs to

estimate their distances to the servers from the network delay

(RTT). We also partitioned Taiwan into grids and determine the

location of an IP by computing the Mean-Square-Error (MSE)

of each grid’s and the IP’s distances to servers and finding

the minimum. A random offset within a grid is assigned to

each user. Moreover, we used random waypoint model to

simulate workers movement when they are idle. When workers

are performing tasks, they are moving towards the requested

locations of the assigned tasks.

To simulate more complicated scenarios, e.g., taking into

account the topics of questions in Q&A, we collected the

second dataset. We crawled Quora and collected 1188 ques-

tions under the topic group “San Francisco” and 1431 users

which are answerers of the questions. The topic group contains

many sub-topic tags (e.g., “restaurants in San Francisco”)

and we recorded all the topic tags for the crawled questions

and those followed by users, serving as the classes of ques-

tions of the queries and interests of the workers. We used

the dataset for both spatial-temporal and knowledge-based

Q&A systems. To simulate spatial-temporal Q&A system,

we imported the mobility trace dataset [31] of approximately

500 taxis collected over 30 days in the San Francisco Bay

Area. We randomly assigned the taxis traces to workers and

locations to queries. Furthermore, we simulated 3 types of

smartphones with distinctive energy costs for sensing topics

of questions, and randomly assign smartphones to workers.

One the other hand, to simulate knowledge-based Q&A based

on social networks [26], we imported the Facebook social

graph obtained by McAuley and Leskovec [30], consisting of

193 circles and 4039 users. We randomly map Quora users to

Facebook users.

2) Experimental Methodology: We built a Java based simu-

lator driven by the datasets and simulated a Q&A environment

of 10 days with time slot of 10 minutes. Each query randomly

picks a kr (i.e., number of required workers) between 1 and

kmax
r , and has a deadline of 6 hours after posted. Each

worker can only accept one task at a time, and will not receive

new tasks before he/she finishes the current one. Moreover,

workers may not always be available even they have no tasks

to perform. We set a probability (50% or 33%) for their

availability in each time slot. In our experiments with the PTT

dataset, we considered 200 workers and varied the number of

queries between 350 and 5600. In experiments with the Quora

dataset, we fixed the number of queries to 1000 and varied the

number of workers between 100 and 1000.

We considered the following performance metrics: 1) com-

plete ratio as the number of queries completed by workers

before their deadlines over the total number of queries; 2)

average responding time as the average time for a query to

get answered since it is submitted. For spatial-temporal Q&A

the time includes the query queuing time for worker selection,

workers’ moving time to queried locations, and collecting the

queried information. For knowledge-based Q&A, the time is

primarily the queuing time and the time to provide answer;

3) algorithm time as the computational time of the worker

selection algorithms; 4) worker busy time and energy cost in

spatial-temporal Q&A as the total time and total energy cost

for workers working on queries; 5) utility as the total assign

utility (in Eq. (3)).

We conducted three sets of experiments. In the first set of

experiments, we evaluated the performance of SmartSource

worker selection against baselines for spatial-temporal Q&A.

We considered three baseline algorithms for worker selection

in each time slot, given a set of spatial-temporal queries and

a set of available workers: 1) Nearest: a greedy heuristic

algorithm that iteratively picks the pair of query and worker

that the distance from the worker to the query is the minimum

among all query worker pairs; 2) Nearest Neighbor Priority

(NNP): an optimal algorithm proposed in [18] to maximize

the number of task assignment while minimizing the travel

cost of the worker to move to the requested location; 3) Least

Location Entropy Priority (LLEP): an algorithm proposed in

[18] to assign higher priority to tasks which are located in

worker-sparse areas. In the second and third sets of experi-

ments, we evaluated the implication of system parameters on

the performance of SmartSource in the spatial-temporal and

knowledge-based Q&A systems, respectively.

3) Experimental Results: The experimental results are

given below.

Compared with other strategies. Figure 8 shows the

comparisons of SmartSource against baseline algorithms on

spatial-temporal Q&A. We used the PTT dataset and varied the

number of queries submitted by querists. Since the baseline al-

gorithms perform worker selection only based on the locations
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Fig. 8. Comparing SmartSource with others on spatial-temporal Q&A, s1: kmax
r = 3, 50% worker availability; s2: kmax

r = 6, 33% worker availability.

of queries and workers, for fairness in comparisons we adjust

the utility in SmartSource to consider moving cost only. We

simulated two scenarios s1 and s2 with different worker de-

mands from queries and worker availability. Compared to s1,

s2 represents scarcer worker resources due to higher worker

demands and lower worker availability. We observe that with

the increase of the number of queries, the complete ratio of all

algorithms are decreasing due to the lack of worker resources.

Compared with other strategies, SmartSource achieves 90%

complete ratio, which is over 10% higher than other algorithms

in s1 (Figure 8(a)) and it is less impacted by the increase

in the number of queries. In s2 where the worker resources

are scarcer, SmartSource is able to maintain 80% complete

ratio, which is over 20% higher than baselines (Figure 8(e)).

This owes to its deadline-aware queuing and worker selection

mechanism.

We also evaluated the query responding time and worker

busy time as an indication of how fast can queries be an-

swered and how much work load for workers. We observe

that in spatial-temporal Q&A system, workers’ travel time

to requested locations is an important factor impacting the

query responding time and worker busy time. NNP has lowest

query responding time (Figures 8(b) and 8(f)) and worker

busy time (Figures 8(c) and 8(g)) because it assigns tasks

to workers with minimum traveling distance. SmartSource

also minimizes workers’ traveling cost but has a longer query

responding time than NNP primarily because of the queuing

delay of the queries before they are assigned. With the increase

of number of queries, the total worker busy time (Figure

8(g)) is increasing for all algorithms because more tasks were

performed. We observe that although SmartSource workers

performed more tasks than those in other strategies (because

of a higher query complete ratio), their total busy time are

close.

Figures 8(d) and 8(h) show the total computational time

of the algorithms for worker selection. We can see that the

computational time of all algorithms are increasing with the

increase of the number of queries. SmartSource has a similar

computational time compared to other strategies but achieves

better worker selection performance.
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Fig. 9. Performance tradeoff of SmartSource by varying γ in spatial-temporal
Q&A and varying V in knowledge-based Q&A.

Performance tradeoffs of the algorithm. We evaluated

the performance of the SmartSource worker selection under

varying system parameters. We used the Quara dataset to

take into account question topics, sensing energies and social

networks in the simulations. We first evaluated the tuning of

parameters of the utility function. Figures 9(a)–9(c) presents
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its performance by varying γ (i.e., weight for energy cost)

in spatial-temporal sensing applications. We used the perfor-

mance of NNP as a baseline. We observe that with the increase

of γ the sensing energy cost of workers in SmartSource are

decreasing (Figure 9(a)). However, this is accompanied with an

increase in worker busy time (Figure 9(b)) and query response

time (Figure 9(c)). This is because the worker selection places

higher priority on minimizing workers’ energy cost for sensing

by compromising workers’ traveling distance, which leads to

an increase in the overall working time on spatial queries.

This demonstrates the flexibility of our middleware: it can be

customized for different application by tuning parameters in

the utility function.

We further evaluated the performance of the SmartSource

by varying V (i.e., weight for utility over queue length). We

considered a knowledge-based Q&A and set β = γ = 0 in the

utility so the worker selection mainly considers the interest

similarity and social closeness. Figures 9(d)–9(f) present the

results. We observe that with larger V , SmartSource is able to

achieve higher utility (Figure 9(d)) and higher query complete

ratio (Figure 9(e)). However, although larger V leads to higher

utility, it also leads to larger queue size and longer queuing

delay. This can be seen from the increase in the query response

time (Figure 9(f)). Moreover, the total utility becomes stable

while V keeps growing, because it is approaching the long

term optimal utility. Q&A system developers may select the

most suitable V value to meet their design goals.

VI. SMARTSOURCE’S APPLICATION SCENARIOS

Our proposed SmartSource middleware may be used to

develop various mobile Q&A systems. We present two sample

application scenarios below.

Spatial-temporal mobile Q&A systems allow mobile users

to ask/answer spatial-temporal dependent questions [12], [28],

[27], [18], [11], [19], [33]. For example, Deng et al. [12]

study the problem of the worker selection, in which each

incoming worker is given a schedule of requests to answer,

and the goal is to maximize the number of completed requests.

The algorithms are proposed, based on dynamic programming

and branch-and-bound. Kazemi and Shahabi [18] study the

problem of simultaneously determining the schedules for mul-

tiple workers, and convert the problem into a maximum flow

problem with an objective of maximizing the total number

of assigned requests. Liao and Hsu [28], [27] study the

problem of spatial-temporal dependent multimedia sensing

tasks, where photo/video of a target may be taken from

multiple spots, which incurs even higher complexity than the

problem considered in Deng et al. [12]. Liao and Hsu convert

the crowdsourcing problem into a variation of orienteering

problems [34], and propose several algorithms, including an

optimal algorithm [28] and an approximation algorithm [27] to

solve the problem. Dang et al. [11] consider a similar problem

but with task dependency, and Kazemi et al. [19] consider the

problem of fusing inputs from multiple mobile users using

majority vote. Tamilin et al. [33] develop a smartphone based

crowdsourcing system. Their system selectively presents the

queries that match the workers’ contexts the most, while

achieving good energy efficiency.

Knowledge-based mobile Q&A systems have already

commercialized. Mobile Q&A services like Naver Mobile

Q&A and ChaCha made it easy for mobile users to find

information by asking questions via instant messaging or SMS.

Moreover, with the popularity of smartphones, traditional web

based Q&A systems such as Answer.com, Quora and Baidu

Zhidao have published their mobile apps as extension of

services. Several research projects have studied knowledge-

based mobile Q&A as well. Lee et al. [23] studied the usage of

mobile Q&A by analyzing questions and answers from Naver

Mobile Q&A and a survey study of mobile users. They found

that the questions asked through mobile Q&A significantly

differs from that of web based Q&A as they are deeply

wired into users’ everyday life activities. In another work,

Lee et al. [24] analyzed mobile pay-for-answer Q&A services

and they found that in these applications workers are mainly

motivated by financial incentives and intrinsic factors (e.g.,

fun and learning) rather than social factors, and answers are

provided quickly. Shen et al. [26] proposed a fully distributed

mobile Q&A system based on social networks. The system

help mobile users to determine potential answerers in their

friend lists to forward their questions to, based on the their

interests and social closeness.

VII. CONCLUDING REMARKS

We expect that mobile Q&A applications will be a dominant

mode of information exchange in future systems since they

pave the way for combining the capabilities of powerful

technologies in existence today – mobile platforms, social

networks and knowledge bases. Such a Q&A paradigm for

information exchange opens up a new set of research issues.

The ability to support personalized and reliable Q&A in

unreliable settings is particularly interesting - a particular use

case would be one of exploiting the crowd to gather and

distribute situational awareness in disasters. Today, several

notification systems are in use and being developed to relay

critical content to officials and citizens in harm’s way using

dashboards, subscription based notification applications, and

etc. [6], [7], [22], [16]. Notification is usually triggered by

the publication of a message; a more interactive paradigm

is necessary when individuals seek specific information. The

above Q&A paradigm enables this higher level of interactivity

that is driven by the querier/seeker of information. The ability

to provide seamless exchange in real-time and in the presence

of faults is another huge challenge. Techniques to exploit the

underlying network structure [6] may be extended to enhance

the reliability of exchange using resilient overlay networks.

Finally, human-oriented Q&A systems are extremely tolerant

to inaccuracies in formulation of questions/answers as opposed

to search-based systems. For example, a querist asking for the

“crowd-level at the campus medical facility” can express the

needs loosely; a responder might indicate “I have been waiting

in line for an hour” - such loosely formed questions/answers

are still useful in this paradigm. Translating this flexibility
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into the needed quality of queries/answers at lower levels is

interesting and can be used to reduce system overheads. For

example, the authors of [7] proposes a service for flexible

localization to satisfy the diverse localization quality levels

required by different applications; studies in the literature [22],

[16] consider the impact of uncertainty of the sources to ensure

the answers are acceptable.
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