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Abstract—In this paper we address the problem of using
MapReduce to sample a massive data set in order to produce
a fixed-size sample whose contents satisfy a given predicate.
While it is simple to express this computation using MapReduce,
its default Hadoop execution is dependent on the input size
and is wasteful of cluster resources. This is unfortunate, as
sampling queries are fairly common (e.g., for exploratory data
analysis at Facebook), and the resulting waste can significantly
impact the performance of a shared cluster. To address such use
cases, we present the design, implementation and evaluation of
a Hadoop execution model extension that supports incremental
job expansion. Under this model, a job consumes input as
required and can dynamically govern its resource consumption
while producing the required results. The proposed mechanism is
able to support a variety of policies regarding job growth rates
as they relate to cluster capacity and current load. We have
implemented the mechanism in Hadoop, and we present results
from an experimental performance study of different job growth
policies under both single- and multi-user workloads.

I. INTRODUCTION

The ability to process and analyse large quantities of data
has become a key factor in determining the success of data-
driven businesses. As storage has become relatively cheaper,
enterprises are not just interested in collecting more data,
but also maintaining large histories of data. The accumulated
data may scale up to petabytes. Processing the data to derive
useful information or find useful patterns is a challenging task.
A significant part of the challenge derives from the massive
size of the data. The collected data does not come with pre-
built indexes to provide efficient traversal. Further, the data
collection activity is unlikely to produce pre-sorted data or
provide statistical information like histograms that describe
the data. Thus, there is still a long way to go before the data
is partitioned appropriately, useful indexes are constructed, or
the data has been filtered to retain its useful parts. Any sort of
data analysis or mining technique applied over the collected
dataset is therefore likely to be expensive.

It is important to recognize that not everyone wishes to
view data in the same way. Consider an example dataset that
captures demographic information about each individual in
the country. The dataset might record each person’s name,
date of birth, gender, residence, profession and salary. To a
statistician interested in approximating the mean salary of
female professionals in the state of California, a significant
part of the data is unwanted. An appropriately-sized sample
representing the female working population of the state would
be sufficient to arrive at the required result. Different from

such an analysis, a developer may just wish to test a new
query against the dataset. Running the query against the whole
dataset could incur a significant cost and a long wait time
until the query returns results. This cost could be avoided
by working with a small subset of data. Further, testing the
query against all sorts of data may require imposing additional
constraints on the values of the contained fields in the data.

Sampling has been established as an effective tool in
reducing the size of input data to avoid the huge cost in any
subsequent processing [9], [10]. For the scenarios described
above, a random fixed sized sample will not suffice as each
record in the returned sample is additionally required to
satisfy some user-specified predicate(s). Sampling a dataset
with additional predicates as an inclusion criterion will
be referred to as predicate-based sampling in this paper.
Predicate-based sampling is essentially equivalent to sampling
the results of the relational selection operator and was studied
in [9] in context of relational databases. Predicate-based
sampling can be expressed as a SQL query as follows:

SELECT attributes FROM dataset
WHERE condition LIMIT k

Above, condition represents the set of predicate(s) and k is
the required sample size. While predicate-based sampling can
significantly reduce subsequent processing, it is a non-trivial
task for the following reasons.

1) Absence of Indexes: The collected data does not arrive
with pre-defined indexes. Evaluating the predicate(s) on a
large volume of collected data would require a sequential
scan that is likely to be resource-intensive.

2) Wide range of possible predicates: Applications or end-
users could possibly apply a wide range of predicates that
may not be known priori. Choosing a partitioning method
or an index can be hard, as it may not be appropriate
for the predicate(s) being used when sampling.

Predicate-based sampling as a pre-processing task is a widely
occurring pattern inside Facebook. The data warehouse at
Facebook stores more than 15PB of data and loads more
than 60TB of new data everyday [15]. A large number of
applications rely on processing the large quantities of collected
data. These include reporting and data visualization tools as
well as complex machine learning applications. It is imperative
to develop a mechanism for obtaining the desired samples in a
way that is acceptable both in terms of resource consumption
and response time. The work presented in this paper began at
Facebook and aimed at building an efficient mechanism that



would allow obtaining samples from very large datasets with
response times independent of the size of the datasets.

At Facebook, a large part of data-processing is based on
Map-Reduce [5] and runs extensively on Hadoop [6], a widely
used open-source implementation of Map-Reduce. In industry,
a typical Map-Reduce cluster consists of hundreds, if not
thousands, of commodity machines. A Map-Reduce cluster
is typically shared amongst a group of end-users and multiple
jobs are executed in parallel. End-users typically use a high-
level language (Hive [7] in the case of Facebook) to express
their data-intensive tasks in terms of queries similar in style to
SQL or relational algebra. A cluster has limited resources in
terms of the available cores/disks and is thus configured with
an upper bound on the number of map/reduce tasks that can
be run in parallel. In such a constrained setting, it is desirable
for each job to execute efficiently using minimal resources.

The Hadoop Map-Reduce implementation executes all jobs
under the assumption that all input must be processed for
producing the desired result. Job input files are divided into
smaller partitions called input splits. Processing each split
requires acquiring an empty map slot and using significant disk
I/O and CPU cycles. Even if a job can potentially produce it’s
result from a fraction of the input, Hadoop has no mechanism
for curtailing its execution and finishing early. (Section II-C
contains more details regarding the inefficiencies that arise
from Hadoop’s rigid execution model.) This inefficiency might
still be acceptable when handling smaller datasets of the order
of a few hundred gigabytes; for larger jobs that need to process
tera- or petabytes, however, these inefficiencies may require
using a dedicated cluster, which may not be feasible.

Predicate-based sampling belongs to the class of jobs that
may not require processing the whole input. Since the data
distribution or predicate-selectivity is not known apriori, a
job does not know a priori the amount of input that would
suffice to produce the desired sample size. However, these
characteristics can be estimated as data begins to flow through
the system at runtime. As a job learns more about the input
data, it can dynamically take decisions and consume input as
and when required. Further, a job should ideally consider the
current load on the cluster and adapt accordingly. Running on
a lightly loaded cluster, a job can afford to consume larger
amounts of input as the resources would otherwise be left
idle. On a more heavily loaded cluster, a job shall be cautious
in controlling its intake, as consuming additional input may
cause significant delays for want of resources that have long
wait times.

This paper offers the following contributions;
(1) Mechanism for Incremental Processing: We present a

Map-Reduce based execution model that allows incremen-
tal intake of input by a job and gives the job the ability to
control its growth. A job that dynamically takes decisions
and self-regulates its growth is referred as a dynamic job
in the rest of the paper.

(2) Policies for Incremental Processing: The mechanism to
incrementally consume input can be used in a multitude
of ways, each having different ramifications regarding

runtime characteristics. We present a set of configurable
policies that dictate the growth of a dynamic job and
help the user in customizing job execution as per the
requirements.

(3) Implementation over Hadoop/Hive:We provide an imple-
mentation of the proposed execution model where Hive
job can be configured as dynamic and executed in accor-
dance with a configured runtime policy.

(4) Efficient Predicate-Based Sampling: We apply incremental
processing to the task of predicate-based sampling and
obtain an efficient execution where response times depend
on the desired size of the sample rather than the size of
the input datasets.

(5) Experimental Evaluation of Policies: Performance experi-
ments are reported that evaluate the policies under differ-
ent workload settings and different degrees of skew in the
input data. The experiments provide insights about what
policy or policies work better and under what conditions.

The remainder of the paper is organized as follows. Section
II gives an overview of Map-Reduce and describes a Map-
Reduce based method for predicate-based sampling. Section
III introduces the concept of an Input Provider and presents a
modified Map-Reduce model that does not have the existing
inefficiencies. Section IV describes our implementation in the
context of a Facebook-like Hive/Hadoop setup. Section V
describes an experimental evaluation of the policies. Section
VI discusses the related work. We conclude in Section VII.

II. PREDICATE BASED SAMPLING USING MAP-REDUCE

A. Map Reduce Overview

Map-Reduce treats data as a list of (key,value) pairs and
expresses a computation in terms of two functions: map and
reduce.

map(k1, v1)→ list(k2, v2)

reduce(k2, list(v2))→ list(k3, v4)

The map function, defined by the user, takes as input a key-
value pair and outputs a list of intermediate key-value pairs.
All intermediate values corresponding to the same intermediate
key are grouped together and passed to a reduce function. The
reduce function, also defined by the user, processes each key
and the associated list of values and produces a list of key-
value pairs that form the final output. Figure 1 shows the data
flow in a Map-Reduce based execution.

Input data is loaded into a file or files in a distributed file
system (DFS) wherein each file is partitioned into smaller
chunks, also called input splits. A Map-Reduce computation
begins with a Map phase where each input split is processed
in parallel by as many map tasks as there are splits. Each
input split is a list of key-value pairs. A map task applies the
user-defined map function to each key-value pair to produce a
list of output key-value pairs. The output key-value pairs from
a map task are partitioned on the basis of their key. Each
partition is then sent across the cluster to a remote node in the
shuffle phase. Corresponding partitions from the map tasks
are merged and sorted at their receiving nodes. For each key,
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Fig. 1. Data flow in Map-Reduce

the associated values are grouped together to form a list. The
key and the corresponding list are given to the user-specified
reduce function. The resulting key-value pairs are written back
to the DFS and form the final output.

B. Implementing Predicate-Based Sampling

Obtaining a predicate-based sample can be done in an
“embarrassingly parallel” fashion wherein the input dataset
is broken down into partitions and each partition is searched
in parallel for candidate records that satisfy the predicate(s).
The candidate records found across the partitions are brought
together and processed further to produce a random sample of
the required size. It is straightforward to realize a naive Map-
Reduce based method for predicate-based sampling. The map
and reduce logic are shown in Algorithms 1 and 2 respectively.

Algorithm 1 Predicate-Based Sampling: Map Logic
k ⇐required size for the sample
foundRecords ⇐ 0
kdummy ⇐ dummy key
for all (key,value) pairs (ki, vi) in input do

if foundRecords < k then
if value satisfies the predicate then

foundRecords++
output (kdummy, vi) pair

end if
end if

end for

Algorithm 2 Predicate-Based Sampling: Reduce Logic
k ⇐required size for the sample
{Comment: As Map phase uses a single key kdummy , the Reduce
task receives a single [kdummy ,list(value)] pair.}
sampledRecords ⇐ list(value)
if sampledRecords.size() <= k then

output sampledRecords
else

Output the first k (kdummy ,value) pairs from sampledRecords
end if

The map phase uses a dummy key kdummy for each map
output. The map function evaluates the predicate on the value
part of each input (key,value) pair. If the predicate evaluates
to true, the map task outputs a (kdummy ,value) pair. The map
phase needs to output k such pairs, k being the required size
of the sample. Since each input partition gets processed in
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Fig. 2. A Map-Reduce based method for Predicate-Based Sampling

isolation, each map task attempts to output a maximum of k
pairs, as it is possible that that none of the other map tasks
output any desirable results. Since all map outputs share the
same key (kdummy), the lone reduce task receives a single
key and a list containing the values that were found to satisfy
the predicate. The list may contain a minimum of zero and a
maximum of N ∗k values, N being the number of map tasks.
If the size of the list exceeds k, the Reduce task selects the
first k 1 values from the list. Each chosen value is paired with
the dummy key and forms a part of the final result.

C. Inefficiencies in Naive Implementation

Although the method, just described can give the required
sample, it is not efficient in terms of response time or resource
consumption. This section describes the execution model of
Hadoop and explains the inefficiencies in this scenario.

A Hadoop cluster is built from a large number of commodity
machines that form a shared-nothing architecture. It has a fixed
set of resources in terms of the total number of cores/disks
and available bandwidth between nodes. A Hadoop cluster is
pre-configured with a bound on the number of concurrent map
tasks that it will attempt to execute per node. While the number
of reduce slots required by a job is typically small, the number
of map slots required for a Map-Reduce job is proportional
to the size of the input. For a job that needs to process a
massive quantity of input data, the required number of map
slots can be much greater than the configured capacity of the
cluster. In this case, only a small fraction of the map tasks can
be scheduled to run in parallel. The remaining map tasks are
placed inside a queue as they wait for the availability of map
slots. In a shared environment where there are other concurrent
jobs competing for map slots, the wait time for acquiring a
map slot can be significant. This delays the completion of the
Map phase. Since the Reduce phase cannot begin until the
completion of the Map phase, the job as a whole is delayed
as well.

1One could do a “random” k instead, to get more random results, in cases
where more randomness is desired.



Irrespective of resource constraints in a cluster, Hadoop
executes all jobs under an assumption that all input splits must
be processed for the job to achieve its goal. The strategy has
its worst effect when the assumption is not true and the input
data is huge. In middle of the map phase, a job might have
already processed sufficient input to form the result, but it
has no mechanism to convey its success to Hadoop. Instead
of continuing to the reduce phase, the job stalls, waiting for
more map slots when it doesn’t “need” them. When map slots
become available, the job processes the remaining partitions at
the cost of significant disk I/O and CPU cycles. Compared to
its needs, the job does more work, consumes excess resources,
and takes longer to complete. Note that the wasted resources
could have served other jobs and helped them to finish earlier.
Over-utilization of resources can thus have a significant impact
on the system throughput.

Hadoop considers the user-defined map and reduce func-
tions as black boxes and has a very limited understanding of
the semantics of the job. A Hadoop job has no say in the
execution strategy and hence possible optimizations known to
the job are not made use of; the execution plan is fixed prior
to job execution, leaving little or no opportunity for dynamic
modifications or adaptations in accordance with the availability
of resources in the cluster. By forming a shared-nothing archi-
tecture across hundreds if not thousands of machines, Hadoop
surely provides a mechanism for processing petabytes of data.
However, as seen in the case of ‘predicate-based’ sampling, its
benefits can be lost if significant time and resources are wasted
in doing futile work that was not truly required to compute
the desired result.

III. TOWARDS HIGHER EFFICIENCY AND LOWER
RESPONSE TIME

Given the limitations in Hadoop’s execution model, it is
fairly straightforward to realize that the naive Map-Reduce
based method of Section II-B would require excessive re-
sources and have significantly large response time. We need
a mechanism that allows us to derive desired samples from
increasingly large quantities of data (tera or petabytes) using
minimal resources so that sampling jobs can be run concur-
rently with other jobs on a shared cluster. We propose such
a mechanism in this section. The core map and reduce logic
remains the same as described earlier.

In proposing an alternate execution model, it is important
to identify the desirable features in the current execution
model and not lose them. Hadoop’s execution model has the
following notable features:

• No Synchronization Required Between Mappers:
Map tasks do not have any dependence on each other
and can run in parallel without needing any sort of
synchronization or message-passing between them.

• Abstraction between Hadoop and Job Semantics:
Hadoop abstracts itself from the map and reduce logic,
treating them as black boxes. This decoupling provides
a generic design that does not impose any restriction as

to what can go inside the Map and Reduce functions as
long as they conform to the prescribed declarations.

Hadoop maintains complete knowledge of the cluster state.
Cluster parameters like the capacity in terms of map/reduce
slots and the current load are monitored by Hadoop. On the
other hand, a Map-Reduce job understands what it wants to do
with data and when it needs to process additional data, but it
has no knowledge of the state of the cluster. The execution
framework and the job must both somehow collaborate to
take decisions based upon their combined knowledge. Sections
III-A and III-B describe additional features to help Hadoop
obtain a resource-efficient optimal execution.
A. An Incremental Processing Mechanism

As described earlier, a major pitfall in Hadoop’s execution
model is the underlying assumption that every job will need to
process its whole input to produce the required result. When
this assumption is not true, the result is an inefficient execution
leading to wastage of resources. Hadoop has limited under-
standing of the semantics of a job and hence the decisions
related to the growth of a job such as to how the job wants to
consume its input are best understood and taken by the job and
not Hadoop. Further, the decisions may depend upon the actual
input data and its characteristic properties like distribution or
selectivity. As the job may not have sufficient knowledge of
the data, such decisions are best taken dynamically as the job
progresses and not statically prior to execution. As mentioned
earlier, a job that dynamically controls its intake of data will
be referred as a dynamic job in this paper.

Each dynamic job may have its own custom logic to assess
its progress and incrementally add input when required. We
introduce the concept of an Input Provider into Hadoop’s
execution model. An Input Provider contains the logic for
making dynamic decisions regarding the intake of input by the
job. The Input Provider is provided by the job in addition to the
map and reduce logic. As stated earlier, the input to a Hadoop
job is a set of DFS input partitions. A dynamic job begins to
execute as a small job, intending to process only a subset of
the input partitions. The initial set of input partitions and all
subsequent increments (if required) are decided by the Input
Provider. As the map phase progresses, the execution frame-
work, at regular intervals of time, invokes the Input Provider
and provides it with statistics about the output produced by
finished mappers, the status of the job, the current load, and the
availability of map slots in the cluster. Collection and reporting
of these statistics is an existing feature in Hadoop and does
not introduce any additional code or overhead.

The Input Provider can respond to the information it re-
ceives in three possible ways, as described below and summa-
rized in Figure 3.

1) In a favorable case, the Input Provider may discover that
the job does not need to process additional input. The
Input Provider responds with an “end of input” status
indicating that the job need not consume additional input
partitions. The map tasks that are currently in progress
are allowed to complete, but the Input Provider is not



invoked further and the job then proceeds to the shuffle
phase. Thereafter, the job behaves like any other job.

2) In contrast, the Input Provider may realize the need to
process additional input. It may respond with an “input
available” message and provide to Hadoop the list of
additional partitions to be processed next.

3) Alternatively, the Input Provider may decide that “wait
and see” is the best decision for now. In this case, it will
postpone adding input and wait until its next invocation
to reassess job’s progress. The Input Provider responds
with a “no input available” message in this case.

The final number of map tasks for a dynamic job remains
uncertain until the Input Provider responds with an “end of
input” message. As the reduce phase needs to process all
intermediate values for a given intermediate key, it cannot
begin until all scheduled map tasks have completed. For a
dynamic job, this requirement is necessary but not sufficient,
as the Input Provider may add additional input. The execution
framework does not begin the reduce phase until the Input
Provider has responded with the “end of input” message.

The Input Provider for a dynamic job attempts to minimize
the quantity of input that is processed by the job in order to ob-
tain the desired result. It gives the job an opportunity to exploit
any optimizations arising from the hidden characteristics of the
input data. More importantly, the runtime characteristics are
no longer just a function of the size of the input data, but can
now depend on the characteristics of the data being processed.
Such an execution model allows a job to work with larger
datasets even in an environment that offers limited resources.
At the same time, by deferring decisions to runtime, the job
can control its growth in accordance to the load on the cluster
and judiciously utilize resources as per their availability.
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Fig. 3. Incremental processing of input

B. A Mechanism Needs a Policy

The previous section described a mechanism based on
introducing the notion of an Input Provider that allows a job
to consume its input in an incremental manner. A job may
use this mechanism in multiple ways, each having different
ramifications on the runtime behaviour of the job and on the
throughput of the cluster. In controlling the intake of input
data, the decisions need to take into account the capacity of
the cluster, the current (or expected load) on the cluster, an

acceptable response time and, an acceptable cost in terms of
the resources used. A job’s decisions can have a significant
impact on the progress of other concurrent jobs on the resulting
throughput of the cluster.

A job may adopt a conservative approach, where it attempts
to obtain the required result with minimal use of resources.
Such a job will add minimal input at each step. At the other
extreme a job could follow an aggressive approach and add
all input in a single step. A low priority job may follow a
conservative approach, restricting itself to small additions in
input to leave resources idle for higher priority jobs. Under
conditions of a heavy workload and limited availability of
resources, a job may adopt a conservative approach in order
to avoid adding larger amounts of input that may lead to
increased contention and delays. A conservative approach may
also help when much of the input data is expected to have
desirable characteristics such that a small fraction will suffice
to produce the required result. In constrast, under an agressive
approach, the job behaves like any other job wanting to process
all its input. A job may do so when its input is small or when
the cluster has abundant resources that are better used than left
idle. A dynamic job could also adopt an approach in between
these two extremes. In order to have maximum flexibility and
enable a job to use the system to its own needs, we have
formulated a set of policies that govern the dynamic decisions
taken by a job. A policy is defined by three parameters that
are described next.

1) Evaluation Interval: As described earlier, a dynamic job
is configured with an Input Provider that evaluates the job’s
progress and assesses the need to add any additional input.
EvaluationInterval defines the time interval between each
evaluation. Evaluating a job’s progress and assessing its need
to process additional input may incur a cost that jobs may not
want to pay at short intervals. On the other hand, evaluating
progress at longer time intervals may result in unnecessary
waits by the job if its already-added input has been processed
and the Input Provider needs to make a decision regarding
further input.

2) Work Threshold: The Input Provider for the job assesses
the job’s progress and evaluates its need to add additional
input. Between successive evaluations, if a job has not done
enough new work in terms of finishing new map tasks, it may
not be worthwhile for the input provider to re-evaluate and
make new decision. Work Threshold puts a lower bound on
the additional work to be done by a job between successive
evaluations. The work done is measured in terms of the
number of partitions processed, and the threshold is expressed
as its percentage of the total number of input partitions for the
job.

3) Grab Limit: GrabLimit puts an upper bound on the
number of new input partitions that can be added in a single
step. As each partition needs an empty map slot, GrabLimit
limits the additional demand to “grab” map slots that will be
made by the job at each step.

The strategy adopted by a job in controlling its intake of
input can be modeled by varying the parameters just described.



Policy Description Work Threshold Grab Limit
(% Total Input Size) TS = total map slots, AS = available map slots

Hadoop Hadoop’s default behaviour - Infinity
HA Highly Aggressive policy 0 max (0.5 * TS, AS)
MA Mid Aggressive policy 5 (AS != 0) ? 0.5 * AS : 0.2 * TS
LA Less Aggressive policy 10 (AS != 0) ? 0.2 * AS : 0.1 * TS
C Conservative policy 15 0.1 * AS

TABLE I
POLICIES FOR INCREMENTAL PROCESSING OF INPUT

As an example, the policy adopted by Hadoop in executing a
job is modeled by setting the GrabLimit to infinity, signifying
that there isn’t an upper bound on the number of input
partitions that a job will add in a single intake. Hence, a job
ends up adding all its input in a single step. As all the input
is added initially, the remaining parameters are not needed.
We will refer to this setting as ‘Hadoop’ policy in the rest of
the paper. The ‘Hadoop’ policy is at one end of the spectrum,
representing an aggressive approach. The parameters can also
be varied to form a less aggressive approach. We have used
them to model model a set of four more policies (Table I), each
differing from the others in its approach to adding incremental
input. As an example, consider the MA policy. MA requires at
least 5% of the total number of input partitions be processed
between each successive evaluation by the Input Provider. At
each evaluation, the Input Provider evaluates the GrabLimit
as either being one-half of the available map slots (AS) or
one-fifth of the total map slots (TS) in the cluster and restricts
the addition of input accordingly. The Evaluation Interval
is irrelevant for the ‘Hadoop’ policy, but it was fixed at 4
seconds for other policies in the experiments presented later.

IV. HADOOP SAMPLING IMPLEMENTATION

In this section we show how to use the proposed In-
put Provider mechanism for incrementally ingesting input in
Hadoop in order to produce a resource efficient execution of
predicate-based sampling. The map and reduce logic remain
unchanged, but the job is now configured to execute as a
dynamic job and has an associated Input Provider that controls
its intake of input.

Hadoop provides the notion of a JobConf as the primary
interface for describing a Hadoop job. A JobConf object
consists of a set of configuration parameters. We extended this
set with additional parameters (listed below) that are required
to characterize a map-reduce job as ‘dynamic’.

Parameter Description
dynamic.job A boolean flag, set as true

for dynamic jobs
dynamic.job.policy The name of the policy to use

in controlling job’s growth
dynamic.input.provider An implementation of the In-

putProvider interface

Job submission in Hadoop follows a client-server model
wherein a JobConf instance is submitted to a JobClient. The
submitted JobConf is sent across to a server side daemon
called the JobTracker that manages the lifecycle of the job.
Since the Input Provider is pluggable external logic, a buggy

implementation could potentially cause significant overheads
on the server side or in the worst case bring down the
JobTracker, which is a single point of failure for the cluster.
We thus chose to have the Input Provider exist as a client-side
entity like the JobClient. The Input Provider is thus initialized
on the client side by the JobClient. As part of its initialization,
the Input Provider is provided with the set of input partitions
that form the complete input for the job. The JobTracker then
remains agnostic of the existence of the InputProvider or of
the policy being used for execution.

To begin with, the Input Provider provides the JobClient
with the set of input splits that form the initial input to
the job. The initial input and each subsequent increment (if
required) is chosen randomly with a uniform distribution
from the set of un-processed input partitions. This is done
to introduce randomness in the produced sample. Both the
initial input and any subsequent increment (if required) is
limited by the GrabLimit, as defined for the policy in use. As
the job progresses, the JobClient, at regular intervals of time
(EvaluationInterval), retrieves all information regarding
the status of the job and the load on the cluster from the
JobTracker. If the job has made sufficient progress, as required
by the policy, the JobClient invokes the Input Provider and
provides it with the job status and statistics that summarize the
current load on the cluster. The job status includes additional
statistics such as the number of records processed and the
number of output tuples produced by the completed map tasks.

As described earlier in Section II-B, the map logic outputs
each key-value pair found to satisfy the set of predicate(s). At
each evaluation point, if the number of produced map outputs
is found to exceed the required sample size, the Input Provider
stops adding input. Otherwise the Input Provider assesses the
need to add input. In evaluating the amount of additional
input that would suffice, the Input Provider needs to take into
account the “expected” output from the pending map tasks.
To do so, given the number of input records processed so
far and the number of matching records found among them,
the Input Provider estimates the predicate selectivity for the
input data. The Input Provider takes into account the expected
output volume from pending map tasks based on the estimated
selectivity and computes the number of additional records
that will likely need to be processed in order to achieve the
required sample size. Note that each split may vary in the
number of records contained in them. Thus, given the splits
and the total input records processed so far, the Input Provider
computes the expected number of records in each split. Using
this estimation, the Input Provider is able to arrive at the



required number of splits that need to be processed next by
the job in order to reach the desired sample size.

Predicate-based sampling can be expressed as a single Map-
Reduce job. In order to exploit new possible optimizations
from incremental processing of input, the job needs to be
configured as a dynamic job. As stated ealier, at Facebook,
end-users use Hive as a high-level language for expressing
their data-intensive tasks. We have modified the Hive compiler
so that the constructed JobConf has the “dynamic.job” flag
set to true and the “dynamic.input.provider” parameter set
to the class name for the class that implements the Input
Provider interface. The required size of the sample, is set
in the JobConf and subsequently used in initializing the
Input Provider. As described in Section III-B, a dynamic
job executes under some policy that dictates its intake of
input. The available policies are defined in a policy.xml file.
As of now, the Hive syntax does not allow specifying the
policy as part of the query, but Facebook may provide such
support in a future Hive release [8]. Hive does allow setting
of configuration parameters explicitly from the command line
interface. The end-user is currently required to choose amongst
the configured policies (which are listed in the policy.xml file)
by setting the “dynamic.job.policy” parameter accordingly.

V. EXPERIMENTAL EVALUATION

So far we have described our new mechanism for incremen-
tal processing of input and showed how to apply it to the task
at hand - obtaining fixed-size, predicate-based samples from an
un-indexed dataset. In order to evaluate the effectiveness of the
proposed method and study the performance characteristics of
our various policies (Table I) under different degrees of skew
in the input and under different user workloads, we conducted
a set of experiments that we describe next.

A. Experimental Setup

We ran experiments on a 10-node IBM x3650 cluster. Each
node had one Intel 2.26GHz processor with four cores, 12GB
of RAM, and four 300GB hard disks. Thus the test cluster
consisted of a total of 40 cores and 40 disks. We used Hadoop-
0.20.2 as the base version and applied the modifications to
provide support for dynamic jobs. On the client side, we used
Hive-0.5.0 and modified the compiler as described, to set the
required parameters in the constructed JobConf.

B. Test Data and Queries

The dataset for our experimental evaluation was derived
from the LINEITEM table from the TPC-H [16] dataset. Each
row in the table captures the sale of an item and includes
attributes such as quantity, price, discount, tax, etc. In order
to evaluate the proposed method on differently sized data, we
generated LINEITEM data at scales of 5, 10, 20, 40 and 100.
Table II summarizes the properties of the generated datasets.
We desired a balanced distribution of load across the 40 disks
and hence required the input data to be evenly distributed
across the disks with no replication.

Since the input is partitioned across multiple disks, each
partition could contain a varying number of records that turn

TABLE II
GENERATED DATASETS

Scale Size(GB) Number of Rows (mil-
lion)

Number Partitions on
HDFS

5 3.8 30 40
10 7.8 60 80
20 15.8 120 120
40 37.6 240 240
100 78.7 600 600

out to match the predicate(s) for a given Hive query. Under a
skewed distribution of matching records across the partitions,
the Input Provider can make significant error(s) in estimating
the selectivity. The Input Provider relies on the estimated
selectivity to determine the increments in the input. In the
case of an under-estimation, the Input Provider may add more
than the required amount of input, thus causing delays in
completion and an excessive use of resources. On the contrary,
an over-estimation may produce insufficient results and require
the Input Provider to add additional input many times. A
uniform distribution of the matching records is favorable, but
not the typical case. Obviously end-users or applications may
use a wide variety of predicates when sampling. As data
is collected and partitioned without prior knowledge of the
predicate(s), it is likely to end up having a skewed distribution
with a large fraction of the matching records occurring in just a
small fraction of the partitions. It is thus imperative to evaluate
the proposed mechanism and each policy under different
degrees of skew in the input data. We need to produce a
partitioned LINEITEM dataset such that for a given predicate,
the distribution of matching records across the paritions is
skewed. The method for producing such a partitioned dataset
is described next.

Modeling data skew: Suppose that we have a dataset and
a predicate p with selectivity ρ. If T is the total number of
records in the dataset, then the number of records that satisfy
p is given by T ∗ ρ. To generate data, we need to assign each
matching record to an input partition to contain the record.
To do so with a skewed distribution across N partitions,
the assignment of a matching record to an input partition
was treated as a random variable drawn from a Zipfian [11]
distribution.

Zipf’s law states that out of a population of N elements,
the frequency of elements of rank k, f(k; z,N), is:

f(k; z,N) =
1
kz∑N

n=1(
1
nz )

Following the Zipfian distribution, the frequency of occur-
rence of an element is inversely proportional to its rank. In
the current context, let:

1) N = total number of input partitions;
2) k be their rank; partitions are ranked as per the number

of records in the partition that satisfy the given predicate;
3) z be the value of the exponent characterizing the distri-

bution.
For every matching record, we draw its containing input

partition from the described Zipfian, thus resulting in a skew.



TABLE III
PREDICATE AND ASSOCIATED DISTRIBUTION

Column Predicate Distribution
ExtendedPrice ExtendedPrice < 1000 Uniform (z = 0)
Discount Discount > 0.01 Moderate Skew (z = 1)
Tax Tax > 0.05 High Skew (z = 2)

We varied the Zipfian parameter z, setting it to be 0, 1, and
2, thus giving a zero, moderate and high skew, respectively.

Fig. 4. Distribution of Matching Records across Input Partitions, shown for
5x Input Data

As stated earlier, the dataset for our experiments is the
LINEITEM table. Corresponding to each degree of skew (z =
0, 1, 2), we chose an arbitrary column and formed a corre-
sponding predicate. Table 3 summarizes the set of predicates
and the associated skew in the distribution of matching records
across the input partitions. The overall selectivity of the dataset
to each predicate was fixed at 0.05%, while skew was varied
in the manner just described.

Having generated the distribution of matching records
across the partitions, we then modified the other records in
each partition accordingly to ensure that the remaining records
contained random values not satisfying the predicate. Figure
4 shows the distribution of matching records across partitions,
for each degree of skew (z = 0, 1, 2), for 5x (scale) input
data. Recall from Table II, that 5x input gets partitioned into 40
partitions when stored in HDFS. With 5x input and a predicate
selectivity of 0.05%, we have 15,000 matching records out of
total of 30 million records. As shown in Figure 4, with zero
skew, we get an equal number of matching records (350) in
each partition. For higher degrees of skew, we have a fewer
partitions that contain a larger fraction of the matching records.
When z = 2, we have 8700 of the 15,000 mtaching records
being contained in a single partition. In the case of z = 1,
we have 3128 matching records being contained in a single
partition. Similar distributions were generated for each scale
of input data (10, 20, 40 and 100).

As stated earlier, predicate-based sampling from a dataset
can be expressed as a single Map-Reduce job. The runtime
characteristics and performance of the Hadoop job will depend
on a number of factors. These include the size of the dataset,
the policy in use, the selectivity of the predicate, the physical
distribution of the matching records within the dataset, and

the load on the cluster. In order to understand the role of
each factor, we divide our experiments into three sections. In
our first experiment, we studied single-user performance as a
function of the input dataset size and skewness in data. Next,
we evaluated performance under a homogeneous multi-user
workload followed by an evaluation under a heterogeneous
workload. For generating workloads, we used a workload
generator [2] that allowed us to model a group of end-users
that work in parallel using Hive.

We used a fixed sample size of 10,000 for all experiments.
The Hive query for each job followed the template:-
SELECT ORDERKEY, PARTKEY, SUPPKEY
FROM LINEITEM
WHERE predicate LIMIT 10000
For varying the degree of skew in the distribution of the
matching records, we used the corresponding predicate listed
in Table III.

C. Single-User Workload

In order to study the role of the dataset size and its
associated skew, we began by evaluating the performance
characteristics of the various policies on a cluster with no
other concurrent jobs. Each node in the cluster was configured
to support four concurrent map tasks. With no other jobs
competing for map slots, a Hadoop job could execute a total of
40 map tasks in parallel. We experimented with five differently
sized datasets, three different degrees of skew, and the five
different policies from Table I, giving a total of seventy-five
different combinations. Figure 5 summarizes the job response
time results for each such combination. In Figure 5, graphs
(a), (b) and (c) correspond to the case of zero, moderate, and
high skew, respectively, and provide a comparison between
the response times with each policy for different dataset sizes.
Figure 5 (d) provides insight into the amount of work done
by the jobs by showing the number of partitions processed
per job under each policy for the case of moderate skew. All
numbers are averages taken over 5 runs. Let us see what we
can learn from these initial results.
1) Response time under the default Hadoop policy: Under

the Hadoop policy, the response time is not influenced by
the physical distribution (skew) of the matching records in
the dataset. This is as expected, as under the Hadoop policy,
all input partitions are required to be processed; there is no
opportunity to partially process the input data to collect just
the required number of matching records. The completion time
for the job is largely determined from the time consumed in
the Map phase, which takes as much time as is required to
apply the map function to every input partition. The Hadoop
policy’s response time is thus governed by the size and the
total number of input partitions. Thus response time can be
seen to increase with the input data size. As described earlier,
this behavior makes the execution model of Hadoop poor when
sampling large datasets.

2) Effect of data skew: Recall that the policy in use puts an
upper bound on the amount of (additional) input that is added
in each step. This limit is highest for ‘Hadoop’ which adds all
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(d) Moderate Skew: Partitions Processed

Fig. 5. (a), (b) and (c) Response Time (seconds) under each policy for
Different Dataset Sizes and different degrees of skew. (d) Work done in terms
of partitions processed in the case of moderate skew.

input up front, and it decreases across HA, MA, LA and C in
that order. Under C, the job acts in a conservative manner and
takes input in small increments. Since the cluster is not being
shared, under ‘C’, the job is unable to use the cluster to its full
capacity, leaving available map slots idle. Conservatism has
the worst effect when the physical distribution of the matching
records is highly skewed. This is because, under a high degree
of skew, a large number of input partitions will yield no results.
Since a conservative approach processes less data in each step,
it can require many steps to collect the desired number of
matching records. In contrast, the aggressive approach adopted
by HA utilizes the cluster to its maximum capacity by adding

enough incremental input to use all available map slots. By
adding larger amounts of input, it is able to overcome the effect
of increased skew, as by processing larger amount of data
in each step, the probability of discovering matching records
increases. This is why HA and MA generally perform better
than the other policies on the otherwise idle cluster.

3) Using the idle cluster “wisely”: On an idle cluster,
a more aggressive approach to utilizing resources provides
better response times. As a policy becomes less aggressive,
idle resources in the cluster are left unexploited so that
other potential jobs, arriving in the future, can make use of
them. Since the cluster is not being shared, the conservative
approaches do not use the cluster to its maximum capacity.
Response time therefore worsens as one moves towards less
agressive policies such as LA and C. The Hadoop policy
adopts the most aggressive approach of all, but it is unable to
outperform HA. This is because the Hadoop policy demands
resources in excess of the cluster’s maximum capacity. As
shown in Figure 5 (d), the number of partitions processed
(and thus the resources consumed) under the Hadoop policy
is much higher as compared with the other policies.

In production, Hadoop clusters are almost never used in an
exclusive mode with no other concurrent jobs. Performance is
thus better evaluated in a more practical scenario where the
resources offered by the cluster are shared amongst a group
of users.

D. Homogeneous Multiuser Workload

Our next set of experiments are based on multiuser work-
load settings and evaluate the impact of the policies on the
throughput of the cluster for these workloads. In our multi-
user workload setting, the cluster capacity parameters are
increased to have 16 map slots per node as against the 4
used in our single-user experiment. The number 16 was arrived
at by trying different settings with the objective of achieving
maximum throughput. We modeled a group of 10 concurrent
users where each user submits a query and waits for its
completion before submitting another query (the same query
again). Each of the ten users submit the same query, but each
works against a different copy of the dataset (scale=100x) to
ensure that each query requires fetching its input from the
disk and does not leverage the buffer cache populated by
some other query. In a given workload run, all jobs used the
same Input Provider and policy. Each workload was run for a
sufficiently long duration to obtain steady state throughput.

In our multiuser experiment, we evaluated the overall
throughput for the cluster under each policy. In addition, we
monitored the CPU utilization (%) and disk reads (Kbs/sec)
at 30 second intervals on each node of the cluster. We
first evaluated performance under a uniform distribution of
matching records and then repeated the experiment for the
case of a highly skewed distribution (z = 2). The results are
summarized in Figure 6, where we show for each of our poli-
cies (from Table I), the observed throughput (jobs/hour) and
the corresponding resource usage in terms of CPU utilization
and disk reads. The CPU utilization and disk read results are



averaged over the 40 cores and 40 disks that constitute the
cluster. Note that the policies are shown along the x-axis in
the figure. Following are the notable observations:
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Fig. 6. Performance characteristics under homogeneous workload (a)
Observed throughput (jobs/hour) under each policy, (b) and (c): Resource
usage (% CPU utilization and disk reads(Kbs/sec))

1) Performance characteristics using the default Hadoop
policy: The ‘Hadoop’ policy follows the most aggressive
approach in consuming input and gives the least throughput.
As the Hadoop policy requires processing all of the input,
the demand for map slots by a single job well exceeds the
capacity of the cluster. Jobs spend a significant time waiting
for map slots to become available, thus delaying completion
and decreasing the throughput, and they also use excess
resources to process the entirety of the input. It is worth noting
that the average CPU utilization (%) and Disk Reads (Kbs/sec)
are highest under Hadoop despite the low throughput under
the same policy. This confirms an inefficient execution with
significantly greater amount of work being done per job.

2) Uniform distribution: With a uniform distribution of the
matching records across the partitions, the Input Provider is
able to form a good estimation of the predicate selectivity from
processing of just a fraction of the input. The total number
of partitions that need to be processed to form the required

sample can thus be well predicted at an early stage from
the estimated selectivity. However subsequent increments to
the input are limited as per the GrabLimit defined by each
policy. Under a very aggressive policy, the job has a higher
GrabLimit and may add more input in the beginning than
what is required. This leads to increased waste and contention
for resources, as a job processes more than the required
amount of input. A more conservative policy with a smaller
GrabLimit adds less input at each step and thus avoids the
over-addition of input. As a result, the throughput in Figure 6
increases as a policy becomes less aggressive along HA, MA,
LA as GrabLimit decreases. C is slightly worse due to being
more conservative than needed.

3) Highly skewed distribution: When the distribution of
matching records across the input partitions is skewed, a
large number of partitions may not contribute any records that
satisfy the predicate(s). A significant amount of resources and
time is expended in processing these partitions. This results
in higher CPU utilization, increased disk reads, and a lower
throughput in comparison to the case of a uniform distribution.
As expected, the Hadoop policy throughput is not affected by
the presence of skew in the input.

E. Multiuser Heterogeneous Workload

In practice, users have different needs and hence the work-
load on a production cluster is expected to be heterogeneous in
terms of the kinds of jobs running concurrently. At Facebook,
for example it is typical to have a fraction of the end-users
interested in obtaining predicate-based samples while the rest
are executing other kinds of jobs. The runtime policy used
by the users in obtaining the desired samples can impact
the response time for other kinds of concurrent jobs. As a
step towards understanding the effect of the policy in use,
we categorized users in our next workload into two classes:
Sampling and Non-Sampling. The predicate used for sampling
jobs corresponds to a uniform distribution of the matching
records across the partitions. Non-Sampling users submit basic
select-project queries with a selectivity of 0.05%. The dataset
used was again a copy of the LINEITEM table (100x).

As resources are shared amongst the jobs, one can intu-
itively argue that a resource-efficient execution strategy for
sampling jobs should positively impact the progress of the
other class of concurrent jobs. The extent of impact will
depend upon the fraction of jobs belonging to the Sampling
class and the policy that controls their execution. We varied
the fraction from 0.2 to 0.8. The results are shown in Figure
7, where we show the per-class throughput for each class of
jobs, measured with each of the policies C, LA, MA, HA and
Hadoop used by the jobs belonging to the Sampling class. Key
observations include the following:-

1) Sampling class throughput: As shown in Figure 7 (a), the
Sampling class throughput increases as the fraction of users
in Sampling class increases, which is as expected. For a given
fraction of users in the Sampling class, the throughput results
show similar trends (as policy is varied) as were observed in
our earlier homogeneous workload experiment where all users
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Fig. 7. Heterogeneous Workload: using Default Scheduler (a), (b)

belonged to the Sampling class.
2) Non-Sampling class throughput: As shown in Figure 7 (b),
the throughput for Non-Sampling class is definitely influenced
by the policy adopted by the dynamic jobs in ‘Sampling’
class. The throughput for Non-Sampling class is least when the
Sampling class follows the Hadoop policy. This is expected,
as the under the Hadoop policy, Sampling class jobs execute
in an inefficient manner, causing greater contention for map
slots and consuming an excess of resources. A shift to a less
aggressive policy by the Sampling class provides a boost to the
throughput of the Non-Sampling class. With a small fraction
(20%) of users in Sampling class, the use of policy LA as
against Hadoop raises the throughput for Non-Sampling class
by a factor of 3. This factor increases to as high as 8 when
a significant fraction (80%) of users belong to the Sampling
class. For either class of users, a conservative approach (C/LA)
adopted by the dynamic Sampling jobs gives the maximum
throughput as against an aggressive approach (HA/Hadoop).

F. Scheduler Impact

In a shared environment, the strategy used by the framework
in allocating the available map/reduce slots and distributing the
available resources across jobs is expected to have a significant
role in determining the throughput of the system. While the
scheduling policy works towards improving a throughput by
optimum allocation of resources, a dynamic job plays a helping
hand by limiting the demand for map slots. In Hadoop, the
task of assigning empty slots to the pending tasks is handled
by the TaskScheduler. The default implementation provided
by Hadoop is based on FIFO, with slots being assigned in
order of a job’s submission timestamp. One of the prominently
used alternate scheduler implementations is the Fair Scheduler

[17] developed by researchers at U.C Berkeley and Facebook.
In order to check the invariance of our conclusions to the
scheduling policy, we repeated our last experiment using the
FairScheduler as against the default scheduler provided in
Hadoop. The results are summarized in Figure 8.

Similar to the results obtained using the default scheduler,
the throughput for either class is increased when a conservative
approach is adopted by the Sampling class jobs. Comparing
the results shown in Figures 7 and 8, it is worth noting that,
for either class of users, the overall throughput achieved falls
on switching to the Fair Scheduler. In order to understand this
behaviour, we categorized the map tasks as local (those that
read input from the local disk) and non-local (those that read
input from a disk on a remote node) and measured ‘locality’ as
the % of map tasks that are ‘local’. In addition, we measured
‘slot occupancy’ as the % of map slots occupied at any time.
What we found is that Fair Scheduler achieved a locality
of 88% and a ‘slot occupancy’ of 18%. The corresponding
numbers for the default scheduler were 57% and 44%. Higher
‘locality’ is desirable to avoid reading across the network, but
achieving higher ‘locality’ may require the scheduler to wait
until an empty map slot is available at a node that has an input
partition on its local disk, thus producing delays in execution.
Regardless we see again that the Input Provider helps and that
a fairly conservative policy is best when system is loaded.

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

20%	
   40%	
   60%	
   80%	
  

Sampling	
  class	
  
Throughput	
  
(jobs/hour)	
  

%	
  of	
  users	
  in	
  Sampling	
  class	
  

Hadoop	
  

HA	
  

MA	
  

LA	
  

C	
  

(a) Sampling Class: Throughput (jobs/hour)

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

140	
  

20%	
   40%	
   60%	
   80%	
  

Non-­‐Sampling	
  
class	
  

Throughput	
  
(jobs/hour)	
  

%	
  of	
  users	
  in	
  Sampling	
  class	
  

Hadoop	
  

HA	
  

MA	
  

LA	
  

C	
  

(b) Non-Sampling Class: Throughput (jobs/hour)

Fig. 8. Heterogeneous Workload: Using Fair Scheduler (a), (b)

VI. RELATED WORK

As stated earlier, predicate-based sampling is synonymous
with sampling the results of the relational selection operator.
Sampling in the context of relational databases was a topic of
interest in the early 1990’s. Olken described methods for sam-
pling the results of selection operator in context of relational



tables [9]. The described methods relied on indices for efficient
traversal of the relation being sampled. Lipton et al. [12]
used sampling as an effective method for estimating predicate
selectivity. The method described could handle complex se-
lection predicates such as arithmetic expressions, but required
an index on some column of the relation (that need not be
the column to which selection is applied). Effective methods
for producing random samples from databases using B+ trees
were also described in [1], [9] and [14]. Not surprisingly, there
is a common theme here; the proposed methods for sampling
all assume that the data has been loaded into relations and
that indexes are available. In contrast, here we have studied
sampling when the data has no indices and resides in a
filesystem instead of a database. The work presented here
simultaneously estimates predicate selectivity as well as forms
a sample containing the results of the selection operator.

In the context of Map-Reduce, high-level languages such as
Hive [7] and Pig [13] allow users to execute queries against
a sample of the data instead of the whole dataset. This is not
sufficient for obtaining a fixed-size, predicate-based sample
as the predicate evaluated over the sample may produce an
empty result. A possible technique to ensure non-empty output
is to form a biased sample as suggested in [4], but that
method also relies on indexes created in advance. Finally, in
[3], Babu discussed methods to optimize Map-Reduce jobs
and discussed the need for developing an efficient sampling
harness that could be used to build partial statistics for input
and intermediate data in a Map-Reduce pipeline. Our proposed
mechanism for incremental processing and its implementation
could be used as a seed towards building such a sampling
harness.

VII. CONCLUSION AND FUTURE WORK

While predicate-based sampling can easily be expressed
today as a Map-Reduce job, the resulting inefficiencies in the
Hadoop execution model results in unacceptable response time
and resource usage. This is because the basic Hadoop execu-
tion model assumes the need to process all of the input data,
and hence its runtime characteristics (response time/resource
usage) depend on the overall size of the input. This paper
presented a modified execution model and an implementation
that supports incremental processing of input, wherein a job is
fed with input data as and when required by the job. An Input
Provider associated with the job is provided with information
related to its progress and the existing load on the cluster.
This helps the job to adapt its growth in accordance with the
availability of resources in the cluster.

In order to provide flexibility in using the mechanism for
incremental processing, we formulated a set of policies that
govern the growth of a job and its dynamic decisions related
to its intake of input. An end-user can also choose to form new
policies and choose a policy on a per-job basis. We modeled
Hadoop’s execution strategy as a policy (Hadoop) and formed
a set of additional policies (C, LA, MA, HA) that differed in
the criteria used in adding input to a job. We modeled different
degrees of skew in the input data and provided experimental

results under different workload conditions.
Experiments on an idle cluster with no concurrent jobs

showed that a conservative policy such as C does not utilize the
cluster to its capacity and results in a higher response time. In
contrast, in a more realistic multi-user setting, a conservative
policy was seen to consume the least resources and produced
the highest throughput. Our LA policy emerged as a good
overall policy to use in both homogeneous and heterogeneous
workload settings. In all cases, the Hadoop policy resulted in
the least throughput with maximum utilization of resources.
Hadoop’s execution model (or policy) was confirmed to be
very wasteful for obtaining predicate-based samples from large
datasets.

In our implementation, the policy for execution is chosen
statically, prior to job execution. As part of future work,
it could be interesting to implement a more flexible model
wherein a job could decide and change the policy at runtime,
based on the discovered characteristics of the input data
together with the existing load on the cluster.

The work presented in this paper is in process of being
integrated into the Hive/Hadoop system at Facebook.
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