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ABSTRACT
In this paper, we address issues in the design and operation of a Big
Active Data Publish Subscribe (BAD Pub/Sub) systems to enable
the next generation of enriched notification systems that can scale
to societal levels. The proposed BAD Pub/Sub system will aim to
ingest massive amounts of data from heterogeneous publishers and
sources and deliver customized, enriched notifications to end users
(subscribers) that express interests in these data items via parame-
terized channels. To support scalability, we employ a hierarchical
architecture that combines a back-end big data cluster (to receive
publications and data feeds, store data and process subscriptions)
with a client-facing distributed broker network that manages user
subscriptions and scales the delivery process. A key aspect of our
broker capacity is its ability to aggregate subscriptions from end
users to immensely reduce the end to end overheads and loads.
The skewed distribution of subscribers, their interests and the dy-
namic nature of societal scale publications, create load imbalance
in the distributed broker network. We mathematically formulate
the notion of broker load in this setting and derive an optimization
problem to minimize the maximum load (an NP-hard problem). We
propose a staged approach for broker load balancing that executes
in multiple stages — initial placement of brokers to subscribers,
dynamic subscriber migration during operation to handle transient
and instantaneous loads and occasional shuffles to re-stabilize the
system. We develop a prototype implementation of our staged load
balancing on a real BAD Pub/Sub testbed (multinode cluster) with
a distributed broker network and conduct experiments using real
world workloads. We further evaluate our schemes via a detailed
simulation studies.

CCS CONCEPTS
• Software and its engineering → Publish-subscribe / event-
based architectures.
ACM Reference Format:
Hang Nguyen, Md Yusuf Sarwar Uddin, and Nalini Venkatasubramanian.
2019. Multistage Adaptive Load Balancing for Big Active Data Publish
Subscribe Systems. In DEBS ’19: The 13th ACM International Conference on
Distributed and Event-based Systems (DEBS ’19), June 24–28, 2019, Darmstadt,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’19, June 24–28, 2019, Darmstadt, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6794-3/19/06. . . $15.00
https://doi.org/10.1145/3328905.3329508

Germany. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3328905.3329508

1 INTRODUCTION
The distributed publish/subscribe paradigm is a popular communi-
cation architecture for information dissemination; here publishers
publish messages to a broker network that matches and routes
these messages to interested subscribers. In this paper, we propose
a novel architecture, BAD Pub/Sub [5], to significantly scale both
the volume of data and subscribers while enabling customized, en-
riched notifications to subscribers using a big data management
backend. The BAD Pub/Sub approach aims to leverage the benefits
of both Big Data Management Systems (BDMS) and distributed
broker Pub/Sub systems while overcoming key limitations. To ad-
dress the scale issue, our BAD Pub/Sub system combines BDMS
for data collection and ingestion with a distributed broker network
for information dissemination to reach a very large number of end
users rapidly [2–4].

An interesting aspect of the proposed BAD Pub/Sub approach
lies in our ability to create enriched notifications/reports for sub-
scribers by combining information in publications with external
data sources. In contrast to traditional publish/subscribe systems
where publications from a single publisher are routed as is to sub-
scribers, notifications in BAD Pub/Sub are produced against a set
of datasets - each dataset is one stream of publications, and en-
riched with pre-loaded data to create comprehensive reports for
subscribers. With the ability to store incoming streams of publica-
tions, match and enrich them at a big data backend, BAD Pub/Sub
make notifications persistent.

In traditional BDMS [3], users gain information via explicit
queries to a database system; users requiring continuous updates
from the system must mimic the notion of subscriptions using DB
trigger functionalities (slow); support for continuous queries are
available in big stream management systems, however data in such
systems are volatile. In a BAD Pub/Sub system, users register their
queries as subscriptions to topics (channels) of interest and notifi-
cations/results are automatically generated and delivered to users
when there are updates which match their interests. BAD Pub/Sub
systems inherently support sharing; results for subscriptions shared
across subscribers can be produced once and delivered to all sub-
scribers. The ability to perform such subscription aggregation is our
first step in supporting system scaleup. To further support scalabil-
ity, BAD Pub/Sub employs a hierarchical architecture with three
layers (Figure 1). Information from multiple data sources (publish-
ers) are fed into different datasets in the data cluster at the top
layer. The end users/subscribers are represented at the lowermost
layer. The broker network in the middle layer manages subscribers
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and their subscriptions, aggregates/subsumes subscriptions from
multiple subscribers and passes them to the data cluster. The broker
network also retrieves results/notifications from the data cluster
and disseminates results to matched subscribers.

While BADPub/Sub presents desirable features for scalability, en-
suring performance and robust operation under dynamic conditions
is challenging. Non-uniform distribution of subscribers and the dy-
namic nature of publications lead to an unbalanced load distribution
among brokers - this affects system performance and the ability
to disseminate notifications/results to all matched subscribers in a
timely manner. Quantification of broker load meaningfully must
incorporate notions of management loads and communication over-
heads. Themanagement loads at brokers account for the subscribers
and subscriptionsmanagementwhile the communication overheads
capture the steps involve in (a) retrieving notifications/results for
all subscriptions from the backend data cluster and (b) disseminat-
ing notifications/results from the broker to all matched subscribers.
The dynamic usage pattern of subscribers in term of the number
and the nature of subscriptions that each subscriber generates, the
unpredictable states of subscribers (active vs. inactive), make the
effective assignment of subscribers to brokers not a trivial task.

To cope with different characteristics of the system, in this pa-
per, we propose a set of adaptive load balancing schemes: i) initial
placement - here, we initially assign a broker to a subscriber after
the subscriber registers itself with the system to start service; poli-
cies explored include geo-location based allocation, round robin
and random broker selection. The next step is the dynamic sub-
scriber migration step where we dynamically migrate a subset of
subscribers from highly loaded brokers to lightly loaded ones to
handle the fluctuation of broker load distribution during the course
of operation. To address the extreme load imbalance, we introduce
a shuffle policy that re-configures the entire system to optimally
redistribute subscribers among brokers.

The following are key contributions of this paper: i)We propose a
practical and efficientmultistage load balancing framework for BAD
Pub/Sub (with initial assignment, dynamic migration and shuffle) -
Sec. 3; ii) We develop a mathematical model for broker load in BAD
Pub/Sub and formulate the associated load balancing problem as
an NP hard problem - Sec. 4 ; iii) We design algorithms for each
stage of the load balancing framework that are dynamic migration
and shuffle - Sec 5; iv) Implement the proposed techniques in a
BAD Pub/Sub prototype system developed over a local cluster of
machines using real world use cases; v) Evaluate performance of
different combination of load balancing policies with real world
use cases on the prototype platform and simulation experiment -
Sec 6.

2 RELATEDWORK
Load balancing has been a well researched topic since the intro-
duction of parallel and distributed computing and been largely
applied in many distributed contexts from distributed databases to
high performance computing systems. Sample efforts include key-
value pair assignment in distributed networked cache systems [16],
request balancing in crowd-sourced CDNs [17], virtual machine
assignment in cloud computing [18], object distribution among
peer nodes in P2P systems [19], sensor partitioning into clusters

in WSNs [20, 21], event key-grouping in complex event process-
ing (CEP) engines [22]. etc. Overall, load balanced systems can
be achieved via smart objects/tasks distribution strategies initially
and migration techniques if needed in response to the system load
flexibility afterwards [19, 22, 24, 25].

Load balancing in the context of publish/subscribe has been stud-
ied in both content-based [10, 23] and topic-based [6] systems using
different architectures, where distributed hash table (DHT)-based,
tree-based, cluster-based and community-based approaches have
been used to organize the broker network. Many of the approaches
to load balancing in Pub/Sub aim to divide the overheads of sub-
scription management (maintenance, matching) and publication
processing (routing) among distributed brokers by (a) partitioning
topic/subscription space across brokers through hashing [31–33]
and (b) clustering techniques [8, 10, 12]. In consistent hashing, each
broker node in the network has an unique identifier. The topic is
hashed to the same domain as the identifier space and each topic
will be assigned to the closest virtual identifier. With efficient place-
ment of broker nodes in the virtual space, each broker node will be
responsible for an equal share of topics. In clustering techniques,
for example in [8], event/publication space is organized into parti-
tions. The popularity of the publication determines the number of
clusters for each partition - this allows balancing the subscription
maintenance load among clusters while publication forwarding
load is balanced among brokers in the same cluster. In [10], bro-
kers are partitioned into clusters. Each cluster contains one cluster
head who serves only the publishers, and a set of edge brokers
who serve subscribers. Clusters are organized into a hierarchical
architecture to allow two levels of load balancing: local load bal-
ancing among brokers within the cluster and global load balancing
among cluster heads of different clusters. Here, bit vectors are used
to profile subscription load and offloading algorithms determine an
appropriate set of subscriptions for migration to balance multiple
performance metrics of a broker including input rate, output rate
and matching rate. In [12], the author exploits similarity for cluster-
ing brokers then uses offloading mechanism for inter-community
load balancing and uses filter replication for intra-community load
balancing.

In contrast, the data cluster in our BAD Pub/Sub approach han-
dles a bulk of the subscription matching and storage tasks, broker
workload primarily involves communication with subscribers and
the data cluster to manage throughput. Unlike [6] that involves
high-cost migrations of the partitions corresponding to a topic,
we perform subscriber migrations that are relatively lightweight
( i.e. move subscriber connection with minimal state migration).
The ability of the broker network to aggregate subscriptions and
the feature of our BAD Pub/Sub systems which are able to persist
publications, subscriptions, and notifications in the back-end data
cluster change the nature of the load balancing problem for BAD
Pub/Sub as compared to existing Pub/Sub systems.

3 BAD PUB/SUB ARCHITECTURE AND LOAD
BALANCING APPROACH IN BAD PUB/SUB

In this section, we outline the architecture of a BAD Pub/Sub system
with all of its components and interactions. We also describe the
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characterization of load in the context of a BAD Pub/Sub system
along with our approaches to balancing load in the system.

3.1 BAD Pub/Sub Architecture
Figure 1 illustrates the hierarchical architecture of a BAD Pub/Sub
system, which may have three layers: i) the back-end data cluster,
ii) front-end subscribers, and iii) a set of brokers in the middle. The
data cluster is responsible for ingestion, storage and management
of incoming data (e.g., publications from publishers), whereas the
broker network is for subscription management and notification
delivery to the end subscribers [4]. The data cluster runs the ex-
tended existing open-source BDMS, Apache AsterixDB [35] that
provides the necessary data storage and query processing function-
ality required for the BAD Pub/Sub system. The data cluster allows
different data sources (i.e., publishers) to feed their publications
into distinct datasets on which queries can be built using standard
SQL-like query language. Instead of subscribing to a topic as is
done in topic-based pub-sub systems, in BAD Pub/Sub, subscribers
subscribe to functions that can match data from more than one
sources (i.e., datasets) and generate notifications accordingly. We
refer to these functions as channels. More specifically, channels
are actually parameterized queries defined on top of the Apache
AsterixDB hosted by the data cluster such that subscribers can reg-
ister their interests through specifying values for those parameters
in their subscriptions. Each channel has a qualified unique name
and the underlying query is written using the corresponding DML
(Data Manipulation Language) supported by AsterixDB .

Subscriptions to channels. Each subscriber attaches itself to
a broker (how to attach to a broker is discussed later) and passes
its subscriptions to that broker. The broker then passes these sub-
scriptions back to the data cluster and pulls the results for these
subscriptions when they are generated. Each subscription is spec-
ified by a channel name (the name of the channel to which the
subscription is intended for) and the values to the parameters of
that channel (if any). The same set of parameter values passed for
the same channel constitutes identical subscriptions (even though
they may come from different subscribers). If a broker receives
identical subscriptions from multiple subscribers, it issues only one
subscription to the back-end data cluster and results are shared
among those subscribers having those identical subscriptions. This
is we referred to as subscription sharing. The benefit of this sharing
is that the broker can retrieve one set of results (notifications) for all
sharing subscriptions and push the same results onto different sub-
scribers. Along the same direction, the data cluster can potentially
receive identical subscriptions from multiple brokers, in which it
does not keep each of them, rather maintain one subscription in
the data cluster and deliver notifications to the respective brokers.
In this way, the number of unique subscriptions that the backend
data cluster maintains (which we call backend (BE) subscriptions)
can be far smaller than the number of original subscriptions (which
are called frontend (FE) subscriptions).

Each channel is executed periodically by the data cluster against
the subscriptions it holds. The period of a channel is usually speci-
fied when the channel is created and the channel query gets exe-
cuted at that interval. At each channel execution, the underlying
query is run on a set of associated datasets in the data cluster (as

Figure 1: Architecture of a BAD Pub/Sub system

per the channel query code) and generates new results (matched
publications from those datasets) against all BE subscriptions for
that channel. These results are stored in a designated result dataset
in the data cluster and the corresponding brokers with matched
BE subscriptions are notified. The brokers then issue pull requests
to fetch the set of result records for each matched BE subscription
and deliver notifications to the matched subscribers.

The fact that each channel actively executes periodically to pro-
duce new results for registered FE subscriptions from subscribers
without them having to send queries explicitly every single time
and results produced for a single BE subscription can be shared
among multiple subscribers who have sharing subscriptions helps
to save resource effectively and scales up the system to support a
very large number of subscribers. The subscribers in our system
can be in online vs offline state in the sense that their connections
to the assigned brokers are active or not. During offline period, the
subscriber stops receiving notifications/results for its subscriptions.

Broker Coordination Server. To facilitate subscribers to at-
tach to a broker and to coordinate operations and states among the
brokers, the BAD Pub/Sub systems can have a Broker Coordination
Server (BCS), which can act as the public end-point of the broker
network. Any incoming subscriber first registers itself with the
BCS and asks for a “suitable” broker for itself. The subscriber then
connects to the corresponding broker. Incoming brokers also regis-
ter themselves with the BCS and all brokers periodically pass their
load statistics to the BCS so that the BCS can trigger different load
balancing techniques in order to keep a uniform load distribution
among brokers, which calls for the load balancing problem in BAD
Pub/Sub that we describe next.

3.2 Load Balancing in BAD Pub/Sub
The load balancing (LB) problem in BAD Pub/Sub is attributed to
distributing near-equal “load” across all the brokers in the system.
Unbalanced load distribution among the brokers can arise because
of the skewed user distribution, the unpredictable usage pattern
of subscribers in terms of the number of subscriptions that each
subscriber can create over time, the nature of those subscriptions,
and the unprecedented data volume ingested in the data cluster.
Skewed load distribution among the brokers arguably degrades
the performance of the whole system in terms of the number of
subscribers that the system is able to support and the end-to-end
latency introduced by the broker network in delivering results
from the data cluster to the subscribers. In order to scale up the
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system and to be able to support a very large number of subscribers,
we need to have an effective mechanism that equally distributes
the load among the brokers so that no broker has to process an
excessive amount of load compared to others. This would avoid
the unbalanced workload distribution among brokers where some
subset of subscribers under the service of overloaded brokers would
endue longer latency in receiving their notifications while other
under-loaded brokers have redundant resources.

Definition of broker load: The task of load balancing in the
context of BAD Pub/Sub systems is challenging because here bro-
kers cannot look at a single or static attribute, such as the number of
subscribers or the number of subscriptions, to balance load. Instead,
the load at a broker is a composite metric that depends on many fac-
tors, such as the number of subscribers that the broker is serving (as
the broker needs to maintain connections with all of its subscribers)
as well as the set of subscriptions from each of those subscribers
and the data volume generated for each subscription itself from
the data cluster per channel execution and the frequency of the
channels. Because of the diversity of subscriptions coming from
subscribers and the overlap of subscriptions among them (subscrip-
tion sharing), the volume of data (both incoming and outgoing data)
plays a big role in assessing the overall load at a broker. Therefore,
we define the load of a broker as the total volume of data the broker
needs to handle per unit of time. This total volume of data accounts
for both the amount of data retrieved from the data cluster (for
all BE subscriptions that the broker maintains with the data clus-
ter) and the amount of data disseminated towards the subscribers
(notifications delivery for all FE subscriptions). This definition is
consistent with other relevant work in the literature [6, 10].

3.3 Our Load Balancing Approach
Because of a wide range of load fluctuation that each broker may
experience over time, we need to constantly monitor the load status
of the system to take timely actions in order to balance load in the
broker network. As per operation, all brokers in the system send
their load updates to the BCS periodically. This helps the BCS to
maintain the global view about the system’s overall load across
the brokers and to detect if load is skewed across brokers (based
on a quantitative metric we define later on). We take a multistage
approach in balancing the load across the brokers in the sense that
the system invokes a set of techniques, three to be precise, at dif-
ferent temporal granularity. The first technique is initial placement
that assigns an incoming subscriber to an existing broker. Usually,
this initial placement may be subscription-agnostic because the
subscriber may not have any subscriptions when they join (sub-
scriptions originate later on). Because of the dynamic volume of
data generation from the data cluster, the matching rate of each
individual subscription, the changing set of subscriptions that each
subscriber make over time, any initial placement can lead to a
skewed load across the brokers in the future. Therefore, we propose
two more techniques, namely dynamic migration and shuffle to fix
the unbalanced condition depending on howmuch variation of load
among the brokers is detected. Figure 2 demonstrates our overall
load balancing approach.

Dynamic migration refers to moving one or more active sub-
scribers from their current brokers to new brokers. The key task

Figure 2: Multistage Adaptive Load Balancing Framework

here is to decide whomoves to where. The BCS takes these decisions
and let them to be realized by the brokers and tries to invoke those
migrations only when needed. The basic idea is to move the heavi-
est subscribers from the heaviest brokers to less loaded brokers and
keep doing this until the system reaches to a balanced condition.
However, when the system experiences an extreme load imbalance,
in order to quickly fix the bad situation and further optimize the
distribution of subscribers among the brokers, the system invokes
shuffle, which redistributes the whole set of current active sub-
scribers over all brokers (overhauling the entire subscriber-broker
assignment from the scratch). While the dynamic migration can be
invoked in response to a slight load imbalance, invoking the shuffle
is rare and only happen when the system experiences an extremely
unbalanced load distribution.

4 SYSTEM MODEL AND PROBLEM
FORMULATION

Let us consider the system has a fixed (m) number of brokers B =
{j : 1, 2, . . . ,m} at any instance of time, which are all registered
with the BCS. Let there be a collection of n users in the system
U = {i : 1, 2, . . . ,n} who generated a total of q BE subscriptions
(the set of unique subscriptions held at the data cluster). Since our
BAD Pub/Sub system is instrumented to deliver notifications to only
online users, we assume these users are online and are currently
active to receive notifications. The set of all BE subscriptions is
denoted as S = {k : 1, 2, . . . ,q}. Note that each BE subscription can
potentially be originated from multiple brokers and initiated from
multiple subscribers at those brokers. It is also worth noting that
while FE subscriptions are specific to subscribers, BE subscriptions
are independent of both subscribers and brokers. A broker can have
a BE subscription held on it only if it has at least one FE subscription
attached to it. In the following, if not otherwise stated, we use i ,
j and k to denote a subscriber, a broker and a BE subscription,
respectively.

Let yik denote a binary indicator if subscriber i has a FE sub-
scription that can be attached to BE subscription k . Let zjk denote
a binary indicator if broker j has to maintain a subscription to BE
subscription k . As we have said, this only happens if the broker has
at least one FE subscription for k originated from some subscriber
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connected to that broker. Let xi j denote the current subscriber-to-
broker assignment in the system. That is, xi j is set of 1 if subscriber
i is attached to broker j . Actually, this assignment metric X = {xi j }
is the one that the system needs to compute at a certain time. This
assignment is done by the BCS.

Now let us consider how the load is constituted at each broker.
Note that, by definition, the load of a broker is the sum of total
incoming data and the total amount of outgoing data per unit of
time. For each BE subscription at a broker, the broker needs to
pull the results from the data cluster each time new results are
populated against the associated channel and pushes the same
results onto the subscribers who have FE subscriptions attached to
that BE subscription. Let λk be the data rate at which new results are
generated for BE subscription k . Hence, the broker load, denoted as
Fj for broker j , has two parts: incoming data volume Ij and outgoing
data volume O j .

The incoming load can be obtained as:

Ij =

q∑
k=1

zjk × λk (1)

where zjk (if broker j has a subscription to k) is given by:

zjk = 1 −
n∏
i=1

(
1 − xi j × yik

)
(2)

Let njk be the number of total FE subscriptions attached a BE
subscription k at broker j, which is given by:

njk =
n∑
i=1

xi j × yik (3)

Therefore, the total volume of data delivered per unit of time to
the attached subscribers from broker j is:

O j =

q∑
k=1

njk × λk (4)

Combining the above two terms, we obtain the total load of
broker j as:

Fj = Ij +O j =

q∑
k=1

zjk

(
1 + njk

)
λk (5)

As we can see the first part of the load depends on the BE sub-
scriptions that a broker maintains (which in turn depends on the
degree of shared subscriptions, the more the sharing the less the
incoming load), whereas the second part is directly attributed to
notification delivery to attached subscribers. This sharing among
subscriptions adds a non-trivial complexity to the load balancing
problem, which is considered in our solution strategies.

We formulate the load balancing problem as a minmax problem,
that is, the objective of the load balancing problem is to compute
the assignment metric X = {xi j } so as to minimize the maximum
load across all brokers. One can think of other forms of objective
functions to balance load, such as minimizing the difference be-
tween the max load and the min load, or minimizing the variance
of load, etc. We assume that these choices are orthogonal to the
problem at hand and can all be good candidates to check as none of
them essentially raises or eases the complexity of the underlying

problem. Having said that we define our objective of load balancing
is to minimize the maximum load. More formally:

Given:
R = {λk : k = 1, . . . ,q}
Y = {yik : i = 1, . . . ,n;k = 1, . . . ,q}

Find X = {xi j : i = 1, . . . ,n; j = 1, . . . ,m} so as to
minmax

j
Fj

subject to:
m∑
j=1

xi j = 1,∀i = 1, . . . ,n

The constraint indicates that at any given time each subscriber
can be attached to exactly one broker. The above problem is NP-
Hard, which can be reduced to the Multi-Processor Scheduling
(MPS) problem.

Reduction to theMulti-Processor Scheduling problem.The
optimization problem we examine can be seen as an instance of the
MPS optimization problem which is a well-known NP-complete
problem [34]. In MPS problem, there are a set ofm identical ma-
chines and n jobs. Each job has a processing time pi ≥ 0,∀i ∈ n and
the optimization statement is to assign jobs to machines so as to
minimize the maximum processing time among all machines. Our
optimization problem can be reduced to the MPS problem where
brokers are machines and subscribers are jobs. The MPS problem
is a special case of our optimization problem. In more detail, when
there is no subscription sharing among subscribers at all in the
whole system, says, each subscriber make a unique subscription
and each unique subscription has a specific load (specific data rate),
then finding the allocation of subscribers among available brokers
which generates the most balanced load distribution is exactly the
MPS problem.

Since the problem is NP-Hard, we devise algorithms based on
greedy heuristics that we describe in the next section. The key
idea is to iteratively choose one subscriber at a time (the heaviest
one) from from the most loaded broker and assign it to the lightest
broker. We observe that when a subscriber is picked to migrate, the
additional load endued by the destination broker equals to the sum
of λ’s of the subscriptions that the subscriber has no matter which
destination broker is chosen. On the other hand, the change in
incoming load at the destination broker depends on the subscription
commonality between the subscriber and the broker itself as the
broker only needs to retrieve additional amount of result data for
those new subscriptions from the subscriber which are not currently
held by the broker. This is the key insight in developing the heuristic
algorithms we present in Algorithm 1.

A question remains when to invoke this subscriber to broker
re-assignment. Ideally, the re-assignment happens when the sys-
tem detects an “unbalanced” state from the existing assignment.
The BCS keeps track of loads across all brokers and triggers re-
assignment when needed (we refer to this as dynamic migration).
The BCS uses the coefficient of variation (cov), the ratio of the
standard deviation to the mean of broker loads, as an indicator of
the degree of load imbalance across brokers. The cov is calculated
as follows:
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cov =
σ

µ
(6)

where

σ =

√∑m
j=1(Fj − µ)2

m
(7)

µ =

∑m
j=1 Fj

m
(8)

A low cov value indicates a balanced system whereas the higher
value indicates an unbalanced one. The BCS uses a threshold α on
cov to determine when to trigger the dynamic migration.

5 LOAD BALANCING POLICIES
Our load balancing framework has three phases each of which
addresses different sub-problems of the system over the course of
operation. These three phases are: i) initial placement, ii) dynamic
migration, and iii) shuffle.

5.1 Stage 1: Initial Placement
The initial placement is based on different criteria to assign a suit-
able broker to a newly joined subscriber without knowing apriori
the subscriptions of the subscriber. We explore three policies for
the initial placement and the mapping of subscribers to brokers.

Nearest Broker (NR)AssignmentAs the name suggests, when
a subscriber sends a request for a broker to the BCS, the subscriber
also attaches its current location information to allow BCS return
the nearest broker to the subscriber. The distance can be, how-
ever, the geographic distance or the network latency (the choice
can be implementation dependent). Since the broker network is
geo-distributed over a very large area, by assigning the nearest
brokers to subscribers the system aims to minimize the latency of
results delivery from brokers to subscribers. However, the skewed
distribution of subscribers in space may lead to a skewed mapping
of subscribers to brokers and can degrade the latency experienced
by the subscribers.

Round Robin (RR) Placement The round robin method, on
the other hand, balances the number of subscribers assigned to each
broker, ideally each broker serves an equal number of subscribers.
Since the load of brokers depends on other factors as well other than
only the number of subscribers, such as the number of subscriptions
and the nature of those subscriptions, round robin placement also
can not guarantee the balanced load distribution.

Random (RND) Placement In this scheme, the BCS assigns an
arbitrary broker to each subscriber. If subscribers have a uniform
subscription distribution over the subscription space, the random
assignment can produce a temporally balanced system but it can
not be guaranteed.

People may argue that the Least Loaded (LL) Broker Placement
should be a good policy to explore. However, the LL placement turns
out not to perform well, especially when many empty subscribers
come to the system at similar time and they are all assigned to
the current least loaded broker which will shortly overwhelm the
assigned broker as those subscribers start producing subscriptions.

Algorithm 1 Multistage adaptive load balancing
Input:

U = {i : 1, ..,n} ▷ subscriber set
B = {j : 1, ..,m} ▷ broker set
R = {λk : k = 1..q} ▷ subscription data rate
X = {xi j , i = 1..n, j = 1..m} ▷ subscriber broker assignment
Y = {yik , i = 1..n,k = 1..p} ▷ subscriber subscription matrix

Output:
M = {} ▷ migration plan

1: scheme ← {LDM, SDM}
2: if cov > γ & µ > θ then
3: M ← SHUFFLE
4: end if
5: if cov > α & µ > β then
6: while cov > α & µ > β do
7: b ← argmaxj ∈B Fj ▷ broker of maximum load

▷ loads of subscribers at b
8: Ub = {ui : ui =

∑p
k=1 yik × λk ,∀i ∈ U ,xib = 1}

9: for ui in Sorted(Ub , reverse = True) do
▷ similarity between subscriber i and broker j

10: simTable = {simj : simj =
∑
yik=1,zjk=1 λk , j ∈ B}

11: if scheme == LDM then
12: b ′ ← argminj Fj
13: end if
14: if scheme == SDM then
15: b ′ ← argmaxj,Fj<µ simTable
16: end if
17: if Fb′

xib′=1
≤ Fb

xib=1
then

18: M ← {b : [i,b ′]}
19: break
20: end if
21: end for
22: Update Fb , Fb′
23: xib ← 0, xib′ ← 1
24: end while
25: end if
26: returnM

5.2 Stage 2: Dynamic Migration (DM)
The initial placement of subscribers to brokers does not guarantee
to produce a balanced system over time. Therefore, we design the
second phase to fix the system configuration whenever a skewed
load distribution is detected. As the BCS collects current loads of
all brokers periodically every so often, it calculates the coefficient
of variation cov as a measure of load imbalance across the brokers.
If cov exceeds a threshold α and the mean load µ is greater than
the lower bound (Algorithm 1), the BCS generates a migration plan
and sends the plan to all target brokers to initiate the migrations.
Leveraging the idea of the Longest Processing Time greedy algorithm
to solve the MPS problem, we develop two strategies that are load
based and similarity based DM as described in detail below. Our
general intuition is to keep selecting a subscriber from the most
loaded broker in each iteration as a candidate to migrate to a less
loaded broker. By doing that, after every iteration, the maximum
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load of brokers is decreased or the number of brokers with maxi-
mum load (if there are more than one brokers with maximum load)
is reduced until no further subscriber migration can be performed
or the system reaches the balanced state.

Load-based Dynamic Migration (LDM): In this technique,
the subscribers from the heaviest broker are ranked by their indi-
vidual load. Then, each subscriber is checked for a valid migration
in the order of decreasing load. A migration is said to be valid if
after migration, the load of the destination broker does not exceed
the original load of the source broker. For the LDM scheme, the
destination broker is always the currently least loaded broker. For
each valid migration, one entry is added to the migration plan that
contains a list of tuples specifying which subscribers need to mi-
grate from their current brokers to new brokers. The list is indexed
by the source brokers and at the end of the algorithm (once the
plan is populated), the respective brokers are notified with the list
of subscribers to shred off and the destination brokers for those
subscribers.

Similarity-based Dynamic Migration (SDM): In selecting
the destination broker for a subscriber migration, different destina-
tion brokers will endure the same amount of additional outgoing
load, but different destination brokers will have different amount
of additional incoming load. Therefore, in SDM, our technique is
to select the destination broker as the one that has the minimum
increase of load when accepting the migrated subscriber. In other
words, the migrated subscriber prefers to move to a broker that
holds the largest subscription sharing with it. The degree of sharing
between a subscriber and a broker is measured as the subscription
similarity score, which is defined as the sum of data rates (λ’s) of
those shared subscriptions. However, in order to reduce the number
of redundant migrations which involve the multiple migrations of a
single subscriber back and forth among several brokers, the chosen
destination broker should have the current load less than some
threshold (maybe the average load of all brokers) in order to be
able to accept a migrated subscriber.

5.3 Stage 3: Shuffle (SH)
The shuffle scheme is triggered when the system experiences an
extreme skewed load distribution that means the current configu-
ration is not appropriate. In order to optimally change the current
assignment of subscribers to brokers, the shuffle process looks at
the whole set of subscribers and their subscriptions to generate an
near-optimal subscriber partition among the brokers which poten-
tially produces an uniform load distribution across all brokers. We
implement a simple greedy shuffle algorithm as presented below.

Greedy ShuffleAlgorithm (GSH): In order to generate a near-
optimal subscribers to brokers assignment, all brokers start with
no subscribers. Subscribers are then ranked by their individual load
measured as the total amount of data rates for their subscriptions.
We iteratively assign the heaviest subscriber to the current least
loaded broker and the load of the broker is then updated by the
equation 5. The process finishes when all subscribers are assigned
to brokers.

Figure 3: Interactions between different BAD Pub/Sub com-
ponents

6 EXPERIMENTAL EVALUATION
In this section, we provide an experimental evaluation of our pro-
posed multistage adaptive load balancing scheme under different
settings in a real prototype implementation and in a simulation
experiment.

6.1 Test-bed Evaluation
For the test-bed evaluation, we build a small scale prototype that
includes all the components/functions of the BAD Pub/Sub systems.

Fig. 3 demonstrates in detail the interactions among these com-
ponents.

6.1.1 Prototype Implementation. We describe in more detail the
implementation of those main components in our BAD Pub/Sub
systems as below:

Data Cluster: The data cluster, written in Java, leverages an
existing open-source BDMS, Apache AsterixDB with additional
features needed to build a BAD framework including: data feeds to
allow rapid data ingestion from different data publishers into the
system, repetitive channels to allow subscription registration from
subscribers. We create an additional set of RESTful APIs to enable
communication between the data cluster and brokers and the BCS,
such as: createbroker, createchannel, subscribe, unsubscribe, etc.

BCS and Broker Servers: Our BCS and brokers, written in
Python3, are RESTful HTTP servers built on top of the Tornado
web framework. We develop a set of RESTful APIs in both BCS
and broker servers to support communication among them and
with subscribers. Several RESTful APIs in BCS are registeruser, reg-
isterbroker, requestbroker and in broker servers are login, subscribe,
unsubscribe, logout, etc.

Subscriber: Subscribers are HTTP clients written in Python3.

6.1.2 Prototype Setup. Our prototype implementation consists of
one data cluster, one BCS, 5 brokers and 400 subscribers. The data
cluster consists of 4 Intel NUC nodes. Each node has an i7-5557U
CPU processor (4 cores), 16 Gigabutes RAM and 1TB HD. The
node are connected via a Gigabit Ethernet switch. The BCS and 5
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Figure 4: Prototype Implementation

brokers run on 3 x86_64 Genuine Intel machines (each equipped
with 4 CPUs - Intel (R) Core(TM) i7-5557 CPU @3.10GHz, 16 GB
RAM, 1TB HD) in an Ethernet LAN. Two machines run 2 broker
server instances each and one machine runs one BCS instance
and one broker server instance. The 400 subscribers connect to
the system from a workstation machine and via the WiFi campus
network. Figure 4 shows the detailed framework of our prototype
implementation.

We build a hypothetical emergency notification application that
creates three datasets in the data cluster: UserLocations storing
records about the current locations of every subscribers, Emergen-
cyReports containing records for each emergency report generated
as emergencies occur, and Shelters holding known locations of about
200 emergency shelters. UserLocations and EmergencyReports will
be continuously ingested into the data cluster while the Shelters
will be loaded once and used as a static dataset. We model the
realistic mobility of subscribers using the Opportunistic Network
Environment (ONE) simulator [36]. We use the pre-built simulation
of the city Helsinki in the ONE simulator to generate subscribers’
movement in a simulated world. Subscribers’ locations are updated
to the data cluster every second via the broker network. Similarly,
we also use the ONE simulator to generate emergencies. We create
eight emergency publishers and allow them to traverse rapidly and
randomly around the simulated Helsinki map. In total, we generate
around 10,000 emergency reports of eight different types in the
range (200, 700) bytes in size within 30 minutes to feed into the
data cluster.

We create seven channels of different channel execution periods
(10, 20 and 30 seconds) and different sets of parameters. The pa-
rameter set includes Event Type, Event Location and User Location
to allow subscribers to specify the type of events, the location of
events or simply any events happen near them in their subscrip-
tions. We generate time series interactions of subscribers to the
system including login, logout, subscribe and unsubscribe in a sce-
nario file. We model each subscriber to create (1,3) subscriptions per
channel and to subscribe to (1,5) channels in total. All subscribers
login to the system in the first four minutes and make all subscrip-
tions in the next four minutes for an experiment run. Overall, the
system produces around 600 BE subscriptions and 2,200 FE sub-
scriptions. We run the same experiment setup multiple times and
apply different load balancing schemes to compare the performance

of these schemes. When measuring the data rate of subscriptions
and the load of subscribers and brokers, we use moving average
measurements to avoid instant peaks.

6.1.3 Prototype Results. By applying our proposed load balancing
techniques, we aim to minimize the maximum load of brokers
and load imbalance represented by the coefficient of variation cov
indicator. Therefore, we show the effectiveness of our schemes on
these two performance metrics: maximum load and cov. The cost
is measured as the number of subscriber migrations needed. We
show the effect of both dynamic migration and shuffle schemes and
demonstrate that our load balancing techniques work independent
of the initial placement policies.

Comparison of integrated load balancing strategies: We
study our integrated load balancing schemes on three placement
policies including random, round robin and nearest broker and
evaluate the performance of our schemes on these different policies.
Fig. 5 and Fig. 7 present the effect of no load balancing scheme (No
LB) vs LDM vs SDM on the system for the random and round robin
placement. Fig. 6 compares different performance metrics between
these techniques in term of the maximum broker load, the cov
value and the total number of subscriber migrations for the random
placement. Since the load distribution in this scenario is less skewed,
a few subscriber migrations happened (Fig. 6(3)) and the shuffle was
not invoked. Similarly, Fig. 8 and Fig. 9 present the load distribution
of the broker network following the NR placement policy with No
LB vs DM and DM + GSH. In our experiment setup, NR placement
turns out to produce an extreme load imbalance situation because
of the non uniform distribution of subscribers geographically. This
extreme skewed load distribution calls out the shuffle process. Fig.
10 and Fig. 11 respectively show the performancemetric comparison
for the NR placement under DM only vs combination of DM and
GSH. We conclude that our load balancing techniques are able to
fix the extreme cases of load imbalance as in the NR placement and
we can also be able to improve the load distribution under even a
slight imbalance as in the RND placement (reduce the cov value
and the maximum broker load). However, the costs in terms of the
number of subscriber migrations needed are not the same as shown
in Fig. 12. The total number of subscriber migrations required for
the NR placement are much higher compared with the RR and RND
policies in both LDM and SDM techniques.

Subscription similarity exploitation: As we can see from the
Fig. 6 and Fig. 10, the performances of SDM and LDM techniques are
similar in these scenarios as we have already taken into account the
subscription similarity among subscribers and between subscribers
and brokers in the way we formulate the broker load.

Effect of the shuffle strategy: Fig. 11 shows that GSH at an
early stage can help to fix poor subscribers-to-brokers assignments.
The GSH scheme reduces the requirement for excessive migrations
in the future as shown in Fig. 9 (3) when early GSH scheme is
initiated compared with Fig. 8 (3) when only DM is applied. In
our prototype experiment, the GSH scheme does not show much
benefits compared to the DM strategy itself. The effect of the GSH
technique will be further evaluated in the simulation experiment.
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Figure 5: Broker load distribution in RND placement: (1) RND + No LB (2) RND + LDM (3) RND + SDM

Figure 6: Performance metric comparison for RND placement: (1) max broker load (2) cov (3) total # of subscriber migration

Figure 7: Broker load distribution in RR placement: (1) RR + No LB (2) RR + LDM (3) RR + SDM

6.2 Simulation Experiment
For the simulation, we develop a simulator written in Python3 that
mimics the messaging level interactions among the BAD Pub/Sub
components (data cluster, brokers, BCS and subscribers). We aim
to scale up the experiments to further evaluate our load balancing
schemes.We also analyze the effect of value selections of parameters
α and β used in Algorithm 1 towards our LB techniques.

6.2.1 Simulation Setup. In our simulation setting, we model 10 bro-
kers to support 10,000 subscribers. We create 10 channels having
execution periods every 5, 10, 20, 30, 60 seconds and each channel
having 100 different subscriptions. This setup creates a total of 1,000
BE subscriptions supported by the system. Each BE subscription

has a data rate that follows a Normal distribution with a predefined
mean and standard deviation values. Subscribers make a random
number of subscriptions in the range of (10, 30) to those 10 defined
channels with different parameters and create roughly 200,000 FE
subscriptions in total. Each simulation run for half an hour where
all subscribers login to the system at the beginning and make sub-
scriptions in the first 8 minutes. During the course of execution,
the data rates of some BE subscriptions from some channels may
fluctuate. In detail, we select one-fourth of the subscriptions ev-
ery minute to schedule them to increase the data rates within the
next 3 minutes. Those subscriptions with increased data rates are
then scheduled to decrease the data rates after 4 to 6 minutes. Our
purpose is to produce a dynamic system load.

51



DEBS ’19, June 24–28, 2019, Darmstadt, Germany Hang Nguyen, Md Yusuf Sarwar Uddin, and Nalini Venkatasubramanian

Figure 8: Broker load distribution in NR placement: (1) NR + No LB (2) NR + LDM (3) NR + SDM

Figure 9: Broker load distribution in NR placement: (1) NR + LDM + GSH (2) NR + SDM + GSH

Figure 10: Performance metric comparison for NR placement with DM: (1) max broker load (2) cov (3) total # subscriber mi-
grations

6.2.2 Simulation Results. We evaluate our proposed LDM and GSH
techniques using the NR policy as the initial placement and the
sensitivity of threshold values (α and β) we use towards our overall
LB techniques.

LDMvsGSH: Fig. 13 (1) illustrates the client distribution among
brokers and the broker load distribution when BCS assigns sub-
scribers to brokers according to their geo-locations. The skewed
distribution of subscribers geographically results in the unbalanced
allocation of subscribers among brokers. There is a broker assigned
with more than 2000 subscribers while other brokers may only need
to support less than 500 subscribers. We can see the high variation

of load between brokers in the NR setting (Fig. 13 (1)). We then
apply respectively the LDM (α = 0.15 and β = 300 MB/sec) and
GSH techniques as shown in Fig. 13 (2) and Fig. 13 (3). Both LDM
and GSH techniques can fix the load imbalance eventually, but the
GSH technique can fix the imbalance immediately after the process
terminates and requires no further migration afterward while the
LDM takes longer time to finally reach the balanced state.

Sensitivity of threshold value selection: Fig. 14 demonstrates
the effect of value selection for the threshold parameters to the per-
formance of our LB methods. As we can see from the Fig. 14 (1),
when we set the α and β values are very small (α = .05 and β = 300
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Figure 11: Performance metric comparison for NR placement with DM and GSH: (1) max broker load (2) cov (3) total # sub-
scriber migrations

Figure 12: Total # subscriber migrations comparison for RND, RR and NR placements: (1) LDM (2) SDM

Figure 13: Broker load distribution: (1) NR placement + No LB (2) NR + LDM (3) NR + GSH

MB/sec in our simulation setting), the LDM scheme can achieve as
good as the GSH scheme after a while. The smaller the values of α
and β parameters, the more sensitive of the system towards the DM
process as a slight load imbalance can invoke the DM process. This
helps the system to achieve a better balanced state but with the cost
of higher number of migrations as shown in Fig. 14 (2). Therefore,
we set the value of α and β not too small in DM techniques to avoid
redundant migrations due to small peaks or slight imbalances in
the broker network. GSH scheme only comes into play when the
system experiences an extreme skewed load distribution. The GSH
scheme can quickly reconfigure the assignments of subscribers

to brokers and achieve a better uniform load distribution for the
system at the moment Fig. 13 (3).

7 CONCLUSION
In this paper, we propose and demonstrate the effectiveness of our
multistage adaptive load balancing strategy which triggers different
load balancing schemes at different stages of the system depend-
ing on the degree of skewed load distribution. Our load balancing
framework composes of three main phases: initial placement, dy-
namic migration and shuffle. We did intensive evaluation of two
load balancing schemes under both test-bed implementation and
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Figure 14: Evaluation of α and β values towards: (1) cov (2) number of migrations

simulation experiment in different placement scenarios. We exploit
the subscription similarity feature to the extend of broker load for-
mulation and in the SDM technique when choosing the destination
broker for the migrated subscriber. For the future work, we aim to
exploit subscription similarity more thoroughly in the sense that
we may cluster subscribers and perform subscribers migration in
groups based on the subscription similarity among subscribers and
between subscribers and brokers. In the next step, we will setup
our prototype implementation onto suitable cloud platform for ex-
periments with real world workloads. We will further investigate
into the failure detection and state management problems in the
broker network as our next research topics.
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