
Edge Caching for Enriched Notifications Delivery
in Big Active Data

Md Yusuf Sarwar Uddin

Department of Computer Science

University of California, Irvine

CA, USA

Email: msarwaru@uci.edu

Nalini Venkatasubramanian

Department of Computer Science

University of California, Irvine

CA, USA

Email: nalini@uci.edu

Abstract—In this paper, we propose a set of caching strategies
for big active data (BAD) systems. BAD is a data management
paradigm that allows ingestion of massive amount of data from
heterogeneous sources, such as sensor data, social networks, web
and crowdsourced data in a large data cluster consisting of
many computing and storage nodes, and enables a very large
number of end users to subscribe to those data items through
declarative subscriptions. A set of distributed broker nodes
connect these end users to the backend data cluster, manage
their subscriptions and deliver the subscription results to the
end users. Unlike the most traditional publish-subscribe systems
that match subscriptions against a single stream of publications
to generate notifications, BAD can match subscriptions across
multiple publications (by leveraging storage in the backend)
and thus can enrich notifications with a rich set of diverse
contents. As the matched results are delivered to the end users
through the brokers, the broker node caches the results for a
while so that the subscribers can retrieve them with reduced
latency. Interesting research questions arise in this context so as
to determine which result objects to cache or drop when the
cache becomes full (eviction-based caching) or to admit objects
with an explicit expiration time indicating how much time they
should reside in the cache (TTL based caching). To this end,
we propose a set of caching strategies for the brokers and show
that the schemes achieve varying degree of efficiency in terms of
notification delivery in the BAD system. We evaluate our schemes
via a prototype implementation and through detailed simulation
studies.

Keywords-Big active data; bigdata publish-subscribe system;
caching policies; TTL caching;

I. INTRODUCTION

Messaging and information interchange are at the heart

of next generation societal scale applications where large

numbers of users access vast amounts of information that

is being continuously generated from diverse sources (social

media, sensors, websites etc.); end users and applications

seek to seamlessly obtain access to these large volumes

of information using query interfaces based on application

and context specific needs and interests. Traditional pub-sub

systems address the problem of selective message forwarding

based on subscriptions to message flows, and services like

Twitter, and platforms like Storm [1] and Esper [2], have

scaled message forwarding to large numbers of messages and

users. Scaling data is addressed in the context of Big Data
systems that support the ingest, storage, processing of vast

amounts of static and streaming data. First-generation big

data management efforts have resulted in various frameworks

and languages (usually layered on Hadoop) for long-running

data analytics and various key-value storage management

technologies [3] that provide simple but high-performance

record management and access. These developments have been

“passive” in nature—queries, updates, and/or analysis tasks

have been scaled to handle large volumes of data.

Fig. 1. Components of Big Active Data (BAD) systems.

Recent research efforts aim to move from current big data

infrastructures, which largely support big passive data, to a

new kind of big data infrastructure that provides a scalable

foundation for big active data [4]–[6]. New techniques are

required for continuously and reliably capturing big data

collections continuously arising from social, mobile, web, and

sensed data sources and to enable timely delivery of the

right information to those users with indicated interests—a

functionality that is typically enabled by publish-subscribe

(pub-sub) systems. In traditional pub-sub systems, consumers

(users) express interest in information through subscriptions;

publications (possibly from other users) are matched against

subscriptions and notifications containing information are sent

to interested subscribers. In the Big Active Data (BAD)

effort [7] being designed and developed at UC Irvine, we are

696

2018 IEEE 38th International Conference on Distributed Computing Systems

2575-8411/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDCS.2018.00073

enabling a system that combines the capability of big data

management technologies with the more traditional publish-

subscribe functionalities.

Big Active Data systems position themselves distinctly in

comparison to their namesake counterparts: namely pub-sub

architectures, big data systems and active databases. In pub-

sub, significant emphasis has been placed on ability to flexibly

and easily express subscriptions (topic-based and content-

based) through appropriate subscription languages. Broker

based architectures have been developed to decentralize the

storage of subscriptions and processing and routing of publi-

cations to subscribed users. Active database work (e.g., trigger

processing [8]) and more recent work on stream processing

systems with support for continuous queries can be adapted to

handle subscriptions to data—but mostly for modest numbers

of triggers or queries and only for limited query patterns. In

contrast, Big Active Data platforms aim to deliver data of

interest to a very large number of users in a timely fashion.

Fig. 1 gives a high-level overview of the physical platform

and execution environment of the BAD system. At a high level,

the BAD platform consists of data sources (Data Publishers)

and end users (Data Subscribers). Additionally, BAD can

ingest information from other external data sources and feeds,

including a variety of sensors, various social data sources,

news feeds, GIS information and so on. The data itself is stored

and managed by a big data management system (BDMS)

which runs in a data center with a cluster of hundreds (or

thousands) of nodes and consists of many datasets. Users

and user groups (e.g., various agencies or constituencies) are

able to subscribe to data of interest declaratively, which can

potentially combine data from multiple data sets both when

describing their data interest criteria and when describing what

they want to have delivered when conditions arise that match

their interests. While the BDMS backend handles storage

and processing of publications, the BAD broker network

handles the task of notification management and distribution

to subscribers scalably and efficiently.

Caching in Big Active Data System: As the number of end-

subscribers and their interactions increase, the BAD broker

network components and the BAD data cluster must incorpo-

rate new techniques to handle scalability issues. In this paper,

we explore the role of broker caching as a method to support

ruggedization of the broker and to enable real world scalability.

Broker caching of notifications in our system has two direct

benefits. First, subscriptions may be shared across subscribers

and cached results can be returned from the broker reducing

the overall latency for the subscribers. This is indeed the case

when information needs are correlated based on interests or

geographical context. Second, caching allows some degree

of asynchrony among the subscribers in retrieving channel

results. With caching, subscribers may remain offline when

the channel results are ready to be delivered, and can receive

them later on when they become online (if the cached results

are not evicted by then). Additionally, given that results for

matching subscriptions/channels are persistent at the big data

backend, subscribers returning after a long hiatus can still

retrieve notifications from the bigdata backend, albeit with

increased latency. Such a persistence feature enables us to

design and experiment with new storage/latency tradeoffs as

systems scale while still ensuring availability of results.

In this paper, we propose, implement and evaluate two

types of caching strategies for BAD systems: eviction-based

and TTL (time to live)-based. In eviction-based caching, new

result objects are cached on their arrival and less recently

or frequently referenced objects are evicted when the cache

becomes full. Different choices can exist to choose which

object to drop, which we refer to as utility-driven choices. We

propose a couple of dropping schemes, such as least recently

used, least subscribed content, and least subscribers latency.

On the other hand, TTL-based caching assigns an explicit

expiration time on each cached object and evicts the object

whenever the timer expires. The broker needs to choose this

expiration time per object so as to keep the overall cache size

bounded. We evaluated these caching strategies in different

application scenarios with different workloads.

II. RELATED WORK

Caching is a well studied concept in computing that has

been studied at depth from many perspectives, including

the Internet (refers to as web caching) [9], content delivery

networks (CDN) [10], paging in operating systems, database

buffer management, disk buffers, big-data applications [11],

publish/subscribe systems [12]–[14] and information-centric

networks (ICN) [15]. A comprehensive list of web caching

policies is the topic of survey article by Podlipnig et. al [9];

more recent work [10] documents over 30 caching policies

from 1993 to 2016. A vast majority of caching strategies are

eviction-based; here an already cached object is evicted to

admit a new object when the cache is full. Quite a few are

TTL-based, such as [16], [17]. In admission based caching,

such as [10], [18], incoming objects are admitted based on

certain criteria (and then evicted or expired).

Eviction-based caching strategies differ in how they choose

which object to drop; two popular metrics include recency

(how recently has an object been accessed?) and frequency

(how many times is an object requested?). Accordingly, LRU

methods drop the least recent object whereas LFU methods

drop the least frequent one. LFU is proven to offer the highest

hit ratio [18], [19] in IRM (Independent Reference Model)

load, where all requests are assumed to be independent of

the past and request patterns do not change over time. LRU

variants consider other metrics in addition to recency, such

as object size (LRU-size), recency threshold (LRU-threshold),

number of replacements (LRU-min), weighted recency (EXP1)

and history of accesses (HLRU). LFU variants include LFU-

aging (ages popularity over time), LFU-weighted (weighted

counters), to name a few. Some policies combine both recency

and frequency through a suitably chosen function, such as GD

(greedy dual) [20], GDSF [21] and GD* [22]. Our proposed

policies, such as LSC (least subscribed content), are variants

of LFU. We also try a LRU-like approach.

697

TTL caches, in which eviction happens upon the expiration

of a timer, are used in the Internet applications, such as

Domain Name System (DNS) [16], [17]. The properties of

TTL caches are formally studied in several works [23]–[25]; in

contrast, LRU-based techniques are simple but hard to analyze.

An interesting effort analyzes [23] the connection between

TTL- and eviction-based caches using the notion of charac-

teristics time [26]. The main question in TTL caches is to

compute TTLs for objects—exact [16] and approximate [25],

[27] answers have been derived. The paper [27] outlines sev-

eral approaches to compute TTLs: average TTL (average over

historical frequency), incremental TTL (optimized through

gradient descent approach) and machine learned TTL (train

a model to fit TTL).

III. THE BIG ACTIVE DATA (BAD) SYSTEM

Fig. 1 illustrates the different components within the BAD

platform. BAD components provide two broad areas of

functionality—bigdata management and monitoring, handled

by the BAD data cluster, and notification management and dis-

tribution, handled by the BAD broker network. The BAD data

cluster persistently stores all incoming publications (data items

from publishers) and subscriptions (from subscribers), and

perpetually executes background routines that match incoming

publications with the stored subscriptions. We leverage Apache

AsterixDB [28] as a foundation for backend BAD data cluster.

AsterixDB has technical benefits including a rich declarative

language (AQL) and a scalable distributed dataflow runtime

with continuous data ingestion support. The BAD team [7] has

enhanced AsterixDB with a feature called channels, which are

instantiable versions of queries with parameters that execute

perpetually in the data cluster [6].

The BAD data cluster does not directly interact with the

subscribers itself; instead, a set of geo-distributed broker

nodes are deployed that receive subscriptions from the end

subscribers and pass them to the data cluster (in that, the

brokers subscribe on their clients’ behalf). The BAD broker

network is managed by a Broker Coordination Service (BCS).

When a new broker node joins the broker network, it registers

through the BCS. A registered broker can accept clients for

possible subscriptions to channels. The brokers are responsible

for handling end user clients (called BAD clients), managing

subscriptions to channels and delivering channel results against

those subscriptions. Each broker has two parts: a “client-

facing” part managing the clients and an “Asterix-facing” part

handling interactions with the Asterix backend. The “Backend-

facing” part uses appropriate set of REST calls (provided

by the data cluster) to receive service from the data cluster

whereas the client-facing part provides a set of REST calls

to be used by the BAD clients to receive services from the

broker.

While passing subscriptions to the data cluster, the broker

registers a callback URL referred to itself (usually called a

WebHook) that the data cluster invokes to notify the broker

when results against that subscription is available (when a

new publication matched the subscription). The actual content

of the notification is implementation dependent which may

contain the entire the result objects themselves and the results

are immediately pushed to the broker (PUSH model) or

may contain a resource handle (URL) to the result objects

that can be retrieved by the broker later on (PULL model).

Once subscription results are obtained by the broker, they are

delivered to the corresponding subscribers. In this paper, we

enhance the BAD platform with mechanisms for in-memory

caching at the broker. Operationally, when a broker retrieves

channel results that match subscriptions, the results are cached

in the broker.

A. Subscriptions and Publication Matching in BAD

The BAD system performs 3 tasks: (a) managing and

storing incoming publications as well as subscriptions (data
in), (b) matching incoming publications (along with previously

stored data if required) against the stored subscriptions (data
processing), and (c) delivering matched publications, referred

to as results, to the subscribers (data out). Managing and

executing all these three components in a very scalable fashion

is the ultimate challenge of BAD [6]. This paper addresses

a subproblem related to caching subscription results in the

broker that lies in data out component of the BAD system.

For the sake of brevity, we outline the basic functionalities

and abstractions that (a) and (b) components provide so that

publish-subscribe paradigm can be supported on top of it.

Scalable data in happens through inserting publication records

into data tables with open or closed schema depending on

whether the data fields and their types are apriori known or

not. A SQL-like language helps with these insertions where

the data records can be in JSON or XML or any other suitable

format. The subscriptions are represented as predicates on

the data fields of publications according to the interests of

the subscribers. The BAD AsterixDB supports subscriptions

through parameterized channels [6]. The data processing part

corresponds to creating executable routines and executing

them either asynchronously when required to do so or period-

ically with a given interval. These routines are responsible for

matching publications against the subscriptions.

To execute channel functionalities, BAD provides two types

of channels: continuous channels that generate matching re-

sults asynchronously whenever new data records match sub-

scriptions and repetitive channels that get executed every so

often at a given periodic interval. The construction of these

channels and managing their runtime environment are the

central piece of data processing engine in BAD, whose exact

detail is beyond the scope of this paper. This paper relies

on a certain abstraction of the backend data cluster in terms

of subscriptions and getting the matched results back. This

abstraction is as follows: the data cluster receives subscription

requests (channel name and parameter values) and returns

a unique subscription identifier. Each subscription does also

specify a callback URL which is invoked by the data cluster

each time a new result object (matching publications) is

generated and are stored in a result dataset. The records in

the result dataset contains the subscription identifier for which

698

(a) (b)

Fig. 2. Sequence diagram of subscriber retrieving channel results.

they are generated and are appropriately timestamped so that

records can be retrieved in the order they were produced.

B. Distributed broker network

The central part of the data out component consists of a set

of distributed broker nodes that connect the end subscribers

to the data cluster. The broker receives subscriptions from

the subscribers (the end users), stores them in a subscription

table and forwards them to the data cluster. When notified, the

broker pulls the new channel results from the data cluster and

stores them in an in-memeory cache. A notification subsystem

notifies the associated subscriber when a new result object

is added to the cache. The cache grows and shrinks when

new result objects are added and results are consumed by

the subscribers. The various caching policies dictate how to

manage these result objects, particularly to decide which object

to evict when the cache is full or to determine TTL (time-to-

live) values set on the result objects.

C. Delivery of Notifications in BAD

As the broker receives subscriptions from the subscribers,

it does not necessarily forward them all to the data cluster.

The broker suppresses subscriptions when multiple subscribers

subscribe to the same channel with the same set of parameters

(they are effectively asking for the same results but started at

different times). In that, the broker makes only one subscrip-

tion back to the data cluster and shares the channel results

among the subscribers. These are called backend subscriptions.

That means, a set of frontend subscriptions can be merged

into a single backend subscription. For each of the backend

subscriptions, the broker maintains an in-memory result cache
to store matched results against that particular subscription.

Each result cache is a sorted list of objects ordered in

the descending order of their timestamps as new objects are

pushed at the head and old objects are deleted from the tail

when needed. For each backend subscription, the broker keeps

track of the last timestamp upto which the broker already

fetched the results from the data cluster. Upon notifications,

the broker fetches results after that marker, puts them in the

corresponding cache and updates the timestamp accordingly.

Similar kind of timestamp markers are maintained individually

for all frontend subscriptions.

Fig. 2 shows the interactions among the data cluster, bro-

ker and subscribers as subscribers retrieve results for their

subscriptions. As the broker puts fetched result objects in

the cache, the cache may exceed the allowed limit (i.e., the

cache becomes full). In that, the broker chooses a candidate

cache (based on the dropping policy applied) and drops the

tail object from that cache. After caching the results, the

broker sends a push notification to all associated subscribers

(if they are online) giving them a signal that new results are

available to retrieve. The subscribers then make getresults
call to retrieve the new results (or all the pending results

since last retrieved). After retrieving the results, the subscriber

sends an ACK to the broker confirming the consumption of

results. The broker treats ACKs as cumulative in the sense that

acknowledging the last object indicates that all objects before

that are considered consumed.

In response to a getresults call, the broker first checks

whether the requested objects are in the cache. Three cases

can happen here: i) all objects are in the cache (the broker

returns the cached objects), ii) some objects are in the cache

and rests are not (the missing objects are retrieved from the

data cluster and returned along with the cached ones), and iii)

all objects are missed (all are retrieved from the data cluster).

Algorithm 1 shows different cache routines. GETRESULTS

routine is invoked by a subscriber with a front subscription,

which in turn calls GET routine of the associated result cache.

This may invoke fetch routine that fetches results from the

data cluster (in case the requested objects are not in the

cache). The fetch call is specified by three parameters: the

backend subscription for which the results will be fetched and

the two end values of the requesting timestamp interval. The

last boolean parameter specifies whether the right end of the

interval is closed. The missed objects when retrieved from the

data cluster are not cached again in the result cache because

they may not be sharable by other subscribers any more.

IV. CACHING POLICIES FOR BIG ACTIVE DATA

We take two base approaches of caching: utility-driven

eviction and TTL-based expiration. While the utility-driven

caching decides which object to evict when the cache is full,

the TTL-based caching determines when to drop objects. In

699

Algorithm 1 Cache operations

function GETRESULTS(s, fs)

bs = backend subscription associated with fs
cache = cache associated with bs
bts, fts = latest timestamp for bs and fs
return cache.GET(bts, fts)

end function
function PUT(cache, obj)

obj.subs = cache.subs
cache.append(obj)

while cache is full do
ch = choose-cache-to-drop-from()

drop ch.tail
end while

end function
function GET(cache, ts1, ts2)

head = cache.head.ts
tail = cache.tail.ts
if tail ≤ ts1 ≤ ts2 ≤ head then

/* All requested objects are in the cache */
cached = {o|o ∈ cache ∧ ts1 ≤ o.ts ≤ ts2}
return cached

else if ts1 < tail ∧ ts2 ≤ head then
/* Some are in the cache and some are not */
missed = fetch(cache.bs, ts1, tail, false)

cached = {o|o ∈ cache ∧ tail ≤ o.ts ≤ ts2}
return missed+ cached

else if ts2 < tail then
/* All are missed */
missed = fetch(cache.bs, ts1, ts2, true)

return missed
end if

end function
function ACK(s, fs, ts)

cache = cache associated with fs
Update timestamp associated with fs
o.subs.remove(s) ∀o ∈ cache ∧ o.ts ≤ ts

end function
function SUBSCRIBE(s, channel, params)

Check if a backend subscription, bs, exists

with the same channel and params;

if not create one and init a cache

cache = cache associated with bs
cache.subs.add(s)

Create frontend sub, fs, attached to bs and cache
return fs

end function
function UNSUBSCRIBE(s, fs)

Detach s from backend subscription of fs
cache = cache associated with fs
cache.subs.remove(s)

o.subs.remove(s) ∀o ∈ cache
end function

the following, we describe these two techniques in the context

of big active data (BAD) systems.

A. Utility-driven Caching

As a basis for utility-driven caching, we argue that, in the

eye of a subscriber the utility of retrieving of an object from

the data cluster, when a cache miss occurs, has strictly lower
utility than retrieving the same object from the cache. This is

because retrieving result objects from the data cluster may take

additional latency. The general objective of caching policies

is to cache those objects so that the sum of utilities across all

subscribers is maximized. We propose a set of utility-driven

caching policies that differ the way they define the utility

functions.

At any given time, let there be N result caches, one for

each backend subscription, for K subscribers. Let S(i) be

the set of subscribers attached to result cache i and O(i) be

the list of objects in the cache in the descending order of

their timestamps where head and tail denote the head (the

newest object) and the tail object (the oldest object) of the list

respectively. We denote any arbitrary object in a cache as oij .

In the subsequent discussions, we use symbols, i, j and k to

denote cache, object and subscriber respectively.

Every object maintains a set of subscribers to which the

object is to be delivered. Let this set be S(i, j) object oij .

Note that S(i, j) (subscribers attached to an object) may

not be the same as S(i) (subscribers attached to the cache).

This is because a subscriber only receives result objects after
its subscription. So, if a cache already had objects before

a particular subscription is made, those objects would not

contain this particular subscriber in their subscriber list, but

the new results onward would contain the subscriber.

Let zijk be a binary indicator variable to denote whether

object oij is to be delivered to subscriber k. Let Uc(i, j, k)
be the utility of object o(i, j) with respect to subscriber k
when the subscriber retrieves the object from the cache and

Ud(i, j, k) denote the same if the object is retrieved from the

data cluster. The caching decision corresponds to find which

objects to cache so as to:

max
∑

i

∑

j

∑

k

(xijzijkUc(i, j, k) + (1− xij)zijkUd(i, j, k))

s.t.,
∑

i

∑

j

xijsij ≤ B

where sij is the size of object oij , B is the allowed cache

size and xij is a binary decision variable indicating whether

oij is cached or not. We can rearrange terms in the objective

function and eliminate constant terms to have the following:

∑

i

∑

j

xij

∑

k

zijk (Uc(i, j, k)− Ud(i, j, k)) (1)

Let us denote Δ(i, j, k) = Uc(i, j, k) − Ud(i, j, k) as the

utility difference of an object when the object is retrieved from

the cache vs from the data cluster. This is effectively the value

700

of caching of the object with respect to a particular subscriber.

We, therefore, have the following:

max
∑

i

∑

j

xij

∑

k

zijkΔu(i, j, k)

s.t.,
∑

i

∑

j

xijsij ≤ B

We can define the value of each individual object as: φij =∑
k zijkΔ(i, j, k), which is the sum of values obtained by all

subscribers attached to the object. Consequently, we have:

max
∑

i

∑

j

xijφij , s.t.,
∑

i

∑

j

xijsij ≤ B (2)

Given the values and sizes of all candidate objects, the above

is a standard 0/1-Knapsack problem (which is known to be

NP-hard). We can use the classical greedy heuristic: choose

objects in decreasing order of value-size ratios, i.e.,
φij

sij
to

fill the cache. Alternatively, when the cache is full, we drop

the object that has the least value-size ratio, which gives the

general dropping policy:

drop the object that has the least value of
φij

sij

Since we maintain a sorted list of objects in each cache

and always drop objects from the tail, not all objects but the

tail object needs to be considered as the candidate object.

That means, we effectively do not need to iterate over j.

Consequently, we can define the value and size of cache i,
denoted by φi and si respectively, in terms of its tail object

and can then drop from the cache that has the smallest value-

size ratio. Therefore, the general dropping policy stands out

to be:

drop from the cache that has the least value of
φi

si

Note that the above choice of considering only the tail object

per cache reduces the complexity of choosing objects to the

linear order of the number of caches instead of the number

of objects. By using appropriate data structure (e.g., heap),

this can be implemented in logarithmic order. As the number

of caches can be magnitude order lower than the number of

objects, the technique scales well.

Now we show how utility gain, Δ(i, j, k), is computed.

Recall that this is the “value” of caching of an object in the

sense how much utility gain it achieves when it is retrieved

from the cache compared to being fetched from the data

cluster. It indirectly corresponds to how “costly” it is to

retrieve the object from the data cluster if the object is ever

dropped from the cache. There can be different choices for

assigning these costs. One choice can be considering all

objects equally costly (uniform cost). Another choice can be

that the cost would depend on the size of the object. This is

because larger objects are costlier to get fetched from the data

cluster (cost depends on size). The cost could also depend on

how much additional delay it incurs when the object needs to

be fetched from the data cluster (cost depends on latency).

1) Uniform cost: All objects are equally costly, that is,

all objects are of equal value. That means, Δ(i, j, k) = 1.

With this choice, the objective function of the caching problem

becomes: ∑

i

∑

j

∑

k

xijzijk (3)

which effectively asks to cache objects so that the number of

objects returned from the cache is maximized. That is to say

to maximize the cache hit ratio. In this, the value of an object

is given by: φij =
∑

k zijk, that is, the number of subscribers

attached to the object. Let fij =
∑

k zijk. Hence, the object

that has lowest subscribers to size ratio is dropped.

2) Cost depends on size: In this approach, we define the

value as Δ(i, j, k) = sij , which leads to maximizing:
∑

i

∑

j

∑

k

xijzijksij =
∑

i

∑

j

xijfijsij (4)

This is to choose objects so that the amount of bytes

returned from the cache is maximized (maximizing cache hit

byte). In this scheme, the object that has the fewest subscribers

(min fij) is dropped. Note that this policy is in fact a variant

of the popular LFU (least frequently used) policy.

3) Cost depends on latency: In this scheme, we assume the

additional latency to retrieve the object from the data cluster

contributes to its cost. Let lij denote the latency of retrieving

the object from the data cluster to the broker. In that, utility

gain is Δ(i, j, k) = lij and the value function is φij = lijfij .

Hence, the object with the least value of
lijfij
sij

is dropped.

Consequently, we can have the three caching policies as

shown in Table I.

TABLE I
UTILITY-DRIVEN CACHING POLICIES

Utility, Δ(i, j, k) Caching value, φij Dropping criteria Name

Uniform, 1
∑

k zijk = fij min
fij
sij

LSCz

Size, sij fij × sij min fij LSC

Latency, lij fij × lij min
fij lij
sij

LSD

B. TTL (Time-to-Live) Caching

TTL cache sets an explicit expiration time on cached objects

and drop them immediately after the expiration time elapses.

The amount of time an object is held at the cache is referred to

as TTL (Time-to-Live). The value of TTLs ultimately controls

the size of the caches. If TTLs are set large, objects are held

for longer durations allowing subscribers to come and retrieve

them, but it raises the cache size. Smaller TTL values keeps the

caches in smaller sizes but the subscribes may now not have

enough time to retrieve their objects. Intuitively, the TTL value

should depend on at what rate new results are added to the

caches and at what rate results are consumed from the caches.

By setting TTL values in an appropriate way, the total size of

the caches can be kept bounded within the allowed cache size.

Instead of assigning TTLs to an individual object, we assign

TTL to each cache and drop the tail object from the cache at a

701

periodic interval determined by the TTL. Let new results arrive

in cache i at a rate λi bytes per second and objects are dropped

at a rate ηi. Recall that an object is dropped when all of the

subscribers attached to the object have retrieved the object

unless the drop is due to the TTL expiration. The net growth of

the cache, denoted by ρi, is given by the difference between the

arrival rate and the consumption rate, that is, ρi = (λi−ηi)
+,

where x+ = max(0, x). Since objects are held in the cache for

Ti seconds after which they are automatically dropped, at this

growth rate the cache grows up to ρiTi. That is, the expected

size of cache i is ρiTi. We want the total size of all caches to

be bounded within B, which requires the following to hold:

N∑

i=1

ρiTi = B (5)

A generalized solution to (5) can be of the form:

Ti = ωi
B

ρi
(6)

where each cache can have a weight, ωi and
∑

i ωi = 1. One

way to assign weights can be in proportion to the number

subscribers each cache is attached to, that is, for ni = |S(i)|,
ωi =

ni∑
i ni

, which gives TTL values as follows:

Ti =
ni∑N
i=1 ni

B

ρi
(7)

The broker keeps track of the incoming data rate and

the consumption rate of each cache (by calculating moving

averages over time) and computes TTLs for all caches at a

certain interval, say every 5 minutes. It is important to note that

unlike utility-driven caching, TTL caching does not guarantee

that the total cache size would always remain within B. In

that, the size constraint holds only in expectation sense and

the cache can in fact grow beyond B if Ti’s are set longer

than their exact values. This can happen because the broker

approximates the growth rates, ρi’s, only to a certain accuracy

without knowing their true values. For comparison purpose,

we try an eviction version of TTL where the broker drops

objects only when the cache is full and chooses the object

that will expire soon (the earliest in the future) unless none

of the objects have expired yet, otherwise the object that has

already expired furthest in the past is dropped. We refer to this

version of caching policy as EXP (drop earliest to be expired).

V. SIMULATION RESULTS

We conduct an extensive simulation to show the perfor-

mance variations among different caching schemes at scale.

We wrote a discrete event simulator using Python that mimics

the behavior of the broker (manages subscriptions and deliver

channel results) as well as the backend data cluster (generates

results at different rates for different channels). Table II shows

the simulation settings. For each run, we created up to 1000

backend subscriptions to the data cluster and allow 10,000

subscribers to attach to any of them (following a random

joining process). Each subscriber remains ON and OFF for

mean durations of 20 and 30 minutes respectively following

a lognormal distribution (the choice is due to [29], [30]).

Each run is for six hours and result data are averaged over

ten independent runs. While in real setting the number of

subscribers may be millions with each subscription lasting for

weeks or months, we scaled everything down in our simulation

so that the experiments can be conducted within a bounded

time.

TABLE II
SIMULATION SETTINGS

Setting Value
No of subscribers 10000
Subscription per subscriber 10
No of unique subscriptions 1000
Subscription duration Lognormal(1, 2) minutes
Result object size Uniform(1KB, 500KB)
Allowed cache size 50MB — 500MB
Result object arrival Poisson, rate 1 per 10–60sec
Subscriber ON duration Lognormal(1.753, 1.425)
Subscriber OFF duration Lognormal(2.415, 1.11)
Broker to data cluster bandwidth 10MB/s
Broker to subscriber bandwidth 1MB/s
RTT (broker to data cluster) 500ms
RTT (broker to subscribers) 250ms

We implemented the following caching policies:

Scheme Dropping criteria

LRU drop from the least recently accessed cache

LSC drop object with the fewest subscribers

LSCz LSC normalized by object size

LSD drop object with the least delay-size ratio

EXP earliest object to be expired

TTL drop objects when TTL expires

We measure the following performance metrics: hit ratio, hit
byte, miss byte, latency and fetch. The hit ratio is the fraction

of result objects that are served from the cache out of the

total requests made by the subscribers. We also measure the

amount of data served from the cache as hit byte. It is expected

that the caching should improve subscribers latency to retrieve

subscription results from the broker because a cache hit results

in retrieving the results from the broker where a cache miss

leads to higher delay due to additional latency of retrieving

the missed objects from the data cluster. We measure the

average latency across all subscribers as subscriber latency.

The amount of total data bytes fetched from the data cluster

is also an important performance metric as higher cache misses

leads to higher data fetching. The metric, miss byte, accounts

the amount of bytes fetched only due to cache misses.

A. Performance of caching policies

Fig. 3 and Fig. 4 shows performance results of various

caching policies as we vary the total cache size. We observe

that as we increase the total cache sizes, the hit ratio and

hit byte increase in all schemes, and subscriber latency and

the amount of data fetched from the data cluster decreases.

As we can observe, TTL has the highest hit ratio, LSC has

higher hit ratio than LRU and EXP has the lowest hit ratio.

702

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 100 1000

H
it

ra
tio

Cache size (MB)

LRU
LSC

LSCz
LSD
EXP
TTL

(a) Hit ratio

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 100 1000

H
it

by
te

 (
G

B
)

Cache size (MB)

LRU
LSC

LSCz
LSD
EXP
TTL

(b) Hit byte

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

 10 100 1000

M
is

s
by

te
 (

G
B

)

Cache size (MB)

LRU
LSC

LSCz
LSD
EXP
TTL

(c) Miss byte

Fig. 3. Hit ratio, hit byte, and miss byte across caching policies.

 400

 450

 500

 550

 600

 10 100 1000

D
at

a
fe

tc
he

d
(G

B
)

Cache size (MB)

LRU
LSC

LSCz
LSD
EXP
TTL
Vol

(a) Bytes fetched from the data cluster

 550
 600
 650
 700
 750
 800
 850
 900
 950

 1000
 1050
 1100

 10 100 1000

A
ve

ra
ge

 la
te

nc
y

(m
s)

Cache size (MB)

LRU
LSC

LSCz
LSD
EXP
TTL

(b) Average latency of subscribers

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 10 100 1000

H
ol

di
ng

 ti
m

e
(s

ec
)

Cache size (MB)

LRU
LSC

LSCz
LSD
EXP
TTL

(c) Amount of time objects held in caches

Fig. 4. Average latency of subscribers and the total amount of data fetched from the data cluster

In turns out that LSCz and LSD have very similar hit ratio

results. Apparently, eviction version of TTL caching, that is,

EXP does not perform well. Generally, whichever scheme has

the higher hit ratio results in higher hit byte, lower miss byte,

lower subscriber latency and lower fetch.

Fig. 4(a) shows fetch across different caching schemes. The

line marked as ‘Vol’ denotes the total amount of data produced

in the data cluster in response to all subscriptions. This is

the base amount that the broker needs to pull from the data

cluster (irrespective of caching policy used) to populate the

content of the caches. The additional fetches are attributed to

cache misses which is shown in Fig. 3(c) as miss byte. We

observe that TTL scheme offers the lowest subscriber latency

followed by LSC and then LRU. Note that in addition to RTTs

among the broker and subscriber, the latency values add up the

processing times as well as the data transfer times. We also

measure how much time the caches hold objects in them (the

time gap between an object is cached and dropped). We see,

from Fig. 4(c), that the TTL cache holds objects for longer

duration than other schemes and EXP holds for the shortest

duration. This is why EXP performs worse than other schemes.

An important observation is that TTL-based caching has

superior performance than eviction-based techniques. This is

achieved, however, at an additional cost of slightly higher total

cache size. Recall that TTL cache does not strictly adhere to

the allowed cache size, rather tries to keep cache size bounded

in an expectation sense. Therefore, on some occasions, the

caches may grow beyond the allowed cache size. To show this,

we measure the time-averaged cache size and the maximum

cache size in all schemes (Fig. 5(a)). Time-averaged cache

size is a weighted mean of cache sizes where the cache

size is weighted by the amount of time the cache remains

at that size. Maximum cache size denotes the largest size

the cache ever grew. We observe that while eviction-based

schemes limit themselves within the allowed sizes, TLL cache

indeed exceeds the limit. We also show
∑

i ρiTi, which fits

almost exactly the allowed size (as per (5)) indicating that

computed TTLs are consistent with the given cache size. It

will be interesting to observe if holding times match with TTL

values. Intuitively, these two values should match closely in

TTL caches, which we in fact see in Fig. 5(b), compared to the

same for LSC scheme. Note that the holding time can be less

than TTL value as objects can be dropped when consumed by

all subscribers (even before their TTL expires).

VI. PROTOTYPE IMPLEMENTATION AND RESULTS

We build a small scale BAD prototype system on a three-

node data cluster based on AsterixDB [7] with a single broker

node. Our broker node is a RESTFul HTTP server written in

Python3 using the Tornado web framework [31].

Fig. 6 shows the interactions among the brokers, the broker

coordination service (BCS), the data cluster and the sub-

scribers. The BCS takes care of registering brokers when a

new broker joins to the system. When a subscriber comes to

the system, it contacts to the BCS and the BCS returns the

IP address and port of a suitable broker that the subscriber

can connect. The subscriber then interacts with the broker

through a set of REST APIs, whereas the broker talks to

703

 10

 100

 1000

 10000

 10 100 1000T
im

e-
av

er
ag

ed
 c

ac
he

 s
iz

e
(M

B
)

Allowed cache size (MB)

Cache size
sum(rho x ttl)

TTL-mean
TTL-max

(a) Cache size

 1

 10

 100

 1000

 10000

50MB 100MB200MB500MB

T
T

L
vs

 h
ol

di
ng

 ti
m

e
(s

ec
)

Cache size (MB)

TTL-TTL
HT-TTL

TTL-LSC
HT-LSC

(b) TTL vs holding time

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10 100 1000 10000

H
it

ra
tio

Time-averaged cache size (MB)

LRU
LSC

LSCz
LSD
EXP
TTL

(c) Hit ratio vs cache size

Fig. 5. Comparing eviction-based caching policies with TTL caching.

Fig. 6. Interactions among components of Big Active Data (BAD) systems

the data cluster through AQL (Asterix Query Language). The

subscriber programs are written in Python3 (using Tornado

web framework) and they receive notifications from the broker

through Websockets. We also tested desktop and Android

clients that receive notifications from the broker through a

RabbitMQ message queue server and GCM (Google Cloud

Messaging) respectively.

A. Evaluation of the Prototype System for Caching

Although our prototype system does work correctly end-

to-end, the current deployment is not fully capable of running

very scaled experiments, especially not to the scale required to

show the efficacy of caching. Therefore, the results reported

here are mainly to validate the proof-of-concept rather not

to represent the measurements of the actual system and its

performance. The code for the broker and the experiment setup

can be obtained at [32].

We use the following publish-subscribe usecase related to

receiving notifications during emergencies in a city. Sub-

scribers are interested about certain type of emergencies, such

as tornado, flood, and shooting, happening in certain locations

as expressed by different repetitive channels shown in Table III

with their corresponding periods.

We produce a synthetic but random trace of subscribers

interaction in the system, namely a series of timestamped

activities such as login, logout, subscribe to parameterized

channels and unsubscribe from the channels. These traces are

TABLE III
CHANNELS

Channel (params) Predicates P (s)
emrgn (E) Events of type ‘E’ 10
emrgn (L) — near loc ‘L’ 20
emrgn (E, L) — of type ‘E’ near loc ‘L’ 30
emrgn-ws (E, L) — of type ‘E’ near ‘L’ with shelters 60
emrgn-nm (U) — near user ‘U’ 10
emrgn-nm (E, U) — of type ‘E’ near user ‘U’ 10
emrgn-nm (E, U) — of type ‘E’ near ‘U’ with shelters 10

then played back by a driver program. We also set a publisher

that publishes geo-tagged and timestamped emergency reports

and shelter information at an interval of around every 10

seconds (publications are text strings of size 200-1000 bytes).

We let subscribers (randomly) move on the city and publish

their locations. We run the experiments with 400 subscribers

with nearly 3500 frontend subscriptions and 800 backend

subscriptions. For each setting, we provide the same trace to

all competing caching schemes and run the trace for an hour.

Fig. 7 shows the different results for the testbed deployment.

We also show results without any caching (NC) appeared at

the far left. We can see from the figures that having a cache in

the broker significantly reduces the subscriber latency as well

as the total number of bytes retrieved from the data cluster. We

also observe that, as cache size grows hit ratio increases in all

caching schemes, and both latency and bytes fetched decline.

At this small scale of evaluation, LSC appears way better than

LRU in terms of hit ratio. Again, TTL-based caching does

slightly better at lower cache sizes. It is interesting to see

that even a small cache size (100KB) results in high latency

drop (around 50% drop) with a high hit ratio (above 50%).

This is perhaps due to the fact that some subscriptions are

very popular (due to Zipfian subscription model we used), so

caching those objects results in higher hit ratio.

VII. CONCLUSION

In this paper, we develop intelligent caching techniques

for a big data publish subscribe system. The BAD platform

at UCI uniquely integrates big data management systems

and distributed broker architectures for pub-sub to enable

augment and enrich notifications and deliver them to a very

large number of subscribers as quickly and efficiently as

704

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

100KB 500KB 1MB 10MB

H
it

ra
tio

Cache size

LRU
LSC

LSCz
LSD
TTL

(a) Hit ratio

 0

 50

 100

 150

 200

 250

100KB 500KB 1MB 10MB

La
te

nc
y

(m
s)

Cache size

LRU
LSC

LSCz
LSD
TTL
NC

(b) Latency

 0

 5

 10

 15

 20

 25

100KB 500KB 1MB 10MB

F
et

ch
 fr

om
 d

at
a

cl
us

te
r

(M
B

)

Cache size

LRU
LSC

LSCz
LSD
TTL
NC

(c) Data fetched from the data cluster

Fig. 7. Hit ratio, subscribers latency and the amount of data fetched from the data cluster in the BAD prototype system.

possible. A range of system level issues arise in addressing

scale and dynamicity in these systems - in addition to broker

caching methods that alleviate backend and network overhead,

techniques to manage state information for dynamic recon-

figuration are being developed. These include methods for

handling failures and support for efficient load balancing as

loads on the brokers change dynamically as a result of events.

This will enable us to get closer to our vision of implementing

a scalable rich notification platform that enables “petabytes to

megafolks in milliseconds”.

ACKNOWLEDGMENT

This work is supported by NSF Award 1447720.

REFERENCES

[1] “Storm,” 2014. [Online]. Available: http://storm.incubator.apache.org/
[2] “Event series intelligence: Esper and nesper,” 2014.
[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[4] S. Jacobs et al., “A BAD demonstration: Towards big active data,” Proc.
VLDB Endow., vol. 10, no. 12, pp. 1941–1944, Aug. 2017.

[5] M. J. Carey, S. Jacobs, and V. J. Tsotras, “Towards situational awareness
on big data: A BAD approach,” in International Workshop on Real-time
Analytics in Multi-latency, Multi-Party, Metro-scale Networks, 2017.

[6] ——, “Breaking BAD: a data serving vision for big active data,” in
ACM International Conference on Distributed and Event-based Systems.
ACM, 2016, pp. 181–186.

[7] “Big Active Data (BAD).” [Online]. Available:
http://asterix.ics.uci.edu/bigactivedata

[8] C. Carnes, J. B. Park, and A. Vernon, “Scalable trigger processing,”
in International Conference on Data Engineering, ser. ICDE ’99.
Washington, DC, USA: IEEE Computer Society, 1999, pp. 266–.

[9] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Comput. Surv., vol. 35, no. 4, pp. 374–398, Dec. 2003.

[10] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize: Or-
chestrating the hot object memory cache in a content delivery network,”
in USENIX NSDI. Boston, MA: USENIX Association, 2017, pp. 483–
498.

[11] Yaxiong Zhao, Jie Wu, and Cong Liu, “Dache: A data aware caching
for big-data applications using the MapReduce framework,” Tsinghua
Science and Technology, vol. 19, no. 1, pp. 39–50, feb 2014.

[12] V. Sourlas, G. S. Paschos, P. Flegkas, and L. Tassiulas, “Caching in
content-based publish/subscribe systems,” in IEEE GLOBECOM. IEEE,
2009, pp. 1–6.

[13] M. Diallo, S. Fdida, V. SoOPTurlas, P. Flegkas, and L. Tassiulas, “Lever-
aging Caching for Internet-Scale Content-Based Publish/Subscribe Net-
works,” in IEEE ICC. IEEE, jun 2011, pp. 1–5.

[14] V. Sourlas, G. S. Paschos, P. Flegkas, and L. Tassiulas, “Mobility Sup-
port Through Caching in Content-Based Publish/Subscribe Networks,”
in IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing. IEEE, 2010, pp. 715–720.

[15] G. Zhang, Y. Li, and T. Lin, “Caching in information centric networking:
A survey,” Computer Networks, vol. 57, no. 16, pp. 3128–3141, nov
2013.

[16] J. Jung, A. W. Berger, and H. Balakrishnan, “Modeling TTL-based
internet caches,” in IEEE INFOCOM, vol. 1. IEEE, 2003, pp. 417–426.

[17] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance evalu-
ation of hierarchical TTL-based cache networks,” Computer Networks,
vol. 65, no. Supplement C, pp. 212 – 231, 2014.

[18] G. Einziger, R. Friedman, and B. Manes, “TinyLFU: A highly efficient
cache admission policy,” ACM Trans. Storage, vol. 13, no. 4, pp. 35:1–
35:31, Nov. 2017.

[19] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, “Unravelling the Impact of Temporal and Geographical
Locality in Content Caching Systems,” IEEE Transactions on Multime-
dia, vol. 17, no. 10, pp. 1839–1854, oct 2015.

[20] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” in
USENIX Symposium on Internet Technologies and Systems. USENIX
Association, 1997, pp. 18–18.

[21] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating
content management techniques for web proxy caches,” SIGMETRICS
Perform. Eval. Rev., vol. 27, no. 4, pp. 3–11, Mar. 2000.

[22] S. Jin and A. Bestavros, “GreedyDual* web caching algorithm: Ex-
ploiting the two sources of temporal locality in web request streams,” in
International Web Caching and Content Delivery Workshop, 2000, pp.
174–183.

[23] M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” in IEEE
INFOCOM. IEEE, apr 2016, pp. 1–9.

[24] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” IEEE INFOCOM, vol. 1,
no. 3, pp. 1–28, 2014.

[25] F. B. Sazoglu, B. B. Cambazoglu, R. Ozcan, I. S. Altingovde, Ö. Ulusoy,
F. B. Sazoglu, B. B. Cambazoglu, R. Ozcan, I. S. Altingovde, and
Ö. Ulusoy, “Strategies for setting time-to-live values in result caches,”
in ACM CIKM. New York, New York, USA: ACM Press, 2013, pp.
1881–1884.

[26] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE J.Sel. A. Commun.,
vol. 20, no. 7, pp. 1305–1314, Sep. 2006.

[27] S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and Ö. Ulusoy,
“Adaptive Time-to-Live Strategies for Query Result Caching in Web
Search Engines,” in European Conference on IR Research: Advances in
Information Retrieval. Springer, Berlin, Heidelberg, 2012, pp. 401–412.

[28] “AsterixDB.” [Online]. Available: https://asterixdb.apache.org
[29] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Characterizing

user behavior in online social networks,” in ACM SIGCOMM conference
on Internet measurement conference. ACM, 2009, pp. 49–62.

[30] J. Jiang, C. Wilson, X. Wang, W. Sha, P. Huang, Y. Dai, and B. Y.
Zhao, “Understanding latent interactions in online social networks,”
ACM Transactions on the Web (TWEB), vol. 7, no. 4, p. 18, 2013.

[31] “Tornado web framework.” [Online]. Available:
http://www.tornadoweb.org

[32] “BAD caching code.” [Online]. Available:
https://bitbucket.org/yusufsarwar/badbroker

705

