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Abstract—Building large software systems is always a chal-
lenging venture, but it is especially so in academia. This paper
describes the experiences that the author and his (mostly UC-
based) partners in software crime have had that culminated
in the Big Data Management System now available as Apache
AsterixDB. It covers a mix of the history and technical content
of the nearly ten-year-old project, starting with its inception
during the MapReduce craze. It describes the phases that the
effort has gone through and some of the lessons learned along
the way. The paper also covers some personal reflections and
opinions about the challenges of systems-building, as well as
writing about it, in our current academic culture. Included is
the case for doing this sort of work at all – discussing the
pitfalls of doing “systems” research in the absence of an actual
system, and why the gain outweighs the pain of building and
sharing database software in academia. As of late 2018, Apache
AsterixDB is also having a commercial impact as the storage
and parallel query engine underlying a new offering called
Couchbase Analytics. The last part of the paper explains how
we are attempting to balance the uses of AsterixDB as (i) a
generally available open source Apache software platform, (ii)
an end-to-end research testbed for universities, and (iii) the
technology powering a commercial NoSQL product.
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I. INTRODUCTION

Building large software systems is a challenging venture.

This is especially true in an academic setting. In academia,

the vast majority of the software team members (students)

come and go more frequently than they do in industry.

Moreover, the reward system in academia – with its focus on

conference and journal papers and peer-reviewed research

grants – is not always as “software project friendly” as

one might wish it to be. The purpose of this paper is to

examine the AsterixDB system – which is now available

to all as Apache AsterixDB – as one potentially interesting

and informative case study in academic software building.

Included in the examination will be how and why the project

got started, how it was initially received (and perceived),

and what some of the challenges and lessons have been in

terms of its execution, funding, and paper-writing activities.

Readers are warned that, due to its nature, this paper will

be heavy on self-citations and light on related work. (Other

systems are welcome to tell their own stories!)

The remainder of this paper will be organized as follows:

Sections II and III set the stage by providing a bit of back-

ground about the author followed by a technical overview

of the Apache AsterixDB software platform itself. Section

IV describes the history of the AsterixDB project and some

of the challenges and lessons learned. Section V is a more

general discussion of reasons to build large software systems

in academia despite the challenges that one faces in doing so.

Section VI provides a brief description of how AsterixDB

is now being used in one commercial setting, and Section

VII explains the resulting balancing act that we are dealing

with on an ongoing basis as a result of our desires for the

system. Section VIII concludes the paper.

II. A BIT OF PERSONAL HISTORY

Before proceeding, it may be useful for the reader to know

a bit about the author’s pre-AsterixDB academic background

and resulting mindset. I was extremely fortunate to have

spent five of my formative years as an Electrical Engineering

B.S. and subsequently M.S. student, one with an interest in

computing – but before there was an actual Computer Sci-

ence major – at Carnegie-Mellon University. Upon getting

off the elevator on the 3rd floor of Science Hall, one was

immediately faced with an inspiring collection of flashing

red LEDs: a glassed-in machine room that held two of the

world’s earliest multiprocessor computer systems, namely

C.mmp (a 16-processor shared-memory computer system

[1]) and Cm* (a 50-processor NUMA system [2]). A favorite

professor and mentor, and later M.S. thesis co-supervisor,

was Anita Jones, leader of the StarOS [3] operating system

project for Cm*. I also met a finishing Ph.D. student and

soon-to-be Berkeley professor, John Ousterhout, leader of

the competing Medusa [4] operating system project for Cm*.

Parallel computing and systems building were in the air at

CMU, and I was thoroughly hooked by the time I left to

pursue a Computer Science Ph.D. at UC Berkeley.1

1I declined an offer from Cornell after a now-senior faculty member there
advised me, during a visit, that systems-building was not an appropriate part
of one’s Ph.D. work, even in “systems.” One’s Ph.D. years were a time for
theory and principles, not programming.
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At Berkeley, I found myself at the right place at the right

time from an academic systems-building perspective. My

initial academic advisor was Dave Patterson, co-recipient of

the 2017 ACM Turing Award for his work on RISC ar-

chitectures and quantitatively-driven architecture design and

evaluation – work that was starting at that time. Also joining

the fray there was the aforementioned John Ousterhout. Last

in this tale, but arguably not least, was a recently tenured

database professor, Mike Stonebraker. Anita Jones at CMU

had given me strict orders to check out his courses and his

INGRES database project once I got to Berkeley. Although

“databases” sounded (seriously) boring, I followed orders,

and hence discovered another group that was building a large

system in academia and having a big impact on the database

system revolution happening at that formative time [5].

After graduating from Berkeley I moved to a faculty

position at the University of Wisconsin. My faculty mentor

there was David DeWitt, and his now famous Gamma project

[6] on shared-nothing parallel database systems was just

getting underway. David soon invited me to co-define/co-

lead a new project on extensible database systems that he

was wanting to start – EXODUS [7] – and later, together

with colleagues Jeff Naughton and Marvin Solomon, we ran

the Shore project on object-oriented database systems [8].

III. ASTERIXDB SYSTEM OVERVIEW

To fully appreciate AsterixDB as a case study in large

academic software, the reader should probably know what

AsterixDB actually is. This section covers the prerequisite

what; later sections will cover the why and when, the how,

the tradeoffs, and other aspects of the overall adventure.

Apache AsterixDB [9] is a Big Data Management System

(BDMS) with a feature set chosen to target use cases such

as web data warehousing and social media data analysis. Its

notable features include:

1) A NoSQL-style data model (ADM) based on extend-

ing JSON with object database concepts;

2) Two declarative query languages (first AQL and later

SQL++) that support a broad range of queries against

multiple semi-structured datasets;

3) A rule-based, data-partition-aware query optimizer for

parallel queries (Algebricks);

4) An efficient dataflow execution engine (Hyracks) for

partitioned-parallel execution of query plans;

5) Partitioned and LSM-based native storage and index-

ing for large datasets;

6) Support for querying and indexing of external data

(e.g., data in HDFS) as well as natively stored data;

7) Rich data type support, including numeric, textual,

temporal, and simple spatial data;

8) Secondary indexing through B+ trees, R-trees, and

several variants of inverted keyword indexes;

9) Basic NoSQL-like transactional capabilities similar to

those of popular NoSQL stores.

Figure 1. AsterixDB system schematic

Figure 1 shows a high-level overview of AsterixDB. The

system is based on a traditional shared-nothing architecture,

with each node in a cluster managing one or more storage

and index partitions for its datasets based on LSM (Log-

Structured Merge) tree technology. Each node in the cluster

runs an instance of the Hyracks dataflow platform for query

execution, and the execution of the Hyracks jobs resulting

from SQL++ query requests is coordinated by the cluster

controller. Targeting truly “Big Data” of the sort expected

in the initial web and social media analytics use cases, a

fundamental assumption from the start of the project has

been that the portion of data stored on a given node can

well exceed the size of its main memory, and likewise (at

least potentially) for intermediate query results [10].

Figure 2. AsterixDB storage and memory management

Figure 2 zooms in a bit more closely on the storage and

resource details of a node in an AsterixDB cluster. Each

node can have multiple I/O devices, with each storing the

LSM components associated with a dataset partition. Each

node uses its memory for a mix of ingestion buffering (via

the LSM memory components of active datasets), buffering

of pages of LSM disk components as they are accessed

(via the buffer cache), and processing of memory-intensive

operations including sorts, joins, and grouped aggregation
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CREATE TYPE GleambookUserType AS {
id: int,
alias: string,
name: string,
userSince: datetime,
friendIds: {{ int }},
employment: [EmploymentType]

};

CREATE TYPE GleambookMessageType AS {
messageId: int,
authorId: int,
inResponseTo: int?,
senderLocation: point?,
message: string

};

CREATE TYPE EmploymentType AS {
organizationName: string,
startDate: date,
endDate: date?

};

CREATE DATASET GleambookUsers(GleambookUserType)
PRIMARY KEY id;

CREATE DATASET GleambookMessages(GleambookMessageType)
PRIMARY KEY messageId;

CREATE INDEX gbUserSinceIdx ON GleambookUsers(userSince);

CREATE INDEX gbAuthorIdx ON GleambookMessages(authorId)
TYPE BTREE;

CREATE INDEX gbSenderLocIndex ON
GleambookMessages(senderLocation)

TYPE RTREE;

CREATE INDEX gbMessageIdx ONGleambookMessages(message)
TYPE KEYWORD;

(a)

CREATE TYPE AccessLogType AS CLOSED {
ip: string,
time: string,
user: string,
verb: string,
‘path‘: string,
stat: int32,
size: int32

};

CREATE EXTERNAL DATASET AccessLog(AccessLogType)
USING localfs
(("path"="localhost:///Users/mjc/extdemo/accesses.txt"),
("format"="delimited-text"), ("delimiter"="|"));

(b)

WITH endTime AS current_datetime(),
startTime AS endTime - duration("P30D")

SELECT nf AS numFriends, COUNT(user) AS activeUsers
FROM GleambookUsers user
LET nf = COLL_COUNT(user.friendIds)
WHERE SOME logrec IN AccessLog SATISFIES

user.alias = logrec.user
AND datetime(logrec.time) >=

startTime
AND datetime(logrec.time) <=

endTime
GROUP BY nf;

(c)

UPSERT INTO GleambookUsers (
{ "id":667,

"alias":dfrump" ,
"name":"DonaldFrump",
"nickname":"Frumpkin",
"userSince":datetime("2017-01-01T00:00:00"),
"friendIds":{{ }},
"employment":[{"organizationName":"USA",
"startDate":date("2017-01-20")}],
"gender":"M"}

);
(d)

Figure 3. Examples of (a) ADM data types, datasets, and indexes, (b) an external dataset definition, (c) a SQL++ SELECT query, and (d) a SQL++
UPSERT statement

(using the working memory). The figure also alludes to the

fact that data in HDFS files can be made accessible for

querying in situ (vs. being imported) in AsterixDB.

Figure 3 illustrates the user model of AsterixDB. It shows

the AsterixDB data type, dataset, index, and external dataset

definitions for a hypothetical social media web site as well

as showing a SQL++ SELECT query and a SQL++ UPSERT
statement. AsterixDB users can define ADM data types

specifying whatever schema information is known a priori;

instances of ADM types are also allowed by default to carry

additional (self-describing) record content. The provision of

schema information is optional, so it is entirely up to the

definer of an application to choose what (and how much, if

any) to predeclare. If desired, a type can be marked “closed”

to forbid the inclusion of extra fields in its object instances.

The GleamBookUserType in Figure 3 shows a few of

the basic data types supported by ADM and how one can

compose complex object types using a mix of primitive types

and record, list, and unordered list (multiset) constructors.

Fields can be declared as optional (notice the “?” fields

in the figure) or they can be omitted altogether from the

(partial) schema for a given type. (E.g., one could build

the same example application to manage the same data

without declaring anything but the id field for the data type

GleamBookUserType.) ADM thus enables the developers of

an application to choose an essentially schema-free world,

a highly-specified schema world, or something in between

when developing their AsterixDB application. Part (b) of

Figure 3 shows how one can make external data such as a log

file queryable as if it were natively stored using AsterixDB’s

external dataset support. (It also illustrates a use of a closed

data type.) The query in part (c) illustrates the use of SQL++

for the analysis of such data; it examines a mix of stored and

external data in order to compute a summary of the number

of recently active users of the social website grouped by

their number of friends. The statement in part (d) illustrates

a simple update in SQL++; the example either inserts a

new GleamBook user with id 667 or replaces the one that’s

currently there (if such a user already exists).

AsterixDB’s data storage scales linearly through primary

key-based hash partitioning of all datasets. The data objects

in a given dataset are stored in partitions of LSM-based B+
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Figure 4. AsterixDB software stack

trees, and local secondary indexing of the data partitions

can be requested by creating any combination of B+ trees,

R-trees, and inverted indexes [11]. The runtime engine for

executing SQL++ queries in AsterixDB is the Hyracks data-

parallel platform [12], an extensible dataflow platform that

at one point was scale-tested on a large (180 nodes and 1440

cores) cluster [13] that Yahoo! Research gave us access to.

Figure 4 illustrates the layered software stack underlying

AsterixDB. It shows the major layers that make up the

system as well as various other uses (shown across the top of

the figure) that have been made of the system’s designed-for-

reuse components. As one example, the Apache VXQuery

project also makes use both of Hyracks and of the stack’s

Algebricks algebraic planning and optimization framework

[14]. Other uses that have been made of the stack over the

years include an implementation of HiveQL using all layers

and Hyracks-based versions of a Pregel-like graph analytics

engine and a (slightly generalized) Hadoop MapReduce

engine clone. For AsterixDB, its SQL++ queries are com-

piled and optimized through a combination of AsterixDB-

specific code plus a significant body of shared rules and

code provided by the Algebricks extensible algebraic parallel

query planning and optimization framework, which is shown

in Figure 5.

IV. HISTORY, CHALLENGES, AND EXPERIENCES

Figure 6 shows a timeline of the AsterixDB adventure to

date. The idea for the project first formed in 2008 when the

author reentered academia after a 13-year hiatus in industry.

Given my long-time interests in parallel computing, parallel

databases, and systems building, my UCI colleague Chen Li

and I started with the question “What sort of system might

we want to build today if we had a cluster?” At that time,

XML and XML databases were still in vogue, and it was

the dawn of the Hadoop era – HDFS and MapReduce were

rapidly gaining popularity both in industry and (because of

that) with systems-oriented database researchers. To learn

about MapReduce, given Chen’s similarity search interests
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Figure 5. Algebricks query compiler framework

and expertise, we convinced one of Chen’s Ph.D. students

to work on parallel similarity search on that platform (see

[15] for the eventual result). It became clear to us pretty

quickly that MapReduce was not a sensible runtime platform

for efficient, database-style query processing, so we decided

to answer our cluster question by proposing a project to

NSF to build a new scalable, open source, parallel database

system for XML – called ASTERIX, initially short for

Active, Scalable, Transactional Enterprise Repository for

Information in XML. As mentioned earlier, the kinds of

use cases we had in mind were tasks like warehousing

and analyzing web data, social media data, message data,

and other soon-to-be voluminous data – data whose objects

are richer and more diverse and complex than relational

data, data that has textual, temporal, and simple (Google-

map style) spatial attributes as well as the more traditional

numeric- and string-valued fields.

Figure 6. AsterixDB Project Timeline
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A. In The Beginning

In order to maximize our chances of success, as we were

about to approach NSF with a multi-$M funding request for

the ASTERIX project, we formed a scalable XML “dream

team” by drawing faculty from three UC campuses in

southern California: Chen Li and I from UC Irvine, Vassilis

Tsotras from UC Riverside, and Yannis Papakonstantinou

and Alin Deutsch from UC San Diego. We received the

funding and commenced work in earnest in 2009. One of

the big things we did to help ensure that we would build

a solid software system was to hire a professional software

architect and developer (Vinayak Borkar) with whom the

author had worked for a number of years at BEA systems.

We also subsequently hired a full-time postdoc (Nick Onose)

from UC San Diego. This team, along with a few “founding

students” at UCI, fleshed out the initial ASTERIX software

vision [16].

Logistically, designing a large software system with a

distributed (even locally) development team proved to be

more challenging than we expected. As the project unfolded,

UCI and UCR were able to coordinate closely because UCR

had their students spend a day a week at UCI to participate

in person in project meetings. Fairly early on in the project,

we realized that XML had peaked and that JSON was the

“new kid” on the semistructured data block. A decision

was made to base the ASTERIX data model on extending

JSON with modeling features that one would want in a

database-oriented data model – e.g., support for multisets

in addition to lists, more data types, and the aforementioned

open type system and its schema language. The first query

language was designed by borrowing many good ideas from

the W3C XML query language, XQuery, as XQuery was

well-suited for semistructured, schemaless data; the XML

cruft in XQuery (features related to document order, mixed

content, XPath, ...) was thrown overboard.

As shown in the timeline, the initial NSF project and

development effort ran from mid-2009 to mid-2013. Dur-

ing that time, UCI and UCR worked closely on the new

ADM/AQL track and were responsible for the software

development; UCSD stayed closer to the original XML-

oriented track, independently doing research related to large-

scale document data and search. As promised in the initial

grant proposal, 2013 saw the release of a first complete

version of the system – as AsterixDB – in open source via

Google Code. Over the course of the early years, the UCI

and UCR team leads and students made pilgrimages to visit

companies like eBay, Facebook, Google, Yahoo!, Teradata,

HTC, Netflix, LinkedIn, and Twitter to show them our work

in progress and solicit critical feedback and suggestions.

Towards the latter part of the first phase, we approached

a handful of companies about potentially sponsoring the

ASTERIX effort via industrial gifts. One of the respondents,

Oracle, gave us the gift of professional manpower – they

offered to hire a new Oracle Labs employee whose focus for

roughly two years would be on working with us full-time on

AsterixDB. Another ex-BEA team member (Till Westmann)

joined the team at Oracle Labs as a result and became a

remote senior contributor to the ongoing effort.

The second phase of the project ran from 2013-2017,

and was funded by NSF’s software infrastructure program

supplemented by industrial gift funds. During this phase, the

funded focus of the AsterixDB project was on hardening

the code base, creating more documentation, studying and

improving the platform’s performance, starting to cultivate

and support a modest user base, and adding a number of non-

research features needed for the system to be more usable in

practice. Towards the grow-a-user-base goal, we approached

UCI and UCR about waiving UC IP concerns and donating

the project to Apache, as Apache was the home for most of

the successful open source Big Data infrastructure projects.

We cited our original NSF grant, in which we had promised

unrestricted sharing of the results and code base, and cited

the example of UC Berkeley having recently allowed Spark

to do that. They agreed, and they handed UC’s ownership

of the system back to all of its contributors; each of us then

signed our rights over to the ASF. That donation landed

AsterixDB in the Apache incubator for a year or so, and

the project successfully graduated to top-level project status

in 2016. During that period we also launched a new NSF

research project on “Big Active Data” (BAD) that led to an

extension of AsterixDB with features that might be roughly

characterized as “data pub/sub” [17].

There have been several significant events on the Aster-

ixDB timeline since 2016. One is that, due to an introduction

made by a mutual friend, discussions began with Couchbase,

Inc. Couchbase is a NoSQL software vendor that had a

scalable, JSON-based document store with a SQL-like query

language (albeit a slightly quirky one in the early days).

Section VI will have more to say about that. The other

significant event was the addition of, and eventual switch

to, a new query language, SQL++ [18].

Prior to SQL++, as mentioned earlier, we had designed

and implemented our AQL language. Recall that AQL came

from taking XQuery, which was designed by a group of

experts for querying semistructured XML data, and tossing

out its XML cruft in order to create a query language for

JSON and ADM. To make AQL friendlier to SQL users,

we later added support for some SQL-inspired keyword

substitutions (e.g., SELECT for RETURN, FROM for FOR).

We had a reasonable technical explanation about why AQL

was what it was – i.e., why it wasn’t just a SQL superset. Our

users politely listened to our story and learned AQL, but they

kept wishing that AQL was more like SQL (in syntax and

not just query power). In parallel, Yannis Papakonstantinou

had a team at UCSD working on a new project called

FORWARD, a data integration system for integrating data

from heterogeneous data stores. SQL++ was a SQL exten-
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sion for querying semistructured data in FORWARD. Yannis

approached us with a draft of their SQL++ design [18], first

getting our attention with news that AQL had fared well in

their comparison of query languages for JSON. On further

study, we saw that SQL++ was very much like AQL, but

with a SQL-based syntax that would make AsterixDB users

much happier. SQL++ did a nice job of mostly extending

standard SQL, while allowing for differences in a few

key places where SQL made flat-world or schema-based

assumptions that no longer hold for ADM or JSON, and of

exploiting the nested/composable data model of JSON by

offering generalized support for grouping and aggregation

[19]. Thanks to AsterixDB’s Algebricks and Hyracks layers,

we were able implement SQL++ fairly quickly as a peer

of AQL, sharing the Algebricks query algebra and many

optimizer rules as well as the associated Hyracks runtime

operators and connectors. We have now deprecated AQL in

favor of SQL++.

B. Funding and Publishing

While AsterixDB has enjoyed a series of NSF grants over

the years, for which we are grateful, we have definitely had

more proposal failures than grant successes along the way.

In general, we have found that some reviewers in our field,

at least in this author’s opinion, have a “bad attitude” when

it comes to research that aims to build relatively complete

systems and/or to measure them. We have gotten used to

reviewer feedback such as “where’s the innovation?” or

“this is just engineering!” or “they should really just start a

company to do this.” (This is discouraging when compared

with earlier days in the CS field, e.g., the era discussed in

Section II.) Section V will tackle the question of some of

the ways in which this is unhealthy for our field.

In terms of what proposal reviewers seem to like and

dislike, it seems that “innovation” is strongly favored over

“incremental work” or “engineering” by reviewers today.

Unfortunately, as Section V will discuss further, this is in

many ways the opposite of what is needed for most research

results to have an actual impact. Significant improvements

to data structures or algorithms that are actually in use in

practice can be – as should be obvious – significant. In

contrast, complex and incomplete new approaches that have

not been tried before – perhaps for good reason – seem to

be preferred by reviewers. Unfortunately, such work has less

hope of ever escaping the pages of the papers it is eventually

published in, or the CVs where those papers are later listed,

and of having an actual impact.

We have also found – due to the fact that AsterixDB has

in many ways been a counter-cultural effort – that proposal

reviewers have a “bandwagon problem.” As discussed ear-

lier, AsterixDB was conceived in the early Hadoop era, a

time when MapReduce was all the rage. Everyone seemed

to be jumping on the Hadoop bandwagon – handing data

management over to the distributed file system community,

and using a 2-3 instruction runtime system (map, reduce, and

optionally combine) to run queries by scanning data – and

perhaps translating (Pig, Hive, ...) queries into MapReduce

programs to run over HDFS files. As long-time database

folks, that seemed very wrong to us, so we made our

decision to skip that generation of work and instead build

a platform where Big Data was handled by extending the

field’s three decades of research on parallel database systems

as well as its decade or so of research on nested (NF2)

and semistructured (e.g., XML) query languages [20]. To

illustrate the bandwagon problem, here is a snippet from an

actual review that we received for a research proposal call

that we had responded to:

“This is a very ambitious proposal, would strongly en-
courage trying to build atop Hadoop, even if its current
filesystem and MR engine are not ideal for addressing this
kind of problem. The MR engine is a layer on top (one
that Pig uses behind the scenes), while the Distributed File
System APIs and HDFS implementation are broadly useful.
Work done on top of Hadoop is more likely to be picked up
and integrate with other applications.”

Another bandwagon issue in our field was created by the

“one size no longer fits all” series of papers, e.g., [21]. I

sometimes joke that the number of “sizes” needed to “fit all”

today is correlated to the number of database startup com-

panies in the Boston area. AsterixDB is definitely counter-

cultural today in taking a more complete system, a.k.a.,
“one size fits a bunch”, approach to data management. This

going-against-the-flow approach has hurt us with proposal

reviewers on occasion, and it has also caused our project –

which owns its data – to take longer to mature than, say,

efforts like Spark or Flink that didn’t try to tackle as large

an overall problem from the outset.

One last funding-related point worth making here relates

to project staffing for large systems projects. Wisconsin

projects like EXODUS and Shore happened at a time when

DARPA was investing in data management in a bigger

way. We enjoyed multi-$M budgets and were able to hire

multiple, high-quality, MS-level programming staff members

to work on those projects along with our faculty and graduate

student team. It is much more difficult to obtain that level

of funding today, and in addition, industrial salaries have

skyrocketed. Full-time staff can be critical to making a large

systems project happen – yet they are very difficult to fund

anymore. (We currently have one lone staff member on the

UCI/UCR side of the Apache AsterixDB effort.)

Turning to our experiences in publishing our work on

AsterixDB, we have, not surprisingly, encountered similar

“attitude issues” in paper reviews. Again, reviewer feedback

like “where’s the innovation?” or “this is just engineering!”

is not an uncommon reaction to systems papers; this is a

fairly common experience for systems builders in our field.

Jeff Naughton gave what is probably my favorite diatribe on

this topic (our current publication culture and its dangers)
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as kind of a “surprise” keynote (topically) at ICDE in 2010

[22]. Two particular challenges that we have encountered in

our AsterixDB publishing adventures, and found frustrating,

are:

1) Damned if you do, damned if you don’t! If you

work in the context of a system like AsterixDB,

some reviewers will accuse you of producing system-

specific results and seek to reject the work because it

is in the context of one particular system. Despite the

system providing a common ground for evaluating a

set of alternative approaches (see Section V), such a

reviewer will object to the work’s software context.

(Substitute your favorite system for AsterixDB.) This

is a legitimate concern, but if the results’ broader

applicability are explained, this should suffice to offset

such criticism. Some reviewers seem not to be open

to considering such generality arguments.

2) How hard can that be? Some reviewers have no

clue about how much work, and how many details,

must be dealt with to work in the context of a real

system. As an example, one of our PhD students

did a comparison of LSM-based versions of various

spatial access methods that eventually appeared as

[23]. However, the work was previously submitted,

reviewed, and invited for revision for another confer-

ence. One of those reviewers suggested that, during

the 1-3 month revision window, we should implement

two more access methods (on top of 4-5 already in

the paper) and run all of our experiments on them as

well. Those two access methods have never been used

outside of papers and simulations because the details

required to load them, make them recoverable, and

make them concurrent have never been figured out.

Those are prerequisites to adding a new access method

in AsterixDB, as the system must work end-to-end,

and the costs of such mechanisms must be included

in any useful study. Our student was accused of “lack

of effort” for not following that suggestion on top of

the rest of his revision work, and the reviewer saw to

it that the paper was soundly rejected after revision.

For better or for worse, in terms of the length of our

graduating students’ CVs, we have adopted what we some-

times refer to as the ”BMW model” for publishing in

AsterixDB. BMW stands for Build, Measure, Write. Our

project philosophy is that the goal is to solve interesting

problems and build “cool stuff” – not to write papers. Papers

are for communicating results – they are for sharing the fruits

of our labor – they are not themselves the primary objective

of the work that they report on. Thus, we require our students

to first build things, and then evaluate those things, and only

then pop their heads up to look around for venues that might

be appropriate targets for sharing their results.

Along those lines, two “software heroes” whose work

and impact I have always found especially admirable are:

(1) Barbara Liskov, who has had a remarkably impact-

ful career at MIT – involving contributions such as the

CLU programming language [24] and Argus distributed

transaction system [25] – and won a much-deserved ACM

Turing Award. (2) John Ousterhout, mentioned in Section

II, who has “done time” in both academia and industry

over the years, and contributed to diverse areas including

networked operating systems, VLSI design tools, scripting

languages, log-structured file systems, high-performance dis-

tributed systems, and more. Readers are strongly encouraged

to go to their favorite publication-related web site (e.g.,

DBLP or Google Scholar) and observe the number of papers

per year that those two individuals have published – then

contrast their impact with those of other “highly-published”

individuals with much longer CVs. There’s an important

lesson to be learned, in my opinion. (One simply cannot

do more than a few truly paper-worthy things per year.)

V. WHY BUILD SYSTEMS IN ACADEMIA?

Despite the challenges of doing systems research in

academia, I believe that it is well worth doing. In part it’s

worth doing if you are “called to do it” – i.e., if you find it

rewarding to envision things that don’t yet exist, build them,

and then see them actually work (and hopefully be used by

others). However, it’s also worth doing because doing it has

a number of benefits, helping to guide your work away from

things that aren’t worth doing and towards things that are.

Reasons include...

A. To Make Sure It’s Possible

For systems researchers, we have a variety of tools at our

disposal. We can build and measure systems, we can build

mock-ups of pieces of systems, or we can design and maybe

simulate them and hope we’re not missing something. The

build-and-measure approach can be critical to not taking an

accidental wrong turn.

As an example, in the late 1980’s and early 1990’s, an

interesting (perhaps ahead of its time) sub-area of database

systems research was “multidatabase systems.” This was a

federated data, or virtual data integration, thought. A set

of otherwise autonomous heterogeneous database systems

could be coupled together and presented to users as a single-

system image. Some groups built things; others studied

the problems and wrote papers without doing so. One

sub-problem in building a multidatabase system is: What

about transactions? Some of the “paper groups” studied

the problem, designing system-level concurrency control

schemes that could tolerate the coupling of multiple sys-

tems running different concurrency control ideas from the

literature – locking, optimistic, timestamps – and many

papers were written. Unfortunately, a number of those papers

got two things wrong. First, most real database systems

used locking – as many of the practical problems (e.g.,
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index concurrency control, crash recovery, ...) had not been

solved for non-lock-based methods. Thus, the degree of

assumed heterogeneity was off – so this was arguably a non-

problem, at least at the time. Second, many of the published

algorithms assumed that the systems would report readset

and writeset information back to a distributed transaction

manager. Unfortunately, database systems just don’t work

that way. Their actual APIs speak SQL, referring to tables

and predicates, not read(x) and write(x) actions. Moreover,

the item granularity (records, pages, files, index pages) varies

from system to system. Doing their work within the context

of a real system, or at least on top of some real systems,

could have helped to guide those research efforts in more

applicable and potentially impactful directions.

B. To Make Sure It’s Beneficial

Systems researchers are engineers, and systems are made

up of components. Some of them are extremely interesting,

and it’s easy to want to deep-dive into their designs – pos-

sibly without checking to see if doing so will be beneficial.

An example here is the backstory for the previously

mentioned LSM spatial data publication, namely [23]. That

work was inspired by a “perfect storm” of comments that

we got within a relatively short period of time a few years

ago. For spatial data, AsterixDB was offering R-tree based

indexing. In response to our sharing that information in talks,

several respected senior database researchers asserted that

everyone knows that X is the best way to index spatial data

– but for different values of X. One was essentially patting

us on the back for having made the wise choice of LSM-

based R-trees. Another was criticizing us for not having gone

with the approach of linearizing 2D data (e.g., via Hilbert-

ordering or Z-ordering) and using LSM-based B-trees on the

transformed spatial keys. A third argued in a visit to UCI

that a grid-based approach would probably be better. Add

to that a musician friend who daylights as a Microsoft SQL

Server app developer – he asked for help understanding and

tuning a spatial index for a SQL Server application he was

building. We became curious about who was right, and what

the tradeoffs would be, and it seemed that not much had been

done in ”LSM land” for spatial data.

We undertook the study, but the end results were – to

one of my collaborators – a bit “disappointing.” Our PhD

student implemented a variety of different methods, getting

them to work end-to-end, and he then ran performance tests

on them by running spatial queries (end-to-end queries,

in AQL at the time) against a cluster running AsterixDB

while varying the data sizes and other query and data

characteristics. Despite trying some very different structures,

the performance differences were relatively minor [23]. On

digging deeper, it turned out that the performance bottleneck

in the queries was elsewhere – once the spatial index had

identified qualifying objects, the objects themselves had to

be fetched in order to answer the queries in an end-to-end

sense. Although AsterixDB employs the usual tricks to speed

up indexed data access (e.g., sorting object references, which

in our case are primary keys, before fetching data objects

[26]), the spatial index portions of the overall query times

were sufficiently small to make differences between index

types noticable but relatively minor – that is, though some

of the differences between them within their portion of the

query times were significant, those index time differences

were watered down to the ± 10% range due to the rest of

the end-to-end query costs (the eventual data access).

The conclusion from the study was that the ”right” LSM-

based spatial index to provide was simply the R-tree, as

R-trees work for both point and non-point data. We added

a small improvement for their storage efficiency in the

case of point data (not storing them as infinitely small

bounding boxes in the index leaves �), and we made a

change in how deletions were handled for LSM, making

those changes in the master version of Apache AsterixDB

and leaving all of the other index options out of the system

as “those were for research.” Any cases where they offered

small performance gains would not be worth the software

engineering pain to have them, and to maintain them, in

the code base. This might be viewed as a “negative result,”

as we didn’t have earth-shattering performance differences

to report – but negative results are actually very important!

This indicated that, at least in a full DBMS (or BDMS)

query processing context, working further on new/different

spatial index structures to improve performance would be,

to borrow a Stonebraker phrase, “polishing a round ball.”

C. To Make Sure It’s Complete

It’s one thing to come up with a new data structure or

algorithm that works for your favorite use case. It’s an

entirely different thing to come up with one that can be

used in practice, one that makes sense in practice and is

worthwhile in practice! If your new index data structure can’t

be loaded, can’t be updated, can’t be made recoverable, or

can’t be made concurrent, it’s not ready for prime time in a

database system. Finish it, and then let’s talk.

My favorite example here is a bit of education that I got

from Goetz Graefe, a long-ago Wisconsin PhD alumnus, an

indexing and query processing expert, and later an ACM

SIGMOD E.F. Codd award winner. As the handling editor

for one of his “more than you ever wanted to know about

X” survey papers, the one on B+ trees [26], I asked him to

explain (both to me and to readers) why most real database

systems stop after offering B+ trees. Linear hashing is one of

my favorite access methods to teach; it seems like a terrific

idea; why isn’t it found in most database systems, since

hashing is O(1) and B+ tree key lookups are O(logfN), if

there is an average of f keys per index page and N keys in

total? His answer (which I am heavily paraphrasing) was

enlightening (see Section 2.5 of [26] on “B-trees Versus

Hash Indexes”): It is well-known how to efficiently load
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a B+ tree; it is not known how to do the same for Linear

Hashing. Moreover, given a modest allocation of memory,

their I/O costs in practice will be the same. Tell me again

why you would want to add such a new, large component

to your system, and solve its concurrency and recovery

problems, and then maintain it? (Goetz 1, Mike 0.)

D. To Make Sure It’s Helpful

You might have a great idea, one that today, if it were

my idea, I would present and then ask: “What’s not to love

about that – how could you possibly not want that?” If you

build your idea into an actual system, or build the system

itself, and then get users, you will get feedback – often

enlightening feedback. We have learned quite a bit in the

AsterixDB effort by engaging with users who are doing

things with our system and paying attention to what they

need and what they find challenging.

As one example, UCI colleague Gloria Mark and one

of her PhD students (Yiran Wang, now at Google) used

AsterixDB as a data management and analysis aid for a study

on stress and multitasking in college life [27]. We gained a

great deal of insight from watching them use the system,

answering their questions, and seeing what the stumbling

blocks were. They needed to time-bin their data into various

sized bins and to deal with the possibility that a given user

activity might span bins (so they needed to allocate portions

of such an activity to the relevant bins). We enhanced our

temporal function support to deal with their requirements,

as it was clear that other users could very well have similar

needs. We also had support for CSV file import for data –

they wanted export support, in addition, to round-trip their

data in and out of the system in order to move it between

analysis tools. We added that as well, based on their needs,

as again it was a generally useful feature that we had simply

missed thus far. And in addition, of course, we found a few

bugs, query optimizer blind spots, and so on. Overall, they

found the system useful – which was nice! – and we were

able to improve it for the next users who might want to store

and analyze multiple channels of temporal event data.

E. To Get a Free Roadmap

Last but not least, materializing your ideas in the form of

an actual system that someone else will then use can lead

to years of future entertainment. Once you have users, they

have needs, and some of those needs are likely to point to

new research directions or at to least major extensions or

engineering challenges that are “future work worthy.” As a

young faculty member in Wisconsin, I sometimes felt like

we were inventing and solving some of the problems that

we worked on (particularly in our various simulation-based

performance projects). “What next?” was a question that we

had to answer periodically. Moreover, it was always a little

disconcerting to see others following in our footsteps – there

was a bit of a “no, wait – we made that up!” feeling that

I would get on when reading/reviewing others’ follow-up

work. This was not my experience in industry – users of

the systems I was involved in always had their own ideas

and wish lists, so answering “what next?” meant choosing

from a list of real needs and/or wishes instead of trying to

guess what might be nice for users to have next.

VI. INITIAL COMMERCIAL IMPACT

Users and requirements are an excellent segway into the

second-to-last part of this story, which is about the com-

mercial adoption of AsterixDB technology. In November of

2018, Couchbase, Inc. released a new data-related service as

part of the Couchbase Data Platform: Couchbase Analytics

[28]. Under the hood, the Analytics service is based on

the query processing and storage technology of Apache

AsterixDB. Figure 7 summarizes AsterixDB’s place in the

Couchbase Data Platform world – in a nutshell, data and data

changes in the Couchbase front-end data store are streamed

in real time into the Couchbase Analytics backend, where

it can then be sliced and diced in its natural (application

schema) form using SQL++. The front-end Data Service is

the data’s home, and the data can be indexed and queried

via the Index and Query services. The addition of Couchbase

Analytics now allows users to conduct near real-time data

analyses on an up-to-date copy of the data; this provides

performance isolation, so heavy data analysis queries won’t

interfere with front-end operations and vice versa.

Figure 7. AsterixDB puts the A in NoSQL HTAP

Apache AsterixDB’s commercial adventure began in

about 2015, when a mutual friend introduced Rahim Yaseen,

Couchbase’s Senior VP of Engineering at the time, to this

author. We quickly realized that we shared a declarative,

general-purpose, query-based (i.e., database!) view of where

NoSQL data platforms should be headed. Saeed moved on

from Couchbase, but Ravi Mayarum, his replacement (and

current Senior VP of Engineering and CTO), continued the

discussions that had begun. The author was eventually given

the opportunity to work with Couchbase in a consulting role

to build a team inside Couchbase to create a new Analytics

Service using AsterixDB as a starting point. This made sense

because the existing Data, Index, and Query services were

all aimed at use cases involving high volumes of small

requests (operational throughput), while AsterixDB’s paral-

lel database-inspired architecture could provide the parallel
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query capabilities needed for more complex analytics over

large volumes of JSON data [29].

The Couchbase discussions were also another motivator

for the movement of AsterixDB into Apache. The AsterixDB

team wanted to ensure that the code base would remain open

and be accessible, without restrictions, to any/all comers.

Once AsterixDB was in Apache, and licensed accordingly,

Couchbase Analytics was then developed as an extension

of Apache AsterixDB over a period of approximately two

more years. Its core storage and query engines continue

to be developed in open source, making the Couchbase

developers some of the most prolific committers to Apache

AsterixDB. The majority of the SQL++ work was done by

Couchbase developers, in fact. Being an enterprise feature

of the Couchbase Platform, for which customers pay money,

Couchbase Analytics also has value-added features, primar-

ily in the areas of cluster dynamics and failure handling

and tooling, which are not a part of Apache AsterixDB.

(Those features proved to be much more challenging than

one might first imagine, particularly when starting with a

system that was designed initially, for lack of manpower

to do everything at once, for static cluster configurations

and offline configuration changes.) The new Couchbase

Analytics service is now starting to find its way into a variety

of interesting industrial use cases, and the aforementioned

“free roadmap” is already unfolding rapidly on both the

commercial and research sides of the AsterixDB project.

VII. A BALANCING ACT

AsterixDB began as a research project, albeit one with

full-system aspirations. Becoming an Apache “product,” and

now the basis of a commercial product, have led to an

interesting ongoing balancing act. The Apache move meant

that a code base that was once a playground for researchers

could no longer be viewed that way – it needed to be cleaned

up, with its research nooks and crannies being cleaned out.

It also meant that a code base that had been co-managed by

faculty (essentially a shared benevolent dictatorship) needed

to transition to Apache-style community management. The

Couchbase adoption raised the quality stakes much further;

preparation for paying customers meant that the code base

needed further hardening and a major makeover in terms

of error handling and feedback. (Research projects tend to

focus mostly on the “happy path.”)

Today, Apache AsterixDB serves three user bases. The

first is the open source community, who expect Apache-

branded Big Data software to meet certain quality require-

ments, particularly as they mature over time. The second is

Couchbase and its users, who have a very high quality bar

and for whom “you get what you pay for” means something

different than it does for open source users. The third are re-

searchers and educators at universities and research institutes

on multiple continents. It is extremely important to us that

Apache AsterixDB can continue to serve that community

as well, providing a basis for teaching “NoSQL done right”

and for empirical, systems-oriented database research. We

have seen other projects, when commercialized, lose that

third role; we are committed to avoiding that outcome for

AsterixDB if at all possible.
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Figure 8. AsterixDB code management framework

Figure 8 shows how the Apache AsterixDB code base

(which is a large Java code base) is currently being managed

in order to meet the needs of all three kinds of users.

Tooling-wise, the project uses git for source code manage-

ment, Maven for compile and test purposes, IntelliJ and

Eclipse (mostly) for IDEs, Jenkins for project automation

and testing, Gerrit for code reviewing, and Docker for build

isolation during tests. Changes to the AsterixDB/Hyracks

master branch are carefully controlled. All changes have to

be code reviewed by multiple committers, receiving +1’s

and at least one +2, before being applied, and there is

a large (and growing) body of tests that are run on the

various system components under various configurations;.

The test automation system also votes on changes in order

to avoid functional regressions. Changes with the potential

to cause performance regressions are carefully performance-

tested and discussed as part of the review process.

In addition to the core master code base, the code base

supports a notion of recognized extensions that are based on

AsterixDB and/or Hyracks code but extend it in their own

ways. Three examples today are Apache VXQuery, BAD

(Big Active Data), and CBAS (the Couchbase Analytics

service). As mentioned in Section III, Apache VXQuery

makes shared use of AsterixDB’s Hyracks and Algebricks

layers; it is a separate Apache project that offers a parallel

XQuery engine for XML data. BAD is the UCI/UCR Big

Active Data project, which extends AsterixDB’s features

with additional DDL and DML capabilities to support data-

oriented pub/sub. CBAS is Couchbase Analytics, which

we just discussed. All three of these extensions have test
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suites that run as part of the Apache AsterixDB continuous

integration process in order to prevent extension-breaking

changes to the master code base from going unnoticed.

Informal extensions, like individual student MS and PhD

research extensions, do not participate at this level – they

are expected to work in their own git branches and sync with

master frequently in order to avoid divergence. The results

of such efforts are brought back into master, if at all, in

small pieces after careful scrutiny and cleanup.

So far, the AsterixDB balancing act seems to be working.

Having Couchbase committers has been tremendously ben-

eficial to the project; the code base is much stronger today,

and students are learning a great deal through their regu-

lar interactions with Couchbase’s “seasoned professionals.”

Couchbase also benefits, as various open source university

efforts enable the system to offer more features and im-

provements than it could if only Couchbase manpower were

available; recent examples include storage compression and

much-improved parallel sorting. The research community

benefits as well; there are AsterixDB-related projects in

locations around the globe, including China, Korea, India,

Saudi Arabia, Germany, and Norway, to name a few, in

addition to its use at various (currently mostly West coast)

universities in the US. It has also been beneficial for

teaching; its use at the University of Washington has been

especially useful, to them as a NoSQL system with a full

query language, and to AsterixDB because the Washington

faculty and students have been a terrific source of user

(usability) feedback. Universities continue to benefit from

AsterixDB’s availability for use as a software laboratory;

numerous MS and PhD thesis have come out of the project

[30] and continue to use branches for research purposes.

VIII. CLOSING THOUGHTS

Today, AsterixDB is “mid-flight” – it is kind of in its

teenage years as a software project. Note that database

systems can take a long time to mature; the UC Berkeley

Postgres project, from which PostgreSQL came, was starting

around the time of my PhD graduation (!) So far it has been

an interesting, fruitful, and fufilling ride. Building systems

in academia is challenging, as this paper has described, but

creating working systems is also an exciting and satisfying

undertaking. There are a number of models that others have

used, including the “Patterson Berkeley lab model” (start

a big project with industrial support, give it an explicit 5-

year lifetime, and then move on) and the “Widom Stanford

project model” (start a smaller project by adding one key

new thing to existing systems, e.g., relaxing schemas or

adding streams). Here I have shared the UCI/UCR Aster-

ixDB model; time will tell how this model will fare in the

end. Meanwhile, my closing advice to young faculty would

be: Do build systems, do have fun in the process, and do

set a high (“BMW”) standard for publishing – the system

and the lessons are the point, and the resulting papers are

for sharing your learnings.
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