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Abstract—Hyracks is a new partitioned-parallel software plat-
form designed to run data-intensive computations on large
shared-nothing clusters of computers. Hyracks allows users to
express a computation as a DAG of data operators and connec-
tors. Operators operate on partitions of input data and produce
partitions of output data, while connectors repartition operators’
outputs to make the newly produced partitions available at
the consuming operators. We describe the Hyracks end user
model, for authors of dataflow jobs, and the extension model
for users who wish to augment Hyracks’ built-in library with
new operator and/or connector types. We also describe our
initial Hyracks implementation. Since Hyracks is in roughly the
same space as the open source Hadoop platform, we compare
Hyracks with Hadoop experimentally for several different kinds
of use cases. The initial results demonstrate that Hyracks has
significant promise as a next-generation platform for data-
intensive applications.

I. INTRODUCTION

In recent years, the world has seen an explosion in the
amount of data owing to the growth of the Internet. In the
same time frame, the declining cost of hardware has made it
possible for companies (even modest-sized companies) to set
up sizeable clusters of independent computers to store and pro-
cess this growing sea of data. Based on their experiences with
web-scale data processing, Google proposed MapReduce [1],
a programming model and an implementation that provides a
simple interface for programmers to parallelize common data-
intensive tasks. Shortly thereafter, Hadoop [2], an open-source
implementation of MapReduce, was developed and began to
gain followers. Similarly, Microsoft soon developed Dryad
[3] as a generalized execution engine to support their coarse-
grained data-parallel applications.

It has since been noted that, while MapReduce and Dryad
are powerful programming models capable of expressing ar-
bitrary data-intensive computations, it requires fairly sophis-
ticated skills to translate end-user problems into jobs with
Map and Reduce primitives for MapReduce or into networks
of channels and vertices for Dryad. As a result, higher-level
declarative languages such as Sawzall [4] from Google, Pig
[5] from Yahoo!, Jaql [6] from IBM, Hive [7] from Facebook,
and DryadLINQ [8] and Scope [9] from Microsoft have been
developed to make data-intensive computing accessible to

more programmers. The implementations of these languages
translate declarative programs on partitioned data into DAGs
of MapReduce jobs or into DAGs of Dryad vertices and
channels.

Statistics reported by companies such as Yahoo! and Face-
book regarding the sources of jobs on their clusters indicate
that these declarative languages are gaining popularity as
the interface of choice for large scale data processing. For
example, Yahoo! recently reported that over 60 percent of
their production Hadoop jobs originate from Pig programs
today, while Facebook reports that a remarkable 95 percent
of their production Hadoop jobs are now written in Hive
rather than in the lower-level MapReduce model. In light of
the rapid movement “up the food chain” to these higher-
level languages, an obvious question emerges for the data-
intensive computing community: If we had set out from the
start to build a parallel platform to serve as a target for
compiling higher-level declarative data-processing languages,
what should that platform have looked like? It is our belief that
the MapReduce model adds significant accidental complexity1

as well as inefficiencies to the translation from higher-level
languages.

In this paper, we present the design and implementation
of Hyracks, which is our response to the aforementioned
question. Hyracks is a flexible, extensible, partitioned-parallel
framework designed to support efficient data-intensive com-
puting on clusters of commodity computers. Key contributions
of the work reported here include:

1) The provision of a new platform that draws on time-tested
contributions in parallel databases regarding efficient par-
allel query processing, such as the use of operators with
multiple inputs or the employment of pipelining as a
means to move data between operators. Hyracks includes
a built-in collection of operators that can be used to
assemble data processing jobs without needing to write
processing logic akin to Map and Reduce code.

2) The provision of a rich API that enables Hyracks oper-

1Accidental complexity is complexity that arises in computer systems which
is non-essential to the problem being solved [10].



ator implementors to describe operators’ behavioral and
resource usage characteristics to the framework in order
to enable better planning and runtime scheduling for jobs
that utilize their operators.

3) The inclusion of a Hadoop compatibility layer that en-
ables users to run existing Hadoop MapReduce jobs
unchanged on Hyracks as an initial ”get acquainted”
strategy as well as a migration strategy for ”legacy” data-
intensive applications.

4) Performance experiments comparing Hadoop against the
Hyracks Hadoop compatibility layer and against the na-
tive Hyracks model for several different types of jobs,
thereby exploring the benefits of Hyracks over Hadoop
owing to implementation choices and the benefits of
relaxing the MapReduce model as a means of job speci-
fication.

5) An initial method for scheduling Hyracks tasks on a
cluster that includes basic fault recovery (to guarantee
job completion through restarts), and a brief performance
study of one class of job on Hyracks and Hadoop under
various failure rates to demonstrate the potential gains
offered by a less pessimistic approach to fault handling.

6) The provision of Hyracks as an available open source
platform that can be utilized by others in the data-
intensive computing community as well.

The remainder of this paper is organized as follows. Section
II provides a quick overview of Hyracks using a simple
example query. Section III provides a more detailed look
at the Hyracks programming model as seen by different
classes of users, including end users, compilers for higher-
level languages, and implementors of new operators for the
Hyracks platform. Section IV discusses the implementation of
Hyracks, including its approaches to job control, scheduling,
fault handling, and efficient data handling. Section V presents
a set of performance results comparing the initial implemen-
tation of Hyracks to Hadoop for several disparate types of
jobs under both fault-free operation and in the presence of
failures. Section VI reviews key features of Hyracks and their
relationship to work in parallel databases and data-intensive
computing. Finally, Section VII summarizes the paper and
discusses our plans for future work.

II. HYRACKS OVERVIEW

Hyracks is a partitioned-parallel dataflow execution plat-
form that runs on shared-nothing clusters of computers. Large
collections of data items are stored as local partitions dis-
tributed across the nodes of the cluster. A Hyracks job (the
unit of work in Hyracks), submitted by a client, processes one
or more collections of data to produce one or more output
collections (also in the form of partitions). Hyracks provides
a programming model and an accompanying infrastructure
to efficiently divide computations on large data collections
(spanning multiple machines) into computations that work on
each partition of the data separately. In this section we utilize
a small example to describe the steps involved in Hyracks

job execution. We also provide an introductory architectural
overview of the Hyracks software platform.

A. Example

As will be explained more completely in section III,
a Hyracks job is a dataflow DAG composed of operators
(nodes) and connectors (edges). Operators represent the job’s
partitioned-parallel computation steps, and connectors repre-
sent the (re-) distribution of data from step to step. Internally,
an individual operator consists of one or several activities
(internal sub-steps or phases). At runtime, each activity of an
operator is realized as a set of (identical) tasks that are clones
of the activity and that operate on individual partitions of the
data flowing through the activity.

Let us examine a simple example based on a computation
over files containing CUSTOMER and ORDERS data drawn
from the TPC-H [11] dataset. In particular, let us examine a
Hyracks job to compute the total number of orders placed by
customers in various market segments. The formats of the two
input files for this Hyracks job are of the form:

CUSTOMER (C CUSTKEY, C MKTSEGMENT, . . . )
ORDERS (O ORDERKEY, O CUSTKEY, . . . )

where the dots stand for remaining attributes that are not
directly relevant to our computation.

To be more precise about the intended computation, the
goal for the example job is to compute the equivalent of the
following SQL query:
select C_MKTSEGMENT, count(O_ORDERKEY)
from CUSTOMER join ORDERS on C_CUSTKEY = O_CUSTKEY
group by C_MKTSEGMENT

A simple Hyracks job specification to perform this compu-
tation can be constructed as shown in Figure 1. For each data
source (CUSTOMER and ORDERS), a file scanner operator
is used to read the source data. A hash-based join operator
receives the resulting streams of data (one with CUSTOMER
instances and another with ORDERS instances) and pro-
duces a stream of CUSTOMER-ORDERS pairs that match
on the specified condition (C CUSTKEY = O CUSTKEY).
The result of the join is then aggregated using a hash-based
group operator on the value of the C MKTSEGMENT field.
This group operator is provided with a COUNT aggregation
function to compute the count of O ORDERKEY occurrences
within a group. Finally, the output of the aggregation is written
out to a file using a file writer operator.

As noted earlier, data collections in Hyracks are stored as
local partitions on different nodes in the cluster. To allow a
file scanner operator to access the partitions, its runtime tasks
must be scheduled on the machines containing the partitions.
As indicated in the figure, metadata provided to the two file
scanner operators specifies the machines where the partitions
of the CUSTOMER and ORDERS files are available. For
the sake of this toy example, the CUSTOMER file has two
partitions that reside on nodes NC1 and NC2, respectively.
The ORDERS file also has two partitions, but each partition
is two-way replicated; one can be accessed on either of nodes
NC3 or NC2, and the other on NC1 or NC5. (This information



about replication gives Hyracks multiple scheduling options
for the ORDERS file scanner’s tasks.)

Moving downstream, our example Hyracks job specification
computes the join in a partitioned manner as well. To enable
this, of course, the data arriving at the join tasks (join
partitions) must satisfy the property that CUSTOMER and
ORDERS instances that match will be routed to the same
join task. In the job specification, every edge between two
operators carries an annotation indicating the data distribution
logic to be used for routing data from the source (producer)
partitions to the target (consumer) partitions. The example
job in Figure 1 uses hash-partitioning of the CUSTOMER
and ORDERS instances on C CUSTKEY and O CUSTKEY,
respectively, to enforce the required data property for the join
operator’s partitions. Hash-partitioning is then used again to
repartition the output partitions from the join operator to the
grouping operator on the C MKTSEGMENT field to ensure
that all CUSTOMER-ORDERS pairs that agree on that field
will be routed to the same partition for aggregation. The final
result of the job will be created as a set of partitions (with as
many partitions as grouping operators being used) by using a
1:1 connector between the group operator and the file writer
operator; the 1:1 connector will lead Hyracks to create as many
consumer tasks as there are producer tasks and route the results
pairwise without repartitioning.

When Hyracks begins to execute a job, it takes the job
specification and internally expands each operator into its
constituent activities. This results in a more detailed DAG,
as shown in Figure 2. This expansion of operators reveals to
Hyracks the phases of each operator along with any sequenc-
ing dependencies among them. The hash-based join operator
in the example expands into two activities; its first activity
builds a hashtable on one input and the second activity then
probes the resulting hashtable with the other input in order
to produce the result of the join. Note that the build phase
of the join operation has to finish before the probe phase can
begin; this sequencing constraint is captured as a dotted arrow
(a blocking edge) in the figure from the join-build activity
to the join-probe activity. Similarly, the hash-based grouping
operator in our example expands into an aggregation activity
that blocks an output generation activity to model the fact that
no output can be produced by the aggregator until it has seen
all of its input data. The reason for having operators express
their internal phases (activities) in this manner is to provide
Hyracks with enough insight into the sequencing dependencies
of the various parts of a job to facilitate execution planning
and coordination. Activities that are transitively connected to
other activities in a job only through dataflow edges are said to
together form a stage. Intuitively, a stage is a set of activities
that can be co-scheduled (to run in a pipelined manner, for
example). Section IV describes more details about this process.

The planning of the details of a job’s parallel execution is
done in the order in which stages become ready to execute. (A
given stage in a Hyracks job is ready to execute when all of its
dependencies, if any, have successfully completed execution.)
Figure 3 shows the runtime task graph that results from

planning the activities in a stage. While the figure depicts the
tasks for all three stages of the job, Hyracks actually expands
each stage into tasks just prior to the stage’s execution. At
runtime, the three stages in our example will be executed in
order of their readiness to run. Hyracks will start by running
the scanning of CUSTOMER data along with the hash-build
part of the join tasks, pipelining (and routing) the CUSTOMER
data between the parallel tasks of these initial activities. Once
the first stage is complete, the next stage, which probes the
hashtable using the ORDERS data and performs aggregation,
will be planned and executed. After completion of the second
stage, the output generation tasks of the group-by operator
along with the file writer tasks will be activated and executed,
thus producing the final results of the job. The job’s execution
is then complete.

Scanner
(CUSTOMER)

HashGroupby 
C_MKTSEGMENT

Agg: count(O_ORDKEY)

HashJoin 
C_CUSTKEY 

          = O_CUSTKEY
Writer

{NC1: cust1.dat}
{NC2: cust2.dat}

E4[1:1]

Scanner
(ORDERS) E2[hash(O_CUSTKEY)]

E3
    [hash

                        (C_MKTSEGMENT)]

E1[hash(C_CUSTKEY)]

{NC3: ord1.dat, NC2: ord1.dat}
{NC1: ord2.dat, NC5: ord2.dat}

Fig. 1: Example Hyracks job specification
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Fig. 2: Example Hyracks Activity Node graph

B. High-level Architecture

Figure 4 provides an overview of the basic architecture of
a Hyracks installation. Every Hyracks cluster is managed by
a Cluster Controller process. The Cluster Controller accepts
job execution requests from clients, plans their evaluation
strategies (e.g., computing stages), and then schedules the
jobs’ tasks (stage by stage) to run on selected machines in the
cluster. In addition, it is responsible for monitoring the state
of the cluster to keep track of the resource loads at the various
worker machines. The Cluster Controller is also responsible
for re-planning and re-executing some or all of the tasks of a
job in the event of a failure. Turning to the task execution side,
each worker machine that participates in a Hyracks cluster
runs a Node Controller process. The Node Controller accepts
task execution requests from the Cluster Controller and also
reports on its health (e.g., resource usage levels) via a heartbeat
mechanism. More details regarding the controller architecture
and its implementation are provided in section IV.

III. COMPUTATIONAL MODEL

In this section, we describe the Hyracks approach to data
representation and the Hyracks programming model as they
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Fig. 4: Hyracks system architecture

pertain to two broad classes of users: end users who use
Hyracks as a Job assembly layer to solve problems, and
operator implementors who wish to implement new operators
for use by end users. (Compilers for higher-level languages
essentially fall into the first class of users as well.) We also
describe the built-in operators and connectors that are available
as part of the initial software distribution of Hyracks.

A. Data Treatment in Hyracks

In Hyracks, data flows between operators over connectors
in the form of records that can have an arbitrary number
of fields. Hyracks provides support for expressing data-type-
specific operations such as comparisons and hash functions.
The type of each field is described by providing an im-
plementation of a descriptor interface that allows Hyracks
to perform serialization and deserialization. For most basic
types, e.g., numbers and text, the Hyracks library contains
pre-existing type descriptors. The Hyracks use of a record
as the carrier of data is a generalization of the (key, value)
concept found in MapReduce and Hadoop. The advantage of
the generalization is that operators do not have to artificially
package (and repackage) multiple data objects into a single
“key” or “value” object. The use of multiple fields for sorting
or hashing also becomes natural in this model. For example,
the Hyracks operator library includes an external sort oper-
ator descriptor that can be parameterized with the fields to

use for sorting along with the comparison functions to use.
Type descriptors in Hyracks are similar to the Writable and
WritableComparator interfaces in Hadoop. However, a subtle
but important difference is that Hyracks does not require the
object instances that flow between operators to themselves
implement a specific interface; this allows Hyracks to directly
process data that is produced and/or consumed by systems
with no knowledge of the Hyracks platform or its interfaces.

B. End User Model

Hyracks has been designed with the goal of being a runtime
platform where users can hand-create jobs, like in Hadoop
and MapReduce, yet at the same time to be an efficient target
for the compilers of higher-level programming languages such
as Pig, Hive, or Jaql. In fact, the Hyracks effort was born
out of the need to create an appropriate runtime system for
the ASTERIX project at UCI [12], a project in which we
are building a scalable information management system with
support for the storage, querying, and analysis of very large
collections of semi-structured nested data objects using a new
declarative query language (AQL). We also have an effort
currently underway to support Hive on top of the Hyracks
native end user model. Figure 5 gives an overview of the
current user models.

1) Hyracks Native User Model: A Hyracks job is formally
expressed as a DAG of operator descriptors connected to
one another by connector descriptors, as was indicated in
Figure 1. In addition to its input and output connectors, an
operator descriptor may take other parameters specific to its
operation. For example, the ExternalSortOperatorDescriptor in
the Hyracks built-in operator library needs to know which
fields in its input record type are to be used for sorting, the
comparators to use to perform the sorting operation, and the
amount of main memory budgeted for its sorting work.

Hyracks currently allows users to choose between two ways
of describing the scheduling choices for each of the operators
in a job. One option is to list the exact number of partitions
of an operator to be created at runtime along with a list of
choices of worker machines for each partition. Another option
is just to specify the number of partitions to use for an operator,



leaving Hyracks to decide the location assignments for each of
its partitions. We are currently working on a third, longer-term
option involving automatic partitioning and placement based
on the estimated resource requirements for operators and the
current availability of resources at the worker machines.

Hyracks

Hadoop MR

Hive,Pig...

Hive/Pig... Query Hadoop Job

AQL 

Hyracks JobAQL Query

Fig. 5: End User Models of Hyracks

2) Hyracks Map-Reduce User Model: MapReduce has be-
come a popular paradigm for data-intensive parallel compu-
tation using shared-nothing clusters. Classic example applica-
tions for the MapReduce paradigm have included processing
and indexing crawled Web documents, analyzing Web request
logs, and so on. In the open source community, Hadoop is a
popular implementation of the MapReduce paradigm that is
quickly gaining traction even in more traditional enterprise IT
settings. To facilitate easy migration for Hadoop users who
wish to use Hyracks, we have built a Hadoop compatibility
layer on top of Hyracks. The aim of the Hyracks Hadoop
compatibility layer is to accept Hadoop jobs unmodified and
run them on a Hyracks cluster.

In MapReduce and Hadoop, data is initially partitioned
across the nodes of a cluster and stored in a distributed file
system (DFS). Data is represented as (key, value) pairs.
The desired computation is expressed using two functions:

map (k1,v1) → list(k2,v2);
reduce (k2,list(v2)) → list(k3,v3).

A MapReduce computation starts with a map phase in which
the map functions are applied in parallel on different partitions
of the input data. The (key, value) pairs output by each
map function are then hash-partitioned on their key. For each
partition, the pairs are sorted by their key and sent across the
cluster in a shuffle phase. At each receiving node, all of the
received partitions are merged in sorted order by their key.
All of the pair values sharing a given key are then passed to
a single reduce call. The output of each reduce function is
finally written to a distributed file in the DFS.

To allow users to run MapReduce jobs developed for
Hadoop on Hyracks, we developed two extra operator descrip-
tors that can wrap the map and reduce functionality.2 The
data tuples provided as input to the hadoop mapper operator
descriptor are treated as (key, value) pairs and, one at a
time, passed to the map function. The hadoop reducer oper-
ator descriptor also treats the input as (key, value) pairs,
and groups the pairs by key. The sets of (key, value)
pairs that share the same key are passed, one set at a time, to
the reduce function. The outputs of the map and reduce

2The combine functionality of MapReduce is fully supported as well, but
those details are omitted here for ease of exposition.

functions are directly output by the operator descriptors. To
emulate a MapReduce framework we employ a sort operator
descriptor and a hash-based distributing connector descriptor.

Figure 6 shows the Hyracks plan for running a MapReduce
job. After data is read by the scan operator descriptor, it is
fed into the hadoop mapper operator descriptor using a 1:1
edge. Next, using an M :N hash-based distribution edge, data
is partitioned based on key. (The “M” value represents the
number of maps, while the “N” value represents the number
of reducers.) After distribution, data is sorted using the sort
operator descriptor and passed to the hadoop reducer operator
descriptor using a 1:1 edge. Finally, the hadoop reducer
operator descriptor is connected using a 1:1 edge to a file-
writer operator descriptor.

C. Operator Implementor Model

One of the initial design goals of Hyracks has been for it
to be an extensible runtime platform. To this end, Hyracks
includes a rich API for operator implementors to use when
building new operators. The implementations of operators
made available “out of the box” via the Hyracks operator
library are also based on the use of this same API.

Operators in Hyracks have a three-part specification:
1) Operator Descriptors: Every operator is constructed as

an implementation of the Operator Descriptor interface.
Using an operator in a job involves creating an in-
stance of the descriptor of that operator. The descriptor
is responsible for accepting and verifying parameters
required for correct operation from the user during job
assembly. During the job planning phase, the descriptor
is responsible for expanding itself into its constituent
activities (as illustrated back in Figure 2).

2) Operator Activities: Hyracks allows an operator to de-
scribe, at a high level, the various phases involved in its
evaluation. Phases in an operator usually create sequenc-
ing dependencies that describe the order in which the
inputs of the operator are required to be made available
and the order in which the outputs will become available.
Again, Figure 2 showed the expansions for the hash-
join and the hash-based grouping operators into their
component activities. As a part of the expansion, activities
indicate any blocking dependencies and the mapping
of overall operator inputs and outputs to the activities’
inputs and outputs. For example, when the hash-join
operator is expanded, it indicates to Hyracks that its
join-build activity consumes one input and its join-probe
activity consumes the other. It also indicates that its join-
probe activity produces the output. At a high level, this
describes to Hyracks that the second input is not required
to be available until the stage containing the join-build
activity is complete. Conversely, it also indicates that
output from the join will not be available until the stage
containing the join-build activity is complete. Hyracks
then uses this information to plan the stages of a job in
order of necessity. Deferring planning to the moment just
prior to execution allows Hyracks to use current cluster



scan input_splits → (key, value) sort key

M:N hash
partition on key

hadoop_reducer write output_splits
1:1

hadoop_mapper map() reduce()
1:1 1:1

Fig. 6: Hyracks plan for Hadoop jobs

conditions (availability of machines, resource availability
at the various machines, etc.) to help determine the
schedule for a stage’s tasks.

3) Operator Tasks: Each activity of an operator actually
represents a set of parallel tasks to be scheduled on the
machines in the cluster. Tasks are responsible for the
runtime aspect of the activity – each one consumes a
partition of the activity’s inputs and produces a partition
of its output. The tasks corresponding to activities of the
same partition of the same operator may need to share
state. For example, the join-probe task needs to be given
a handle to the hashtable constructed by the join-build
task. To facilitate such state sharing, Hyracks co-locates
those tasks that belong to a given partition of an activity
of the same operator. For example, in Figure 3, the join-
probe tasks are co-located with their corresponding join-
build tasks. Note that the join-build task will no longer be
active when the join-probe task is scheduled, but Hyracks
provides a shared context for the two tasks to use to
exchange the required information. In the future we plan
to explore alternative state transfer mechanisms (albeit at
a higher cost), e.g., to use when co-location is impossible
due to resource constraint violations at a machine. In
terms of operator implementation, the implementor of a
new operator can implement the runtime behavior of its
activities by providing single-threaded implementations
of an iterator interface (a la [13]), much as in Gamma
[14].

D. Hyracks Library

Hyracks strongly promotes the construction of reusable
operators and connectors that end users can then just use
to assemble their jobs. Hyracks, as part of its software
distribution, comes with a library of pre-existing opera-
tors and connectors. Here we briefly describe some of the
more important operators and connectors.
1) Operators:
• File Readers/Writers:
– Line File Reader/Writer: Reads/writes files from/to the
local file system, treating a file as a sequence of lines.
– Delimited File Reader/Writer: Reads/writes files
from/to the local file system; the files contain records
separated by record delimiters, and the records contain
fields separated by field delimiters.
– HDFS File Reader/Writer: Reads/writes files from/to
the Hadoop Distributed File system.
• Mappers:
– Native mapper: Used to evaluate a function once for
each item in the input. Mappers can be used to implement
traditional operators such as projection and selection.
– Hadoop Mapper: Used to call the Mapper interface

in the Hadoop MapReduce library. It is used by the
compatibility layer to invoke Hadoop mappers.
• Sorters:
– In-memory Sorter: Uses main memory to sort its input.
– External Sorter: Tries to use a main memory allocation
to sort its input data, but when the input does not fit into
memory, it creates and merges runs on disk.
• Joiners:
– In-memory Hash Joiner: Performs an equijoin by using
memory to build a hash-table on one input and then
probing the table with the other input.
– Hybrid Hash Joiner: Performs an equijoin using the
hybrid hash-join algorithm [13].
– Grace Hash Joiner: Performs an equijoin using the
Grace hash-join algorithm [13].
• Aggregators:
– Hash-based Aggregator: Groups input data using an
in-memory hash table. A custom aggregator function is
invoked for each group of the input data.
– Preclustered Aggregator: Groups input data using very
little state assuming it is already clustered on the grouping
fields.
2) Connectors: Connectors distribute data produced by
a set of sender operators to a set of receiver operators.
• M:N Hash-Partitioner: Hashes every tuple produced
by senders (on a specified set of fields) to generate
the receiver number to which the tuple is sent. Tuples
produced by the same sender keep their initial order on
the receiver side.
• M:N Hash-Partitioning Merger: Takes as input sorted
streams of data and hashes each tuple to find the receiver.
On the receiver side, it merges streams coming from
different senders based on a given comparator, thus
producing ordered partitions.
• M:N Range-Partitioner: Takes the position k of the
partitioning field and a set of disjoint n ranges, each range
associated with one of the n receiver operators. (The field
at position k must always contain integer values.) Every
tuple produced by a sender is distributed to the receiver
associated with the range in which the value of the k-th
field lies.
• M:N Replicator: Copies the data produced by every
sender to every receiver operator.
• 1:1 Connector: Connects exactly one sender to one
receiver operator.

IV. HYRACKS IMPLEMENTATION DETAILS

In this section we describe some of the details of the
Hyracks implementation. We first describe the control portion
of Hyracks, which maintains cluster membership and performs
job scheduling, tracking, and recovery. We then discuss some



of the salient implementation details of modules that help
Hyracks to run its operators and connectors efficiently.

A. Control Layer

As was shown in Figure 4, a Cluster Controller (CC) is used
to manage a Hyracks cluster. Worker machines are added to a
Hyracks cluster by starting a Node Controller (NC) process on
that machine and providing it with the network address of the
Cluster Controller process whose cluster it is to join. The NC
then initiates contact with the CC and requests registration.
As part of its registration request, the NC sends details about
the resource capabilities (number of cores, etc.) of its worker
machine. On successful registration, the CC replies to the NC
with the rate at which the NC should provide heartbeats back
to the CC to maintain continued membership in the cluster.

On receiving a job submission from a client, the CC infers
the stages of the job (as was illustrated in Figures 2 and 3).
Scheduling of a stage that is ready to execute is performed
using the latest information available about the cluster. (This
may happen much later than when the job was submitted,
e.g., in a long multi-stage job.) Once it has determined the
worker nodes that will participate in the execution of the
stage, the CC initiates task activation on those worker nodes
in parallel by pushing a message to start the tasks. This is
different from the way the Hadoop Job Tracker disseminates
tasks to the Task Trackers – Hadoop uses a pull model where
the Task Trackers pull tasks from the Job Tracker by means
of a periodic heartbeat. Although eagerly pushing job start
messages increases the number of messages on the cluster,
we have adopted this approach to minimize the wait time for
tasks to start execution. This becomes increasingly important
as a platform tries to target short jobs. In the future, we will
explore ways of minimizing the network traffic for control
messages by exploiting opportunities to piggyback multiple
messages targeting the same NC.

The control logic of the Hyracks Cluster Controller is
implemented in Overlog [15] using the JOL [16] library.
Overlog is an extension of Datalog that has support for events.
Integration with JOL was convenient since both JOL and
Hyracks are implemented in Java. The JOL implementation
of Overlog models data as tables of records with a declared
schema. The fields in the tables can be arbitrary Java objects.
JOL allows Java code to register callbacks that are invoked
by the Overlog interpreter when modifications are made to
the tables. JOL also allows insertion and deletion of records
in a table from Java. At a very high level, the Java code in
the CC is used to translate events from the outside world
(clients submitting jobs and NC registrations/heartbeats) into
inserts and deletes on JOL tables. This action triggers the
JOL interpreter to execute the JOL program which results in
modifications to one or more tables that have Java callbacks
attached. When invoked with data that is inserted into or
deleted from the tables by JOL, these callbacks apply the
desired effects in the outside world (e.g., by sending start/abort
task messages to the NCs). Figure 7 shows the role of JOL
and Java code as a controller framework.

Fig. 7: Mixed Java/JOL controller framework

Table I shows a few of the JOL tables that are relevant
to identifying the stages of a Hyracks job. When a job is
submitted, the CC translates the job specification into inser-
tions of records into the operatordescriptor (one record per
Operator Descriptor) and connectordescriptor (one record per
Connector Descriptor) tables. It then visits every Operator
Descriptor in the job specification and inserts a record into
the activitynode table for every activity of each Operator
Descriptor. As part of the expansion of the Operator De-
scriptor into activities, a mapping from the Operator De-
scriptor inputs (and outputs) to the Operator Task inputs
(and outputs) is provided along with blocking dependencies
between activities. The input/output mapping is captured in
the activityconnection table while the blocking information
is captured in the activityblocked table. Once the CC has
inserted records into these tables, it invokes the JOL runtime
to evaluate the Overlog program. Figure 8 shows the part of
the Overlog program used by the Cluster Controller to infer
stages of activities and populate the activitystage rec and
activitystage tables. The activitystage rec table is populated
using rules 1 thru 4 recursively and the final result of stage
assignments to activities is recorded in the activitystage table.
The rules specified in Overlog can be summarized as follows:

1) Rule 1: Initially assume all activities can be evaluated in
the earliest stage by inserting an assignment of stage 0
to every activity in the activitynode table.

2) Rule 2: If an activity A1 must block on activity A2, and
A1 is assigned a stage earlier than or the same as A2,
insert a stage assignment for A1 that is one greater than
the stage assigned to A2.

3) Rules 3 and 4: If activity A1 is connected to activity
A2 through a Connector Descriptor, and A1 and A2
belong to different stages, insert a stage assignment for
A1 that is the later of A1’s and A2’s stages. This rule
occurs twice, once for A1 and once for A2, because
the connectordescriptor table captures a one-way con-
nection whereas for the stage assignment we concern
ourselves with the existence of a connection. Intuitively,
if we wish to co-schedule (for pipelining) the activities
connected by a data flow connector, they will both need
to be assigned to the latter of the stages to which they
belong.



4) Rule 5: Finally, the actual stage number associated with
an activity is the maximum over all of the stage number
assignments and is captured in the activitystage table.

The scheduling and fault-recovery logic is also implemented
in Overlog using the general principles described above, but
not explained here due to space constraints.

B. Task Execution Layer

Once a stage of a Hyracks job becomes ready to run, the
CC activates the stage on the set of NCs that have been chosen
to run the stage and then waits until the stage completes or
until an NC failure is detected. In the remainder of this section
we explore the task activation process and then discuss some
details of the implementation of the data-processing and data-
movement aspects of Tasks and Connectors, respectively.

1) Task Activation: When a stage becomes ready to run, the
Cluster Controller sends messages to the Node Controllers par-
ticipating in that stage’s execution to perform task activation
in three steps.

1) Receiver Activation: The CC initiates a ReceiverActiva-
tion request to every NC that participates in a stage’s
execution. Each NC, on receipt of this request, creates
the Task objects that have been designated to run at that
NC (as determined by the scheduler). For each Task that
accepts inputs from other Tasks, it creates an endpoint
that has a unique network address. The mapping from
a Task object’s input to the endpoint address is relayed
back to the CC as the response to this request.

2) Sender-Receiver Pairing: Once the CC receives the Re-
ceiverActivation responses containing local endpoint ad-
dresses from the NCs, it merges all of them together to
create a global endpoint address map. This global map is
now broadcast to each NC so that the send side of each
Task object at that NC knows the network addresses of
its consumer Tasks.

3) Connection Initiation: Once pairing has completed on all
NCs, the CC informs all of the NCs that the Tasks can
be started.

2) Task Execution and Data Movement: The unit of data
that is consumed and produced by Hyracks tasks is called
a Frame. A frame is a fixed-size (configurable) chunk of
contiguous bytes. A producer of data packs a frame with a
sequence of records in a serialized format and sends it to
the consumer who then interprets the records. Frames never
contain partial records; in other words, a record is never split
across frames. A naive way to implement tasks that process
records is to deserialize them into Java objects and then
process them. However, this has the potential to create many
objects, resulting in more data copies (to create the object
representation) and a burden on the garbage collector (later)
to reclaim the space for those objects. To avoid this problem,
Hyracks provides interfaces for comparing and hashing fields
that can be implemented to work off of the binary data in a
frame. Hyracks includes implementations of these interfaces
for the basic Java types (String, integer, float, etc.). Hyracks

also provides Task implementors with helper functions to
perform basic tasks on the binary data such as to copy
complete records, copy specific fields, and concatenate records
from source frames to target frames.

A task’s runtime logic is implemented as a push-based iter-
ator that receives a frame at a time from its inputs and pushes
result frames to its consumers. Note that the task-runtime only
implements the logic to process streams of frames belonging
to one partition without regards to any repartitioning of the
inputs or outputs that might be required. Any repartitioning is
achieved by using a Connector. The connector runtime has two
sides, the send-side and the receive-side. There are as many
send-side instances of a connector as tasks in the producing
activity, while there are as many receive-side instances as
tasks in the consuming activity. The send-side instances are
co-located with the corresponding producer tasks, while the
receive-side instances are co-located with the consuming tasks.
When a send-side instance of a connector receives a frame
from its producing task, it applies its redistribution logic to
move records to the relevant receive-side instances of the
connector. For example, the M:N hash-partitioning connector
in Hyracks redistributes records based on their hash-value. The
send-side instances of this connector inspect each record in the
received frame, compute the hash-value, and copy it to the
target frame meant for the appropriate receive-side instance.
When a target frame is full, the send-side instance sends
the frame to the receive-side instance. If the send-side and
receive-side instances of a connector are on different worker
machines (which is most often the case), sending a frame
involves writing it out to the network layer. The network layer
in Hyracks is responsible for making sure that the frame gets
to its destination.

In order to use network buffers efficiently on the receive-
side of a connector, Hyracks allows the connector implemen-
tation to specify the buffering strategy for received frames.
Figure 9 shows two buffering strategies that could be chosen
by a connector. If the receive-side logic of a connector does
not differentiate between the frames sent by the various send-
side instances, it can choose to use one network buffer for all
senders. On the other hand, if the connector’s logic requires
treating frames from different senders separately, it can use one
network buffer per send-side instance. For example, the M:N
hash-partitioning connector does not differentiate frames based
on their senders. However, an M:N sort-merge connector,
which assumes that frames sent by a sender contain records
that are pre-sorted, needs to decide which sender’s frame to
read next in order to perform an effective merge.

V. EXPERIMENTAL RESULTS

In this section we report the results of performance com-
parisons of Hadoop and Hyracks as data-intensive computing
platforms. First, we compare the performance of jobs written
using the MapReduce paradigm by running them on Hadoop
and running the same jobs unchanged on Hyracks using its
Hadoop compatibility layer. Next, we show the difference in
performance that results from not being limited to the MapRe-



TABLE I: Tables identifying stages of a Hyracks job.
Table Name Table Attributes
operatordescriptor JobId, OperatorDescriptorId, OperatorDescriptor
connectordescriptor JobId, ConnectorDescriptorId, SourceOperatorId, SourcePort, TargetOperatorId, TargetPort, ConnectorDescriptor
activitynode JobId, OperatorDescriptorId, ActivityId, Activity
activityconnection JobId, OperatorDescriptorId, OperatorPort, Direction, ActivityId, ActivityPort
activitystage JobId, OperatorDescriptorId, ActivityId, StageNumber
activityblocked JobId, BlockingOperatorDescriptorId, BlockingActivityId, BlockedOperatorDescriptorId, BlockedActivityId

activitystage rec(JobId, OpId, ActivityId, 0) :− activitynode(JobId, OpId, ActivityId, ); (1)

activitystage rec(JobId, OpId2, ActivityId2, Stage) :− activitystage rec(JobId, OpId1, ActivityId1, Stage1), (2)

activitystage rec(JobId, OpId2, ActivityId2, Stage2),

activityblocked(JobId, OpId1, ActivityId1, OpId2, ActivityId2),

Stage2 ≤ Stage1 { Stage := Stage1 + 1; };
activitystage rec(JobId, OpId2, ActivityId2, Stage) :− activitystage rec(JobId, OpId1, ActivityId1, Stage1), (3)

activitystage rec(JobId, OpId2, ActivityId2, Stage2),

activityconnection(JobId, OpId1, Op1Port, Dir.OUT, ActivityId1, ),

activityconnection(JobId, OpId2, Op2Port, Dir.IN, ActivityId2, ),

connectordescriptor(JobId, , , OpId1, Op1Port, OpId2, Op2Port, ),

Stage1 6= Stage2 { Stage := java.lang.Math.max(Stage1, Stage2); };
activitystage rec(JobId, OpId1, ActivityId1, Stage) :− activitystage rec(JobId, OpId1, ActivityId1, Stage1), (4)

activitystage rec(JobId, OpId2, ActivityId2, Stage2),

activityconnection(JobId, OpId1, Op1Port, Dir.OUT, ActivityId1, ),

activityconnection(JobId, OpId2, Op2Port, Dir.IN, ActivityId2, ),

connectordescriptor(JobId, , OpId1, Op1Port, OpId2, Op2Port, ),

Stage1 6= Stage2 { Stage := java.lang.Math.max(Stage1, Stage2); };
activitystage(JobId, OpId, ActivityId, max < Stage >) :− activitystage rec(JobId, OpId, ActivityId, Stage); (5)

Fig. 8: Fragment of Overlog program for inferring stages of activities.

Shared buffer. One buffer per sender.

Fig. 9: Buffering strategies for connectors.

duce model in Hyracks. Finally, we explore the performance
of Hadoop and Hyracks when node failures occur by using a
simple model for generating failures.

For all of the experiments shown in this section, we used
a cluster of ten IBM machines each with a 4-core Xeon 2.27
GHz CPU, 12GB of main memory, and four locally attached
10,000 rpm SATA drives. The same cluster was used for
Hyracks as well as Hadoop. The Hadoop version used was
0.20.1.

A. MapReduce on Hyracks

In this section, we compare the running times of three very
different kinds of jobs (K-Means clustering, a TPC-H style
query, and Set-Similarity Joins) on Hadoop versus on Hyracks
using the compatibility layer.

1) K-Means: K-Means is a well known clustering algorithm
that tries to find clusters given a set of points. Mahout [17]
is a popular open source project that includes a Hadoop
implementation of the K-Means algorithm as MapReduce
jobs. The clustering problem consists of grouping a set of
n points into k clusters {Ci}i=1,k with centers {µi}i=1,k,
such that each point is assigned to the cluster with the closest
center. The K-Means MapReduce implementation [18] starts
with a randomized algorithm (called canopy computation) to
heuristically determine the number of clusters that the K-
Means algorithm must try to find. The canopy MapReduce
job finds k points to serve as initial centroids of the k clusters
that will then be refined by subsequent iterations of the K-
Means algorithm. Each iteration of the K-Means algorithm is
also implemented as a MapReduce job. The Map phase scans
over the set of data points in the input and finds their closest
centroid µj among the k centroids computed in the previous
step. Once the closest centroid is found, that input point is
deemed to belong to cluster j. The output of the Map phase is
regrouped by the cluster assignment of each point and routed



to the Reducers. The Reduce phase computes a new cluster
centroid for each of the k clusters by averaging the coordinates
of all points assigned to that cluster.
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Fig. 10: K-Means on Hadoop and Hyracks

In Figure 10 we show separately the time taken by the
canopy computation phase and by the iterations for K-Means
on both systems. We further explore the efficiency tradeoffs
of Hyracks vs. Hadoop as a data-platform by presenting the
average running-time of the iterations both with and without
combiners in the two systems. Turning off combiners for the
iterative part of the K-Means algorithm increases dramatically
the amount of data that is moved from the Map phase to the
Reduce phase (although it does not change the final result).

From Figure 10 we see that the canopy computation phase
benefits the least from running on Hyracks since it is mostly
CPU intensive. This phase initially (for 0.5 and 1 million
points) shows faster time to completion on Hyracks. However,
as the size of the data grows from 1.5 to 3 million points, the
two lines essentially converge. This is because Hyracks runs
the same CPU-intensive user functions that Hadoop runs, and
hence there is not much room for improvement there. On the
other hand, when much of a job’s time is spent in re-organizing
data by partitioning and sorting, running the MapReduce job
on Hyracks performs better. The K-Means iteration results
clearly show this behavior. This improvement owes itself to the
more efficient nature of the data-movement layer that forms
the foundation for the Hyracks operators and connectors.

In Hadoop, moving data from the mappers to the reducers
is performed rather inefficiently. All data from the mappers is
written to disk before it is moved to the reducer side. When a
reducer is notified of a mapper’s completion, it initiates a pull
of its partition using HTTP. The resultant near-simultaneous
fetch requests from all reducers to the mappers leads to disk
contention on the Map side as the reducers try to read all
of the requested partitions from disk; there is also a surge in
network traffic created by such simultaneous requests [19].

In Hyracks, data is instead pushed from the producers to
the consumers in the form of fixed sized chunks (on the order
of 32KB) incrementally, as they are produced. This leads to

a much smoother utilization of the network throughout the
processing time of the producer. Also, since the producer
decides when a block is sent out, the aforementioned disk
contention issue does not arise in Hyracks.

2) Set-Similarity Joins: Set-Similarity Joins match data
items from two collections that are deemed to be similar to
each other according to a similarity function. Work reported
in [20] performed an extensive evaluation of algorithms for
computing such joins using the MapReduce framework. From
that work we took the best MapReduce algorithm to compare
its performance on Hadoop vs. on Hyracks using the Hadoop
compatibility layer. This “fuzzy join” computation requires
three stages of MapReduce jobs, as shown in Figures 11,
12, and 13. The first stage tokenizes the input records and
produces a list of tokens ordered by frequency using two
MapReduce jobs. The second stage (one MapReduce job)
produces record-id pairs of similar records by reading the
original data and using the tokens produced in the first stage as
auxiliary data. The final stage of SSJ computes similar record
pairs from the record-id pairs from Stage 2 and the original
input data using two MapReduce jobs. We refer the reader to
[20] for more details about the algorithm.

For comparing the performance of Set-Similarity Joins
(SSJ), we used the algorithm shown in the figures to find
publications with similar titles in the DBLP dataset [21] by
performing a join of the DBLP data with itself. In order
to test performance for different sizes of data, we increased
the DBLP data sizes to 5x, 10x, and 25x over the original
dataset (which contains approximately 1.2M entries) using the
replication scheme of [20]. Table II shows the running times
for the three stages of the SSJ algorithm on the three different
sizes of data. The row labeled “Hadoop” represents the time
taken to run each stage as a Hadoop job; “Compat” shows
the time taken to run the same MapReduce jobs using the
compatibility layer on Hyracks (Please ignore the row labeled
“Native” for now; it will be explained shortly).

TABLE II: Size-up for Parallel Set-Similarity Joins (10 nodes)
Stage 1 Stage 2 Stage 3 Total time

5x
Hadoop 75.52 103.23 76.59 255.34
Compat 24.50 38.92 23.21 86.63
Native 11.41 32.69 9.33 53.43

10x
Hadoop 90.52 191.16 107.14 388.82
Compat 42.15 128.86 38.47 209.49
Native 16.14 81.70 14.87 112.71

25x
Hadoop 139.58 606.39 266.26 1012.23
Compat 105.98 538.74 60.62 705.34
Native 34.50 329.30 27.88 391.68

In the column labeled “Stage 1” in Table II, we see that
the MapReduce jobs running on Hadoop scale smoothly with
increasing data sizes. The Hadoop compatibility layer on
Hyracks also shows this trend. However, the job running on
Hyracks is faster because it benefits from two improvements:
low job startup overhead and more efficient data movement
by the infrastructure. Hyracks uses push-based job activation,
which introduces very little wait time between the submission
of a job by a client and when it begins running on the node
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Fig. 11: Example data flow of Stage 1 of Set-Similarity
Joins. (Basic Token ordering for a self-join on attribute “a”.)

Fig. 12: Example data flow of Stage 2 of Set-Similarity
Joins. (Basic Kernel for a self-join on attribute “a”.)

Fig. 13: Example data flow of Stage 3 of Set-Similarity
Joins using Basic Record Join for a self-join case. “a1” and
“a2” correspond to the original attribute “a”, while “b1”
and “b2” correspond to attribute “b”.

controllers.
In the column labeled “Stage 2” in Table II, we observe a

near constant difference between the running times of Hadoop
and Hyracks. This is because most of the time in this stage
is spent in the Reducer code that uses a quadratic algorithm
to find matching records. We do not describe the details here
due to space limitations; we refer the reader to the original
paper on this algorithm in [20]. The key thing to note is that
most of the work in this stage is done in the Reduce phase in
user-defined code, so the only improvement we can expect is
due to lower overhead of the infrastructure.

The column labeled “Stage 3” in Table II, shows that at

5x data size, the ratio of the Hadoop completion time to the
Hyracks compatibility layer completion time is 3.3; the ratio
drops to about 2.8 at the 10x data size. As the amount of data
grows to 25x, we see the compatibility layer completing about
4 times faster than Hadoop. This is because Stage 3 performs
two “joins” of the record-ids with the original data to produce
similar-record-pairs from the similar-record-id-pairs that were
produced by the previous stage. Every join step reshuffles all
of the original input data from the Map to the Reduce phase,
but the output of the join is fairly small. Most of the work is
thus performed in moving the data (as the Map and Reduce
code is fairly simple). At smaller data sizes, Hadoop times are
dominated by startup overhead, while for larger data sizes the
dominating factor is data redistribution.

3) TPC-H: The TPC-H query is the query from the Hyracks
running example that was introduced in Section II-A. Fig-
ure 14 shows the structure of the two MapReduce jobs
corresponding to the running example from Figure 1.
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Fig. 14: Hadoop implementation of TPC-H query from Fig. 1.

The first MapReduce job in Figure 14 performs the join
using the tagged-join method described in [22], while the
second job computes the aggregation. The Mapper of the
first job generates the value field as a tagged output that
indicates whether the record is from the CUSTOMER source
or the ORDER source. The associated key is generated by
extracting the C CUSTKEY field if it is a customer record or
the O CUSTKEY if it is an ORDER record. The Reducer of
the join job then receives all records (both CUSTOMER and
ORDER) that match on the join key. The Reducer function
then generates the CUSTOMER-ORDER pairs to be sent to
the output. The data generated from this first MapReduce job
is used as the input for the second MapReduce job, which
performs the aggregation step by grouping the data on the
value of the C MKTSEGMENT field and then computing
the desired count. The Mapper of this job produces the
value of C MKTSEGMENT as the key and the CUSTOMER-
ORDER pair as the value. The Reducer thus receives a
list of CUSTOMER-ORDER pairs for the same value of
C MKTSEGMENT that it then counts. The final query output
is emitted as a pair of C MKTSEGMENT and count values.

As with the other tasks, we measured the end-to-end re-
sponse time of the jobs by running them on Hadoop and
comparing that with the time it took to run the same MapRe-
duce jobs on Hyracks using the compatibility layer. In addition



to the standard configuration of running the two MapReduce
jobs sequentially, with HDFS used to store the intermediate
join result, we also executed the compatibility layer with
“pipelining” between jobs turned on. In this case the join job
pipelines data to the aggregation MapReduce job without the
use of HDFS.

As we see from Figure 15, TPC-H on Hadoop takes about
5.5 times the time taken by the compatibility layer on Hyracks
for smaller data sizes (scale 5). Job start-up overhead in
Hadoop is responsible for this slowness. As data sizes grow,
we observe that the running times for Hadoop and the compat-
ibility layer grow super-linearly. This is not surprising since
there are two sort steps involved, one in the first MapReduce
job to perform the join of CUSTOMER and ORDER data, and
the second to perform aggregation in the second MapReduce
job. The result of the join is quite large, and hence a substantial
amount of time is spent in partitioning and sorting. To measure
the time spent in writing the join results to HDFS and reading
it back in, we also ran in compatibility mode with pipelining
turned on. We observe from Figure 15 that I/O to and from
HDFS adds significant overhead. At scale 40, the compatibility
layer takes about 133 seconds (about 25% longer than the
pipelined execution). Note however that all of the MapReduce
running times exhibit a super-linear curve owing to the sort
operations (We will ignore the “Hyracks Native” curve for
now).
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Fig. 15: TPC-H query from Fig. 1 with Hadoop and Hyracks.

B. Beyond MapReduce

We now show the results of running two experiments to
study the performance improvements obtainable in Hyracks by
not being restricted to the MapReduce programming model.
We present results for Set-Similarity Joins and the TPC-H
join/aggregate example query.

1) Set-Similarity Joins (Take 2): Figures 16, 17, and 18
show the native Hyracks job specifications to implement the
three stages of the Hadoop based Set-Similarity Join examined
in the previous subsection.

Scanner
(RECORDS)

HashGroupby
TOKEN

Agg: count

Mapper
tokenize(RECORD)

→[TOKEN,...]

Sorter
COUNT

Writer
(TOKENS)

1:1 M:N
hash(TOKEN)

M:1 1:1

Fig. 16: Hyracks-native plan for Stage 1 of Set-Similarity
Self-Joins.
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Writer
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Fig. 17: Hyracks-native plan for Stage 2 of Set-Similarity
Self-Joins.
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Fig. 18: Hyracks-native plan for Stage 3 of Set-Similarity
Self-Joins.

In Table II, the row labeled “Native” shows the time
required by the Hyracks jobs to perform Set-Similarity Joins.
We can now compare these times to those that we examined
previously. These faster Native times are due in part to the
savings already discussed, but here we also see additional
algorithmic benefits. Stage 1 benefits the most from the Native
formulation due to the use of hash based grouping, which does
not need to sort the input data like in Hadoop. Stage 3, in
the Native case, benefits from using hash join operators that
perform the joins by building a hash-table on one of their
inputs and then probing the table using the other input. This
strategy is cheaper than first sorting both inputs on the join
key to bring the matching values from both the sides together
(which is what happens in Hadoop). In Stage 2, we used sort-
based grouping since it performed slightly better than its hash-
based counterpart. Usually, hash-based aggregation works well
for traditional aggregates when grouping is performed on
relatively low cardinality attributes, as compression is achieved
by the aggregation. In the case of Stage 2, however, the
grouping operation is used to separate the input into groups
without applying an incremental aggregation function. The sort
operator in Hyracks implements the “Poor man’s normalized
key” optimization mentioned in [23] which can be exploited
when building Hyracks Native jobs. This optimization helps
in terms of providing cheaper comparisons and better cache
locality. After sorting, the “aggregation” function performs a
quadratic scan of the items within each group. This is seen in
Table II as a super-linear growth in the completion time for



Stage 2.
In summary, we see that the Native formulation of Set-

Similarity Joins run about 2.6 to 4.7 times faster than their
MapReduce formulation running on Hadoop and about 1.6 to
1.8 times faster than running the same MapReduce jobs on
Hyracks using its compatibility layer.

2) TPC-H (Take 2): We now compare the two MapReduce
TPC-H implementations with the native Hyracks implementa-
tion. The “Hyracks Native” line in Figure 15 shows the results
of natively running the TPC-H query in Figure 1. Notice that
for large data the TPC-H query executes on Hyracks much
faster than the MapReduce counterparts on Hadoop or on
Hyracks via the compatibility layer. As in the native expression
of Set-Similarity Joins, this is due in part to the fact that the
TPC-H query uses hash-joins and hash-based aggregation. In
addition, Hyracks does not need to materialize intermediate
results between the joiner and the aggregator. In contrast, since
Hadoop accepts one MapReduce job at a time, it needs to
persist the output of the Join job for this example in HDFS. To
minimize the “damage” caused by this materialization on the
Hadoop completion time, we set the replication factor in HDFS
to 1 (meaning no replication). We observe that the Hyracks
job scales linearly with growing data size since all operations
in the pipeline have linear computational complexity for the
memory and data sizes considered here.

To conclude, Hyracks is a more efficient alternative to
Hadoop for MapReduce jobs, and even greater performance
benefits can be achieved by not being restricted to the
MapReduce programming model. Here we have compared the
performance characteristics of Hadoop and Hyracks in detail
for K-Means clustering, Set-Similarity joins, and an example
TPC-H query. We have measured even greater benefits for
simpler jobs. For example, the standard Hadoop Word-Count
MapReduce job on 12 GB of data ran approximately twice as
fast on Hyracks using the compatibility layer than on Hadoop,
and a Native Word-Count implementation on Hyracks ran
approximately 16 times as fast as the Hadoop MapReduce
version.

C. Fault Tolerance Study

A system designed to run on a large number of commodity
computers must be capable of detecting and reacting to pos-
sible faults that might occur during its regular operation. In
this part of the paper, we perform a very simple experiment
to illustrate the fact that, while being able to run jobs through
to the end despite failures is valuable, doing so by being pes-
simistic and ever-prepared for incremental forward-recovery
is not a general “right” answer. Hadoop uses a naive strategy
based on storing all intermediate results to durable storage
before making progress. While such a naive strategy is a safe
first approach, we wish to begin exploring the path of applying
more selective fault-tolerance. Hyracks is in a better position to
exploit operator and connector properties to achieve the same
degree of fault tolerance while doing less work along the way.
As our first step in this direction, the Hyracks fault-tolerance
strategy that we use for the experiment in this section is to

simply restart all jobs impacted by failures. Although such a
strategy cannot be the only one in a system like Hyracks, we
believe that this is actually an effective strategy for smaller to
medium-sized jobs.

We used the TPC-H example query shown in Figure 1 on
data scale 40 for this experiment. In our experimental set-
up, we had the client submit the same job request over and
over again in an infinite loop without any think time and
we measured the observed completion time for every request.
Separately, we killed a randomly chosen cluster node at regular
intervals. In different runs of the experiment, we changed the
mean time between failures from 100 seconds to 1600 seconds.
The same experiment was performed with the jobs running
on Hyracks and then with the corresponding jobs running on
Hadoop. Figure 19 shows the observed request completion
time (retry times included) for the two systems for different
MTBF (mean time between failure) values. The data inputs to
the jobs in both systems were replicated so that a node failure
could still allow progress of the job.
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Fig. 19: TPC-H query from Fig. 1 in the presence of failures.

In Hadoop in order to provide as much isolation from
failures as possible, every map task writes its output to the
local disk before its data is made available to the reducer side.
On the reducer side, every partition fetched from every map
task is written to local disk before a merge is performed. The
goal of the extra I/O in Hadoop is to make sure that at most
one task needs to be restarted when a failure occurs. In the
current implementation of Hyracks, however, data is pipelined
from producers to consumers, so a single failure of any one
node requires a restart of all of the operators that are currently
part of the same pipelined stage.

We observe from Figure 19 that Hyracks runs the TPC-
H job to completion faster even when failures are injected
into the cluster very frequently. Note also that, since a given
Hyracks job runs to completion much faster than the “fault-
tolerant” Hadoop job, a given Hyracks job is less likely to be
hit by a failure during its execution in the first place.

As we mentioned earlier, a strategy that requires a complete
restart cannot be the only fault recovery strategy in a system.



If the mean time between failures is less than the mean time
to complete a job, then such a job may never complete. Work
is currently underway in Hyracks to limit the part of a job that
needs to be restarted while not losing the performance benefits
of pipelining.

VI. RELATED WORK

Hyracks builds on the bodies of prior work in two areas:
parallel database systems and data-intensive computing. As
much of Hyracks’ relationship to other work has already been
mentioned, we review related work only briefly here.

Early parallel database systems such as Gamma [14],
Teradata [24], and GRACE [25] applied partitioned-parallel
processing to data management, particularly query processing,
over two decades ago. In [26], DeWitt and Gray explained
how shared-nothing database systems can achieve very high
scalability through the use of partitioned and pipelined par-
allelism, and many successful commercial products today are
based on these principles. Hyracks essentially ports the same
principles to the world of data-intensive computing. Hyracks’
operator/connector division of labor was motivated in partic-
ular by the Gamma project’s architecture; Gamma’s operators
implemented single-threaded data processing logic, and its
connections (split-tables) dealt with repartitioning data. The
modeling of operator trees by Garofalakis and Ioannidis [27]
motivated the expansion of Hyracks operators into activities
in order to extensibly capture blocking dependencies.

The introduction of Google’s MapReduce system [1] has
led to the recent flurry of work in data-intensive computing.
In contrast to MapReduce, which offers a simple but rigid
framework to execute jobs expressed in specific ways (i.e.,
using mappers and reducers), Microsoft proposed Dryad [3],
a generalized computing platform based on arbitrary compu-
tational vertices and communication edges. Dryad is a much
lower-level platform than MapReduce; e.g., we could have
built Hyracks on top of Dryad if it had been available under
an open source license. Hadoop [2], of course, is a popular
open source implementation of the MapReduce platform;
Hyracks targets the same sorts of applications that Hadoop is
used for. The recent Nephele/PACTS system [28] extends the
MapReduce programming model by adding additional second-
order operators (e.g., match, cross, and co-group) with “your
function goes here” plug-in points. Such an extension could
be implemented as a layer on top of Hyracks similar to
our Hadoop compatibility layer. Finally, declarative languages
such as Pig [29], Hive [7], and Jaql [6]) all seek to compile
higher-level languages down to MapReduce jobs on Hadoop.
These languages could potentially be re-targeted at a platform
like Hyracks with resulting performance benefits. (We are
currently doing that for Hive, as one proof point, in addition
to our own language, AQL, in the ASTERIX project at UCI.)

ETL (Extract-Transform-Load) systems have also used the
DAG model to describe the transformation process. The
DataStage ETL product from IBM [30] is similar to Hyracks in
the way that its graph of operators and data-redistribution it ex-
presses. DataStage does not provide automatic fault recovery,

which is understandable given the smaller sized clusters it tar-
gets. Also, although DataStage generalizes the implementation
of operators and data-redistribution logic, it provides no way
for implementers to provide details about behavioral aspects
that the infrastructure could use for scheduling purposes.

Recently, there has been work in making Hadoop jobs
more performant through clever placement and organization
of data [31] or by sharing intermediate computations across
jobs [32]. Such work is orthogonal to the way that Hyracks
achieves its performance improvements. Thus, these tech-
niques could be used in conjunction with Hyracks, lead-
ing to further performance improvements. One other project
that improves the performance of relational queries using
Hadoop, essentially using it as a distributed job dispatcher,
is HadoopDB [33].

VII. CONCLUSION AND FUTURE WORK

This paper introduced Hyracks, a new partitioned-parallel
software platform that we have designed and implemented to
run data-intensive computations on large shared-nothing clus-
ters of computers. As described, Hyracks allows its users to
express a dataflow job as a DAG of operators and connectors.
Operators operate on partitions of input data and produce par-
titions of output data, while connectors repartition operators’
outputs to make the newly produced partitions available at the
inputs of their consuming operators. We described the Hyracks
end user model, for authors of Hyracks jobs, as well as the
extension model for users who wish to augment the Hyracks
built-in library with new operator and/or connector types. We
also described the initial Hyracks implementation, including
its approaches to job control, scheduling, fault-tolerance, and
the efficient handling of data.

Lastly, we presented results from an initial performance
evaluation of the current implementation of Hyracks on a 40-
core/40-disk cluster at UCI. Since Hyracks is in same space
as the popular Hadoop platform, our experiments compared
Hyracks with Hadoop. The results indicate that Hyracks’ fu-
sion of database-derived processing techniques with the world
of data-intensive computing has promise: The Hadoop com-
patibility layer of Hyracks consistently outperformed Hadoop
for several different classes of applications, and relaxing the
MapReduce programming model was shown to provide signifi-
cant further gains. We also demonstrated that a less pessimistic
approach to fault-tolerant job execution can be advantageous.
We have released a preliminary version of Hyracks via open
source (http://code.google.com/p/hyracks/) and are ready to
begin welcoming inquiries and trial uses of Hyracks (and
feedback!) from other data-intensive computing researchers.

In terms of future work, we have just begun to scratch the
surface of the areas that we hope to explore in the next few
years. Our plans include much more work related to parallel
query compilation and execution on large clusters, using
Hyracks as the runtime platform, as well as the integration of
resource- and load-based query scheduling with fault-tolerant
query execution and recovery techniques. We are also working
on large-scale storage and indexing of semistructured data



in the context of our ASTERIX project, again with Hyracks
providing the runtime glue. Our eventual goal is to offer two
open source software platforms to the community: Hyracks,
for data-intensive computation, and ASTERIX, for large-scale,
next-generation information management.
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