
Drum: A Rhythmic Approach to Interactive Analytics on Large Data

Jianfeng Jia, Chen Li, Michael J. Carey
Department of Computer Science, University of California, Irvine

{jianfenj,chenli,mjcarey}@ics.uci.edu

Abstract—In this paper, we study how to progressively an-
swer a time-consuming query on a large data set by generating
a sequence of mini-queries. We formulate an optimization prob-
lem to produce the predicates of mini-queries by considering
both their total running time as well as the smoothness of
result delivery in order to show the incremental results at a
rhythmic pace to improve the user experience. We develop
an adaptive framework called Drum that can collect the run-
time behavioral statistics of the database system to decide the
predicate of the next mini-query appropriately. The framework
is a general middleware solution without any changes to the
underlying database system. We have conducted extensive
experiments on a large, real data set, and the results show that
Drum can reduce the delay of delivering intermediate results
to the user without sacrificing much total time.

Keywords-progressive computing; online aggregation; ana-
lytics; big data; response time; Cloudberry; AsterixDB;

I. INTRODUCTION

Data exploration and analytics are becoming increasingly
important in applications to help users gain insights from
their data and make time-critical decisions. Data analysis
can become even more powerful and desirable by being
interactive, so that users can see the results quickly, ideally
in sub-seconds after submitting a request. At the same time,
achieving such a user experience is technically challenging
on large data sets due to the high computational cost.

As a motivating scenario, suppose we want to build a
system that allows users to explore and visualize a large
collection of social media tweets. For illustration purposes,
we use Table I (Section II) as a running example, which is a
relation with sample tweets. Its simplified schema contains
attributes including the time, location, and message of a
tweet. Suppose that this relation has a large number of
records, e.g., hundreds of millions or billions of records. An
example analytical request is “show the number of tweets
mentioning the keyword zika per state." Fig. 1 presents an
interface for showing the results, where the map uses colors
to indicate the aggregation count of a state.

To serve this request, we can send the following query to
the database:
Q: SELECT state, COUNT(*)
FROM twitter
WHERE ftcontains(message, "zika")
GROUP BY state;

The predicate ftcontains(message, ’zika’) checks
if the textual message value contains the keyword zika. Due
to the large number of records in the relation, the query Q

Figure 1: An UI showing aggregated tweet counts per region

can take a long time to finish, and the user has to wait during
this period. One way to solve this long-waiting-time problem
is to issue a sequence of cheaper “mini-queries" by adding
a range predicate on the create_at attribute so that each
of them can be answered by the database system efficiently.
The following is an example mini-query:
Qm: SELECT state, COUNT(*)

FROM twitter
WHERE ftcontains(message, "zika")
WHERE 2016-01-01 <= create_at AND

create_at < 2016-03-01
GROUP BY state;

One naive solution is to divide the space of the
create_at attribute into multiple fixed-length intervals and
generate a mini-query for each of them. For instance, we
could divide the attribute into multiple months and generate
a mini-query for each month. While this slicing method
is easy to implement, it has two major limitations. First,
the interval is difficult to decide, especially for queries
with different query times. For instance, a tweet query
for a popular keyword such as water can take a much
longer time than a query with a rare keyword such as
authoritarianism. Second, the user experience can be
very poor due to the large variance of running times of the
min-queries, mainly due to two factors. (1) The distribution
of the relation on the slicing attribute can be skewed. Fig. 2
shows the distribution of the number of tweets mentioning
the keyword zika, which has a large variance. There was a
peak in the summer of 2016 due to the Olympic Games in
Rio de Janeiro, Brazil and to the global concern about this
potential epidemic, but public attention quickly diminished
after that. If we divide the time range equally into 14 months

(as shown in the figure), the mini-queries will have different
running times because they need to access different amounts
of data. (2) The performance of the backend database system
can fluctuate over time, especially when there are multiple
queries running simultaneously. As a result, some of the
mini-queries can be fast, and others can be slow, causing
the incremental results to be sent at an irregular pace.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Figure 2: Distribution of “Zika" tweets collected over 1.5
years from November 2015 to May 2017.

In this paper we study how to progressively answer a
time-consuming query on a large data set by generating a
sequence of mini-queries. We focus on how to deliver the
results of mini-queries smoothly by following an “expected
rhythm" for the user so that the user sees regular updates
of the incremental results. We address two main challenges,
as discussed above: (1) The data distribution of the slicing
attribute is hard to model using offline statistics, especially
when the query can have various selection predicates. In
the example, the user can type in arbitrary keywords, and
it would be difficult to know a-priori the distributions for
the keywords. (2) The performance of the database system
can be very dynamic and thus hard to model offline due to
other running queries that compete for the limited computing
resources. We make the following contributions here:
• We formulate an optimization problem to generate the

predicates of mini-queries by considering both their
total running time as well as the smoothness of result
delivery to deliver incremental results at a rhythmic
pace to improve the user experience (Section II).

• We develop an adaptive framework, called “Drum"1,
in which we collect run-time behavioral statistics of
the mini-queries and the backend database system.
It includes a regression function for the relationship
between the predicate and the running time of a mini-
query and an uncertainty model for the estimation error
of the regression function. It also includes a greedy
algorithm that can automatically use the observed per-
formance information to generate the predicate for the
next mini-query (Section III).

• We develop a technique that considers both the total
running time and the penalty of missing the next
expected milestone to deliver the incremental results.
Based on a rigorous analysis of the benefit and cost
of varying the predicate, this technique can select a
predicate that can maximize the gain of the next mini-
query (Section IV).

1Drum stands for “Data Retrieval Using Milestones."

• We have conducted an extensive experimental study
based on a real, large data set of social media tweets to
evaluate Drum and these techniques and to demonstrate
their efficiency (Section V).

A. Related Work

Progressive computing: Many approaches have been pro-
posed in the literature to support interactive queries on large
data sets residing in a backend database system [1], [2],
[3], [4]. For example, [1], [2] developed a solution called
“online aggregation" that progressively shows approximate
aggregation answers with a confidence interval based on
partial results and a statistical model. The solution relies
on random sampling, which requires significant changes
to the underlying database system. [5] introduced another
method for improving the user experience by showing partial
results, which also requires changes to the database system.
[6], [4] studied online aggregation in a MapReduce-like
framework. [7], [8] studied how to provide aggregation
results with different levels of detail incrementally by using
an auxiliary data structure specially designed for spatio-
temporal data; the data structure needs to be synchronized
with the underlying database system. Our study is different
since we consider the case where the underlying database
system is used as a “black box" without any changes.

[9] also addressed how a middleware layer can decompose
a query into mini-queries to improve responsiveness. Their
focus was mainly on how to select an attribute to do the
decomposition, and the generated mini-queries have the
same-size predicate intervals. (See the analysis of fixed-
length intervals above.) Our focus is on how to generate
variable-range predicates for the mini-queries to maintain
the rhythm of delivering results.

Waiting time in progressive computation: Since the user
encounters a series of waiting times, the quality of the expe-
rience heavily depends on the timing of those updates on the
frontend [10], [11]. Similar to the case of streaming online
videos, user-perceived quality can suffer from freezes during
the delivery of results. A sudden, different waiting time can
be different from the user’s expectation, causing a negative
experience [11]. Thus, the rhythm of result delivery is a
key determinant towards a user satisfaction in progressive
computing. Deciding on a good amount of waiting time
for the next incremental update has been studied in [10],
[12], [13]. [14] suggested 10 seconds as an upper time limit
for keeping the user’s attention focused on the interface.
Instead of returning a single response after several minutes,
progressive computing provides a flow of partial results that
helps users “lose their sense of time", resulting in a good
experience of distorted time perception [11].

Query time estimation: Estimating the running time of a
query is a fundamental topic extensively studied (e.g., [15],
[16]). Many of the existing techniques can be adopted in
our Drum framework as part of the regression function.

[17] considered an uncertainty model that relied on inter-
nal information about a database system that may not be
available in many applications. [18] implemented a system
called BlinkDB that allows users to choose a trade-off
between query accuracy and response time. [19] considered
an uncertainty model for admission control of multiuser
workloads, one which needs to be trained in advance on
sample data. Our proposed Drum solution is different; it
does not rely on internal information about the database
system nor a pre-trained model, as it collects statistical
information on the fly during the execution of mini-queries.

II. PROBLEM FORMULATION

A. Architecture and Query Slicing

We consider a widely-used three-tier Web architecture that
includes a backend database system, a middleware server,
and a frontend interface that runs in a browser, as shown in
Fig. 3. A frontend user sends requests to the middleware,
which in turn generates queries to the backend system to
retrieve results and sends a response to the frontend.

Web
Browser

Middleware

Database

Request Response

Queries Results

Figure 3: Architecture

Consider a relational ta-
ble R(A1, A2, . . . , An) in
the backend database. The
middleware posts a query Q
to the table. Due to a large
number of records in R, the
query Q can be computa-
tionally expensive, and the
user needs to wait for a long
time to see the results. We
assume that the relation R

has an attribute ρ, called its slicing attribute, using which
the middleware can generate a sequence of mini-queries
Q1, Q2, . . ., and send them to the backend. Each mini-query
Qi is Q with an additional filtering condition on the slicing
attribute ρ. After receiving the results of each mini-query
Qi, the middleware uses these results to update the frontend
interface. We make the following two assumptions:

1) Each mini-query is much faster than the original query
Q, e.g., due to the smaller amount of data accessed by
Q and an available index on this attribute.

2) The results of these mini-queries can be incrementally
combined to compute the results of the query Q.

Table I shows an example relation with sample tweets.
Section I showed an original tweet query Q and a mini-query
Qm on this table. Notice that after receiving the results of
each mini-query, the frontend can decide how to combine
them with earlier results and update the interface. It can
either show the results as they are or it could show estimated
results for the whole data set based on a statistical model.
Our work mainly focuses on the timing of the generated
mini-queries, not on the way their results are displayed. We
also focus on the case where ρ is a numerical attribute.

B. Slicing Schedules and User Satisfaction

There can be many ways to slice a query into mini-
queries. Fig. 4 shows three ways to answer our example
query Q. (We call each of them a slicing schedule, or just
schedule for short.) The first schedule S1 uses a single query
(Q) that takes 6 seconds to finish. The second schedule S2

uses 4 mini-queries that take 2 seconds each, with a total
time of 8 seconds. The third schedule S3 also uses 4 mini-
queries, but they take 1, 3, 1, and 3 seconds, respectively.

Schedule S1

Q

seconds 2 40 6 81 3 5 7 9

Schedule S3

Q1 Q2 Q3 Q4

Schedule S2

seconds 2 40 6 81 3 5 7 9

seconds 2 40 6 81 3 5 7 9

Q1 Q2 Q3 Q4

Figure 4: Three query-slicing schedules, where each thick
line indicates a delay for an expected 2-second pace.

When deciding a good strategy to slice a query, we need to
consider how the corresponding mini-query schedule affects
the user experience. In the three schedules above, schedule
S1 takes the least amount of total time (6 seconds), but
the user cannot get any intermediate results before that.
Schedule S2 takes a longer time (8 seconds) to finish, but it
gives the user an earlier response and updates the interface
periodically every 2 seconds. Schedule S3 takes the same
total amount of time as S2, but its update frequency is not
regular. From the user’s perspective, the way the interface
is updated in S3 is not very “smooth," as the next time
the new results are shown is not predictable. Schedule S2

updates the interface with a regular pace and has a better
predictability and rhythm in terms of the next time the user
expects the interface to be refreshed, so it can provide a
better user experience.

C. Schedule Quality

The example above suggests the following factors that
affect the user experience in the way that the mini-query
results are delivered:

1) Total running time: For a frontend request, we want
to minimize the total time of these mini-queries to
compute the complete results.

2) Smoothness of result delivery: Users want the fron-
tend to be updated at a regular pace so that the next
time of seeing new results is predictable.

Based on this analysis, we define the cost of a schedule
S as follows:

Cost(S) = Costt(S) + Costm(S). (1)

Id Create_at Message City State Coordinate

799794320 2016-11-18 out state is on fire lol Greensboro NC [-80.029518, 35.962623]
810674471 2016-12-18 House Fire (Frisco) Frisco TX [-96.937783, 33.081206]
819372472 2017-01-01 When’s the Knicks fire sale? Memphis TN [-90.135782, 34.994192]
819734325 2017-01-12 his music is actually fire Buffalo NY [-78.79485, 42.966451]

Table I: A sample table of tweets
In the formula, Costt(S) measures the time cost of the

mini-queries, which can be quantified by their total running
time. Costm(S), where “m" means “smoothness," measures
the smoothness of result delivery. To quantify this cost, we
assume a given desired pace parameter P (an interval time),
and the user expects an update of the frontend P time after
the previous update. Every time the middleware does not
update the interface after this P time, this schedule needs to
pay a “missing-the-deadline" penalty. The smoothness cost
can be quantified as:

Costm(S) = α
∑
i

Di. (2)

In the formula, α is a weight used to quantify the penalty
of missing the next deadline. Di is the delay time of mini-
query Qi based on the pace P , defined as:

Di = max(0, Ui − (Ui−1 + P)).

Qi-1

Qi

Ui-1 Ui

P Di
Qi-1 finished Qi-1 results delivered

Qi started Qi finished

Li

Figure 5: Missing a delivery deadline.

Ui and Ui−1
are the update
times when
the results of
mini-queries
Qi and Qi−1
are delivered,
respectively.

The general idea is shown in Figure 5. Notice that the
middleware starts the new mini-query Qi right after the
previous mini-query Qi−1 finishes, but the middleware can
choose to wait for some time before delivering the results to
the frontend in order to provide a smooth experience since
the user is expecting an update at time Ui−1 based on the
pace P . (Our developed results are orthogonal to whether
or not the middleware decides to wait on the mini-query
results before the next milestone.)

Schedule Cost Cost (α = 2)

S1 6 + 4α 14
S2 8 8
S3 8 + 2α 12

Table II: The costs of the schedules.

Table II shows
the formula’s
costs for the
three schedules in
Fig. 4 when pace
P = 2 seconds.
Take schedule S3

as an example. It
finished in 8 seconds, so Costt(S3) = 8 seconds. Its Q1

and Q3 did not miss their deadlines, while Q2 and Q4

missed their deadlines by 1 second each, so its smoothness
cost is Costm(S3) = α ∗ 2 seconds. If α = 2, for example,
the total cost of S3 is 12 seconds. In general, the lower the
cost a schedule has, the better a user experience it should

provide.
Next we study the following problem: given a query

Q, generate a sequence of mini-queries whose execution
schedule has a minimal cost.

III. Drum: AN ADAPTIVE FRAMEWORK FOR
GENERATING MINI-QUERIES

In this section, we present an adaptive middleware-based
framework, called Drum, to dynamically decide a condi-
tion on the slicing attribute for the next mini-query based
on statistics collected from earlier mini-queries. A main
advantage of this framework is that it does not require
any apriori knowledge about the performance characteristics
of the backend database system, and it can be adaptive
with respect to skewed data distributions and performance
fluctuations of the backend.

Fig. 6 shows the framework. Each incoming request from
the frontend is submitted to the mini-query generator. The
generator utilizes estimation information provided by the
estimator module to choose a range of size ri of the slicing
attribute for the next mini-query Qi. It then generates Qi

and sends it to the backend database to execute. After the
intermediate results return, the middleware sends updated
results to the frontend, possibly by combining them with
earlier results. Meanwhile, the run-time statistics of execut-
ing the mini-queries are collected and stored in the estimator
module. The estimator utilizes the collected information to
help the generator create the next mini-query. Next we give
the details of the framework.

Mini-query
Generator

Mini-Query
Executor

Estimator

Request
Next
Mini-query Qi Results

Run-time
Statistics

Estimation

Regression
Function Uncertainty

Figure 6: Drum framework for adaptive query slicing.
A. Regression Function

The regression function in the estimator is used to capture
the relationship between a slicing-predicate range size and
the corresponding mini-query running time. As more statis-
tics are collected, the more accurate the regression function
can become. Since each mini-query is obtained by adding
a predicate on the slicing attribute, we need to know how
this predicate affects the execution time of the mini-query.
As an example, if the mini-query time is closely related to
the number of records satisfying the predicate, we can use

a linear function between a predicate range size ri and the
running time f(ri) for the next mini-query Qi:

f(ri) = a1ri + a0. (3)

Notice that the values a1 and a0 in the regression can be
request-dependent, so we build a linear regression for each
request. That is, we would have one linear function for a
Zika tweet query and another for an authoritarianism
query. We can use a standard curve-fitting algorithm with
the least-square fitting method to train the linear models on
the collected pairs of range size and running time. Each new
observation from running a mini-query can update the linear
model. Note that due to data skew and fluctuation of system
performance, the relationship between the predicate range
size and running time can also change over time. To enable
the regression function to quickly adapt to such changes, we
can adjust the length of the history to train the model. As
an illustration, Fig 7a shows a linear model learned from a
collection of pairs of range size ri and running time ti:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 5 10 15 20 25 30

R
u

n
n

in
g

 T
im

e
 (

s
e

c
o

n
d

s
)

Predicate Range (days)

f(r)=0.08r+0.9

(a) Linear regression for tweet
mini-queries with different pred-
icates on the create_at at-
tribute. (110 million tweets, key-
word=zika)

 0

 2

 4

 6

 8

 10

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
re

q
u

e
n

c
y
 o

f
e

rr
o

rs
 (

H
is

to
g

ra
m

)

P
D

F
 v

a
lu

e
 (

G
a

u
s
s
ia

n
)

Error ti-f(ri) (seconds)

(b) The Histogram and Gaussian
models. The errors are collected
from the observation ti − f(ri)
in Fig. 7a.

Figure 7: Regression function and error models

B. Uncertainty Model

The real running time ti for a mini-query Qi will differ
from the predicted time f(ri) from the regression function.
The uncertainty model in Drum is used to measure the
distribution of such per-query errors for use in selecting ri.
We consider two types of models: (1) Histogram: We split
the space of the errors into equal-size bins and maintain a
frequency for each bin. (2) Gaussian function: We use a
function to model the error distribution. For example, we
can assume errors follow the Gaussian distribution function
N(0, σ). Fig. 7b shows both the histogram distribution and
Gaussian distribution for the errors ti − f(ri) collected
in Fig. 7a. For the same collection of observations, using
different models can produce different probability values and
thus lead to different mini-query choices.

In reality, the error distribution may depend on the target
running time f(ri). Intuitively, the larger the time f(ri),
the harder it may be to decide a predicate range ri to
achieve the desired time. In addition, the middleware has a
limited number of performance data points collected during
the execution of past mini-queries. For simplicity, our model

will assume that the error distribution is independent of the
target time f(ri). That is, if the error probability distribution
function (PDF) is PDF (ti − f(ri)), then for a specific
given f(ri) the distribution of ti is PDF

(
ti|f(ri)

)
=

PDF
(
ti − f(ri)

)
. For instance, when using the Gaussian

distribution to model the error distribution as N(0, σ), we
assume the real running time ti follows the distribution of
N(f(ri), σ), where f(ri) is the target running time and σ
is the standard derivation of all the observations.

C. Tradeoff of Running Time and Penalty
When deciding the predicate range ri for the next mini-

query Qi, if we choose a large range, the total running time
can be reduced, since the middleware will send fewer mini-
queries to the database. At the same time, a mini-query with
a large range ri will have a longer execution time, which
can cause a large penalty of missing the next deadline. To
consider the tradeoff between the two factors, we define the
following scoring function for mini-query Qi:

score(Qi) =

{ ri
I if ti <= Li

ri
I − α

ti−Li
CiLi

otherwise. (4)

In the function,
• I is the entire interval range of Qi’s slicing attribute;
• ri is the predicate range on the slicing attribute of Qi;
• ri

I quantifies the progress that Qi will contribute to the
overall task;

• Li is the time limit (i.e., time to deadline) for the next
mini-query Qi. As shown in Fig. 5, the limit Li can
be bigger than the pace P if the previous query Qi−1
completes before its own deadline;

• ti is the real running time of query Qi;
• α is a constant weight in the penalty function in

Equation 2;
• Ci is the estimated total number of mini-queries

needed. It can be estimated from the number of mini-
queries issued so far and the summation of the relative
progress that has been made. CiLi is thus a current
estimate of the total running time, making the penalty
be of the same scale as the progress ri

I . Notice that
Ci is specific to the mini-query Qi, but in our analysis
step for deciding range ri, it acts as a constant.

Using the linear function in Fig. 7a and the error PDF
from Fig. 7b, Fig. 8 shows the score values for two ri
values for Qi, where we have Li = 2.2 seconds from the
time Qi−1 was finished until the time we need to have the
results of Qi in order to update the frontend. Fig. 8(a) shows
the score for a strategy A1 that picks a range ri = 16
days for a target running time of f(ri) = 2.2 seconds.
When the real time ti is less than Li, the score is equal
to the progress. As the real time ti becomes larger than
Li, the score constantly decreases since we incur a penalty
for missing the Li deadline. Fig. 8(b) shows the PDF of the
running time ti that is of the same shape as shown in Fig. 7b,
but the mean of the distribution is set to f(ri) = 2.2.

Score(Qi)

t

PDF(ti)

meet
deadline

miss
deadline

t

r i=16 days

f(ri)=2.2s

 Li=2.2s

Score(Qi’)

t

PDF(ti’)

meet
deadline

miss
deadline

t

ri’ =12 days

f(ri’)=1.85s 2.2s

Li=2.2s0s

0s

(a) Score of A1

(b) PDF of A1

(c) Score of A2

(d) PDF of A2

Figure 8: The score and error PDF for two target running
times, ri = 2.2 seconds and r′i = 1.85 seconds, with
time limit Li = 2.2 seconds, f(ri) = 0.08ri + 0.9, and
PDF (ti) = N(f(ri), 0.4).

Fig. 8(c) shows the score function for another strategy A2

that picks a range r′i = 12 days and the target running time
f(r′i) = 1.85s, which is more conservative, by using a value
smaller than Li. Consequently, its maximum score is smaller
than the value when we had f(ri) = 2.2s. Fig. 8(d) shows
the PDF of the running time ti when r′i is 12 days. Compared
to the previous f(ri), the PDF “shifts" to the left, providing a
larger probability of having results to be delivered by the Li

deadline. When comparing the two strategies, we notice that
strategy A1 is more aggressive, choosing a target running
time f(ri) = 2.2s, while A2 is more conservative, using a
smaller time f(r′i) = 1.85s (with a smaller slicing range r′i).
As a result, A2 has a lower progress r′i/I , but also a lower
probability of missing the deadline.

D. Choosing Range ri for Next Mini-Query Qi

At each step, Drum picks a range ri to maximize the
expected score for mini-query Qi so that Qi can finish as
close to the deadline Li as possible but have less risk of
running longer than Li. In this heuristic way, the schedule
composed by all Qi’s can deliver the results at a regular
pace. For a specific range ri, the running time f(ri) can be
estimated using the regression function. Let P (t|f(ri)) be
the PDF of the real running time ti when the targeted time is
f(ri). Then the expected score E(score) of the mini-query
Qi can be calculated as:

E(score(Qi)) =

∫ ∞
0

score(Qi)P (t|f(ri))dt

=
ri
I
− α

∫ ∞
Li

(t− Li)

CiLi
P
(
t|f(ri)

)
dt.

(5)

Our goal is to compute a value ri to maximize this
expected score E(score(Qi)).

IV. CHOOSING AN OPTIMAL PREDICATE RANGE

We consider two different error models for the time
distribution P (t|f(ri)), namely histogram and Gaussian, and

develop a technique for deciding the range ri for each of
them to maximize the expected score E(score(Qi)).

A. Histogram

Calculating expected score for a given range ri: For a
given predicate range ri and the corresponding estimated
running time f(ri) from the regression function, we want to
calculate the expected score for the generated mini-query Qi.
The intuition of our method is the following. The obtained
histogram will give an error distribution centered at f(ri).
We apply Equation 5 to compute the integral of the score
using the error distribution. In particular, before the time
limit Li there is only progress without any penalty, and
after Li the penalty increases linearly. The integral can be
computed based on the probability accumulated in each of
the bins whose ending time is larger than Li. Depending on
the distance between f(ri) and Li, the Li value could fall
into different bins with different probabilities, resulting in
different score computations.

Using the previous example of Li = 2.2 seconds and
f(ri) = 0.08ri+0.9, Fig. 9 shows the histogram distribution
of the running time ti when ri = 12 days and f(ri) = 1.85s.
The limit Li falls into the 5th bin in the histogram. The
bins that are larger than Li will contribute to the penalty.
Within the interval bin [2.0, 2.3], we assume that the error is
uniformly distributed. The shallow part of the bin will also
contribute to the penalty.

2.0

P2=3%

P3=12%

P1=1%

1.7 2.3 2.61.41.10.8 2.9

Time Limit Li=2.2s
Estimated Time
when ri=12 days

P5=26%

P6=22%

P7=2%

(seconds)

b=0.3

P4=34%

T4 T5 T6

y

T7 T8T3

m=5

 f(ri)

Figure 9: Use an error histogram to compute the expected
score for targeting running time f(ri).

Formally, we assume the error distributes evenly within
each interval bin of id k. Hence the PDF for the error within
the k-th interval bin is PDFk = Prk/b, where Prk is the
aggregated probability in the bin. Then the expected score
can be computed as:

E(ri) =
ri

I
−

α

CiLi

(∫ Tm+1

Li

(1−
y

b
)
Prm

b
(t− Li)dt+

n∑
k=m+1

(∫ Tk+1

Tk

Prk

b
(t− Li)dt

))
.

(6)

• n: total number of bins in the histogram;
• b: the width of each bin;
• k: the sequence id of each bin;

• Tk: the start time of the k-th bin;
• m: the id of the bin which time limit Li falls into, i.e.,
Tm ≤ Li < Tm+1;

• y: the time difference Li − Tm.
For a specific range ri that makes Li fall into the m-th

bin, Equation 6 can be transformed to:

E(ri) =
ri

I
−

α

CiLi

(Prm
2b2

(b− y)3 −
n∑

k=m+1

Prky

+ b
n∑

k=m+1

Prk(
1

2
+ k −m)

)
.

(7)

Computing ri to maximize the expected score: Fig. 10
shows how the expected score changes as we increase the
range ri for the histogram distribution in Fig. 9 for different
values of the penalty weight α. As ri increases, initially the
expected score also increases since the progress increases
without much penalty. After a certain time, the expected
score starts declining since the penalty of missing the time
limit also increases. There is an optimal ri that can achieve
the best expected score, and the optimal value depends on
the penalty weight α.

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 8.5 9 9.5 10 10.5 11 11.5

E
x
p
e
c
te

d
 S

c
o
re

Range ri (days)

α=0.1
α=5.0
α=10

Figure 10: Expected score as ri changes (histogram model).

In general, we can find an optimal ri to maximize the
expected score as follows. For each interval bin Bm that the
time limit Li falls into, we can use Equation 7 to compute
a best y value, namely ymax, that maximizes the expected
score. The value ymax, if it exists, must satisfy the following
equation (more details can be found in the appendix in [20]):

(b− ymax)
2 =

2b2

3Prm
(
CiLi

αa1I
−

n∑
k=m+1

Prk). (8)

Let g be the id of the bin that covers f(ri). Using
Equation 8 we can compute the corresponding ymax value.
We can then compute the best f(ri) as:

f(ri) = Li − ymax − (m− g − 1/2)b.

Then we can compute the best ri value based on the
regression function in Equation 3.

Notice that the expected score in Equation 7 will
change based on which bin Li falls into, so we need
to examine all the possible bins to find the ri that
yields the global maximum expectation. A simple ri op-
timization method is to find such a ymax for each of
the bins and choose the one with the largest value.

Bin id k Emax(score) ri (days)

4 0.085 10.85
5 0.095 10.15
6 0.096 9.9
7 0.087 9.45

Table III: Maximal expected scores.

Then we use the
ymax value for
this chosen bin to
compute the cor-
responding ri as
the final predicate
range on the slic-

ing attribute. Table III shows the maximum expected score
for each interval bin in our running example from Fig. 9.

B. Gaussian Distribution

Assume that the estimated time error ti − f(ri) follows
a Gaussian distribution N(0, σ). With this assumption, the
value of ti follows the distribution of N(f(ri), σ). The
parameter σ is the standard deviation of the observation
data. We keep updating a single standard deviation estimate
after seeing each new data point of the performance of the
database system. One advantage of the Gaussian distribution
is that it has a closed-form PDF. We can replace the PDF in
Equation 5 with N(f(ri), σ) and get the following function
(more details can be found in the Appendix in [20]):

E(ri) =
ri
I
− α

∫ ∞
Li

t− Li

CiLi

1√
2πσ

e
−(

t−f(ri)√
2σ

)2

dt. (9)

Let
z =

f(ri)− Li√
2σ

. (10)

We compute zmax that yields the maximum expectation as:

zmax = erf−1(
2CiLi

a1Iα
− 1). (11)

Using the model in Equation 3, we compute ri as:

ri =

√
2σzmax + Li − a0

a1
, (12)

To summarize, for a given time limit Li, penalty weight
α, range space I , coefficients a1 and a0 of the linear
function, and variance σ of the Gaussian model, we can
use Equations 11 and 12 to compute ri to have the maximal
expected score.

V. EXPERIMENTS
A. Setting

We collected 114 million tweets using the Twitter stream-
ing API from November 14, 2016 to January 17 2017.
We used Apache AsterixDB [21] (0.9.2 version) as the
backend database to store the data. Its schema included the
following attributes: (id: int, create_at: datetime, message:
string, lang:string, stateID: int, countyID:int, cityID:int).
The total size of the records in the database was 90GB. The
Drum middleware was written in Scala 2.11.7 and ran on
a 64-bit JVM (Oracle 1.8 version). Both the middleware
and database ran on a machine with a CPU of 2 cores,
16GB memory, and a 500GB M.2 SSD disk, running the
Centos 7 operating system. We evaluated queries to count
the number of tweets mentioning a particular keyword. The
original, unsliced queries to AsterixDB were as following:

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
el

ec
tio

n

ra
in

ha
pp

y
N

oK
ey

w
or

d

N
u

m
 o

f
m

in
i-
q

u
e

ri
e

s

NS
FL

DRUM-BL
DRUM-HS
DRUM-GA

(a) Number of mini-queries

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

el
ec

tio
n

ra
in

ha
pp

y
N

oK
ey

w
or

d

T
o

ta
l
ti
m

e
 (

s
e

c
o

n
d

s
)

NS
FL

DRUM-BL
DRUM-HS
DRUM-GA

(b) Total time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

el
ec

tio
n

ra
in

ha
pp

y
N

oK
ey

w
or

d

D
e

la
y
 (

s
e

c
o

n
d

s
)

NS
FL

DRUM-BL
DRUM-HS
DRUM-GA

(c) Total delay (FL is 0 in
election and rain cases)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

el
ec

tio
n

ra
in

ha
pp

y
N

oK
ey

w
or

d

C
o

s
t

(s
e

c
o

n
d

s
)

NS
FL

DRUM-BL
DRUM-HS
DRUM-GA

(d) Total cost (α = 25)

Figure 11: Evaluating slicing methods

SELECT COUNT(t)
FROM twitter t
WHERE ftcontains(t.message, $keyword);

We considered different types of queries regarding their
keyword condition. (a) NoKeyword: The query did not
have an ftcontains predicate; (2) Uniform keyword: The
keyword in the query was distributed uniformly over time.
An example was rain, whose daily tweet number did not
change very much over time. (3) Non-uniform keyword: The
keyword had a skewed distribution in the time range. Ex-
ample keywords were election (popular around November
2016) and happy (popular around January 2017).

We built a full-text index on the message field to speed up
these keyword-search queries. We used the “create_at" field
as the slicing attribute, which was the creation timestamp
of a tweet. We also used this field to do filtering for the
AsterixDB indexes [22], which can prune irrelevant disk
components if a query has a range predicate on the attribute.
Therefore, a mini-query with a short range condition on the
create_at field ran faster than one with a bigger range. We
assume the user was more interested in the latest results, so
the slicing was moving from the latest time to the earliest.

B. Effect of Different Slicing Methods

For comparison purposes, we implemented the following
methods to run a query: (1) No slicing (“NS"): we ran the
original query as it was; (2) Fixed-length slicing (“FL"): we
used a fixed interval size for the slicing attribute in each
mini-query; (3) Baseline Drum (“DRUM-BL"): we used the
Drum framework without an error model, and used a linear
regression function to directly compute a predicate range
for the next mini-query without considering the penalty of
missing the next milestone; (4) Drum with a histogram error
model (“DRUM-HS"): we used a histogram error model
(Equation 6) to decide the next predicate range; and (5)
Drum with a Gaussian error model (“DRUM-GA"): we used
a Gaussian error model (equation 9) to decide the next pred-
icate range. All Drum methods started with 3 mini-queries
with a fixed range of one, two, and four hours respectively to
accumulate the initial statistics and then began the adaptive
process. For each query, we ran each slicing method three
times and computed their average performance numbers. We

set the required response rhythmic pace to be 2 seconds. As
explained in Section I, a good fixed length is hard to decide
for the FL method. To give it a fair and comparable setting,
we used the average number of mini-queries obtained from
the DRUM-BL method for our different keywords.

Number of mini-queries: We first tested the different
methods to explore their number of mini-queries. We con-
sidered four queries with different keyword conditions,
namely keyword rain (uniform), keyword election (non-
uniform), keyword happy (non-uniform and expensive), and
NoKeyword (uniform and expensive). The results are shown
in Fig. 11a. The NS method sent one big query directly to
the database, so its number of mini-queries was always 1.
The FL method used a fixed interval of 29 hours and issued
60 mini-queries regardless of the keyword condition. In con-
trast, the Drum framework dynamically adjusted the number
of mini-queries based on the observed performance numbers
of the database system. For example, keywords election
and rain were very selective, and the corresponding original
queries would access fewer records than the query of the
popular keyword happy. The Drum framework utilized the
collected information and picked a bigger predicate range for
the two queries. As a result, their numbers of mini-queries
were much less than that of the happy query and of the
query without keywords. Among the three Drum methods,
the DRUM-HS and DRUM-GA methods considered the un-
certainty of the regression and thus were more conservative
when generating the next predicate range and issued more
mini-queries than DRUM-BL.

Total running time: Fig. 11b shows the total running time
of the schedules generated by different models. The NS
method had the least total running time because it did not
do any slicing and thus did not pay any overhead. The FL
method sent 60 mini-queries and had a slightly longer total
time. The time of each DRUM method was comparable;
these methods did not increase the running time much.

Total delay of missing milestones: We next evaluated the
different methods regarding their total delay time. The
results are shown in Fig. 11c. The NS method had the
longest delay because it did not give the user any updates
until the whole query was finished. The delay time of FL
was always 0 for the election and rain requests, as each

of their mini-queries used a small fixed range and could
finish before the next milestone. However, the same fixed
range setting caused mini-queries of the expensive requests
happy and NoKeyword to miss their deadlines. This result
illustrates the difficulty of choosing a single range that works
well for different requests. Compared to the DRUM-BL
method, DRUM-HS and DRUM-GA used the histogram
and Gaussian distribution uncertainty models to measure the
penalty of missing a deadline, and hence they were more
conservative regarding the range of each mini-query. As a
result, the delays of these two methods were much smaller.

Total cost: Fig. 11d shows the overall cost of a schedule
generated by each method as defined in Equation 1, where
the weight was set to α = 25 to reflect a case where the
client is concerned more about the pace of result delivery
than the total running time. The NL method had the highest
cost due to its long delay. The cost of FL was also significant
for the two expensive queries happy and NoKeyword. The
Drum methods had lower costs for all the queries because
of the low penalty of their generated schedules. The DRUM-
HS and DRUM-GA methods were able to balance the
number of mini-queries and the risk of missing milestones,
so their costs were the lowest.

These experiments showed that there was no much dif-
ference between the schedules generated by DRUM-HS and
DRUM-GA. The main reason was that Drum is an adaptive
framework, and it can automatically adjust the regression
function based on observed performance numbers, so the
estimation error distribution was similar to Gaussian.

C. Effect of Penalty Weight α

We evaluated the effect of the penalty weight α in the
scoring function of Equation 2. Intuitively, a higher α value
means a higher penalty for missing deadlines, and the slicing
method should become more conservative in generating
the next predicate range. We did experiments using three
different values for α, namely 5, 25, and 125, for both
DRUM-HS and DRUM-GA. Fig. 12a shows the number of
mini-queries when using the DRUM-HS method. When α
increased, the number of mini-queries also increased since
each mini-query became more conservative (with a smaller
range). Meanwhile, the percentage of delay in the overall
time decreased due to the smaller predicate ranges, as shown
in Fig. 12b. The DRUM-GA method has similar results.

D. Adaptiveness of Regression Function

To evaluate the adaptiveness of the regression function, we
considered two ways to derive the linear regression function:
(1) All, which used the observed performance numbers of
all previous mini-queries; and (2) Last10, which used the
latest 10 performance numbers. The purpose here was to
see how the Drum framework can adapt to changes in
the performance of the underlying database system. We

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

el
ec

tio
n

ra
in

ha
pp

y
N

oK
ey

w
or

d

N
u
m

b
e
r

o
f
m

in
i-
q
u
e
ri
e
s α=5

α=25
α=125

(a) Number of mini-queries

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

el
ec

tio
n

ra
in

ha
pp

y
N

oK
ey

w
or

d

R
e
la

ti
v
e
 D

e
la

y
 (

%
)

α=5
α=25

α=125

(b) The percentage of delay
Figure 12: Effect of penalty weight α (DRUM-HS)

considered the NoKeyword query, whose query results were
distributed evenly over the entire time range.

We first simulated a situation with a single sudden change
of the database performance. The first half of the mini-
queries were run normally, but at that point in time we added
a 1-second sleep to the database connection before sending
the result back to the mini-query executor in order to sim-
ulate a case where the second half of the mini-queries took
longer than the mini-queries with the same time ranges in
the first half. Fig. 13 shows the results. The Last10 method
was able to adapt to the new database performance much
faster since its obtained linear regression better described the
relationship between the predicate range and running time.
The All method did not adapt to the changes well and there
were more underestimated predictions as shown in Fig. 14.

 0

 50

 100

 150

 200

 250

 300

 350

DRUM-HS DRUM-GA

T
im

e
 (

s
e
c
o
n
d
s
)

All
Last10

(a) Total running time

 0

 2

 4

 6

 8

 10

 12

 14

DRUM-HS DRUM-GA

T
im

e
 (

s
e
c
o
n
d
s
)

All
Last10

(b) Total delay
Figure 13: Adaptiveness of the linear regression (adding a
1-second sleep for the second half of the mini-queries)

 0

 5

 10

 15

 20

 25

 30

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

F
re

q
u

e
n

c
y
 o

f
e

rr
o

rs
 (

H
is

to
g

ra
m

)

Error ti-f(ri) (seconds)

(a) Last10 method

 0

 5

 10

 15

 20

 25

 30

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

F
re

q
u

e
n

c
y
 o

f
e

rr
o

rs
 (

H
is

to
g

ra
m

)

Error ti-f(ri) (seconds)

(b) All method
Figure 14: Error distribution of the predication model by
changing the length of learning history.

We then simulated a situation where the database system
was constantly not stable, where we added a 1-second sleep
randomly (with probability of 0.5) in the database connector
for each mini-query. Fig. 15 shows the results. In this case,

the linear function trained using the All method was more
precise, and both its total running time and penalty were less
than those for the Last10 method.

These two experiments showed that using fewer recent
observations to train a linear function can more quickly
adapt to new backend performance changes. However, if the
underlying database is unstable, using fewer observations
may more likely be affected by “noise," making the trained
model less precise, which could lead to worse performance
(e.g., a longer running time and bigger penalty).

 0

 50

 100

 150

 200

 250

 300

 350

DRUM-HS DRUM-GA

T
im

e
 (

s
e
c
o
n
d
s
)

All
Last10

(a) Total running time

 0

 2

 4

 6

 8

 10

 12

 14

DRUM-HS DRUM-GA

T
im

e
 (

s
e
c
o
n
d
s
)

All
Last10

(b) Total delay
Figure 15: Adaptiveness of the linear regression (adding a
1-second sleep for each mini-query randomly)

Remarks: In summary, we have seen that (1) the Drum
framework can adaptively adjust the size of each mini-query
to successfully reduce the amount of delay for different
queries without any prior knowledge, and it does not increase
the total running time by much. (2) The uncertainty models
can automatically balance the number of mini-queries and
the penalty of missing milestones depending on the weight
on the penalties. (3) The Gaussian model and histogram
model gave similar results. Since the Gaussian model is
easier to implement, it is arguably the better choice to adopt.

VI. CONCLUSIONS

In this paper, we have studied how to progressively
answer a time-consuming query on a large data set by
generating a sequence of mini-queries. We formulated an
optimization problem to produce the predicates of mini-
queries by considering both their total running time as well
as the smoothness of result delivery, the key goal being to
provide the incremental results at a rhythmic pace to improve
the user experience. We developed an adaptive framework
called Drum that can collect run-time behavioral statistics
for the database system to decide the predicate for the next
mini-query appropriately. Drum is a general middleware
solution that requires no changes to the underlying database
system. Our experiments on a large, real data set showed that
Drum and its techniques can reduce the delay of delivering
intermediate results to the user without sacrificing much total
time. Therefore, the user can see smooth result updates at the
expected rhythm. In the future, we will extend the techniques
to do slicing on multi-dimensional and categorical fields to
support more progressive display options.

ACKNOWLEDGMENTS

This work has been supported by NIH award 1U01HG008488-
01, NSF CNS award 1305430, and the Army Research Laboratory
under Cooperative Agreement No. W911NF-16-2-0110.

REFERENCES

[1] J. M. Hellerstein et al., “Online Aggregation,” in ACM
SIGMOD, 1997.

[2] P. J. Haas et al., “Ripple Joins for Online Aggregation,” in
ACM SIGMOD, 1999, pp. 287–298.

[3] J. M. Hellerstein et al., “Interactive data analysis: The Control
Project,” IEEE Computer, vol. 32, no. 8, pp. 51–59, 1999.

[4] N. Pansare et al., “Online Aggregation for Large MapReduce
Jobs,” PVLDB, vol. 4, no. 11, pp. 1135–1145, 2011.

[5] V. Raman et al., “Partial results for online query processing,”
in ACM SIGMOD, 2002, pp. 275–286.

[6] T. Condie et al., “MapReduce Online,” in USENIX Sympo-
sium on NSDI, 2010, pp. 313–328.

[7] I. Lazaridis et al., “Progressive Approximate Aggregate
Queries with a Multi-Resolution Tree Structure,” in ACM
SIGMOD, 2001, pp. 401–412.

[8] Y. Tao et al., “Spatio-Temporal Aggregation Using Sketches,”
in ICDE, 2004, pp. 214–225.

[9] K.-L. Tan et al., “Query rewriting for SWIFT (first) answers,”
IEEE Trans. Knowl. Data Eng., vol. 12, no. 5, 2000.

[10] S. Egger et al., “Waiting times in quality of experience for
web based services,” in QoMEX, 2012, pp. 86–96.

[11] Y. Skadberg et al., “Visitors’ flow experience while browsing
a Web site: its measurement, contributing factors and conse-
quences,” Computers in Human Behavior, vol. 20, 2004.

[12] N. Bhatti et al., “Integrating user-perceived quality into web
server design,” Computer Networks, vol. 33, no. 1, 2000.

[13] J. Nielsen, “Usability Engineering,” in The Computer Science
and Engineering Handbook, 1997, pp. 1440–1460.

[14] M. Fiedler et al., “State-of-the-art with regards to user-
perceived Quality of Service and quality feedback,” Euro-NGI
Deliverable D. WP. JRA. 6. 1. 1, 2004.

[15] M. Ahmad et al., “Predicting completion times of batch query
workloads using interaction-aware models and simulation,” in
ACM EDBT, 2011, pp. 449–460.

[16] W. Wu et al., “Towards Predicting Query Execution Time
for Concurrent and Dynamic Database Workloads,” PVLDB,
vol. 6, no. 10, pp. 925–936, 2013.

[17] W. Wu et al., “Uncertainty Aware Query Execution Time
Prediction,” PVLDB, vol. 7, no. 14, pp. 1857–1868, 2014.

[18] S. Agarwal et al., “BlinkDB: queries with bounded errors and
bounded response times on very large data,” in ACM EuroSys,
2013, pp. 29–42.

[19] P. Xiong et al., “ActiveSLA: a profit-oriented admission
control framework for database-as-a-service providers,” in
ACM SOSP, 2011, p. 15.

[20] J. Jia et al., “Drum: A rhythmic approach
to interactive analytics on large data (full),”
http://cloudberry.ics.uci.edu/img/query-slicing-long.pdf.

[21] S. Alsubaiee et al., “AsterixDB: A scalable, open source
BDMS,” PVLDB, vol. 7, no. 14, pp. 1905–1916, 2014.

[22] S. Alsubaiee et al., “LSM-Based Storage and Indexing: An
old idea with timely benefits,” in ACM Workshop on Manag-
ing and Mining Enriched Geo-Spatial Data, 2015, pp. 1–6.

