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ABSTRACT OF THE DISSERTATION

Spatial Indexing in the Era of Social Media.

By

Sattam Alsubaiee

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2014

Professor Chen Li, Chair

The rapid adoption of smart phones and the social media boom has increased the interest

in location-based services. A new set of applications and popular online services that utilize

users’ locations have been created, and many ordinary people are increasingly interacting

with these services on a daily basis through their smart phones, tablets, cameras, etc., where

most of those gadgets come equipped with GPS sensors. The new complex features provided

by those applications and the scale of the massive data handled by them impose new and

interesting challenges for spatial databases. In this thesis, we present spatial indexing and

query processing techniques in response to some of these challenges.

First, we study how to support approximate keyword search on spatial data. There are

many popular websites that support keyword search on their spatial data, such as business

listings and photos. In these systems, users may experience difficulties finding the entities

they are looking for if they do not know their exact spelling, such as the name of a restaurant.

We develop three algorithms for constructing a specialized index that can answer location-

based approximate keyword queries, successively improving the time and space efficiency by

exploiting the textual and spatial properties of the data. We experimentally demonstrate

the efficiency of our techniques on real, large datasets.

Second, we introduce a framework for converting an in-place update, disk-based data struc-

xii



ture to a deferred-update, append-only data structure. We show that converting an R-tree

index (and other non-totally ordered index) to an LSM index is non-trivial if the resultant

index is expected to have performant read and write operations. Our framework enables the

“LSM-ification” of any kind of index structure that supports certain primitive operations,

enabling the index to ingest data efficiently. We have implemented our framework in the

context of the AsterixDB system as a way to extend both the R-tree and the inverted key-

word index to LSM-based indexes. Our results have shown that using an LSM-based version

of the R-tree can significantly outperform its conventional counterpart for both ingestion and

query speed.

Third, we study how to optimize the performance of query workloads that favor recent data.

There are many use cases where users of a database system are mostly interested in querying

recent data. We propose a solution that exploits the natural partitioning property that

LSM-based indexes provide for its components, allowing us to filter out many components

when answering queries. Our solution is generalizable to any LSM-based index structure

including LSM R-trees, and has been implemented in the context of the AsterixDB system.

Our experiments show that we can reduce query times by up to 99% for selective range

predicates.
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Chapter 1

Introduction

Research in spatial databases has been an active area in the last few decades, mainly driven

by applications such as Computer Aided Design (CAD), Multimedia Information System

(MMIS), NASA’s Earth Observation System (EOS), and more importantly Geographical

Information System (GIS). Spatial query processing has become a significant niche market

and important enough such that many database management systems (DBMS) provide na-

tive support for it. With the evolving world of social media and the mobile devices boom,

however, location-based applications are now becoming more important than ever. A new

set of applications and popular online services that utilize users’ locations have been cre-

ated, and many ordinary people are increasingly interacting with these services on a daily

basis through their smart phones, tablets, cameras, etc., where most of those gadgets come

equipped with GPS sensors. Recent studies show that smart phone penetration has gone

well beyond 50% in the US [46], and this trend is expected to continue in the near future.

Many social networks, such as Facebook, Twitter, and Google+, allow users to geo-tag their

statuses and tweets. In fact, there are popular social networks, e.g., Foursquare, where their

core business depends on users sharing their location using their mobile devices. The new

complex features provided by those applications and the scale of the massive data handled

1



by the applications impose new and interesting challenges for spatial databases.

In this thesis, we present spatial indexing and query processing techniques in response to

some of these challenges. In particular, we study three different problems and provide an

efficient solution for each one of them.

Location-based approximate keyword search: Many websites support keyword search

on their spatial data, such as business listings, social network posts, and photos. They accept

queries consisting of two conditions: a set of keywords and a spatial location. The goal is to

find objects with these keywords close to the location. In these systems, inconsistencies and

errors can exist in both queries and the data. For instance, a user might be looking for a

restaurant called Alouette close to New York. The website returns listings close to New York

that have the keyword Alouette. Sometimes, users may not know the exact spelling of

the entities they are looking for. For example, a user could have heard of the restaurant

by word-of-mouth but is unfamiliar with its exact spelling, and issues the following query

with a typo: Aloette close to New York. Similarly, errors can exist in the data as well. For

instance, websites such as Twitter and Flickr support location-based keyword search. Since

the posts in those websites are created by users, the textual information corresponding to

a post may have spelling errors. To bridge the gap between queries and data with possible

errors, it is important to support approximate keyword search on spatial data. In the first

part of this thesis, we study how to answer such queries efficiently. We focus on a natural

index structure that augments a tree-based spatial index, such as R-tree, with capabilities

for approximate keyword search. We systematically study how to efficiently combine these

two types of indexes and how to search the resulting index to find answers. We develop three

algorithms for constructing the index, successively improving the time and space efficiency

by exploiting the textual and spatial properties of the data. We experimentally demonstrate

the efficiency of our techniques on real, large datasets.

A general purpose LSM-based indexing framework: Social networks, online commu-

2



nities, mobile devices, and instant messaging applications are generating digital information

at an increasing rate. As an example, Twitter’s users post more than 500 million tweets per

day [43]. With the increasing adoption of smart phones, this rate is expected to rise even

higher. Most conventional database index structures such as B+-trees use in-place writes to

perform updates and have been widely used in traditional relational database systems due

to their low read latency. However, today’s emerging applications require handling append-

intensive workloads where the performance of in-place write index structures may not be

acceptable. For this reason, nowadays many NoSQL (a.k.a. key-value) databases adopt the

Log-Structured Merge (LSM) Tree [37] as their underlying storage structure. The LSM-tree

is able to ingest data at a high rate by temporarily batching the incoming records into a main

memory buffer, and then sequentially flushing the buffer to disk, eliminating costly random

disk writes. Since much of today’s social data is geo-tagged, many applications desire the

ability to issue spatial queries against geo-tagged data or even analyze it for useful insights.

Most conventional spatial indexes, such as the R-tree, also use in-place writes; therefore,

they cannot keep up with the high ingestion rate required by many applications. Conse-

quently, it is natural to extend the R-tree (or any other in-place index structure) to use the

same technique as the LSM-tree. Unfortunately, it turns out that the extension of those in-

dexes lacking a total order among their entries, such as R-tree, is challenging. In the second

part of this thesis, we discuss these challenges and propose a generic framework to extend

conventional index structures to be LSM-based indexes. Our framework can utilize existing

non-LSM indexes by behaving as a wrapper. Thus, we can avoid designing and implement-

ing new specialized indexes from scratch, saving development time. We have implemented

our framework in the context of the AsterixDB system [7, 5, 14, 8, 6] as a way to extend

both R-tree and inverted keyword index to LSM-based indexes. Furthermore, for the special

case of the R-tree, we provide an additional possible technique to extend the R-tree to an

LSM-based index. We present initial performance evaluation results of AsterixDB focusing

on the LSM-based storage system, and also experimentally compare the two versions of the

3



LSM-based R-tree.

Filter-based LSM index acceleration: Large volumes of events and social data can

be aggregated and analyzed to derive knowledge valuable to businesses, governments, and

society. Although older historical data can be useful to infer interesting patterns, in many

cases more recent or real-time data analysis is more important to the decision making process.

For example, consider the case where the CEO of a smart phone company such as Apple

wants to know how consumers are reacting to a new release of the iPhone in a certain

geographic area. Such information is clearly valuable to the decision-making process of the

company. The increasing availability and popularity of social data and event data make such

information more readily available and more real time. We can derive such knowledge by

doing a spatial aggregation on Twitter data as follows: We can formulate a query to find

the tweets mentioning “iPhone” that have originated from Los Angeles in the last one hour,

group them on a spatial grid, and compute the number of such tweets in each cell in the

grid. By doing this time-based spatial analysis, the smart phone business managers can easily

have a good understanding of the market and thus can make important, correct, and critical

decisions. With the social-media data explosion, however, answering near real-time queries

efficiently can be challenging. In the third part of this thesis, we study how to efficiently

answer queries that are targeting recent data within very large data sets. We propose a

solution that exploits the natural partitioning property that LSM-based indexes provide for

its components, allowing us to filter out many components when answering queries. Our

solution is generalizable to any LSM-based index structure, and can be applied not just on

temporal fields (e.g., based on recency), but also can be applied to any “time correlated

fields” such as Universally Unique Identifiers (UUIDs), user-provided integer ids, etc. We

have implemented and experimentally evaluated the solution in the context of AsterixDB.

4



Chapter 2

Preliminaries and Related Work

In this chapter, we introduce basic concepts and existing technologies related to our work.

We start by providing a brief explanation of the Log Structured Merge (LSM) tree, followed

by a high-level introduction to the AsterixDB Big Data Management System. We then

discuss the related work in the area of spatial-textual indexing, log structured storage, and

the usage of partitioning for effective filtering power.

2.1 LSM-Tree

An LSM-tree [37] is an ordered, persistent index structure that supports typical operations

such as insert, delete, and query. It is optimized for frequent or high-volume updates. By first

batching updates in memory, the LSM-tree amortizes the cost of an update by converting

what would have been a disk seek into some portion of a sequential I/O.

Entries being inserted into an LSM-tree are initially placed into a component of the index

that resides in main memory—an in-memory component. When the space occupancy of the

in-memory component exceeds a specified threshold, entries are flushed to disk. As entries
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accumulate on disk, the entries are periodically merged together subject to a merge policy

that decides when and what to merge. In practice, two different variations of flush and merge

are used. Block-based, “rolling merges” (described in [37]) periodically migrate blocks of

entries from newer components (including the in-memory component) to older components

that reside on disk—disk components—while maintaining a fixed number of components.

On the other hand, component-based flushes migrate an entire component’s worth of entries

to disk, forming a new disk component, such that disk components are ordered based on

their freshness, so component-based merges combine the entries from a sequence of disk

components together to form a new disk component. Popular NoSQL systems commonly

employ the component-based variation, where in-memory and disk components are usually

called memtables and SSTables, respectively (e.g., [17]). Throughout the rest of this thesis,

a reference to an LSM-tree implies a reference to a component-based LSM-tree. Figure 2.1

shows these component-level LSM operations. As the case in [37], a component is often

another instance of a disk-inspired structure such as a B+-tree. However, it is possible to

use other index structures whose operations are semantically equivalent (e.g., Skip List [39])

for the in-memory component.

Disk components of an LSM-tree are immutable. Modifications (e.g., updates and deletes)

of existing entries are handled by inserting control entries into the in-memory component.

A delete (or “anti-matter”) entry, for instance, carries a flag marking it as a delete, while

an insert can be represented simply as the new entry itself. Control entries with identical

keys must be reconciled during searches and merges by either annihilating older entries in

the case of a delete, or by replacing older entries with a new entry in the case of an update.

During merges, older deleted entries may be safely ignored when forming a new component,

effectively removing them from the index.

Entries in an LSM-tree are scattered throughout the sequence of components, which re-

quires range scans to be applied to all of the components. As entries are fetched from the
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(a) Flushing a full in-memory component to disk.

(b) Merging multiple on-disk components into a single component.

Figure 2.1: Basic LSM operations: flush and merge.

components, the reconciliation described above is performed. A natural design for an LSM-

tree range scan cursor that facilitates reconciliation is a heap of sub-cursors sorted on 〈key,

component number〉, where each sub-cursor operates on a single component. This design

temporally groups entries with identical keys, easing reconciliation.

Point lookups in unique indexes can be further optimized. Given key uniqueness in an LSM-

tree, cursors can access the components one-by-one, from newest to oldest (i.e., in component

number order), allowing for early termination as soon as the key is found. Enforcing key

uniqueness, however, increases the cost of an insertion since an additional integrity check is

now required: the index must first be searched for the key that is being inserted. This is in
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contrast to the typical usage of LSM-trees in popular NoSQL systems, where the semantics

of insert usually mean “insert if not exists, else update” (a.k.a. “upsert”), where primary key

existence is not considered an error. Throughout the rest of the thesis, references to insert

will assume the semantics “insert if not exists, else error if the key exists”. As suggested

in [42], a Bloom filter can be maintained in main memory for each disk component to reduce

the chance of performing unnecessary disk I/O during point lookups, thereby decreasing the

cost of performing the integrity check and point lookups in general.

Compared to a B+-tree, the LSM-tree offers superior write throughput at the expense of

reads and scans [27, 37]. As the number of disk components increases, search performance

degrades since more disk components must be accessed. It is therefore desirable to keep few

disk components by periodically merging multiple components into fewer, larger components

in order to maintain acceptable search time. We refer interested readers to [41] for a recent

study of advanced LSM merging strategies.

2.2 AsterixDB

The AsterixDB project [1, 8, 14] started in 2009 at UC Irvine. The goal at the outset was

to design and implement a highly scalable platform for information storage, search, and an-

alytics. By combining and extending ideas from semistructured data management, parallel

database systems, and first-generation data-intensive computing platforms (MapReduce and

Hadoop), AsterixDB was envisioned to be a parallel, semistructured information manage-

ment system with the ability to ingest, store, index, query, analyze, and publish very large

quantities of semistructured data. AsterixDB is well-suited to handle use cases ranging all

the way from rigid, relation-like data collections, whose types are well understood and in-

variant, to flexible and more complex data, where little is known a priori and the instances

in data collections are highly variant and self-describing.
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Figure 2.2: AsterixDB system architecture.

Figure 2.2 provides an overview of an AsterixDB cluster and how the software components

of AsterixDB map to a node in a shared-nothing cluster. The bottom-most layer pro-

vides storage facilities for managed datasets based on LSM-trees, which can be targets of

ingestion. Datasets are managed by AsterixDB as partitioned LSM-based B+-trees with

optional LSM-based secondary indexes. Further up the stack lies a data-parallel runtime

called Hyracks [16]. It sits at roughly the same level that Hadoop does in implementations

of other high-level languages such as Pig [36], Hive [12] or Jaql [26]. The topmost layer of

AsterixDB is a parallel DBMS, with a full, flexible data model (ADM) and query language

(AQL) for describing, querying, and analyzing data. AQL is comparable to languages such

as Pig, Hive, or Jaql, but ADM and AQL support both native storage and indexing of data

as well as access to external data (e.g., in HDFS). As part of the AQL compiler, there exists

a layer called Algebricks, a model-agnostic, algebraic “virtual machine” for optimizing par-

allel queries. Algebricks is the target for AQL compilation, but it can also be the target for
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other declarative data languages. ADM includes support for both spatial and textual data,

as does the AQL query language.

2.3 Related Work

In this section, we touch upon existing work relevant to spatial-textual indexing, log struc-

tured storage, and data partitioning that is used by different systems for effective filtering

power.

Spatial keyword search: There have been a number of studies on answering spatial queries

for exact matching of keywords [50, 44, 19, 25, 22, 20, 49]. Chen et al. [19] used separate

indices for the spatial and textual information. Zhou et al. [50] suggested a hybrid index that

combines spatial and inverted indexes, where they use an R*-tree [13] and build inverted

indexes for the keywords at the leaf nodes, or use an inverted index to store the keywords and

build an R*-tree for each keyword. These techniques do not simultaneously use the spatial

and the textual information for pruning. Other studies [25, 22, 20, 49] used the textual and

spatial information conjunctively. They augment a tree-based spatial index with textual

information in each node. Our work in Chapter 3 complements these studies by allowing

approximate as well as exact keyword matching.

Approximate string search: We refer to the problem of conjunctive keyword search with

relaxed keywords as approximate keyword search. An important subproblem of approximate

keyword search is that of approximate string search, defined as follows. Given a collection

of strings, find those that are similar to a given query string. There are two main families

of approaches to answer such queries. (1) Trie-based method: The string collection is stored

as a trie (or a suffix tree). To answer an approximate string query, the trie is traversed and

the subtrees that cannot be similar to the query are pruned. Popular pruning techniques use
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an NFA or a dynamic programming matrix with backtracking. We refer the reader to [34]

for more details. (2) Inverted-index method: Its main idea is to decompose each string in

the collection to small overlapping substrings (called “grams”) and build an inverted index

on these grams. More details on gram-based indexing and search algorithms can be found

in [24, 30, 34].

Spatial approximate-keyword search: Yao et al. [48] proposed a structure called MHR-

tree to answer spatial approximate-keyword queries. They enhance an R-tree [23] with

min-wise signatures at each node to compactly represent the union of the grams contained in

objects of that subtree. They then use the concept of set resemblance between the signatures

and the query strings to prune branches in the tree. The main advantage of this approach

is that its index size does not require a lot of space since the min-wise signatures are very

small. However, the method could miss query answers due to the probabilistic nature of the

signatures, while the approach that we will present in Chapter 3 can guarantee to find all

true answers. In Section 3.6, we compare these two solutions experimentally.

Log structured storage: Utilizing memory to support efficient write-heavy workloads has

been suggested by the log-structured file system (LFS) [40]. Inspired by the LSM-tree [37],

different variants of log-structured B+-trees have been introduced in the literature and some

have been deployed commercially [2, 3, 4, 17]. The bLSM-tree [41] uses advanced scheduling

algorithms to provide predictable write performance. LogBase [18] has adopted log-only

storage, where the logs are the actual data repository. The Bkd-tree [38] utilizes an kd-

tree to index multi-dimensional point data to provide efficient data ingestion for spatial

workloads.

A partitioned exponential file [27] offers a generic data structure for write-intensive workloads

that can be customized for different types of data. Our work presented in Chapter 4 differs

in three ways:
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1) We provide a more general approach for converting existing index structures to LSM-

based index structures that avoids building specialized indexes from scratch, saving

index structure design and development time.

2) We have designed and implemented a framework to enforce the ACID properties across

multiple heterogeneous LSM indexes (interested reader can refer to [7] for more details).

3) We provide a full implementation of the work in AsterixDB as an open-source software

package.

Utilizing LSM structures for efficient query processing: Muth et al. [33] have intro-

duced an index structure called LHAM for transaction-time temporal data. They used an

LSM-like structure to index record versions in two dimensions: one dimension is given by the

conventional record key and the other by the timestamp of the record version. The record

version is obtained at the time of insertion, representing the transaction timestamp. The

outcome is that the data is partitioned into successive components based on the timestamps

of the record versions. Queries with temporal predicates only need to access those compo-

nents that satisfy the predicates and the remaining components can be skipped. HBase uses

a similar idea to LHAM by using the LSM-tree to store incoming records and maintaining a

timestamp with each record for versioning purposes. Each LSM component is then tagged

with the minimum and maximum timestamps of the records contained in the component.

When answering a query with temporal predicates, HBase can leverage the minimum and

maximum timestamp filters to only access those relevant components, reducing query time.

Our work presented in Chapter 5 differs than LHAM and HBase in the following ways:

1) We do not require the filters to be used with transaction timestamps. Instead, when

creating a dataset, the user is allowed to create a filter on any totally-ordered datatype

field of the record (e.g., integer, double, datetime, UUID, etc.).
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2) We apply the filters not only on disk components of the primary index, but also on

the disk components of the secondary indexes, allowing significant additional pruning

power.

3) We study the effect of using different merge policies and out-of-order records on query

performance when using our generalized filters and experimentally show their effect.
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Chapter 3

Supporting Location-Based

Approximate-Keyword Queries

3.1 Introduction

As described in Chapter 1, an increasing number of websites support location-based keyword

search on their data objects such as business listings and photos. They accept queries

consisting of two conditions: a set of keywords and a spatial location. The goal is to find

objects with these keywords close to the location. Such a query is called a spatial-keyword

query [25]. For instance, there are several local-search websites, such as Bing Maps, Google

Maps, Yahoo! Local, and Yelp.

In these systems, inconsistencies and errors can exist in user queries and data. For instance,

a user might be looking for a restaurant called Suteishi close to New York. The following

is the corresponding query:

Q1: (Suteishi Restaurant) near (New York).
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The website will respond by returning listings close to New York that have the keyword

Suteishi. Sometimes, users may not know the exact spelling of the entities they are looking

for. For instance, a user could have heard of the restaurant by word-of-mouth but be

unfamiliar with its exact spelling, and might issue the following query with a typo:

Q′

1: (Sutishi Restaurant) near (New York).

Errors can exist in data as well. For instance, Flickr supports location-based photo search.1

Consider a query that asks for photos of Alcatraz close to San Francisco:

Q2: (Alcatraz) near (San Francisco).

Since Flickr photos are manually uploaded and tagged by users, the title or the description

of a photo may have spelling errors. Query Q2 may not be able to find a photo with the

mistyped title Alkatraz.

Finding relevant answers to such queries is important. Unfortunately, most existing location-

based search engines currently will not provide correct answers to the query Q′

1 even with a

single typo (as of August 1, 2014). One simple solution to this problem on a spatial dataset

is to build a collection of keywords from the dataset. For a mistyped keyword, we find words

from the collection that are similar to the keyword. We use these similar keywords to suggest

another query or find objects with these keywords. The main drawback of this approach is

that it does not consider the location condition when relaxing the mistyped keyword.

In this chapter, we study how to support approximate keyword search on spatial data. An-

swering such queries efficiently is critical to these websites to achieve a high query throughput

to serve many concurrent users. Although there are studies on both approximate keyword

search and location-based search, the problem of supporting both types of search simulta-

neously has received little attention. To answer such queries, a natural index structure is to

1http://www.flickr.com/map
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augment a tree-based spatial index with approximate-string indexes such as a gram-based

inverted index or a trie-based index. The main focus of this work is a systematic study of

how to efficiently combine these two types of indexes and how to search the resulting index

(called LBAK-tree) to find answers.

We develop three algorithms in this context. First, in Section 3.3, we show a basic algorithm

that selects a fixed level of nodes in the spatial tree to store approximate-string indexes. (A

brief description of a system prototypes using this approach is presented in [11].) Second,

in Section 3.4, we develop a cost-based algorithm that judiciously selects a set of nodes

in the tree to store approximate indexes. Our cost model utilizes the spatial distribution

of objects within each node to build the index structure with a space budget. Third, in

Section 3.5 we continue improving the solution by exploiting the frequency distribution of

keywords. We show how to further reduce the index size without sacrificing query time. We

have conducted a comprehensive experimental study, presented in Section 3.6, to evaluate

the proposed techniques. Our results, which has also appeared in [9], show the efficiency and

scalability of these optimizations.

3.2 Problem Formulation

The problem of approximate keyword search on spatial data can be formulated as follows.

Consider a collection of spatial objects o1, . . . , on, each having a textual description (a set of

keywords) and a location. A spatial approximate-keyword query Q = 〈Qs, Qt〉 consists of two

conditions: a spatial conditionQs such as a rectangle or a circle, and an approximate keyword

condition Qt having a set of k pairs {〈w1, δ1〉, 〈w2, δ2〉, . . . , 〈wk, δk〉}, each representing a

keyword wi with an associated similarity threshold δi. The similarity thresholds refer to

a similarity measure such as edit distance, Jaccard, etc., which could be different for each

keyword. Our goal is to find all objects in the collection that are within the spatial region Qs
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and satisfy the approximate keyword condition Qt. We focus on conjunctive approximate

keyword queries; thus, an object satisfies the approximate keyword condition if for each

keyword wi in Qt, the object has a keyword in its description whose similarity to wi is within

the corresponding threshold δi. We mostly discuss range queries but our solutions can be

easily adapted to support nearest-neighbor queries.

Before proceeding, we briefly review the basics of answering queries with spatial conditions,

and answering approximate string queries. Queries with a spatial condition are typically

supported by a tree-based index such as an R*-tree, KD-tree, Quad-tree, etc. We assume

a tree-based spatial index as a basis for our work, and we often use an R*-tree as a repre-

sentative tree-based spatial access method. To support the approximate keyword condition,

we use an index for approximate string search. Most trie-based indexes are specific to edit

distance and its variants, and do not support other similarity measures such as Jaccard. An

inverted-index approach [30] supports a family of similarity metrics, such as edit distance,

Jaccard, etc. The two methods differ in their performance characteristics, whose specifics are

independent of our proposed framework. We focus on the inverted-index approach, though

we can as well choose a trie-based approach.

3.3 Basic Index and Search

In this section, we introduce a basic index structure and the corresponding search algorithm

for answering location-based approximate-keyword (LBAK) queries.

3.3.1 The LBAK-Tree

The main idea of the basic index (called “LBAK-tree”) is to augment a tree-based spatial

index with capabilities for approximate string search and keyword search. We use approxi-
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mate string search to identify for each query keyword those strings that are similar. Once we

have identified similar keywords, we use the keyword-search capability to prune search paths.

For example, Figure 3.1 shows an LBAK-tree, e.g., an R*-tree that has been enhanced to

support spatial approximate-keyword queries. To support keyword search we choose some

nodes to store the union of keywords contained in the objects of their subtree. To support

approximate string search, we select nodes in the tree to build approximate string indexes

(called “approximate indexes” hereafter) on their stored keywords. In this example and later

discussions, we use a gram-based inverted index to perform approximate string search, but

our solutions naturally extend to other types of approximate string indexes.

Fixed-level solution: A simple way to choose nodes to place approximate indexes is the

following. We choose one level L for which we construct approximate indexes at each node.

The challenge is to choose a level L that provides good query performance. Notice that at

each tree node, its stored keywords are the union of keywords of the objects in its subtree. If

multiple objects have the same keyword, this keyword is stored only once in their common

ancestors. There is a trade off between the average query time and the size of the approximate

indexes. As we move L down the tree, the total number of keywords on which we need to

build approximate indexes increases. Thus the total size of the approximate indexes will

increase. Meanwhile, the performance of finding similar keywords from an approximate

index is related to the size of the index. Typically the smaller the index is, the faster its

lookups are. On the other hand, doing many approximate-keyword lookups on small indexes

may increase the total running time as well.

3.3.2 Search Algorithm

Here, we discuss the search procedure for answering spatial approximate-keyword queries.

We classify the LBAK-tree nodes into three categories:
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Figure 3.1: The LBAK-tree with approximate indexes at one level, and nodes enhanced with
keywords.

• S-Nodes do not store any textual information such as keywords or approximate indexes,

and can only be used for pruning based on the spatial condition.

• SA-Nodes store the union of keywords of their subtree, and an approximate index on

those keywords. We use SA-Nodes to find similar keywords, and prune subtrees with the

spatial and approximate keyword conditions.

• SK-Nodes store the union of keywords of their subtree, and prune with the spatial condi-

tion and its keywords. Note that we must have previously identified the relevant similar

keywords once we reach an SK-Node.

Algorithm outline: Let Q be a query with a spatial condition Qs and an approximate-

keyword condition Qt with k keywords. The algorithm traverses the tree top-down and

performs the following actions at a tree node depending on the node type. At an S-Node,

the algorithm only relies on the spatial information of the node to decide which children

to traverse. Once the algorithm reaches an SA-Node, it uses the node’s approximate index
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to find similar keywords. For each keyword wi in Qt, the algorithm maintains a set of

keywords Ci that are similar to wi according to its similarity threshold δi. Assuming we use

the AND-semantics, a node is pruned if one of the query’s Ci sets is empty. Otherwise, we

propagate the list C = C1, . . . , Ck downward and use it for further pruning. In particular,

at each SK-Node n, for each keyword wi in Qt, the algorithm intersects its similar keywords

Ci propagated from the parent with the stored keywords of n. The node n can be pruned

if one of the similar keyword-sets Ci has an empty intersection with the node’s keywords.

Otherwise, the algorithm passes those intersection sets of similar keywords to n’s children for

further traversal. At a leaf node, the algorithm adds to the answer set all the node’s objects

that satisfy the condition Qs and have a non-empty intersection between their keywords and

each of the propagated similar-keyword sets from the query.

Pseudo-code: Let us examine the pseudo-code for LBAKSearch in Algorithm 1. Note that

the algorithm invokes several helper procedures, e.g., InitSimilarKeywordSets, ProcSNode,

etc., defined in Algorithms 2, 3, 4, and 5. In later sections, we will override these helper

procedures, but the procedure in Algorithm 1 remains the same.

The input of Algorithm 1 is a query Q = 〈Qs, Qt〉 and an LBAK-tree root r. We initialize

a list C of k similar-keyword sets (line 2), where k is the number of keywords in Qt. We

maintain a stack S to traverse the tree. Initially, we push the root r and the list C to the

stack (line 4). We start traversing the tree by popping the pair (n, C) from the stack (line

6). If n is not a leaf node, then all n’s children that satisfy the spatial condition will be

investigated (lines 7-9). Depending on the type of the node we invoke a helper procedure to

process it (lines 10-18):

For an S-Node (lines 11-12), we only rely on the spatial condition to do pruning, and push

the pair (ni, C) to the stack S (within Algorithm 3). For an SA-Node (lines 13-14), we use its

approximate index to find similar keywords for each query keyword as shown in Algorithm 4.

We call GetSimKwds (wi, δi) to get wi’s similar keywords, for i = 1,. . . ,k, and store them in
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Algorithm 1: LBAKSearch

Input : A query Q = 〈Qs, Qt〉, with Qt having k pairs {〈w1, δ1〉, . . . , 〈wk, δk〉}
associating a keyword wi with its similarity threshold δi;
An LBAK-tree root r;

Output: A set R of all objects satisfying Qs and Qt;

1 Result set R← ∅;
2 C ← InitSimilarKeywordSets(r, Qt);
3 Initialize an empty stack S;
4 S.push (r, C);
5 while S 6= ∅ do
6 (n, C)← S.pop();
7 if n is not a leaf node then
8 foreach child ni of n do
9 if ni does not satisfy Qs then continue;

10 switch ni.type do
11 case S-Node:

12 S ← ProcSNode(ni, Qt, C, S);
13 case SA-Node:

14 S ← ProcSANode(ni, Qt, C, S);
15 case SK-Node:

16 S ← ProcSKNode(ni, Qt, C, S);
17 endsw

18 endsw

19 end

20 else // leaf node

21 foreach object oi of n do
22 if oi satisfies Qs and Qt then
23 R.add(oi);
24 end

25 end

26 end

27 end
28 return R

Algorithm 2: InitSimilarKeywordSets

Input : Root r of an LBAK-tree;
Qt = {〈w1, δ1〉, . . . , 〈wk, δk〉}

Output: A list of similar-keyword sets C = C1, . . . , Ck;

1 C ← {∅, ∅, . . . , ∅} // k empty sets

2 return C
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Algorithm 3: ProcSNode

Input : S-Node n;
Qt = {〈w1, δ1〉, . . . , 〈wk, δk〉};
Similar-keyword sets C = C1, . . . , Ck;
Stack S;

Output: Stack S;

1 S.push (n, C);
2 return S

Algorithm 4: ProcSANode

Input : SA-Node n;
Qt = {〈w1, δ1〉, . . . , 〈wk, δk〉};
Similar-keyword sets C = C1, . . . , Ck;
Stack S;

Output: Stack S;

1 for i=1 to k do
2 Ci ← n.GetSimKwds(wi, δi);
3 end
4 if all Ci’s 6= ∅ then
5 S.push (n, C);
6 end
7 return S

Algorithm 5: ProcSKNode

Input : SK-Node n;
Qt = {〈w1, δ1〉, . . . , 〈wk, δk〉};
Similar-keyword sets C = C1, . . . , Ck;
Stack S;

Output: Stack S;

1 for i=1 to k do
2 Gi ← n.keywords ∩ Ci;
3 end
4 if all Gi’s 6= ∅ then
5 G← G1, G2, . . . , Gk;
6 S.push (n,G);

7 end
8 return S
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wi’s corresponding similar-keyword set Ci. If at least one similar keyword is found for each

keyword in Qt, then the pair (ni, C) is pushed to the stack S for future investigation. For

an SK-Node (lines 15-16), we compute the intersection Gi between ni’s keywords and the

similar-keyword set Ci. If all the intersection sets are not empty, then the pair (ni, G) is

pushed to S to be examined later (Algorithm 5). Finally, when we reach a leaf node, we add

its objects that satisfy the two conditions Qt and Qs to the results (lines 20-26).

Figure 3.2: Exemplary portion of an LBAK-tree with approximate indexes at a fixed level.

Example: Figure 3.2 shows a portion of an LBAK-tree. We want to find objects in New York

with keywords similar to barbarene and resturant, expressed as: Q = 〈{New York};

{〈barbarene, 2〉, 〈resturant, 2〉}〉. Notice that the query keywords have typos. We use

edit distance as the similarity measure, and 2 as the similarity threshold for both key-

words. Let us assume that nodes A, B, C, and D satisfy the spatial condition New York.

Throughout the traversal of the tree, we always check the spatial condition. We focus on

how to utilize the approximate indexes and stored keywords to prune irrelevant subtrees.

At the S-Node A, we only rely on the spatial condition for pruning. When we reach the
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SA-Node B, we probe its approximate index to find keywords similar to barbarene and

resturant according to the edit-distance threshold of 2. We can find two keywords similar

to barbarene (namely, barbarini and barbarino), and one keyword similar to resturant

(namely, restaurant). Once we visit the SK-Nodes C and D, we intersect their stored

keywords with {barbarini, barbarino} and {restaurant}, respectively. Clearly, we can

prune node C because it does not have the keyword restaurant. Since node D has the

keywords barbarini and restaurant, we traverse its children. We repeat the process until

we find the answers.

3.4 Placing Approximate Indexes at Variable Levels

In this section we study how to improve the solution described in Section 3.3 based on the

following observations. First, our experiments showed that around 90% of the query time is

spent on approximate-index lookups. Therefore, optimizing the placement of approximate

indexes in the tree can greatly improve the average query time.

Second, the fixed level L is chosen without considering the local spatial distribution of the

objects within each node. In many datasets, the spatial distribution of objects is skewed,

and nodes at the same level can greatly vary in size. For instance, consider a sparse node n1

in an R*-tree, e.g., a desert area in Nevada, where very likely a query overlaps with only few

of n1’s children. When traversing the tree through n1, it is better to rely only on the very

selective spatial condition for pruning without considering its textual information. Thus, we

prefer to build the approximate indexes at the descendants of n1, where the local pruning

power of the spatial condition becomes weaker. Our hope is that a query will only probe a

few, small approximate indexes below n1, if any. On the other hand, consider a dense node

n2, e.g., one representing New York city, where a query region is likely to overlap with many

of n2’s children. If we build approximate indexes for n2’s children, a query will likely need to
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probe all of them, which would be more expensive than probing one big approximate index

at n2. Therefore, we would rather build a single approximate index at n2 to avoid the cost

of many approximate-index lookups.

Our new method presented in this section allows the approximate indexes to appear at

different levels in the tree as shown in Figure 3.3. The new method reduces both the overall

space cost of the index and the average query time.
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Figure 3.3: The LBAK-tree utilizing the local spatial distribution of objects.

3.4.1 Selecting Nodes for Approximate Indexes

Our problem is finding the optimal set of nodes that should have approximate indexes. It

can be formulated as the following optimization problem: “Given an R*-tree and a space

budget, choose nodes from the tree to store approximate indexes, such that the average

query time of a given workload is minimized.” We can show that this problem is NP-hard
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by a reduction from the Knapsack problem to this problem, where each approximate index

has a value (the average query time improvement that we obtain by building the index) and

a weight (the space cost of the index).

Algorithm outline: We develop a greedy algorithm, called SelectSANodes, that traverses

the tree top-down and tries to push approximate indexes down the most promising paths.

The algorithm maintains a priority queue of nodes to be visited. The priority of a node n is

the benefit of building multiple approximate indexes at its children as compared to building

a single index at n. A detailed explanation of how to compute this benefit is presented in

Section 3.4.2. For each visited node n, if the benefit of building multiple approximate indexes

at n’s children is negative, then the algorithm selects n to be an SA-Node, and it will not

traverse its children. If the algorithm reaches a leaf node, it immediately selects the leaf to

be an SA-Node. The algorithm terminates when the space budget is exhausted or there is

no more benefit to push approximate indexes down the tree.

Pseudo-code: We now walk through the pseudo-code of SelectSANodes shown in Algo-

rithm 6. We use Wn to denote the set of stored keywords at node n. The input of the

algorithm is an R*-tree root r and a space budget S. We assume that the space budget is

large enough to at least build an approximate index on the root’s keywords Wr. We main-

tain a priority queue H of nodes to visit, ordering the nodes descending by their benefit.

Initially, we call GetBenefit (r) to obtain the benefit of storing the approximate indexes at

r’s children (line 3), and push r with its benefit to the queue (line 4). The algorithm starts

traversing the tree by popping the pair with the highest benefit to (n,B) (line 6). Next,

we call GetSpaceCost (Wni
) to compute the cost of building multiple approximate indexes

at n’s children (lines 7-10). We choose to build a single approximate index at n, and adjust

the space budget S accordingly if one of the following is true: n is a leaf node, there is not

enough space to build multiple approximate indexes at n’s children, or there is no benefit of

building multiple approximate indexes at the children (lines 11-13). Otherwise, we push n’s
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children to the queue for further evaluation (lines 14-19).

Algorithm 6: SelectSANodes

Input : An R*-tree root r;
A space budget S;

Output: A set of nodes R to build approximate indexes on;

1 Result set R← ∅;
2 Priority Queue H ← ∅;
3 B ← GetBenefit(r);
4 H.push (r, B);
5 while H 6= ∅ do
6 (n,B)← H.pop();
7 Sc ← ∅; // space cost of children

8 foreach child ni of n do
9 Sc ← Sc + GetSpaceCost(Wni

);
10 end
11 if n is a leaf node or S <= Sc or B <= 0 then
12 R.add(n);
13 S ← S− GetSpaceCost(Wn);

14 else
15 foreach child ni of n do
16 Bi ← GetBenefit(ni);
17 H.push (ni, Bi);

18 end

19 end

20 end
21 return R

The search algorithm for answering queries based on an index built with SelectSANodes is

the same as the one for the fixed-level solution, i.e., Algorithm 1 with the helper Algo-

rithms 2, 3, 4, and 5.

3.4.2 Estimating Benefits

In this section, we develop a cost model for algorithm SelectSANodes to estimate the benefit

of pushing approximate indexes down the tree based on the expected size overhead and

lookup-time improvement. Recall that we use the benefits to order the nodes in the priority
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queue.

Benefit of a node: Given a node n and its m children n1, . . . , nm, the benefit of n, denoted

as b(n), is determined by the ratio of the lookup-time difference of a single approximate

index at n and multiple approximate indexes at n’s children, to their size difference. The

following equation expresses this idea:

b(n) =
pT ime(n)− cT ime(n)

|pSpace(n)− cSpace(n)|
, (3.1)

where “pTime” is the average query time of probing an approximate index at the parent,

“cTime” denotes this time if the indexes were built at the children, and “pSpace” and

“cSpace” are the corresponding space costs of the indexes.

Let Wn denote the set of stored keywords at node n, s(Wn) denote the size of an approximate

index on keywordsWn, and t(Wn) denote the average lookup time for that approximate index.

We define the benefit of node n as follows:

b(n) =
p(n) ∗ t(Wn)−

∑
m

i=1
p(ni) ∗ t(Wni

)

|s(Wn)−
∑

m

i=1
s(Wni

)|
. (3.2)

We weight the lookup time for a node n by p(n), which denotes the probability of n satisfying

the spatial condition of a query in a workload.

Space cost of an approximate index: Since the main space cost of a gram-based ap-

proximate index is the inverted lists, we focus on estimating their size.

Suppose we use q-grams in the approximate indexes for a positive integer q. Each keyword w

to be inserted into the approximate index yields |w|− q+1 q-grams. Let G(w) be the bag of

grams generated for w. For every gram in G(w), we insert one element into its corresponding
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inverted list. Let σ be the size of each inverted-list element. The keyword w contributes at

most (|w| − q + 1) ∗ σ bytes to the size of the inverted lists. Note that this estimate is an

upper bound on w’s size contribution because we remove duplicate string ids from inverted

lists. Thus, we estimate the size of an approximate index on a set of keywords W as:

s(W ) = |W | ∗ (λ− q + 1) ∗ σ, (3.3)

where λ is the average keyword length of a particular dataset.

Lookup time of an approximate index: The lookup time of an approximate index is

a function of its size. We have experimentally determined that the cost of querying an

approximate index is linear in the number of keywords. Table 3.1 shows the experimental

data underlying this conclusion. We built four approximate indexes of different sizes (first

column), and ran a workload of queries against them to determine the average lookup time

(second column). In the third column we computed the slope of the line going through the

point represented by the first row and the other corresponding point. Since the slope is

roughly constant for different index sizes, we conclude that the average approximate-index

lookup time grows linearly with its size. Thus, we can estimate the average lookup time of

an approximate index on W keywords as:

t(W ) = β ∗ |W |+ α, (3.4)

the slope β and the intercept α are implementation dependent and can be determined ex-

perimentally.
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Size Time (ms) Slope

1 0.02 -

10000 0.207 0.000019

1M 22.253 0.000022

10M 210.152 0.000021

Table 3.1: Experimental data showing linear growth in lookup-time with size of an approx-
imate index.

3.5 Exploiting Frequency Distribution of Keywords

Objects in a spatial dataset can share the same keyword. For example, many objects can have

the keyword hotel in their textual descriptions. Moreover, very often some keywords appear

more frequently than others, and their frequency distribution is skewed. For instance, in a

dataset about business listings, a keyword restaurant is more likely to appear frequently

in objects than consulate. In Section 3.4, we presented a cost-based solution that selects a

set of nodes to store the approximate indexes. In this section, we further improve our cost-

based index-construction procedure by exploiting the skewed distribution of keywords. The

following enhancements can further reduce both the space cost of the approximate indexes

and the average query time.

3.5.1 Index Construction

Intuitively, we want to reduce the number of keywords in the approximate indexes. We

achieve this by removing frequent keywords from sibling nodes, and placing them in their

common parent instead. As a consequence, approximate indexes on frequent keywords can

now appear in any S-Node above an SA-Node. To further clarify, as shown in Figure 3.4,

SA-Nodes contain approximate indexes on infrequent keywords, while some S-Nodes above

an SA-Node hold approximate indexes on frequent keywords.

A keyword is considered frequent in a node n if the fraction of n’s children having that
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Figure 3.4: Improved LBAK-tree exploiting the skewed frequency distribution of keywords.

keyword exceeds a certain threshold, denoted by ω. For example, if ω = 0.9, then a keyword

is frequent if it appears in at least 90% of n’s children. A small ω decreases the space cost of

the approximate indexes. On the other hand, the average query time may increase because

we could visit false-positive nodes, since not all of n’s children actually contain the frequent

keywords. Those false-positive paths will be pruned at SK-Nodes.

Algorithm outline: To discover the frequent keywords in the tree, we maintain for each

node n two sets of keywords: a set of infrequent keywords Wn, and a set of frequent keywords

Fn. We identify the frequent and infrequent keywords of the node n by examining its

children. We say a child ni has a particular keyword if the keyword occurs in Wni
or Fni

.

If a keyword w is frequent at node n, then we remove w from the appropriate keyword

sets in all of n’s children. In this way, we ensure that popular keywords in a subtree only

appear in the root of that subtree. The propagation of frequent and infrequent keywords
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is performed bottom-up until the keyword sets of all nodes have been filled. The next

step is to choose nodes to build approximate indexes on. We use a procedure similar to

SelectSANodes from Section 3.4 but with a modified benefit function that distinguishes the

frequent and infrequent keywords. Since the index-construction procedure requires only

minor modifications, we omit its pseudo-code.

Benefit of a node: The new benefit of a node n is determined by the space and time cost of

building an approximate index on Wn ∪ Fn, versus building multiple indexes at n’s children

excluding the frequent keywords at n. We use the following variations for pTime, cTime,

pSpace, and cSpace in the benefit function of Equation 3.1:

pT ime(n) = p(n) ∗ t(Wn ∪ Fn)

cT ime(n) = p(n) ∗ t(Fn) +
m∑

i=1

p(ni) ∗ t((Wni
∪ Fni

)− Fn)

pSpace(n) = s(Wn ∪ Fn)

cSpace(n) = s(Fn) +

m∑

i=1

s((Wni
∪ Fni

)− Fn)

(3.5)

As before, we use p(n) to denote the probability of n satisfying the spatial condition of any

query in a workload.

3.5.2 Search Algorithm

Answering approximate-keyword queries on the improved index follows the common search

Algorithm 1, with different implementations for the helper procedures InitSimilarKeywordSets,

ProcSNode, and ProcSANode. We first probe the approximate index (if any) at the root node

to get the similar query keywords that are frequent at the root (Algorithm 7). During the tree
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Algorithm 7: InitSimilarKeywordSets

Input/Output: Same as Algorithm 2

1 C ← {∅, ∅, . . . , ∅} // k empty sets

2 for i=1 to k do
3 C[i]← r.GetSimKwds(wi,δi);
4 end
5 return C

traversal, when we encounter an S-Node with an approximate index (on frequent keywords),

we probe it for similar keywords (Algorithm 8). Note that at such an S-Node, we cannot

prune subtrees based the textual condition, because we cannot guarantee to have gathered

all similar keywords yet (we have only gathered those similar keywords that are frequent).

At an SK-Node we probe its approximate index, and possibly prune its subtree based on the

textual information (Algorithm 9).

Algorithm 8: ProcSNode

Input/Output: Same as Algorithm 3

1 for i=1 to k do
2 Gi ← Ci ∪ ni.GetSimKwds(wi)

3 end
4 G← G1, G2, . . . , Gk;
5 S.push (ni, G);
6 return S

Algorithm 9: ProcSANode

Input/Output: Same as Algorithm 4

1 for i=1 to k do
2 Gi ← Ci ∪ ni.GetSimKwds(wi,δi)

3 end
4 if all Gi’s 6= ∅ then
5 G← G1, G2, . . . , Gk;
6 S.push (ni, G);

7 end
8 return S
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3.5.3 Incremental Maintenance of Indexes

We discuss how to incrementally maintain the proposed indexes in the presence of insertions

and deletions. Insertion of new objects into an LBAK-tree proceeds as follows. We first insert

the new object into a leaf according to the standard R*-tree insertion procedure (assuming

no node-splits for now). We then propagate the keywords of the new object bottom-up. At

an SK-Node we add the new keywords to its stored set of keywords. At an SA-Node we add

the keywords to its approximate index. For the approach exploiting keyword frequencies,

we must pay attention to add the new keywords to the appropriate keyword set, i.e., the

one with frequent or infrequent keywords. Additionally, at an S-Node we check its children

for new frequent keywords, and add them to its approximate index. We deal with R*-tree

node-splits as follows. For the two new nodes generated by the split, we recompute their

stored set of keywords (frequent and infrequent) by examining their children. If the nodes

are SA-nodes, then we delete their approximate indexes, and give them a special “split”

marker. After we have propagated all new keywords up to the root, we re-traverse the

tree and rebuild approximate indexes at those nodes with special markers (and remove the

markers). Note that the R*-tree may cause re-insertion of objects, causing multiple splits

in different branches. Therefore, the second re-traversal of the tree is necessary if a split

occurred. Deletions can be dealt with in a similar fashion. Before deleting a keyword at a

particular node, we must examine all its children to ensure none of them have that keyword

(or if the deletion causes a frequent keyword to become infrequent).

If many updates significantly change the distribution of keywords, we can reevaluate for each

SA-Node whether pushing their approximate index up or down the tree would yield a benefit

(according to the appropriate benefit function). We can use a similar procedure to deal with

changing workloads, but must additionally modify the intersection probabilities (p(n)) in

the benefit function to reflect the new workload.

34



3.6 Experiments

In this section, we present our experimental results on the proposed techniques. We evalu-

ated the following variations: the fixed-level (FL) approach from Section 3.3 (e.g., “FL-0”

means the approximate indexes are at the root level), the variable-level approach (VL) from

Section 3.4, and the variable-level approach exploiting keyword-frequencies (VLF) from Sec-

tion 3.5. In this chapter, we used the Flamingo Package [10] as our approximate string-search

solution. We also compare our solutions with the MHR-tree [48]. We conducted all exper-

iments on a machine with a four-core Intel Xeon E5520 2.26Ghz processor and 12GB of

RAM, running a Ubuntu operating system. We implemented all algorithms (including the

R*-tree) in C++ and compiled them with GCC using the “−O3” flag. We stored the index

structures in main memory in order to achieve the goal of a high query throughput, as re-

quired by many online search engines. If not stated otherwise, we use a keyword-frequency

threshold of ω = 1 for algorithm VLF, and a branching factor of 40 for the R*-tree.

Datasets: We used two real, large datasets. The first one was a multimedia metadata

collection extracted from Flickr pages, called “CoPhIR Test Collection” [15]. We processed

the dataset to extract the photos taken in the U.S. based on their latitude and longitude

values. Moreover, we used the keywords in the title, description, and tags of a photo as its

textual attribute. The average number of keywords per object was 13.5. The final dataset

had about 3.75 million objects. The total raw data size was about 500MB. We refer to this

dataset as CoPhIR. The second dataset contained 20.4 million business listings in the U.S.,

obtained from Florida International University.2 Each business listing had a longitude and

latitude value, and a descriptive name consisting of three keywords on average. The total

raw data size was about 4GB. We refer to this dataset as Business.

Queries: We generated a workload of 10,000 queries for each dataset as follows. We ran-

2http://n0.cs.fiu.edu/ihmc.com.forms.html

35



domly selected objects from the dataset and used their coordinates as the query-window

center. We then created a 30km-by-30km query window around that center to reflect a

spatial condition. For the approximate keyword condition, we randomly chose two of the

keywords of the randomly chosen object. For most of the experiments we used a normalized

edit-distance function and a similarity threshold of 0.8.

3.6.1 Comparison with MHR-Tree

We first compared our LBAK-tree constructed using the VLF algorithm with the MHR-

tree [48]. We used an edit distance threshold of 2 for both approaches. The main difference

between these two approaches is that the MHR-tree uses a probabilistic signature scheme

to represent textual information in tree nodes, whereas the LBAK-tree uses approximate

indexes and keywords for that purpose. Since the min-wise signatures in the MHR-tree are

probabilistic in nature, this approach could miss some answers. On the other hand, the size

overhead of these signatures is very small. Figure 3.5 shows the main issues with MHR-

tree. First, the recall of MHR-tree shown in Figure 3.5(a) were constantly below 50%, which

may not be acceptable for many applications. Second, as we increased the signature size in

order to achieve a higher recall, the query time also increased (Figure 3.5(b)). The reason is

that the pruning power of the min-wise signatures is limited, and the approximate keyword

condition is validated at the leaf level, leading to many edit-distance computations as the

recall increases.

In Figure 3.6 we compare VLF with MHR-tree using 30 signatures for each tree node. Clearly,

the merit of MHR-tree lies in a comparably small index size, due to the compact signatures.

However, we see that VLF significantly outperformed MHR-tree in terms of query time.

Note that as shown in Figure 3.5(b), the query time of MHR-tree will likely increase if we

give it more space.
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Figure 3.5: Recall and query time of MHR-tree with increasing signature size.
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Figure 3.6: Comparison of VLF with MHR-tree using 30 signatures for each node.

3.6.2 Index Size and Query Time

Figure 3.7 shows the sizes of the individual index components for various construction algo-

rithms. Figure 3.8 shows the corresponding query times. For the algorithms VL and VLF,

we report the minimum index size required to achieve the best query performance.

The fixed-level solutions FL-0 to FL-4 show a clear size-trend in Figure 3.7: as we pushed the

approximate indexes down the tree, their space requirement increased because of redundant

keywords in adjacent nodes. On the other hand, the query times decreased because we
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Figure 3.7: Sizes of index components.
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Figure 3.8: Query time by index-construction method.

probed few, smaller indexes rather than one bigger index. But the query time eventually

increased when pushing the indexes further down (e.g., FL-3 in Figure 3.8(b)), again, because

of keyword redundancies. The space overhead for the approximate indexes for algorithm VL

was large compared to the R*-tree and keywords, but the query time was good. Compared

to VL, algorithm VLF pushed frequent keywords up the tree to reduce the space by half

without sacrificing query performance.
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3.6.3 Space Budget

In Figure 3.9 we show the effect on query performance when giving our index-construction

methods FL, VL, and VLF a space budget for building approximate indexes.

 0

 10

 20

 30

 40

 50

 60

 70

 2  3  4  5  6  7  8  9

A
vg

 Q
ue

ry
 T

im
e 

(m
s)

Space Budget (x100MB)

FL
VL

VLF

(a) CoPhIR

 0

 10

 20

 30

 40

 50

 60

 70

 2  3  4  5  6  7  8  9  10  11
A

vg
 Q

ue
ry

 T
im

e 
(m

s)
Space Budget (x100MB)

FL
VL

VLF

(b) Business

Figure 3.9: Query time with increasing space budget for approximate indexes.

The fixed-level solution, FL, exhibited “jumps” when given enough space to push down the

approximate indexes one more level, improving the query time. Note that at even higher

space budgets not shown in the figure, the query time of FL will eventually increase, due

to the cost of probing many, smaller approximate indexes at a lower level. VL’s and VLF’s

curves are smoother than FL’s because they have more flexibility in placing the approximate

indexes. VL’s curve meets FL’s curve at some points because their performance is limited by

redundant keywords residing in many approximate indexes. This observation is supported

by VLF outperforming both LF and VL at the points where LF and VL meet. In summary,

VLF offers good query performance at significantly less space than the other two methods.

3.6.4 Scalability

We changed the number of objects indexed by different LBAK-tree variants. Figures 3.10(a)

and 3.11(a) show the total index sizes. For algorithms VL and VLF, we report the minimum
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index size required to achieve the best query performance. Figures 3.10(b) and 3.11(b)

show the corresponding best query times. To emphasize the merit of VLF, we created

Figures 3.10(c) and 3.11(c) as follows. We determined the minimum index size for VLF to

achieve the best query time, and used that size as a space budget for FL and VL. As a result,

FL’s level could vary from point to point.
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Figure 3.10: Index size and query time with varying numbers of indexed objects on CoPhIR.

For both datasets, we observe a linear trend for the index size and query time (Figures 3.10

and 3.11(a,b)). The fixed-level approaches show a space-time tradeoff with the level. As we

pushed the approximate indexes down the tree the index size increased because the number

of duplicate occurrences of keywords in approximate indexes increased. However, the query
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Figure 3.11: Index size and query time with varying number of indexed objects on Business.

time improved until FL-2 for 3.11(b) and FL-3 for 3.10(b), but then sharply degraded at

lower levels. The reason is that the cost of probing multiple smaller approximate indexes

became higher than probing a few larger ones. The effect of duplicate keywords can also

be observed by comparing VL and VLF. VLF consistently performed better both in space

and time, because it effectively minimized the redundancy in keywords. Notice that space

and time increased more rapidly on the CoPhIR dataset than on the Business dataset. The

main reason is that the objects in the CoPhIR dataset had, on average, a higher number of

keywords in their description. The longer textual description contributed to the index size,

and increased the chance of intersecting with query keywords. In comparison, the Business
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dataset was sparse in the textual dimension, making queries highly selective and rendering

their performance insensitive to the number of indexed objects.

Finally, let us examine Figures 3.10(c) and 3.11(c). Here, the difference between VL and VLF

is clearer due to the smaller scale of the Y-axis (as compared to the other figures). We see

that when given the same amount of memory, VLF clearly outperformed the other methods,

though they could achieve a comparable performance with more memory (Figure 3.9).

3.6.5 Keyword-Frequency Threshold

Algorithm VLF uses a threshold ω to decide whether a keyword is frequent or not (Sec-

tion 3.5). Intuitively, a threshold of ω = 0 (i.e., every keyword is considered to be frequent)

would produce an LBAK-tree with one approximate index at the root. On the other hand,

a threshold of ω > 1 (no keyword is frequent) would produce an LBAK-tree similar to the

one generated by VL. We ran experiments with varying ω values, the results of which are

shown in Figure 3.12.
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Figure 3.12: Effect of keyword-frequency threshold.

We observe a clear space-time tradeoff with the keyword-frequency threshold. As we in-

creased the threshold, we pushed more keywords to lower levels in the tree, causing space
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overhead due to infrequent keywords being duplicated at multiple nodes. On the other hand,

increasing the threshold decreased the query time, because of the following two effects: (1)

we traversed fewer false-positive branches that did not actually have a keyword deemed

frequent at its parent, and (2) the total cost of probing a few smaller indexes at a node’s

children could be less than probing one big index at the node itself. The VLF algorithm will

try to push indexes only down these beneficial paths.

3.7 Conclusions

In this chapter we have presented an index structure called LBAK-tree to answer location-

based approximate-keyword queries. We showed how to combine approximate indexes effi-

ciently with a tree-based spatial index. We developed a cost-based algorithm that selects tree

nodes to store approximate indexes. Moreover, we improved the techniques to exploit the

frequency distribution of keywords, further reducing the index size and query time. Finally,

we conducted extensive experiments to show the efficiency of our techniques.
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Chapter 4

A General Purpose LSM-Based

Indexing Framework

4.1 Introduction

One implicit assumption that we made when designing our solution in the previous chapter is

that queries are much more frequent than inserts. For many workloads, such as those handled

by business-listing search engines, this can be a valid assumption. For instance, Forbes [45]

reported that approximately half a million small businesses get started each month in the

US. Ingesting this small amount of data can be easily handled by conventional spatial index

structures. One popular choice for a spatial index structure that has been adopted by many

database systems is R-tree, mainly because it is a universal index that can support different

geometric shapes (such as points, circles, lines, polygons, etc.), and also because of its low

read latency.

As we mentioned in Chapter 1, there is a new set of emerging applications that involve

much more insert-intensive workloads. For example, Facebook has reported that the average
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number of content items shared daily as of May 2013 is 4.75 billion [21], while Twitter

users are posting around 500 million tweets daily [43], and those rates are expected to rise

exponentially. Using a conventional index structure such as B+-tree to ingest this massive

amount of data has shown to be ineffective because of its usage of in-place writes to perform

updates, resulting in costly random writes to disk. Consequently, popular NoSQL systems

such as [2, 3, 4, 17, 41] have adopted LSM-trees as their storage structure to replace the

conventional B+-tree. LSM-trees amortize the cost of writes by batching updates in memory

before writing them to disk, thus avoiding random writes. This benefit comes at the cost of

sacrificing read efficiency, but, as shown in [41], these inefficiencies can be mostly mitigated.

Since much of today’s newly generated data is geo-tagged, efficient methods for ingesting

and searching rapidly arriving spatial data are also required. However, similar to B+-tree,

R-tree does not scale well for insert-intensive workloads since it is also an update-in-place

structure. Therefore, it is desirable to have an LSM version of R-tree that can efficiently

handle spatial data.

In this chapter, we present the storage system implemented in the AsterixDB system. Within

AsterixDB’s storage system is a general framework for converting conventional indexes to

LSM-based indexes, allowing higher data-ingestion rates. We show that converting the R-tree

(and other indexes without a total order among their entries) to an LSM index is non-trivial

if the resultant index is expected to have performant read and write operations. The frame-

work acts as a coordinating wrapper for existing, non-LSM indexes so that designing and

implementing specialized indexes from scratch can be avoided, saving design and develop-

ment time. We also describe the concurrency and transaction key ideas that can enforce the

ACID properties across multiple heterogeneous LSM indexes.

The rest of the chapter is organized as follows. First, we describe the framework for convert-

ing conventional index structures to LSM indexes. Then we explain some of the concurrency

and transaction related techniques that we use to enforce the ACID properties across multiple
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heterogeneous LSM indexes. Finally, we present performance evaluation results of AsterixDB

focusing on the LSM-based storage system, including a detailed performance study for its

spatial LSM indexes.

4.2 Secondary Index LSM-ification

This section describes a generic framework for converting a class of indexes (e.g., conven-

tional B+-trees, R-trees, and inverted indexes) with certain, basic operations into LSM-based

secondary indexes. The framework provides a coordinating wrapper that orchestrates the

creation and destruction of LSM components and the delegation of operations to the appro-

priate components as needed. Using the original index’s implementation as a component, we

can avoid building specialized index structures from scratch while enabling the advantages

of an LSM index.

Applying the key ideas behind LSM-trees to index structures other than B+-trees turns out

to be non-trivial and must be done carefully in order to achieve a high-write throughput. In

particular, we start by explaining why it is a challenging process to reconciliate index entries

when “LSM-ifying” indexes such as the R-tree and inverted index.

4.2.1 Reconciliation Challenges

Entries in a log-structured data structure are descriptions of the state for a particular key.

Since modification operations such as inserts and deletes on a log-structured data structure

always produce a new state (entry) for a particular key, there must be a process for deter-

mining the correct state of the key amongst the existing states. This is called reconciliation.

We define the correct state of the key to be the most recent state since that will provide the

usual semantics expected of index operations.
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The process of reconciliation was briefly outlined for LSM B+-trees in Section 2.1, whereby

entries corresponding to a single key were grouped by virtue of being returned in the native,

key order of the underlying index. However, this luxury is only possible when the underlying

index return entries grouped by their key. To explore the difficulties of reconciliation for an

index lacking this grouping property, such as R-tree, we analyze typical operations on an

LSM index.

Search and merge operations: When performing a range scan on an LSM index, each

component must be searched using the same predicate since matching entries may be dis-

tributed across the components. Each entry returned as the product of searching a compo-

nent must be reconciled since it may or may not be the correct state for a particular key.

Recall that in the LSM B+-tree, this reconciliation is simple: in a manner reminiscent of the

merge step of merge-sort, we simply collect the next entry from each sub-cursor that has a

matching key, retaining only the most recent version of the entry and discarding the others.

In general, since the entries being returned from an LSM index’s sub-cursors may not be

totally ordered (e.g., from an R-tree sub-cursor), this approach cannot be used. One possible

approach could be to perform a search for every key returned from a sub-cursor on all newer

components, but this would be prohibitively expensive since it may incur multiple expensive,

multi-path searches in an R-tree or a multitude—one for each token—of searches in an in-

verted index. Alternatively, all entries can be returned and then sorted using any comparator

that guarantees that exactly equal values come together (e.g., byte-based sorting).

Insert and delete operations: Since modification operations on an LSM index produce

entries in the in-memory component, it is possible to introduce multiple states for a particular

key in a single component. The existence of multiple states in a single component could

prohibit the possibility of determining the most-recent state unless additional information is

carried in the entries. One example of such information is a sequence number. But, if the

overhead of storing sequence numbers with each entry is to be avoided, reconciliation should
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be performed at modification time to ensure that at most one state per key resides in a single

component. In a B+-tree component, this is simple: when modifying (e.g., deleting) an entry,

the previous version of the entry will be discovered when traversing the tree. Unfortunately,

this is not true, for example, in an R-tree, since the location of an entry being inserted is not

uniquely determined. One possible solution is to perform a search to find any identical keys

before each modification, but doing so can greatly reduce the ingestion rate of an LSM R-

tree since repeated multi-path, spatial searches will incur overhead. Furthermore, this issue

is exacerbated when LSM-ifying an inverted index. Keys in an inverted index are usually

〈token, id〉 pairs. Thus, there exists a state for every token inserted into the index. In order to

remove a document from the inverted index, the document will need to be retokenized and a

delete entry will need to be added for every token that was produced, making both the delete

operation and reconciliation during search and merge operations exorbitantly expensive.

4.2.2 Efficient Reconciliation

The issue of efficiently reconciling can be viewed equivalently as the problem of invalidating

a single entry. We can achieve this by maintaining data and control entries separately, in two

different structures. Specifically, new incoming data entries can be batched into the under-

lying in-memory index, while control entries, representing deleted entries, are batched into

an in-memory B+-tree, called the deleted-key B+-tree. The deleted-key B+-tree is essentially

a delete-list that stores the primary keys of the deleted entries. We choose to use a B+-tree,

but any data structure that provides similar operations in an efficient manner could be used.

Storing control entries separately avoids expensive multi-path searches for control entries,

since only the delete-list needs to be searched. For the inverted index, it also avoids expensive

tokenization and token control entry insertion for delete operations, since only a single entry

needs to be made in the deleted-key B+-tree.
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An LSM index employing this approach maintains two data structures in memory: the

original index structure and the deleted-key B+-tree. Both structures are tightly coupled

and will always be flushed to disk together, yielding disk components consisting of the original

index structure and a deleted-key B+-tree. As such, we refer to the pair of data structures

as a single component. Figure 4.1 shows a secondary LSM R-tree index employing the above

design, alongside a secondary LSM B+-tree that does not use the above design. We omit the

use of the above design for LSM B+-trees since the B+-tree naturally groups entries, serving

as an optimization. Each index has one in-memory component and one disk component.

Note that the deleted-key B+-trees are only used to validate entries through point lookups.

Thus, as an optimization, for every disk instance of the deleted-key B+-tree, a Bloom filter

containing the entries of the tree is maintained in memory to reduce the need to access pages

of the deleted-key B+-tree on disk. Index operations on this new structure are explained in

Section 4.2.4.1.

4.2.3 Imposing a Linear Order

For a certain class of indexes lacking a total order, it is possible to impose a linear order on

the index entries. For example, a Z-order curve or Hilbert curve can be used to impose a

linear order on the index entries of an R-tree [28]. This is especially useful for bulk-loading

since the ordering can be applied during flushes and merges of LSM components. By doing

so, a hybrid approach to efficient reconciliation becomes possible. In this hybrid strategy,

incoming inserts and deletes are still maintained in two different in-memory data structures

as explained above. However, when flushing the in-memory component to disk, the data

and control (anti-matter) entries of the in-memory index structure and the deleted-key B+-

tree can be sorted based on the ordering criterion (e.g., Hilbert curve) and merged to form

a single disk component that consists of the single, original index structure. This hybrid

approach can benefit the performance of the LSM index in many aspects. First, the sorted
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Figure 4.1: The final state of insertion, flushing, then deletion applied to a secondary LSM
R-tree and a secondary LSM B+-tree. Both indexes are storing entries of the form 〈SK ,PK 〉,
where SK is a secondary key and PK is the associated primary key. The LSM R-tree handles
deletion by inserting the primary keys of the deleted entries in its deleted-key B+-tree, while
the LSM B+-tree handles it by inserting a control entry, denoted by 〈−, SK ,PK 〉, into its
memory component.

mini-cursors design can now be used to search the disk components of the index, allowing

deleted entries to be ignored on the fly. Second, since the participating disk components are

already ordered based on the sorting criteria, the merging process is simple and efficient: scan

the component’s leaves and output the sorted entries into a new disk component. Third, the

newly-formed, merged component will retain the original ordering. For the R-tree, retaining

the ordering improves the performance of searches and generally produces a higher quality

index as shown in [28].
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4.2.4 LSM Generalization

Based on the above design, we can provide a generic framework to “LSM-ify” the secondary

indexes of a system. Let entries be of the form e = 〈SK ,PK 〉 where SK is a secondary key

and PK is the associated primary key. The framework requires that the following primitive

operations be supported by every secondary, non-LSM index that is to be converted into an

LSM index:

1. Bulk-load: Given a stream of entries e1, . . . , em, the bulk load operation creates a

single disk component of the index. The bulk load operation is used for two reasons:

to flush an in-memory component of the index into a new disk component and to merge

multiple disk components into a single disk component.

2. Insert: This operation inserts a given entry e into the index.

3. Delete: The delete operation removes a given entry e from the index.

With those primitive operations, we describe the basic operations of the proposed general

LSM index design and of the LSM B+-tree, which are both implemented in AsterixDB.

4.2.4.1 General LSM Index Operations

Insert and delete operations: Since entries in the deleted-key B+-tree refer only to disk

components, inserted entries never need to be reconciled with deleted entries upon insertion.

Thus, an insertion is performed by inserting an entry e = 〈SK ,PK 〉 into the in-memory

index without the need to search for control entries in the in-memory deleted-key B+-tree.

To complement this, deletes are performed by deleting the given entry directly from the

index structure and adding a control entry e′ = 〈PK 〉 to the in-memory deleted-key B+-tree.
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Search and merge operations: When answering a search query, all components of the

LSM index must be examined. An entry e = 〈SK ,PK 〉 is part of the result set if it satisfies

two conditions:

1. SK satisfies the query predicate, and

2. There does not exist a control entry e′ = 〈PK 〉 in the deleted-key B+-tree of a newer

component than e’s component.

When merging components of an LSM index, the deleted-key B+-trees of the participating

components are also searched in the same manner to keep deleted entries out of the merged

component.

4.2.4.2 LSM B+-Tree Operations

Insert and delete operations: Insert operations are preceded by a search to check if an

insert entry exists with the same key. If an insert entry already exists, an error will be

thrown. Otherwise, the entry e = 〈SK ,PK 〉 will be added to the in-memory component.

Delete, on the other hand, simply inserts an anti-matter entry e′ = 〈−, SK ,PK 〉 into the

in-memory component. If the in-memory component contains an entry that has the same key

as the key being inserted or deleted, then the existing entry is simply replaced with the new

entry (except, if the existing entry is an insert entry and the operation to be performed is an

insert, which will throw an error, as mentioned above, to enforce primary key uniqueness).

Search and merge operations: When answering a range query, all components of the

LSM B+-tree must be examined. An entry e = 〈SK ,PK 〉 in a component is part of the

result set if it satisfies two conditions:

1. SK satisfies the query predicate, and
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2. There does not exist a more recent control entry

e′ = 〈−, SK ,PK 〉.

A point lookup query can be optimized to search components sequentially from newest to

oldest until a match is found.

Similarly, when merging multiple components of an LSM B+-tree, the participating compo-

nents are searched as in the range query to avoid putting deleted entries into the merged

component.

4.2.5 Current Implementation of Indexes in AsterixDB

Data in AsterixDB is partitioned using hash-based partitioning on the dataset’s primary key.

All of the dataset’s secondary indexes are local as in most shared-nothing parallel databases.

Thus, secondary index partitions refer only to data in the local primary index partition.

AsterixDB currently supports LSM-based B+-trees, R-trees, inverted keyword, and inverted

ngram secondary indexes. Note that we implemented two versions for the R-tree: one that

keeps anti-matter entries inside the disk R-trees (AMLSM R-tree), and another that uses a

deleted-key B+-tree with every disk component for maintaining control entries (LSM R-tree).

We choose the LSM R-tree to be the default spatial index in AsterixDB, but we intend to

switch to the AMLSM R-tree as a result of the performance evaluations performed for this

chapter.

In AsterixDB, secondary index lookups are routed to all of a dataset’s partitions since match-

ing data could be in any partition. These lookups occur in parallel and primary keys are

the result of these lookups. The resulting primary keys are then used to lookup the base

data from the primary index, sorting the keys first to access the primary index in an efficient

manner. Inserting and deleting entries from a dataset requires that each of the datasets’
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indexes be mutated, since AsterixDB maintains consistency across all indexes of a dataset.

The primary index is always updated first, followed by updating the secondary indexes, if

any.

In the current release (Release 0.8.6), AsterixDB provides three different merge policies

that can be configured per dataset: constant, prefix, and no-merge. The constant policy

merges disk components when the number of components reaches some constant number k,

which can be configured by the user. While the prefix policy (the default for AsterixDB)

relies on component sizes and the number of components to decide which components to

merge. Specifically, it works by first trying to identify the smallest ordered (oldest to newest)

sequence of components such that the sequence does not contain a single component that

exceeds some threshold size M and that either the sum of the component’s sizes exceeds M or

the number of components in the sequence exceeds another threshold C. If such a sequence

of components exist, then all there components are merged to form a single component.

Finally, the no-merge policy simply never merges disk components. AsterixDB also provides

a DML statement that allows compacting a dataset and all its indexes by merging all their

disk components.

4.3 Transactions Across Multiple LSM Indexes

In this section, we describe the key ideas that are used by AsterixDB to implement transac-

tions. We refer the interested reader to [7] for additional details, such as about transaction

support in AsterixDB.
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4.3.1 Providing Record-Level ACIDity

AsterixDB supports record-level, ACID transactions across multiple heterogeneous LSM

indexes in a dataset. Transactions begin and terminate implicitly for each record inserted,

deleted, or searched while a given DML statement is being executed. This is similar to

the level of transaction support found in today’s NoSQL stores. Since AsterixDB supports

secondary indexes, the implication of this transactional guarantee is that all the secondary

indexes of a dataset are consistent with the primary index.

AsterixDB does not support multi-statement transactions. In fact, a DML statement that

involves multiple records can itself involve multiple independent record-level transactions. A

consequence of this is that, when a DML statement attempts to insert 1000 records, it is

possible that the first 800 records could end up being committed while the remaining 200

records fail to be inserted. This situation could happen, for example, if a duplicate key

exception occurs as the 801st insertion is attempted. If this happens, AsterixDB will report

the error as the result of the offending DML insert statement and the application logic above

will need to take the appropriate actions needed to assess the resulting state and to clean

up and/or continue as appropriate.

AsterixDB utilizes a no-steal/no-force buffer management policy and write-ahead-logging

(WAL) to implement a recovery technique that is based on LSM disk component shadowing

and index-level logical logging. Whenever a new disk component is created, through a flush

or merge operation, a validity bit is atomically set in a metadata page of the component to

indicate that the operation has completed successfully. During crash recovery, any disk com-

ponent with an unset validity bit is considered invalid and removed, ensuring that the data

in the index is physically consistent. By using a no-steal policy, only committed operations

from in-memory components are selectively replayed during crash recovery and there is no

need for an undo phase, unlike the repeating history step in ARIES [32].
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4.3.2 Concurrency Considerations

AsterixDB’s concurrency control is based on two-phase locking (2PL) and follows the latch

protocols described in ARIES/KVL [31] for the B+-tree and GiST [29] for the R-tree. Trans-

action locks are only acquired on primary keys when accessing a primary index. Locks are

never acquired when accessing a secondary index, which could lead to inconsistencies when

reading entries of a secondary index that are being altered concurrently. To prevent these in-

consistencies, secondary index lookups are always validated when fetching the corresponding

records from the primary index.

Keys are only locked during insert, delete, and search operations. Flushing an in-memory

component and merging disk components do not set locks on the entries of the components,

nor do they generate log records.

4.3.3 An Example

Here we provide a detailed example that depicts the lifecycle of inserted and deleted records,

including the locking behavior, when using our indexing framework.

As shown in Figure 4.2, there is a dataset with records consisting of three fields: Id (an

integer key for the primary LSM B+-tree, named PIdx), Loc (a two-dimensional point key

for the secondary LSM R-tree, named SIdx), and Name . A component of PIdx is denoted

as PCi , where PC0 represents the in-memory component and PC1 represents the oldest disk

component. A component of SIdx consists of an R-tree and a deleted-key B+-tree, each of

which is denoted as SCi and BCi as is done for the primary index. Older disk components

have smaller values of i.

The timeline shows a sequence of five consecutive operations and their side-effects (e.g., flush

and merge), where each operation is executed by a single transaction, starting from T1 to
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Figure 4.2: An example showing the lifecycle of inserted and deleted records when using our
LSM indexing framework.

T5. Each panel in Figure 4.2 represents the final states of the indexes after the operation

or side-effect is performed. For expository purposes, we use a flush policy that flushes in-
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memory components when the number of in-memory entries is two and a merge policy that

merges disk components of an index when the number of disk components is two.

The initial state of the indexes is empty before T1 is executed. Transaction T1 inserts the

first record as follows. First, to enforce the primary key uniqueness, T1 must ensure that the

key 〈1〉 does not exist in the primary index by performing a search operation. If no match

is found, an exclusive lock (X-lock) is acquired on the key.

Next, the entry 〈1, (10, 10), “Kim”〉 is inserted into the in-memory component of the primary

index, PC0 , followed by the insertion of the secondary index entry 〈(10, 10), 1〉 into the in-

memory component of the secondary index, SC0 (for which no additional locking is required).

The result is shown in the right-hand side of panel T1. The IDs PIdx and SIdx are the IDs

of the primary and the secondary indexes, respectively. At this point T1 is committed and

all its locks (the X-lock on key 〈1〉) are released.

The second record 〈2, (20, 20), “Sam”〉 is inserted by T2 in the same way as in T1. The

initial outcome of executing T2 is shown in the panel marked as T2-A. Since the memory

budget for the memory components of PC0 and SC0 has been exhausted, both components

are now flushed to disk, as shown in T2-B (also notice the Bloom filter that has been created

for the flushed B+-tree).

Now, a delete operation is issued by T3 to delete records with coordinates that fall within

a radius of 5 degrees from a point with coordinates 〈22, 22〉. The delete operation is trans-

formed to two consecutive operations: 1) find all records satisfying the delete condition and

2) delete the qualified records. In this example, AsterixDB’s query optimizer will choose the

R-tree as the access method to quickly identify all qualified records. Each retrieved entry

must be validated through a primary index lookup. In AsterixDB, validation starts only after

all the candidate qualified results are retrieved from the secondary index. This barrier-style

validation is used to avoid complex solutions that would involve verifying that the entries in
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a secondary index page are still valid when consecutively acquiring and releasing the page’s

latch during a search operation. This validation solution is analogous to revalidation after

unconditional locking in [31]. In AsterixDB, the barrier-style validation comes for free since

the qualified candidate results from any secondary index are sorted (which is a blocking

operation) on the primary key before probing the primary index.

As shown in T3 of Figure 4.2, the entry 〈(20, 20), 2〉 in SC1 is going to be retrieved by

the delete, followed by a primary index lookup for key 〈2〉, where transaction T3 acquires

a shared lock (S-lock) on the primary key. Since the qualified record has been identified,

now it must be deleted as follows. First, the S-lock on primary key 〈2〉 is upgraded to an

X-lock. Then, the control entry 〈−, 2〉 is inserted into PC0 . Notice that the control entry in

the primary index includes only the delete flag and the key without the associated payload.

After that, the entry 〈2〉 is inserted into BC0 .

Next, transaction T4 inserts a record 〈2, (25, 25), “Sam”〉. Its primary key is equal to the

deleted record key in the third operation, but the point now has different location coordinates.

When the corresponding entry is inserted into PC0 , the control entry in PC0 is replaced by

the new record as shown in the figure. In contrast, the entry 〈25, 25, 2〉 is inserted into

SC0 without deleting the entry 〈2〉 from BC0 (recall that entries in BC0 only refer to disk

components). The locking actions performed on behalf of T4 will be similar to previous

transactions.

Finally, transaction T5 inserts a record 〈3, (30, 30), “Tom”〉 as shown in T5-A, which triggers

a flush operation as shown in T5-B. Based on the merge policy, the two disk components are

now merged into one as shown in T5-C. In PC3 , the old entry 〈2, (20, 20), “Sam”〉 in PC1 has

been superseded by the recent entry 〈2, (25, 25), “Sam”〉 in PC2 and PBF3 has been created

for the new disk component PC3 . Component SC3 does not have an entry 〈20, 20, 2〉, as it

was removed by the control entry in BC2 . Lastly, component BC2 and its associated Bloom

filter were removed since all deleted keys were consolidated during the merge.
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4.4 Experimental Evaluation

This section shows results from an experimental evaluation of AsterixDB’s storage engine.

Section 4.4.1 evaluates the system as a whole while Section 4.4.2 provides a micro-benchmark

that evaluates the “LSM-ification” framework from the perspective of an R-tree.

4.4.1 AsterixDB’s Storage System

The following experiments demonstrate the scalability of AsterixDB’s data-ingestion while

varying the number of nodes in the cluster and the number of indexes being used. We show

the performance impacts that different merge policies have for data ingestion and queries.

In addition, we show the performance of range queries for different operating regions when

using the default merge policy of AsterixDB, namely the prefix policy.

To evaluate the performance of data ingestion, we used a feature of AsterixDB called data

feeds, which is a mechanism for having data continuously arrive into AsterixDB from external

sources and to have that data incrementally populate a managed dataset and its associated

indexes. We mimicked an external data source, Twitter, by synthetically generating tweets

that resemble actual tweets. The synthetically generated tweets have fields such as user,

message (the tweet itself), sending time, sender location, and other relevant fields. The

tweets are generated in the Asterix Data Model (ADM) format with monotonically increasing

64-bit integer keys. The average size of a tweet was 1KB.

For each experiment, we used two sets of machines. The first set of machines was used to

generate the synthetic tweets which are sent over the network to the second set of machines

(the AsterixDB cluster) for ingestion. We empirically determined the minimum number of

machines that can saturate a single-machine AsterixDB instance, in terms of transactions per

second (TPS), and then used this number to scale the number of data-generation machines
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when conducting a multi-machine AsterixDB experiment. The second set of machines is

a cluster of eight IBM machines used to host an AsterixDB instance, each with a 4-core

Xeon 2.27 GHz CPU, 12GB of main memory, and four locally attached 10,000 rpm SATA

drives. Of the available 12GB, AsterixDB is given 6GB while the remaining free memory is

locked in order to disable the OS’s file system buffer cache. In each participating machine,

we dedicated one disk to be used by the transaction log manager for writing its log records,

while the three remaining disks are dedicated as data storage disks. The three storage disks

are used as separate partitions of the tweets dataset by AsterixDB, hosting their associated

indexes. Thus, a dataset in an 8-machine AsterixDB instance has 24 partitions.

Currently in AsterixDB, all partitions of a dataset and its indexes in a machine share the

same memory budget for in-memory components (divided equally across the indexes). This

implies that when the memory component of the index in a partition is declared to be full,

all memory components of the indexes for the same dataset in that machine are also declared

to be full. Therefore, multiple consecutive flush requests are sent to the I/O scheduler for

flushing the memory components of that dataset and its indexes for all the partitions located

on the machine.

Table 4.1 shows the configuration parameters used throughout the experiments in 4.4.1,

including the threshold values of each merge policy described in Section 4.2.5. Unless oth-

erwise specified, we used the prefix merge policy and the length of each experiment was 20

minutes, starting from an empty dataset. Finally, in all experiments, we used two memory

components per index (i.e., double buffering) to avoid stalling ingestion during flushes.

4.4.1.1 Scalability

Figure 4.3 shows the average ingestion TPS as the number of nodes in the cluster is varied

with different combinations of secondary indexes. In particular, Figure 4.3(a) shows the TPS
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Parameter Value

Memory given for a dataset and its indexes in a machine 1GB

Data page size 128KB

Disk buffer cache size 3GB

Bloom filter target false positive rate 1%

Memory allocated for buffering log records (log tail) 16MB

Max component size of prefix merge policy 1GB

Max component count of prefix merge policy 5

Max component count of constant merge policy 3

Table 4.1: Settings used throughout these experiments.

when ingesting tweets into a dataset that has no secondary indexes (NoIndexes), or has one

of a single, secondary LSM B+-tree, LSM R-tree, LSM inverted keyword, or LSM inverted

ngram index (LSMB+Tree, LSMRTree, LSMKeyword , and LSMNGram , respectively).

As the number of nodes and offered workload increase, we observe near-linear increase in

ingestion throughput. A dataset with no secondary indexes always achieves the highest TPS

for the obvious reason that there is no overhead of maintaining secondary indexes. Adding a

secondary LSM B+-tree to the dataset reduces its ingestion rate, and the reduction is higher

as we add more complex secondary indexes such as an LSM R-tree or an LSM inverted

index. Clearly, the LSM ngram index is the most expensive index of the four secondary

indexes since it requires gram-tokenizing all of the strings in a tweet followed by inserting

the resulting 〈token, id〉 pairs into the index.

Figure 4.3(b) shows the TPS for a dataset with all of the four supported secondary indexes

in AsterixDB. The results show that the upper bound on TPS is determined by the least

upper bound of all of the indexes (here the LSMNGram).

Figure 4.3(c) shows the effect of adding additional secondary indexes to a dataset in a cluster

of 8 machines. When an additional secondary LSM B+-tree was added to the dataset,

ingestion throughput dropped near-linearly due to the overhead of maintaining consistency

between the primary and the secondary indexes.
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Figure 4.3: Data-ingestion throughput when varying number of nodes and using different
types of secondary indexes.

4.4.1.2 Effects of Merge Policies

This section shows how three different merge policies–prefix, constant, and no-merge–affect

ingestion throughput. In Table 4.2, we report the TPS and its ratio to the prefix policy for

each merge policy. In addition, we show the average number of flush and merge operations

that were performed per partition.

Regardless of the merge policy, the average flush count per partition is always proportional

to the TPS. This is due to the fact that given the same amount of data to ingest and the

same in-memory component size, a higher TPS indicates the memory component is always
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filled faster, incurring more flush operations.

Using the prefix merge policy yields the highest TPS for two primary reasons. First, it

avoids merging large components by ignoring those that are larger than the size threshold

M = 1GB. In addition, it always tries to find the smallest sequence of components, whose

total size is larger than M , to be considered for a merge. Second, the policy avoids stacking

too many small components through the use of the predefined count threshold, C = 5. When

the policy fails to find a sequence of components based on size consideration, it still considers

merging small components when their count exceeds C. Reducing the number of small disk

components improves the performance of both inserts (by reducing the cost of enforcing the

primary key uniqueness constraint) and search queries. Recall that to ensure primary key

uniqueness, each insert into the primary index must be preceded by searching all components

of the index for a duplicate. Thus, as more disk components are accumulated, the cost of

maintaining uniqueness increases since more and more components must be searched.

When the constant policy is used, we observe that the TPS is lower than the TPS achieved

by the prefix policy. This is because the constant policy never allows the number of disk

components to exceed three, resulting in fewer large disk components after merging. Also

without considering a component’s size, the constant policy will merge small components

with large components, resulting in all previously ingested data being read and written

to/from disk, so as more data is ingested, merges become more costly.

Merge Policy TPS TPS Ratio to Prefix Flush Count Merge Count

Prefix 102,232 1.00 47 12
Constant 77,774 0.76 35 17
No-Merge 78,101 0.76 35 0

Table 4.2: Merge policies effect on ingestion throughput.
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4.4.1.3 Range Query Performance

In this experiment, we ingested a total of 490GB worth of synthetic tweets into a dataset with

a secondary LSM B+-tree index on a randomly generated, 32-bit integer field, where both the

primary and secondary indexes are using the prefix merge policy. We queried the dataset

in three different operating regions: 1) during ingestion, 2) post-ingestion, and 3) post-

ingestion and post-compaction, where each index’s disk components are manually compacted

(merged) to form a single component per index. The experiment started by ingesting 420GB

worth of tweets. Then, during ingestion, random range queries are submitted sequentially to

AsterixDB. Once data ingestion ended (490GB worth of tweets were ingested), 2000 random

range queries were submitted sequentially. The dataset was then compacted so that every

index had exactly one disk component. After that, another 2000 random range queries were

submitted sequentially. All queries had range predicates on the secondary key. Thus, the

secondary index is always searched first, followed by probing the primary index for every

entry returned from the secondary index. In addition, the queries were generated randomly

such that the result sets have an equal probability to have a cardinality of 10, 100, 1000, or

10000 records.

Table 4.3 shows the results of this experiment. Out of all three operating regions, querying

the dataset while it is ingesting data produces the slowest response time for the obvious

reason that the system resources (CPU and disk) are being contended for by both inserts

and queries. We also observed that the performance of the queries was worse when there

was an ongoing merge, as merges were both CPU and I/O intensive operations.

Once ingestion was over, the query performance improved by a large margin due to reduced

resource contention. On the other hand, surprisingly, the performance of queries after the

final compaction improved by only a small margin. The reason for the comparable perfor-

mance is two fold. First, before probing a primary index, the entries are sorted based on
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Avg. Result
Cardinality

Avg. Response
Time While
Ingesting

Avg. Response
Time After
Ingestion

Avg. Response
Time After
Compaction

10 1023 139 138
100 1185 191 184
1000 2846 634 500
10000 11647 3747 3381

Table 4.3: Range query performance (in milliseconds).

the primary key; therefore, good cache locality is achieved when accessing the primary in-

dex, mitigating the negative effects of having more disk components. Second, each primary

index probe is a point lookup that makes use of the Bloom filters on the primary-index disk

components, greatly reducing the chance of unnecessary I/O.

Finally, for all operating regions, there is a considerable overhead for small range queries,

which is caused by the Hyracks [16] job initialization. For each request, a new job is created

and executed. As job creation includes the translation and optimization of an AQL program

and execution includes the distribution and start of the job on all cluster nodes, this overhead

can be significant for small jobs/queries. We tried an AQL query that does not touch

persistent data to estimate this overhead. AsterixDB took an average of 43ms to execute

our “no-op” query. We plan on fixing this next.

4.4.2 LSM-ification Framework

Next we show the detailed performance characteristics of a secondary index implemented

using the “LSM-ification” framework. To do so, We compare an LSM R-tree (LSMRTree),

an AMLSM R-tree (AMLSMRTree), and a conventional R-tree [23] (RTree). For both LSM

indexes, the Hilbert curve was used to order the entries within each disk component. The

following experiments were performed as micro-benchmarks where the indexes were accessed

directly, bypassing compilation, job setup, transactions, and other code paths that are in-
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(b) Inserts with Concurrent Queries.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  50  100  150  200  250

A
vg

. Q
ue

ry
 T

im
e 

(m
s)

(L
og

 S
ca

le
)

Ingested Records (millions)

RTree
LSMRTree

AMLSMRTree

(c) Queries during Ingestion.

Figure 4.4: Ingestion and query performance of the R-tree, LSM R-tree, and AMLSM R-tree.

curred by AQL statements submitted to AsterixDB.

We first empirically determined that the best ingestion and query performance for the LSM

indexes can be obtained when their in-memory and disk components page sizes are 0.5KB and

32KB, respectively. On the other hand, a 2KB page size yielded, by far, the best ingestion

performance for the R-tree. However, larger page sizes such as 16KB yielded much better

query performance, but performed poorly for ingestion. We decided to use a 2KB page size

for the R-tree since we are focusing on ingestion-intensive workloads. All experiments in

this section used a single machine and utilize a single disk. All records and queries are sent

from a client residing on a different machine. The machine configurations are the same as
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the experiments in 4.4.1. The R-tree used a 1.5GB LRU buffer cache, while each of the two

LSM indexes used a 1GB LRU buffer cache for caching disk component pages and 0.5GB

for their in-memory components. In addition, we used the prefix merge policy for both LSM

indexes.

These micro-experiments employed data inspired by a real dataset. The source dataset con-

tained event occurrence data that had time and location stamps, but the location information

available in the source data was just at the (city, state) level. To convert this data into a

more GPS-like spatial dataset for use in our micro-experiments, we synthetically augmented

it as follows: we geotagged all of the US records (of which there were approximately 120 mil-

lion) and ended up with roughly 4500 unique data points. We then used that point data to

generate records following the frequency distribution of the provided dataset, but we shifted

the points by adding random values in the range of [-0.25,0.25] to the latitude and longitude

values as a way to mimic a more realistic fined-grained spatial dataset. The final dataset

thus has approximately 4500 clusters, each with many distinct data points. The size of each

record is 40 bytes (four double values representing each record’s bottom-left and upper-right

corners and a 64-bit integer representing a monotonically-increasing primary key). Note

that since the spatial location being indexed is a point, the minimum bounding rectangle

(MBR) for the point has corners with identical data (the point itself). It would be possible

to optimize space in this case, but that is not currently done.

We generated query MBRs that provided result sets with similar cardinalities when querying

each index as follows. Since many of the clusters are overlapping, the frequency distribution

of each cluster was pre-computed based on the percentage of the overlapping area. For

example, if two clusters overlap each other by 20% of their area, the frequency distribution

of each cluster is incremented by 20% of the (original) distribution of the other cluster in order

to compensate. To create an MBR for a query, a cluster is first chosen at random. Then,

the size of the MBR is determined based on the pre-computed frequency distribution of the
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chosen cluster such that the size will be relatively small if the cluster is highly populated and

vice-versa. The size was restricted so as not to exceed the cluster size, avoiding the creation

of queries that may span clusters, which may lead to very large result sets (this occurs when

the number of records in the cluster is less than the requested result cardinality). Based on

the MBR’s size, we choose the MBR center randomly within the bounds of the cluster such

that the MBR is fully contained inside the cluster. The average result set size of the queries

was 2361 with 250 million records ingested into an index.

4.4.2.1 Ingestion Performance

Raw inserts: Figure 4.4(a) shows the raw insert performance when ingesting a total of 250

million records from a single stream. The R-tree took roughly 11 hours to ingest all of the

data. Both LSM indexes were able to ingest the same amount of data in less than two hours.

In the figure, the LSM indexes’ curves are on top of each other because they behave similarly

when the workload did not contain deletes (i.e., append-only workloads), as expected.

We also observe from Figure 4.4(a) that the LSM indexes maintained the same ingestion

rate throughout the ingestion period. The first reason for this is that random disk I/O was

avoided by LSM indexes. Second, in contrast to a primary index, a secondary index did

not enforce key uniqueness, avoiding the overhead of checking for duplicate keys. Third, the

prefix merge policy bounded the merge cost by ignoring disk components that were larger

than a specified threshold (1GB in our experiments). On the other hand, the R-tree suffered

from performance degradation over time. As more data is ingested, the cost of performing in-

place index writes becomes increasingly expensive since the height of the tree grows without

bound.

Inserts with concurrent queries: Similar to the previous experiment, a stream of 250

million sequential insert operations was sent to the indexes. In addition, a second, concur-
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rent stream of queries were submitted sequentially during ingestion. Figure 4.4(b) shows the

performance of these queries. For both LSM indexes, the effect was very minimal, mainly

because their inserts are mostly CPU bound while queries are I/O bound. Therefore, queries

were not contending with inserts for resources. On the other hand, the R-tree’s ingestion

ability was negatively affected, with elapsed time up from 11 hours to 18 hours. The main

reason was that in-place inserts and queries were both I/O bound, causing resource con-

tention between the two operations.

4.4.2.2 Spatial Range Query Performance

Query performance after ingestion: Here, again, 250 million records were ingested into

each of the three indexes. Then, 1000 queries were submitted sequentially to each index.

After that, the two LSM indexes were each compacted into a single disk component. Then,

the same 1000 queries were again submitted to the LSM indexes. Before compaction, each

LSM index had 12 disk components, resulting from 78 flush and 19 merge operations, for a

total size of 11.3GB. After compacting the disk components, the size of the single component

was 11.3GB in both LSM indexes. The final R-tree index size was 17.6GB. The difference in

size was due to the fact that the LSM indexes fully packed the pages of on-disk components

since they were immutable, resulting in better space utilization. Table 4.4 shows the results

of this experiment.

After ingestion, the average query response time for the basic R-tree was 25 and 29 times

slower than that of the LSM R-tree and the AMLSM R-tree, respectively. The LSM indexes’

query times were much better since they incurred fewer buffer cache misses compared to the

R-tree, which can be attributed to: 1) the LSM R-tree and the AMLSM R-tree used the

Hilbert curve to order their entries in every disk component, which improves the clustering

quality of the R-trees’ entries; 2) the pages of the LSM disk components were fully utilized;

and 3) the disk page size of the LSM indexes was larger than the R-tree page size. The
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LSM R-tree performed slightly better than the AMLSM R-tree because the AMLSM R-tree

returned records sorted based on the Hilbert order to reconcile index entries. Since there

were no deleted records in this experiment, the time spent to maintain the Hilbert order while

answering queries was wasted. On the other hand, the Bloom filters associated with every

deleted-key B+-tree in the LSM R-tree handled this special case (an empty Bloom filter)

in an efficient manner. After compacting the LSM indexes, their performance dramatically

improved since spatially-adjacent entries from different disk components were packed into a

single component. Thus, the LSM indexes had to access fewer disk pages when answering a

query.

Index Name

After Ingestion After Compaction

Avg.
Response
Time

Avg.
Cache
Misses

Avg.
Response
Time

Avg.
Cache
Misses

RTree 2543.2 560.6 - -
LSMRTree 86.7 24.7 17.5 8.1

AMLSMRTree 100.8 24.7 16.5 8.1

Table 4.4: Spatial range query performance (in milliseconds) and number of buffer cache
misses after ingestion and compaction.

Query performance during ingestion: In this experiment, a stream of 250 million inserts

were again sent concurrently with another stream that submitted queries sequentially during

the ingestion. Figure 4.4(c) shows the corresponding query performance. Notice that the Y

axis is using a log scale. Each data point represents the average query time of all the queries

that were submitted since the last data point. When the index had less than 25 million

records, the R-tree query performance was slightly better because all its pages were cached

in memory, and because queries submitted to the LSM indexes contended with flush and

merge operations (there were 9 flushes and 2 merges during the ingestion of the first 25 million

records). When the R-tree had ingested around 30 million records, pages from the buffer

cache started to be evicted, which led to significant performance degradation. Both LSM
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indexes provided comparable query performance throughout the ingestion process. Their

query times show some variance (the sawtooth shape) due to resource contention of ongoing

merge operations.

Effect of deletion: Finally, we also studied the impact that deletion has on query per-

formance for the LSM R-tree and AMLSM R-tree. Again, we used a single stream that

inserted 250 million records with a modification that now causes a 1% chance to delete an

existing record instead of inserting a new record. Therefore, by the end of the experiments,

the stream had submitted roughly 2.5 million delete operations to each index. We also used

a second, concurrent stream that sent queries sequentially during the ingestion process.
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Figure 4.5: Effect of deletion on query performance.

Figure 4.5 shows the performance of queries in this case. Again, each data point represents

the average query time of all the queries submitted since the last data point. The AMLSM

R-tree consistently provided faster query response time than the LSM R-tree, almost by a

factor of two, due to the handling of entry reconciliation. The AMLSM R-tree reconciliated

entries “on the fly” as it accessed the entries based on Hilbert order from different disk

components. On the other hand, the LSM R-tree reconciliated entries by probing all of the

Bloom filters that were associated with the deleted-key B+-trees of the newer components,

and possibly the deleted-key B+-trees themselves, which was more costly than reconciliation

of entries in the AMLSM R-tree.
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4.5 Conclusions

In this chapter, we have presented the storage engine implemented in the AsterixDB system.

We described the framework in AsterixDB that leverages existing implementations of con-

ventional indexes (e.g., the R-tree) to convert them to LSM-based indexes, which allowed us

to avoid building specialized index structures from scratch and enables the advantages that

an LSM index provides. Further, we explained how AsterixDB enforces the ACID prop-

erties across multiple heterogeneous LSM indexes. We also discussed the challenges that

a system like AsterixDB faces for managing its disk and memory resources when dealing

with many LSM-based indexes. Finally, we shared results from a preliminary evaluation of

AsterixDB’s storage engine that shows its performance characteristics in different settings

and we presented the results for a set of micro-benchmarks to evaluate the “LSM-ification”

framework.

73



Chapter 5

Filter-Based LSM Index Acceleration

5.1 Introduction

Not a long time ago, using traditional data warehouse systems for data analytics was the

norm, and the technology was only accessible to big companies capable of writing big checks.

The exponential growth of social-networking data, however, combined with open source

software platforms, has motivated smaller companies and organizations to collect and store

huge amounts of data on a daily basis as well. Thanks to the recent technological advances

in the Big Data space, those companies are now able to use Hadoop-based solutions to

analyze the data and gain valuable insights that can help them sustain their businesses.

With the evolving world of social media, however, it has quickly become evident that not all

data analytics problems can be solved efficiently with Hadoop, particularly due to its nature

as a batch processing system. Location-based advertising, credit card fraud analytics, and

recommendation systems are examples of applications that require real-time responses for

which the speed of answering such queries in Hadoop is not sufficient. Therefore, new data

platforms such as NoSQL systems and stream-processing systems have emerged to handle
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such use cases (e.g., MongoDB, HBase, Cassandra, BigTable, Spark, Storm, etc.). In many

cases, companies have ended up using Hadoop-based solutions for long-running tasks, mostly

for analyzing historical data, while using index-based (e.g., LSM-tree based NoSQL stores)

and streaming-based solutions for short-running tasks that are more time-critical for their

businesses.

One class of queries that require real-time answers and have wide range of use cases are

query workloads that favor recent data. As an example, let us consider a spatial aggregation

query similar to the one mentioned in Chapter 1. Suppose the campaign manager for a

US presidential candidate wants to know how potential voters are currently reacting to

the candidates in a certain geographic area. A useful piece of information is the level of

voters’ interest in other rivals, as this is clearly valuable to the decision-making process of

the campaign. We can formulate a spatial aggregation query to find tweets mentioning the

names of other rivals that have been posted within the last day, group them on a spatial

grid structure, and compute the number of such tweets for each cell in the grid. By doing

this time-based spatial analysis, the campaign staff can gain an understanding of the current

public opinion and make informed decisions such as broadcasting more political ads in certain

areas.

As another example for query workloads that favor recent data, consider power-consumption

monitoring systems. This is a real use case shared with us by a local company that provides

energy management solutions. In their setting, there are thousands of sensors installed in

different buildings (e.g., on a university campus) to monitor energy consumption. Sensor

readings are continuously collected and never thrown away. The users (campus facility

administrators) are then provided with a GUI to monitor energy consumption by showing

them different charts representing aggregated sensor readings in different buildings. The

users must specify the desired time resolution for their queries (e.g., last hour, last four

hours, last eight hours, last 12 hours, last 24 hours, last week, last month, last quarter, last
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year, and all data). Based on what we heard from their engineers, users mostly perform

analytics on recent data and rarely on old data; in particular, their users tend to be most

interested in the last 12 and 24 hour time resolutions. Their engineers determined that their

initial solution, based on a relational database system, would probably not scale well, so they

have resorted to pre-computing the aggregation values as they ingest the sensor readings into

a popular key-value store. Although they can obtain fast responses with their new approach,

their solution still suffers from being write-intensive since they pre-compute aggregations for

different time resolutions and write them into different tables. In addition, by using a key-

value store, they have lost the advantages of using a declarative query language and they

would consider moving back to a system that provides such a language (e.g., AsterixDB), as

long as their time-based aggregation queries can run fast and the system is production-ready

and reliable.

In this chapter, inspired by such use cases, we study how to answer queries on recent data

efficiently in the context of AsterixDB. The AsterixDB project has taken a different approach

than other systems combining a wide range of capabilities in a single unified system in

order to provide better manageability, functionality, and performance, as opposed to gluing

together multiple independent solutions. As described in the previous chapter, one novel

feature of AsterixDB is wholly adopting LSM-trees as the underlying technology for all of its

internal data storage and indexing. In this chapter, we will further exploit this feature. We

show how to utilize LSM structures to provide near real-time responses to query workloads

that favor recent data.

The rest of this chapter is organized as follows. First, we review the Asterix Data Model

(ADM) and the Asterix Query Language (AQL). Next, we describe a few approaches to solve

the problem and discuss the limitations of each approach. Then, we explain a new solution,

which exploits the multi-component nature of LSM-based indexes to provide near real-time

performance for queries on recent data. Finally, we present results from an experimental
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study that we conducted to evaluate the solution.

5.2 User Model: AsterixDB Query Language

In this section we describe the user model of AsterixDB [5], consisting of its data model

and query language targeting semistructured data. We will illustrate the features of ADM

and AQL via a simple scenario where we want to store, index, and query social data from

Twitter.

5.2.1 Asterix Data Model

The Asterix Data Model (ADM) is based on ideas borrowed from JSON extended with

additional primitive types as well as type constructors borrowed from object databases [35].

Figure 5.1 illustrates the user of ADM to model a Twitter messages dataset, which we will

use as our running dataset example throughput this chapter.

To begin, we create a new dataverse called SocialData, and use it. A dataverse in

AsterixDB is analogous to a database in the relational world. After that, we create the

TwitterUserType and TweetType types to model Twitter users and messages, respec-

tively. Notice that the TwitterUserType is an open type, signifying that the instances

of this type will conform to its specification but are allowed to contain arbitrary additional

fields that may vary from one instance to the next. On the other hand, the TweetType is a

closed type, meaning that each of its instances must conform to its specification and cannot

contain extra fields. The “?” symbol in the sender-location field means that the pres-

ence of this field is optional. The referred-topics field is a collection of primitive string

values, and the user information is represented as a nested record of another type. Finally,

we create a dataset called Tweets that stores data instances conforming to the TweetType
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create dataverse SocialData;
use dataverse SocialData;

create type TwitterUserType as open {
screen-name: string ,
lang: string ,
friends_count: int32 ,
statuses_count: int32 ,
name: string ,
followers_count: int32

};

create type TweetType as closed {
tweetid: string ,
user: TwitterUserType,
sender-location: point? ,
send-time: datetime,
referred-topics: {{ string }},
message-text: string

};

create dataset Tweets(TweetType) primary key tweetid ;

Figure 5.1: Data Definition Language (DDL) to create a dataset of tweets in AsterixDB.

data type (as an AsterixDB dataset is loosely analogous to a table in the relational world).

The dataset’s primary key is the tweetid field.

Figure 5.2 shows two DML statements to insert two data instances into the Tweets dataset.

Each data instance is created by using the record constructor {}. Similarly, the data values of

the complex fields user, sender-location, send-time, and referred-topics are

created by using their corresponding function constructors; namely {}, point, datetime,

and {{}}, respectively. As can be seen in the first insert statement, the sender-location

is missing from the data instance, which is acceptable since it was declared as an optional

field. Also notice that in the second insert statement, we have added an additional field, age,

inside the nested data instance user, which is also acceptable since the TwitterUserType

was created as an open type.
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insert into dataset Tweets {
"tweetid": "1",
"user":{"screen-name": "JohnSmith",

"lang": "en",
"friends_count": 39331,
"statuses_count": 654,
"name": "John Smith",
"followers_count": 65409} ,

"send-time": datetime("2014-04-26T10:10:00Z"),
"referred-topics": {{"phone","customization"}},
"message-text": "I like my phone, its customization is cool."
}

insert into dataset Tweets {
"tweetid": "1000",
"user":{"screen-name": "WilliamSilverman",

"lang": "en",
"friends_count": 2765,
"statuses_count": 126,
"name": "William Silverman",
"followers_count": 872,
"age":51} ,

"sender-location":point("41.44,61.65"),
"send-time": datetime("2014-05-21T11:11:01Z"),
"referred-topics": {{"basketball"}},
"message-text": "Going to play basketball this afternoon."
}

Figure 5.2: Inserting two data instances into the Tweets dataset.

5.2.2 Asterix Query Language

The Asterix Query Language (AQL) is a declarative query language that borrows its core

ideas from XQuery [47]. In the following, we provide some basic query examples that show

some of the capabilities of AQL.

5.2.2.1 Simple Selection

The query shown in Figure 5.3 conceptually iterates over the dataset Tweets and returns

all the users with the name “John Smith”. As can be seen, AQL uses “.” syntax to access
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fields.

for $tweet in dataset Tweets

where $tweet.user.name = ’John Smith’

return $tweet

Figure 5.3: An example of a simple selection query in AsterixDB.

5.2.2.2 Group-by, Order-by, and Limit

The query shown in Figure 5.4 iterates over the tweets and their referred (i.e., referred-to)

topics, grouping them based on the referred topics, and counts the number of tweets having

each referred topic. It then sorts the results based on the count of referred topics, and finally

returns the three most frequently referred topics in the Tweets dataset.

for $tweet in dataset Tweets

for $referredTopic in $tweet.referred-topics
group by $topic := $referredTopic with $tweet

order by count($tweet)

limit 3

return {"Topic": $topic, "Occurrence": count($tweet)}

Figure 5.4: An example of a query with group by, order by, and limit in AsterixDB.

5.2.2.3 Join

Suppose we have another dataset called FacebookMessages that stores Facebook users’

posts. The query shown in Figure 5.5 joins the Tweets and FacebookMessages datasets

and returns all users who have accounts in both Twitter and Facebook (for expository

purposes, we assume the user names are the same across social networks and also unique).
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for $tweet in dataset Tweets

for $message in dataset FacebookMessages

where $tweet.user.name = $message.user.name
return {"User name": $tweet.user.name}

Figure 5.5: An example of a join query in AsterixDB.

5.2.3 Spatial Support in AsterixDB

As we mentioned in Section 2.2, ADM provides native support for spatial data types. In

particular, it supports the following two-dimensional types: point, line, rectangle, closed

polygon, and circle. In Figure 5.1, the sender-location in TweetType is of the point

type. In addition, AsterixDB has several built-in spatial functions, including:

• spatial-intersection: Given two geometry objects of a spatial data type (point, line,

etc.), this function outputs a boolean value to indicate whether or not the two objects

intersect.

• spatial-distance: Given two points, the function returns the Euclidean distance between

them.

• spatial-area: Given a geometry object, this function returns its area.

• spatial-cell: This function determines which grid cell a point-of-interest belongs to. It

receives the location of the point, the origin of a bounding rectangle, and the latitude

and longitude increments to specify the resolution of the grid.

Figure 5.6 shows an example of how a user of AsterixDB can create an LSM-based R-tree

index on the spatial attribute sender-location.

Currently, all spatial data types are indexable, and the optimizer is able to use the spatial

index to answer selection queries that use the spatial-intersect function on an indexed field.
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create index locationIndex on Tweets(sender-location) type rtree;

Figure 5.6: An example showing how to create an LSM-based R-tree index in AsterixDB.

Figure 5.7 shows a spatial selection query in AsterixDB. The query can utilize the R-tree

index over the sender-location field to returns all the tweets that are within the specified

polygon.

for $tweet in dataset Tweets

let $polygon := create-polygon([40.0,79.87,41.0,80.0,45.0,75.5,39.0,72.0])
where spatial-intersect($tweet.sender-location, $polygon)
return $tweet

Figure 5.7: An example of a spatial selection query utilizing a secondary LSM R-tree index
in AsterixDB.

In addition, AsterixDB supports index nested-loops spatial join queries. Figure 5.8 shows a

relevant example query; this query goes through the set of all tweets and, for each one, uses

a nested query to pair it with a bag of tweets sent from nearby locations.

for $tweet1 in dataset Tweets

let $circle := create-circle($tweet1.sender-location, 0.25)
return {
"tweetid1": $tweet1.tweetid,
"nearby-tweets": for $tweet2 in dataset Tweets

where spatial-intersect($tweet2.sender-location, $circle)
return {"tweetid2":$tweet2.tweetid}

}

Figure 5.8: An example of a spatial join query that can be optimized to use an LSM R-tree
index (if exists) in AsterixDB.

5.3 Answering Queries on Recent Data

In this section, we present alternative approaches to optimize query workloads that favor

recent data (called “recency queries” hereafter) in a system like AsterixDB, and we discuss
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the tradeoffs and limitations of each approach. We will use the spatial aggregation use-case

mentioned in Section 5.1 to drive our discussion.

5.3.1 Spatial Aggregation Use Case

We have added capabilities for doing spatial aggregation in AsterixDB due to their impor-

tance. Such a query typically specifies a grid structure including a spatial range and a

resolution and asks for a density distribution (histogram) of data within the grid. The query

may optionally include further conditions such as a time interval and keywords and do an

aggregation on the data records satisfying these additional conditions. A spatial aggrega-

tion query logically partitions data records into groups (based on grid cell membership) and

applies an aggregation function to all records in each group. Figure 5.9 shows a color-coded

density grid on the map that visualizes the results of a typical spatial aggregation query

using the Google Maps API.

Figure 5.9: A visualization of the results of a spatial aggregation query. The color of each
cell indicates the tweet count.
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Since our focus in this chapter is optimizing recency queries, we will discuss possible ap-

proaches to optimize this query when it includes a temporal predicate that only returns

recent data records and filters out the old ones.

Suppose we are just a few days away from the US presidential election that is going to

be held on November 8th, 2016. A campaign manager could use a GUI to submit a spatial

aggregation query to AsterixDB, such as the query shown in Figure 5.10, to see how potential

voters are reacting to the candidate “Hillary Clinton”, recently, in the swing state of Ohio.

This query spatially aggregates election-related tweets. It starts by constraining tweets to

a bounding rectangle inside Ohio, a datetime window of the last day, and containing the

referred topic “Hillary Clinton”. The spatial-cell function determines which grid cell

each tweet belongs to. This function receives the location of the tweet, the origin of the

bounding rectangle, and the latitude and longitude increments that specify the resolution of

the grid. It returns the cell (represented by a rectangle) that the tweet belongs to. Those

tweets are then grouped according to their containing grid cells. Finally the count function

is applied to each group of tweets to return the final answer in the form of pairs of cells and

the number of tweets (that satisfy the predicates) in the corresponding cell.

5.3.2 Alternative Runtime Execution Strategies

In this section, we present possible runtime execution strategies for recency queries. We

discuss the alternative query plans and their tradeoffs and limitations.

A query that is submitted to AsterixDB undergoes different stages before it is executed [5].

First, the query is parsed and compiled to generate a logical plan. Then, the rule-based

query optimizer (Algebricks) will take over and attempt to optimize the logical plan by

using many rewriting rules. The final optimized logical plan is then converted to a Hyracks

job and handed over to the Hyracks runtime system for execution.
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for $tweet in dataset Tweets

let $searchReferredTopic := "Hillary Clinton"

let $leftBottom := create-point(38.52,-84.78)
let $rightTop := create-point(41.94,-80.48)
let $latResolution := 3.0
let $longResolution := 3.0
let $region := create-rectangle($leftBottom,$rightTop)
where spatial-intersect($tweet.sender-location, $region)
and $tweet.send-time> datetime("2016-11-05T00:00:00Z")

and (some $referredTopic in $tweet.referred-topics
satisfies ($referredTopic = $searchReferredTopic))

group by $cell := spatial-cell($tweet.sender-location,
$leftBottom, $latResolution, $longResolution)
with $tweet

return { "Cell": $cell, "NumTweets": count($tweet) }

Figure 5.10: A spatial aggregation query over tweets that were generated by Ohio state
users, close to the US presidential election in 2016, containing the referred topic “Hillary
Clinton”.

All the optimized logical query plans that we will discuss for the spatial aggregation query

are similar to each other in the sense that their execution involves performing two consecutive

steps:

1) Fetching all data records that match the query predicates, and

2) Partitioning data records into groups and applying an aggregation function to all

records in each group.

Our goal here is optimizing the first step, i.e., reducing the required time to fetch all records

that satisfy the query predicates, as it turns out that this step tend to dominate the query

execution time (and also not all recency queries involve performing aggregation).

In the case that there are no applicable secondary indexes, the only possible AsterixDB

plan for executing this query would be to perform a full scan over the Tweets dataset.

Figure 5.11(a) shows a simplified snippet of the optimized logical plan for this execution

strategy. This strategy would be a good choice if the query predicates are not very selective.
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However, since the query has many potentially selective predicates on different fields, it

would make sense to have a secondary index on one or more of the fields (e.g., an R-tree on

the sender-location field or a B+-tree on the send-time field). Figure 5.11(b) shows

the query plan for an index-based strategy in AsterixDB. The plan starts by feeding the

secondary index with the applicable query predicate (shown in the plan as “CONSTANT”)

to fetch all the qualified primary keys. The resulting primary keys are then used to lookup

the base data from the primary index, sorting them based on their keys first in order to

access the primary index in an efficient manner.

(a) Scan-Based
Plan.

(b) Single Index
Plan.

(c) Multi Index Plan.

Figure 5.11: Different selection-query plans. Each box represents a logical operator in the
query plan. “PIX” stands for Primary Index, and “SIX” for Secondary Index. The select
operator contains all the predicates in the query.
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There are two drawbacks, however, when using such an index-based strategy for answering

a multi-predicate query.

1) It is challenging to decide which index to use without having a cost-based optimizer

that can estimate the selectivity of each predicate. For instance, would using an R-

tree on the sender-location field outperforms using a B+-tree on the send-time

field, or vice versa?

2) Searching a secondary index using its corresponding predicate is performed irrespective

of the other predicates. In some cases, this could cause too many entries to be retrieved

from the secondary index, followed by probing the primary index for each entry, to

find out that many of the base records are actually do not satisfy the other query

predicates. This can lead to unacceptable performance for queries that ought to have

real-time responses.

Figure 5.11(c) shows another possible execution strategy, which is to maintain multiple

secondary indexes (e.g., an R-tree on the sender-location field and a B+-tree on the

send-time field) and use all the applicable indexes to fetch the lists of qualifying primary

keys. Then, an intersection operation between those lists can be performed to obtain the

primary keys of the records that satisfy both the corresponding query predicates. The

resultant primary keys are then used to lookup the base records from the primary index.

Performing the intersection at this early stage can reduce the number of needed primary index

lookups, improving the total query time. However, there are several possible drawbacks for

this strategy as well:

1) It is not clear whether using all the secondary indexes will always yield a good per-

formance. For example, in the case when there is one or more unselective predicates,

searching the corresponding secondary indexes may require a considerable amount of
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time, which could negatively impact the total query time, again emphasizing the need

for a cost-based optimizer to handle such cases well.

2) As shown in Section 4.4.1.1, for each additional secondary index that is added to the

dataset, the ingestion throughput will decrease due to the overhead of maintaining all

of the secondary indexes. For ingestion-intensive workloads (such as the workloads

that AsterixDB is targeting), this can be an important factor that must be considered.

Note that the query plans shown in Figure 5.11(a) and Figure 5.11(b) are already supported

in AsterixDB, but not the multi index-based plan shown in Figure 5.11(c). We leave an

experimental study of the multi index-based plan as possible future work.

5.4 LSM-based Filters for Accelerating Queries

In this section, we propose a solution that leverages the structure of an LSM-based index

to accelerate queries. Our solution works best with monotonically increasing sequence of

values, e.g., time-correlated fields such as UUID and datetime fields, making it a perfect fit

for providing near real-time performance for recency queries such as the spatial aggregation

query of Figure 5.10.

5.4.1 Basic Idea

Since an LSM-based index naturally partitions data into multiple disk components, it is

possible, when answering certain queries, to exploit partitioning to only access some compo-

nents and safely filter out the remaining components, thus reducing query times. This can

be achieved by augmenting each LSM disk component with additional information (called a

“filter” hereafter) about one or more other fields of the record (called the filter’s key here-
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after). Consequently, the index can filter out entries based on two dimensions, one based on

the original index key(s), and the second based on the filter’s key.1

To support filtering, each LSM disk component has an associated filter record that maintains

the minimum and maximum filter key values for the records contained in the component.

Then, when accessing the index to answer a query, the index lookup operation can first

leverage the associated filter records to prune components that do not match the filter’s

predicate. Then, the normal search on the index need only be performed for those compo-

nents that survive the filtering process. Notice that filters can be used with both primary

and secondary indexes for additional pruning power.

One of the main use cases for LSM-based filters is to use them to index time-correlated fields

or monotonically increasing sequences, such as datetime fields. In this case, the filters on

the disk components are most likely to have disjoint minimum and maximum values, making

them very effective for pruning. In the following, we provide two examples that show the

benefits of using filters with LSM indexes.

Example 1: Suppose that users are commonly interested in retrieving recent tweets from

the Tweets dataset that were posted from specific users based on their sending time (e.g.,

tweets posted by “John Smith” in the last 24 hours). Figure 5.12 shows the AQL query

for this example. We can create a filter on the send-time field of the primary index, and

utilize the components’ filter records to quickly prune components that do not match the

temporal predicate.

Example 2: Consider the spatial aggregation query, shown in Figure 5.10. We can main-

tain a secondary LSM R-tree index on the sender-location field and create a filter on

the send-time field of the primary and secondary indexes. When answering the spatial

aggregation query, we can first access the LSM R-tree, using the index components’ filter

1The current release of AsterixDB (Release 0.8.6) supports the creation of single-field filters. Allowing
multi-field filters is a straightforward extension and it is planed for a future work.
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for $tweet in dataset Tweets

where $tweet.send-time> datetime("2014-08-14T00:00:00Z")

and $tweet.user.name = ’John Smith’

return $tweet

Figure 5.12: A query that returns all the tweets posted by “John Smith” in the last 24 hours
(assuming the current date is August 15th, 2014).

records to quickly filter out those components that do not match the temporal predicate

of the query, and then search the remaining R-tree components that survive the filtering

process. Similarly, when using the resulting primary keys to probe the primary index, the

lookup operation can filter out all older disk components of the index and only probe those

components that satisfy the temporal predicate.

Clearly from the above examples, using LSM-based filters can help improve the performance

of queries by pruning as many records as possible in an early stage. They also can improve

the ingestion performance by not maintaining a secondary index in some scenarios (as in the

first example). In addition, they can potentially improve the ingestion performance under

concurrent queries by reducing the contention on system resources (CPU and I/O) due to

component filtering.

5.4.2 LSM-based Filters in AsterixDB

In this section, we discuss the implementation of LSM-based filters in AsterixDB. We start

by describing how to enable filters for a dataset at the logical level. We then explain the

changes that we had to make to the system’s internals to incorporate filters in AsterixDB’s

indexes.
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5.4.2.1 User Model

We have added support for LSM-based filters to all of AsterixDB’s index types. To enable

the use of filters, the user must specify the filter’s key when creating a dataset, as shown in

Figure 5.13. Filters can be created on any totally ordered datatype (i.e., any field that can

be indexed using a B+-tree), such as integers, doubles, floats, UUIDs, datetimes, etc.

create dataset Tweets(TweetType) primary key tweetid with filter on send-time;

Figure 5.13: Creating a dataset of tweets with a filter on the send-time field.

The name of the filter’s key field is persisted in the “dataset” dataset (which is the metadata

dataset that stores the details of each dataset in an AsterixDB instance) so that DML

operations against the dataset can recognize the existence of filters and can update them

or utilize them accordingly. Creating a dataset with a filter in AsterixDB implies that

the primary and all secondary indexes of that dataset will maintain filters on their disk

components. Once a filtered dataset is created, the user can use the dataset normally (just

like any other dataset). AsterixDB will automatically maintain the filters and will leverage

them to efficiently answer queries whenever possible (i.e., when a query has predicates on

the filter’s key).

5.4.2.2 Maintaining the Filters

In an LSM index, there are three possible methods where a new disk component is created:

through a flush, merge, or fresh bulk-load operation. To guarantee the correctness of a

dataset’s filters, each of these operations must ensure that the filter associated with a new

disk component has the minimum and maximum filter key values of the records contained

therein. In the following, we show how each of those operations maintains these values

efficiently:
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1. Flush: Each index incrementally maintains the minimum and maximum filter key

values for the records contained in its in-memory component. Those values must be

updated, as needed, with each insert and delete operation against the index. When

the in-memory component is flushed to disk, its filter record is also flushed with it to

disk.

2. Merge: The minimum and maximum values for the resulting component’s filter record

are taken from the smallest and largest values of all components that are participating

in the merge.

3. Bulk-load: Each added entry simply updates the filter record’s minimum and maximum

values as needed.

Notice that the leaf node entries in secondary indexes in AsterixDB are of the form e =

〈SK ,PK 〉, where SK is the secondary key and PK is the associated primary key. Although

this form is still maintained in the presence of filters, we had to change the insert, delete,

and load plans for indexes with filters so that the filter key values are passed to the index

with each record for the purpose of updating its components’ filter records.

5.4.2.3 Query Processing

We have added a new rewrite rule to the AsterixDB optimizer that checks whether or not a

query can be optimized to use filters. The rule first checks to see if the queried dataset has a

filter. If so, then it analyzes the query in the hope of finding an applicable query predicate.

In particular, the rule searches for predicates on the filter’s key that use one of the following

operators: >, >=, <, <=, =. If it finds such predicates, it modifies the plan so that the

filter’s predicates are passed to all the indexes of the dataset that appear in the query plan

(in conjunction with other predicates that are normally used to search the indexes).

92



At runtime, the filter’s predicates will be used to prune all the components that do not

match them. Note that the implementation of AsterixDB’s LSM indexes was designed from

the start to allow each index operation (e.g., search) to choose the components that it needs

to perform its logic against, and this is where component filtering takes place. In other

words, the search cursors for LSM indexes did not have to be changed in order to support

filters. Once the components not matching the filter’s predicates have been filtered out, then

a normal search on the index is performed for the remaining components.

5.4.2.4 Effect of Merge Policies

Merge policies play an important role with respect to the ingestion and query performance

of LSM indexes. This role is even more important for LSM-based filters to be effective. Here

we discuss the tradeoffs of the various AsterixDB merge policies and introduce a new merge

policy that further improve query times when using filters.

To understand the effect of merge policies on filters, let us revisit a similar concept that

has been heavily used in many database systems, which is table partitioning. In these

systems, partitioning is mainly used to mitigate the impact of table scans. A table can be

divided into smaller partitions based on a partitioning key. Queries with predicates on the

partitioning key can then prune those partitions that do not satisfy the predicates, thus

reducing query times. Similarly, when using filters, each LSM disk component is essentially

treated as a partition. Thus, the number and size of disk components can greatly impact

query performance.

Generally speaking, having very few disk components will reduce a filter’s pruning power

for highly selective queries on the filter’s key. On the other hand, less selective queries

on the filter’s key will perform best when the number of disk components is minimal. As

mentioned in Section 4.2.5, the current release (Release 0.8.6) of AsterixDB supports three
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merge policies. The constant merge policy tries to keep as few disk components as possible

by constantly merging all the disk components into a single disk component. This has been

shown in Section 4.4 to have a negative impact on the ingestion performance since merges

are CPU and I/O intensive operations. In addition, the constant merge policy will also

have a negative impact on the performance of queries when using filters since the chances of

accessing all the disk components becomes very high, eliminating the benefits of filters.

In contrast, when used in conjunction with filters, AsterixDB’s no-merge policy can provide

excellent performance for selective queries on the filter’s key; this is due to the high chance

of pruning many of the components. However, similar to the constant merge policy, the no-

merge policy has proven to provide bad ingestion performance due to the time spent searching

the many disk components before each primary key insert to enforce key uniqueness, making

the no-merge a bad choice for write-intensive workloads.

The AsterixDB prefix merge policy, which relies on component sizes and the number of com-

ponents to decide which components to merge, has proven to provide excellent performance

for both ingestion and queries. However, when evaluating our filtering solution with the

prefix policy, we observed a behavior that can reduce filter effectiveness. In particular, we

noticed that under the prefix merge policy, the disk components of a secondary index tend

to be constantly merged into a single component. This is because the prefix policy relies

on a single size parameter for all of the indexes of a dataset. This parameter is typically

chosen based on the sizes of the disk components of the primary index (e.g., 1GB in our

experiments), which tend to be much larger than the sizes of the secondary indexes’ disk

components. This difference caused the prefix merge policy to behave similarly to the con-

stant merge policy (i.e., relatively poorly) when applied to secondary indexes. Consequently,

the effectiveness of filters on secondary indexes was greatly reduced under the prefix-merge

policy, but they were still effective when probing the primary index.

Based on this behavior, we developed a new merge policy, an improved version of the prefix
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policy, called the correlated-prefix policy. The basic idea of this policy is that it delegates

the decision of merging the disk components of all the indexes in a dataset to the primary

index. When the policy decides that the primary index needs to be merged (using the

same decision criteria as for the prefix policy), then it will issue successive merge requests

to the I/O scheduler on behalf of all other indexes associated with the same dataset. The

end result is that secondary indexes will always have the same number of disk components

as their primary index under the correlated-prefix merge policy. This has improved query

performance, as we will see in Section 5.5.5, since disk components of secondary indexes now

have a much better chance of being pruned.

5.5 Experiments

This section presents the results of an experimental evaluation of the filtering solution de-

signed and implemented in AsterixDB. We focus on query workloads that target recent data

within very large datasets. We show the effect of using filters with different workload and

physical design settings, e.g., when using a dataset with or without different secondary in-

dexes types, signifying the applicability and effectiveness of using filters with any LSM index

structure. We also present how the different merge policies can impact the filter’s pruning

power. In addition, we experimentally show the effect of records’ arrival order on recency

queries.

5.5.1 Data Generation

As in the previous chapter, we used AsterixDB’s data feeds to populate a dataset using

streams of synthetic tweets, with an average tweet size of 1KB. The generated tweets conform

to the type definition shown in Figure 5.14, which is a slightly modified version of the type
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definition shown in Figure 5.1. There are two differences between those two type definitions.

First, at the time of conducting our experiments, support for the creation of an index on

nested records, e.g., on the field user.name, was a feature that was still under development

in AsterixDB. Thus, as a temporary solution, we added the userid field of type int32

to the TweetType to create a secondary index on this field for some of our experiments.

Second, we changed the type of tweetid to int64 to simplify the creation of unique

primary keys.

create type TwitterUserType as open {
screen-name: string ,
lang: string ,
friends_count: int32 ,
statuses_count: int32 ,
name: string ,
followers_count: int32

};

create type TweetType as closed {
tweetid: int64,
user: TwitterUserType,
sender-location: point? ,
send-time: datetime,
referred-topics: {{ string }},
message-text: string ,
userid: int32

};

Figure 5.14: Tweet type definition used in our experiments.

In the following we describe how we generated those fields of a tweet that can have an impact

on the selectivity of query predicates and, as a result, on query times:

1) tweetid: We generated tweets with monotonically increasing ids.

2) userid: We chose user ids randomly with replacement from the range [0-4999].

3) sender-location: Although it was an optional field, all the generated tweets had
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locations that were generated randomly from a distribution similar to the one described

in Section 4.4.2.

4) send-time: Each tweet was populated with the exact time of actual tweet generation.

The remaining fields were generated with random content since they were not used in the

predicates of the queries that we issued.

5.5.2 Machine and Parameter Configurations

We used two machines to conduct the experiments. The first machine was used to generate

the synthetic tweets which were sent over the network to the second machine that hosted

a single-machine AsterixDB instance for ingestion. The latter was an IBM machine with a

4-core Xeon 2.27 GHz CPU, 12GB of main memory, and four locally attached 10,000 rpm

SATA drives. We dedicated one disk for use by the transaction log manager for writing log

records, with the three remaining disks dedicated as data storage disks for separate partitions

of the Tweets dataset and their associated secondary index partitions. We used the same

parameters as shown in Table 4.1 to configure the datasets. Unless otherwise specified, we

also used AsterixDB’s prefix merge policy to manage the disk components of all the dataset’s

indexes.

5.5.3 Query Generation

For all of our experiments, we ingested a total of 70GB worth of synthetic tweets into the

targeted dataset. We then stopped data ingestion and issued queries with multiple predicates

on different fields, with one of the predicates being based on time-recency to mimic a query

workload that is targeting recent data. Since the ingestion had already stopped, the recency
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predicate was chosen based on the largest ingested send-time value. For example, if the

largest ingested send-time value was datetime("2014-04-26T10:10:00Z"), and

the goal was to retrieve all tweets ingested in the last 1 minute, then the corresponding

query predicate would be “retrieve all tweets with send-time values that are larger than

datetime("2014-04-26T10:09:00Z")”.

We experimented with multiple recency predicates with varying selectivities ranging from a

predicate that only matches the most recent data (e.g., the last 8 seconds) all the way to a

predicate that matches all of the ingested data. To do that, we chose an initial time unit

(e.g., 8 seconds) that served as the smallest recency predicate width (e.g., all tweets ingested

in the last 8 seconds). We then multiplied this time unit by different factors to increase the

window size of the recency predicate. For instance, for those experiments that used an initial

time unit of 8 seconds, we used the following time-unit multipliers: 1, 6, 42, 180, 540, and

2160. Thus, the corresponding recency predicates that we tried were: last 8 seconds, last

48 seconds, last 5.6 minutes, last 24 minutes, last 72 minutes, and last 288 minutes. The

multipliers used were inspired by the user interface for the power monitoring company use

case that we mentioned at the start of this chapter. Unless otherwise specified, we have used

an initial time unit of 8 seconds for all the experiments. The query times that we show are

averaged across 200 random queries using different time unit factors.

We plotted the results using histogram charts, where the X axis represents the different

time-unit factors and the Y axis represents the average query time. Since the histograms

have extremely high and low query time values, we plotted each chart twice, with linear and

log scales.

98



5.5.4 Query Performance

Figure 5.15 shows the average query time for running 200 random queries, similar to the one

shown in Figure 5.16, against a dataset with no secondary indexes but with a filter on the

send-time field, against a dataset with a secondary LSM B+-tree on the field userid,

and against a dataset with both a secondary LSM B+-tree on the field userid and a filter

on the field send-time.

The dataset that had no filter on send-time always provided the same average query time

no matter how selective the recency predicate was. This is because the recency predicate

was only used as a post-processing filtering step after fetching the candidate entries from the

secondary index on the userid predicate and then using those entries to probe the primary

index.

Both datasets that had filters on send-time benefited greatly from filters when the recency

predicate was selective due to the pruning power of filters. For instance, for the time-

unit factor one, all disk components of the corresponding indexes were pruned, resulting

in searching only the in-memory component of the index. However, as we decreased the

selectivity of the recency predicate by using larger time-unit factors, the effectiveness of filters

decreased. This is an expected behavior since the less selective a recency predicate is, the

more disk components that satisfy the predicate and thus must be searched. That being said,

even for the extreme case when the recency predicate is unselective, filters do not hurt query

performance and provide the same performance as if the filters did not exist. This can be

seen when using the time-unit factor 2160, where all the records satisfy the recency predicate.

For the dataset that had a filter but no secondary index, the performance was identical to

the performance of a dataset scan. For the dataset that had both a secondary index and a

filter, the unselective time-unit query performance was identical to the performance of using

a secondary index on userid without a filter.
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Figure 5.15: Average query time when using a dataset with a secondary LSM B+-tree on
userid, a dataset with a filter, and a dataset with both a secondary LSM B+-tree on
userid and a filter on send-time.

Next, Figure 5.17 shows the performance of queries when using a dataset with a secondary

B+-tree on the field send-time compared to a dataset that was using both a secondary

LSM B+-tree on the field userid and a filter on the field send-time. Clearly the dataset

with both a secondary index and a filter outperformed the dataset with a secondary index

on the send-time for all the time-unit factors. We do not show larger time-unit factors

since their query times against the dataset without a filter were so high that we decided to
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let $count := count (

for $tweet in dataset Tweets

where $tweet.send-time> datetime("2014-06-21T07:49:39.349Z")
and $tweet.userid = 3319

return $tweet

)

return {"NumTweets": $count}

Figure 5.16: An example of an aggregation query that we used in our experiments to measure
the effectiveness of filters against different datasets.

stop the experiment and repeat it without those large time-unit factors. The reason why the

dataset with both a secondary index and a filter outperformed the other dataset is because

it used both query predicates to prune a larger number of index entries at the secondary

index, resulting in much fewer primary index probes.

Finally, Figure 5.18 shows the average query time for spatial aggregation queries, similar to

the one shown in Figure 5.19, against two datasets that are both using a secondary LSM

R-tree on the field sender-location; one of them was also utilizing a filter on the field

send-time. In order to generate random spatial predicates, we used the same approach

that we presented in Section 4.4.2. The results here confirm our previous findings. A dataset

that is not using a filter will always provide similar query times regardless of the selectivity of

the recency predicate. On the other hand, the filters are very effective when used to answer

selective queries, and their effectiveness decreases as the selectivity decreases. Note that the

slight variation in the query times for the different time-unit factors for the dataset without

a filter is due to the heuristic approach that was used to generate the spatial predicates, as

it does not always provide the exact requested selectivity but was good enough to sever our

purposes here.
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Figure 5.17: Average query time when using a dataset with a secondary LSM B+-tree on
send-time and a dataset with both a secondary LSM B+-tree on userid and a filter on
send-time.

5.5.5 Impact of Merge Policies

Next, we show the impact of using different merge policies with filters. Each dataset had a

secondary LSM B+-tree on userid. Since the handled TPS when using a different merge

policy is widely varied (the total time for ingesting the 70GB worth of tweets was 110 minutes

and 26 hours for the prefix and no-merge policies, respectively), the selectivity of recency
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Figure 5.18: Average time to answer spatial aggregation queries when using a dataset with
a secondary LSM R-tree on sender-location and a dataset with both a secondary LSM
R-tree on sender-location and a filter on send-time.

queries of the same time-unit factor, as a result, is also widely varied. Thus, we added a

new field called integer-send-time to the TweetType definition and used it as the

filter’s key (it was populated with monotonically increasing integer values). This way, we

were able to completely isolate the impact of TPS variance on the selectivity of queries,

allowing for an accurate comparison between the different merge policies. We also used an

initial time unit of 32,000 for all of the experiments in this section. (As an example, for
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for $tweet in dataset Tweets

where $tweet.send-time> datetime("2014-07-03T08:16:27.620Z")
and spatial-intersect($tweet.sender-location, create-rectangle(
create-point(42.73,-80.84), create-point(43.23,-80.34)))
group by $c := spatial-cell($tweet.sender-location, create-point(42.73,-80.84),
0.1, 0.1)
with $tweet

let $num := count($tweet)

return { "Cell": $c, "NumTweets": $num }

Figure 5.19: An example of a spatial aggregation query that we used in our experiments to
measure the effectiveness of filters when combined with an LSM R-tree.

the time-unit factor 540, the corresponding recency predicate would ask for all tweets with

integer-send-time values that are 540 x 32000 = 17280000 smaller than the largest

ingested integer-send-time value.)

Figure 5.20 shows the average query time for answering recency queries, similar to the one

shown in Figure 5.21, for datasets that were using different merge polices. All the datasets

provided identical average query time for the smaller time-unit factors, 1 and 6, because

all the disk components were pruned by the filters since they did not match the recency

predicates.

Clearly, the performance differences are huge when the recency predicates are less selective

and when, as a result, disk components must be accessed. The constant merge policy always

provided the same high average query time for the larger factors. This is because there

was a single disk component for both the primary and secondary indexes at the end of the

ingestion, and thus, the pruning power of the filters were lost.

Both the no-merge and prefix policy provided query times that are relative to the number

of accessed disk components. For the middle time-unit factors (i.e., 42, 180, and 540), the

prefix policy slightly suffered from having only three disk components for the secondary

index, reducing the effectiveness of its filters. The index had only three disk components
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Figure 5.20: Average query time when using constant, no-merge, and prefix merge poli-
cies on a dataset with both a secondary LSM B+-tree on userid and a filter on
integer-send-time.

since, as described in Section 5.4.2.4, this policy tends to behave similar to the constant

policy when using large values for its size parameter. On the other hand, in the case of the

no-merge policy, the queries had to touch fewer secondary index entries due to the many disk

components that were pruned, and as a result there were much fewer primary index probes.

However, as the selectivity of the recency predicate decreased, the no-merge policy had to

pay for accessing many smaller disk components. This can be seen clearly in the case of the
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let $count := count (

for $tweet in dataset Tweets

where $tweet.integer-send-time> 105477969

and $tweet.userid = 3319

return $tweet

)

return {"NumTweets": $count}

Figure 5.21: An example of an aggregation query that we used in our experiments to compare
the impact of different merge polices on filters.

largest two time-unit factors, where 158 and 242 out of 242 disk components (for both the

secondary and primary indexes) had to be accessed for the 2160 and 3150 time-unit factors,

respectively.

Figure 5.22 shows how the new correlated-prefix merge policy combines the good charac-

teristics from both the prefix and no-merge polices. For the middle time-unit factors (i.e.,

42, 180, and 540), the correlated-prefix policy behaved similar to the no-merge policy in

the sense that it benefited from having multiple disk components for the secondary index.

For the larger time-unit factors, 2160 and 3500, it behaved in a manner similar (with mi-

nor overhead) to the prefix policy in the sense that it does not have too many smaller disk

components (there were 22 secondary index disk components).

Figure 5.23 shows how the LSM R-tree behaved when using the correlated-prefix policy. The

results confirm our findings; under the correlated-prefix policy, the selective recency predi-

cates benefited from having multiple smaller R-tree components. Clearly, the performance

differences here are larger compared to those for secondary LSM B+-tree. This is due to

the fact that searching an R-tree is more expensive than searching a B+-tree. For very large

time-unit factors, however, the queries did not benefit from the filters. In the case, having

very few disk components can help query performance, as can be seen in the case of the

prefix policy for the time-unit factor 3500.
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Figure 5.22: Average query time when using the correlated-prefix compared to the no-merge
and prefix policies on a dataset with both a secondary LSM B+-tree on userid and a filter
on integer-send-time.

In addition to the query performance results, it is worth mentioning that the correlated-

prefix policy helped to reduce the ingestion time by around 10%. This resulted from its

reducing the number of secondary index merge operations, and, as a result, reducing the

system’s CPU and I/O contention.
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Figure 5.23: Average query time for answering spatial aggregation queries when using the
prefix and correlated-prefix merge policies on a dataset with both a secondary LSM R-tree
on sender-location and a filter on send-time-int.

5.5.6 Effect of Out of Order Records

In many applications, data records, e.g., sensor readings, are sent over a network to the

target dataset for ingestion. Records can arrive out-of-order due to network delays or faulty

sensors. Here we provide experimental results to investigate whether such order variations

have any impact on the effectiveness of filters. To do that, we have randomly deducted a
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value that ranges from 0 to 60,000,000 milliseconds (10 minutes) from the send-time value

of each tweet (note that the total ingestion time was around 110 minutes). The dataset had

a secondary LSM B+-tree on userid and a filter on send-time and the queries that we

used are again similar to the one shown in Figure 5.16.

Figure 5.24 shows the result. Clearly, recency queries were not effected by delayed records.

The reason is because the delayed records only effect the minimum values of the filters.

However, recency predicates (which use “larger than” semantics) are only compared with

the maximum values of the filters. This implies that, if a delayed record satisfies a recency

query, the disk component where the record would have landed (if it was not delayed) plus

all the newer disk components will be accessed anyway. In other words, no matter which disk

component a delayed record lands in, a recency query will always access the same number

of disk components. Thus, the query times will not be affected.

5.6 Conclusions

In this chapter, we have presented an efficient solution for answering query workloads that

favor recent data, allowing the AsterixDB system to provide near real-time performance for

recency queries. We have designed and implemented filters for all of AsterixDB’s index types,

including LSM B+-tree, LSM R-tree, and LSM inverted indexes for textual data. Our solu-

tion exploits the fact that LSM indexes partition their data into successive disk components

based on their freshness. By maintaining filters on disk components of the LSM indexes, we

were able to reduce recency query response times by up to 99% (for very selective queries

that only access the in-memory component of the index). In addition, our solution’s exper-

imental evaluation included experiments to examine the impact of merge policies, including

the new correlated-prefix policy, and out-of-order records on the performance of filters.
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Figure 5.24: Effect of out-of-order records on filters.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The era of social media is upon us. A wealth of new data, mostly in unstructured format,

is being generated at unprecedented rate (especially due to the increasing adoption rate

of smart phones), and much of this data contains rich data types such as locations and

timestamps in addition to textual content. Consequently, new applications and features have

been rapidly appearing, and as a result new requirements and expectations must be met.

Those requirements have created challenging new problems for traditional database systems,

including spatial databases, due to new location-based services that are being born out of

this social-media movement. In this thesis, we have responded to some of the challenges that

are facing spatial databases by developing several spatial indexing techniques.

In Chapter 3 we studied how to efficiently answer location-based approximate-keyword

queries. Data and queries of location-based search engines could have errors and typos,

and thus it could be hard for users to find the entities they are searching for. We developed

a solution that combines a tree-based index structure, such as the R-tree, with approximate-
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keyword capabilities for answering both approximate and exact queries. In particular, we

developed three algorithms, where each one builds on the previous algorithm, successively

improving the time and space efficiency by exploiting the textual and spatial properties of

the data. Our experiments have shown the effectiveness of our solution in returning all

relevant answers efficiently.

In Chapter 4 we focused on developing a spatial index structure that can ingest fast data

efficiently. First, we showed that converting an R-tree index (and other non-totally ordered

indexes) to an LSM index is non-trivial if the resultant index is expected to have performant

read and write operations. We then presented an indexing framework to enable the “LSM-

ification” of any kind of index structure that supports certain primitive operations, enabling

the index to ingest data efficiently. Our framework has been used to “’LSM-ify” all the

indexes of AsterixDB, making it an all-LSM storage engine. We also presented some of the

key ideas of the concurrency and transaction techniques that we developed for AsterixDB’s

indexes. Our experimental results have shown that an LSM-based version of the R-tree can

significantly outperform its conventional counterpart for both ingestion and query speed.

In Chapter 5 we described how we can exploit AsterixDB’s LSM-based indexes to provide

near-real time performance for query workloads that favor recent data within very large

datasets. Use cases for recency queries include applications such as real-time data analysis,

spatial aggregation queries, etc. In many of those applications, providing real-time or near

real-time query performance is critical to the core functionality of the application. Our solu-

tion utilizes the natural temporal partitioning property that LSM indexes provide, and does

so by installing filter records on the disk components of the index. Those filters can be used

at query time to prune all components that do not satisfy the applicable query predicates.

Our experiments have shown that applying filters on both primary and secondary indexes

can reduce recency query times by up to 99%, making them very effective for answering

real-time query workloads.
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6.2 Future Work

In Chapter 4 we have shown that merge policies play an important factor in the efficiency

of ingestion and queries for LSM indexes. In AsterixDB, a single merge policy is chosen

per dataset, and all the associated indexes will use the same policy to merge their disk

components. One possible future direction is to allow each secondary index to use its own

merge policy. Having a special merge policy per index could be useful for certain complex

indexes, such as the LSM R-tree, where a size-based merge policy might not be always the

right answer. Instead, it would be possible to introduce new merge policies specific to the

LSM R-tree, policies that exploits the spatial properties of the index entries, to allow for

better partitioning of spatial records to improve data ingestion and query performance.

Another possible related direction could be to add a new maintenance operation to the LSM

indexes of AsterixDB, called partition, which is the inverse of the merge operation. Given

a partitioning policy, the partition operation would receive as input n disk components and

produces m disk components. The goal of this operation would be to cluster the index entries

based on a criteria other than size or number of components. Thus, during query times, it

would be possible to avoid accessing all the disk components and as a result improve the

query speed.

In Chapter 5 we have suggested the possibility of using a multi-index search plan for an-

swering multi-predicate queries (e.g., recency queries). Using multiple secondary indexes to

answer such queries can improve their speed. However, as we maintain more secondary in-

dexes with a dataset, the ingestion throughput decreases due to the overhead of maintaining

consistency between the primary and secondary indexes. Thus, it is unclear whether having

multiple secondary indexes is cost-effective for ingestion-intensive workloads (such as the

workloads that AsterixDB is targeting); this direction deserves a future experimental study.

Another study that deserves to be looked at in the future is to experimentally compare the
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filters that we introduced in Chapter 5 with those implemented in HBase. In addition, it is

also interesting to compare the filters with the solution that the power management company

has implemented, mentioned in Section 5.1, which is pre-computing common aggregations

on the fly. This experimental comparison should measure the performance of both data

ingestion and query speed for the two solutions and study the corresponding tradeoff.
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