
A Bloat-Aware Design for Big Data Applications

Yingyi Bu Vinayak Borkar Guoqing Xu Michael J. Carey

Department of Computer Science, University of California, Irvine

{yingyib,vborkar,guoqingx, mjcarey}@ics.uci.edu

Abstract

Over the past decade, the increasing demands on data-driven busi-
ness intelligence have led to the proliferation of large-scale, data-
intensive applications that often have huge amounts of data (often
at terabyte or petabyte scale) to process. An object-oriented pro-
gramming language such as Java is often the developer’s choice for
implementing such applications, primarily due to its quick develop-
ment cycle and rich community resource. While the use of such lan-
guages makes programming easier, significant performance prob-
lems can often be seen — the combination of the inefficiencies in-
herent in a managed run-time system and the impact of the huge
amount of data to be processed in the limited memory space often
leads to memory bloat and performance degradation at a surpris-
ingly early stage.

This paper proposes a bloat-aware design paradigm towards
the development of efficient and scalable Big Data applications in
object-oriented GC enabled languages. To motivate this work, we
first perform a study on the impact of several typical memory bloat
patterns. These patterns are summarized from the user complaints
on the mailing lists of two widely-used open-source Big Data appli-
cations. Next, we discuss our design paradigm to eliminate bloat.
Using examples and real-world experience, we demonstrate that
programming under this paradigm does not incur significant pro-
gramming burden. We have implemented a few common data pro-
cessing tasks both using this design and using the conventional
object-oriented design. Our experimental results show that this new
design paradigm is extremely effective in improving performance
— even for the moderate-size data sets processed, we have ob-
served 2.5×+ performance gains, and the improvement grows sub-
stantially with the size of the data set.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management, optimization, run-
time environment; H.4 [Information Systems Applications]: Mis-
cellaneous

General Terms Languages, Design, Performance

Keywords Big Data Applications, Memory Bloat, Design

1. Introduction

Modern computing has entered the era of Big Data. The mas-
sive amounts of information available on the Internet enable com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’13, June 20–21, 2013, Seattle, Washington, USA.
Copyright c© 2013 ACM 978-1-4503-2100-6/13/06. . . $15.00

puter scientists, physicists, economists, mathematicians, political
scientists, bio-informaticists, sociologists, and many others to dis-
cover interesting properties about people, things, and their inter-
actions. Analyzing information from Twitter, Google, Facebook,
Wikipedia, or the Human Genome Project requires the develop-
ment of scalable platforms that can quickly process massive-scale
data. Such frameworks often utilize large numbers of machines in a
cluster or in the cloud to process data in a parallel manner. Typical
data-processing frameworks include data-flow and message pass-
ing runtime systems. A data-flow system (such as MapReduce [19],
Hadoop [10], Hyracks [16], Spark [49], or Storm [40]) uses dis-
tributed file system to store data and computes results by push-
ing data through a processing pipeline, while a message passing
system (such as Pregel [29] or Giraph [9]) often loads one parti-
tion of data per processing unit (machine, process, or thread) and
sends/receives messages among different units to perform compu-
tations. High-level languages (such as Hive [11], Pig [34], Flume-
Java [18], or AsterixDB [14]) are designed to describe data pro-
cessing at a more abstract level.

An object-oriented programming language such as Java is
often the developer’s choice for implementing data-processing
frameworks. In fact, the Java community has already been the
home of many data-intensive computing infrastructures, such as
Hadoop [10], Hyracks [16], Storm [40], and Giraph [9]. Spark [49]
is written in Scala, but it relies on a Java Virtual Machine (JVM) to
execute. Despite the many development benefits provided by Java,
these applications commonly suffer from severe memory bloat—a
situation where large amounts of memory are used to store infor-
mation not strictly necessary for the execution—that can lead to
significant performance degradation and reduced scalability.

Bloat in such applications stems primarily from a combination
of the inefficient memory usage inherent in the run time of a man-
aged language as well as the processing of huge volumes of data
that can exacerbate the already-existing inefficiencies by orders of
magnitude. As such, Big Data applications are much more vulner-
able to runtime bloat than regular Java applications. As an interest-
ing reference point, our experience shows that the latest (Indigo)
release of the Eclipse framework with 16 large Java projects loaded
can successfully run (without any noticeable lag) on a 2GB heap;
however, a moderate-size application on Giraph [9] with 1GB input
data can easily run out of memory on a 12 GB heap. Due to the in-
creasing popularity of Big Data applications in modern computing,
it is important to understand why these applications are so vulner-
able, how they are affected by runtime bloat, and what changes
should be made to the existing design and implementation princi-
ples in order to make them scalable.

In this paper, we describe a study of memory bloat using
two real-world Big Data applications: Hive [11] and Giraph [9],
where Hive is a large-scale data warehouse software (Apache top-
level project, powering Facebook’s data analytics) built on top
of Hadoop and Giraph is an Apache open-source graph analytics
framework initiated by Yahoo!. Our study shows that freely creat-

ing objects (as encouraged by object-orientation) is the root cause
of the performance bottleneck that prevents these applications from
scaling up to large data sets.

To gain a deep understanding of the bottleneck and how to ef-
fectively optimize it away, we break down the problem of exces-
sive object creation into two different aspects, (1) what is the space
overhead if all data items are represented by Java objects? and (2)
given all these objects, what is the memory management (i.e., GC)
costs in a typical Big Data application? These two questions are
related, respectively, to the spatial impact and the temporal impact
that object creation can have on performance and scalability.

On the one hand, each Java object has a fixed-size header space
to store its type and the information necessary for garbage collec-
tion. What constitutes the space overhead is not just object head-
ers; the other major component is from the pervasive use of object-
oriented data structures that commonly have multiple layers of del-
egations. Such delegation patterns, while simplifying development
tasks, can easily lead to wasteful memory space that stores point-
ers to form data structures, rather than the actual data needed for
the forward execution. Based on a study reported in [32], the frac-
tion of the actual data in an IBM application is only 13% of the
total used space. This impact can be significantly magnified in a
Big Data application that contains a huge number of (relatively
small) data item objects. For such small objects, the space overhead
cannot be easily amortized by the actual data content. The prob-
lem of inefficient memory usage becomes increasingly painful for
highly-parallel data-processing systems because each thread con-
sumes excessive memory resource, leading to increased I/O costs
and reduced concurrency.

On the other hand, a typical tracing garbage collection (GC) al-
gorithm periodically traverses the entire live object graph to iden-
tify and reclaim unreachable objects. For non-allocation-intensive
applications, efficient garbage collection algorithms such as a gen-
erational GC can quickly mark reachable objects and reclaim mem-
ory from dead objects, causing negligible interruptions from the
main execution threads. However, once the heap grows to be large
(e.g., a few dozens of GBs) and most objects in the heap are live, a
single GC call can become exceedingly longer. In addition, because
the amount of used memory in a Big Data application is often close
to the heap size, GC can be frequently triggered and would even-
tually become the major bottleneck that prevents the main threads
from making satisfactory progress. We observe that in most Big
Data applications, a huge number of objects (representing data to
be processed in the same batch) often have the same lifetime, and
hence it is highly unnecessary for the GC to traverse each individ-
ual object every time to determine whether or not it is reachable.

Switch back to an unmanaged language? Switching back to
an unmanaged language such as C++ appears to be a reasonable
choice. However, our experience with many Big Data applications
(such as Hive, Pig, Jaql, Giraph, or Mahout) suggests that a Big
Data application often exhibits clear distinction between a control
path and a data path. The control path organizes tasks into the
pipeline and performs optimizations while the data path represents
and manipulates data. For example, in a typical Big Data applica-
tion that runs on a shared-nothing cluster, there is often a driver
at the client side that controls the data flow and there are multi-
ple run-time data operators executing data processing algorithms
on each machine. The execution of the driver in the control path
does not touch any actual data. Only the execution of the data op-
erators in the data path manipulates data items. While the data path
creates most of the run-time objects, its development often takes a
very small amount of coding effort, primarily because data process-
ing algorithms (e.g., joining, grouping, sorting, etc.) can be easily
shared and reused across applications.

One study we have performed on seven open-source Big Data
applications shows that the data flow path takes an overage 36.8%
of the lines of source code but creates more than 90% of the
objects during execution. Details of this study can be found in
Section 4.3. Following the conventional object-oriented design for
the control path is often unharmful; it is the data path that needs a
non-conventional design and an extremely careful implementation.
As the control path takes the majority of the development work,
it is unnecessary to force developers to switch to an unmanaged
language for the whole application where they have to face the (old)
problems of low productivity, less community resource, manual
memory management, and error-prone implementations.

Although the inefficient use of memory in an object-oriented
language is a known problem and has been studied before (e.g.,
in [32]), there does not exist any systematic analysis of its impact
on Big Data applications. In this paper, we study this impact both
analytically and empirically. We argue that the designers of a Big
Data application should strictly follow the following principle: the
number of data objects in the system has to be bounded and can-
not grow proportionally with the size of the data to be processed.
To achieve this, we propose a new design paradigm that advocates
to merge small objects in the storage and access the merged ob-
jects using data processors. The idea is inspired from old mem-
ory management technique called page-based record management,
which has been used widely to build database systems. We adopt
the proposed design paradigm in our “build-from-scratch” general-
purpose Big Data processing framework (called Hyracks) at the
application (Java) level, without requiring the modification of the
JVM or the Java compiler. We demonstrate, using both examples
and experience, that writing programs using the proposed design
paradigm does not create much burden for developers.

We have implemented several common data processing tasks
by following both this new design paradigm and the conventional
object-oriented design principle. Our experimental results demon-
strate that the implementations following the new design can scale
to much larger data sizes than those following the conventional
design. We believe that this new design paradigm is valuable in
guiding the future implementations of Big Data applications using
managed object-oriented languages. The observations made in this
paper strongly call for novel optimization techniques targeting Big
Data applications. For example, optimizer designers can develop
automated compiler and/or runtime system support (e.g., within a
JVM) to remove the identified inefficiency patterns in order to pro-
mote the use of object-oriented languages in developing Big Data
applications. Furthermore, future development of benchmark suites
should consider the inclusion of such applications to measure JVM
performance.

Contributions of this paper include:

• an analytical study on the memory usage of common Big Data
processing tasks such as the graph link analysis and the rela-
tional join. We find that the excessive creation of objects to rep-
resent and process data items is the bottleneck that prevents Big
Data applications from scaling up to large datasets (Section 2);

• a bloat-aware design paradigm for the development of highly-
efficient Big Data applications; instead of building a new mem-
ory system to solve the memory issues from scratch, we propose
two application-level optimizations, including (1) merging (in-
lining) a chunk of small data item objects with the same lifetime
into few large objects (e.g., few byte arrays) and (2) manipulat-
ing data by directly accessing merged objects (i.e., at the binary
level), in order to mitigate the observed memory bloat patterns
(Section 3);

• a set of experimental results (Section 5) that demonstrate sig-
nificant memory and time savings using the design. We report

our experience of programming for real-world data-processing
tasks in the Hyracks platform (Section 4). We compare the per-
formance of several Big Data applications with and without us-
ing the proposed design; the experimental results show that our
optimizations are extremely effective (Section 5).

2. Memory Analysis of Big Data Applications

In this section, we study two popular data-intensive applications,
Giraph [9] and Hive [11], to investigate the impact of creating
of Java objects to represent and process data on performance and
scalability. Our analysis drills down to two fundamental problems,
one in space and one in time: (1) large space consumed by object
headers and object references, leading to low packing factor of
the memory, and (2) massive amounts of objects and references,
leading to poor GC performance. We analyze these two problems
using examples from Giraph and Hive, respectively.

2.1 Low Packing Factor

In the Java runtime, each object requires a header space for type
and memory management purposes. An additional space is needed
by an array to store its length. For instance, in the Oracle 64-
bit HotSpot JVM, the header spaces for a regular object and for
an array take 8 and 12 bytes, respectively. In a typical Big Data
application, the heap often contains many small objects (such as
Integers representing record IDs), in which the overhead in-
curred by headers cannot be easily amortized by the actual data
content. Space inefficiencies are exacerbated by the pervasive uti-
lization of object-oriented data structures. These data structures of-
ten use multiple-level of delegations to achieve their functionality,
leading to large space storing pointers instead of the actual data. In
order to measure the space inefficiencies introduced by the use of
objects, we employ a metric called packing factor, which is defined
as the maximal amount of actual data that be accommodated into
a fixed amount of memory. While a similar analysis [32] has been
conducted to understand the health of Java collections, our analysis
is specific to Big Data applications where a huge amount of data
flow through a fixed amount memory in a batch-by-batch manner.

To analyze the packing factor for the heap of a typical Big Data
application, we use the PageRank algorithm [35] (i.e., an applica-
tion built on top of Giraph [9]) as a running example. PageRank is
a link analysis algorithm that assigns weights (ranks) to each vertex
in a graph by iteratively computing the weight of each vertex based
on the weight of its inbound neighbors. This algorithm is widely
used to rank web pages in search engines.

We ran PageRank on different open-source Big Data com-
puting systems, including Giraph [9], Spark [49], and Ma-
hout [12], using a 6-rack, 180-machine research cluster. Each ma-
chine has 2 quad-core Intel Xeon E5420 processors and 16GB
RAM. We used a 70GB web graph dataset that has a total of
1, 413, 511, 393 vertices. We found none of the three systems
could successfully process this dataset. They all crashed with
java.lang.OutOfMemoryError, even though the data par-
titioned for each machine (i.e., less than 500MB) should easily fit
into its physical memory.

We found that many real-world developers experienced simi-
lar problems. For example, we saw a number of complaints on
OutOfMemoryError from Giraph’s user mailing list, and there
were 13 bloat-related threads on Giraph’s mailing list during the
past 8 months1 . In order to locate the bottleneck, we perform a
quantitative analysis using PageRank. Giraph contains an example

1 http://mail-archives.apache.org/mod mbox/giraph-user/

Figure 1. Giraph object subgraph rooted at a vertex.

Class #Objects Header (b) Pointer (b)

Vertex 1 8 40
List 3 24 24

List$Array 3 36 8(m + n)
LongWritable m + 1 8m + 8 0

DoubleWritable n + 1 8n + 8 0
Total m + n + 9 8(m + n) + 84 8(m + n) + 64

Table 1. Numbers of objects per vertex and their space overhead
(in bytes) in PageRank in the Sun 64-bit Hopspot JVM.

implementation of the PageRank algorithm. Part of its data repre-
sentation implementation2 is shown below.

public abstract class EdgeListVertex<

I extends WritableComparable,

V extends Writable,

E extends Writable, M extends Writable>

extends MutableVertex<I, V, E, M> {
private I vertexId = null;

private V vertexValue = null;

/** indices of its outgoing edges */

private List<I> destEdgeIndexList;

/** values of its outgoing edges */

private List<E> destEdgeValueList;

/** incoming messages from

the previous iteration */

private List<M> msgList;

......

/** return the edge indices starting from 0 */

public List<I> getEdegeIndexes(){
...

}
}

Graphs handled in Giraph are labeled (i.e., both their ver-
tices and edges are annotated with values) and their edges
are directional. Class EdgeListVertex represents a graph
vertex. Among its fields, vertexId and vertexValue

store the ID and the value of the vertex, respectively. Field
destEdgeIndexList and destEdgeValueList reference,
respectively, a list of IDs and a list of values of its outgoing edges.
msgList contains incoming messages sent to the vertex from the
previous iteration. Figure 1 visualizes the Java object subgraph
rooted at an EdgeListVertex object.

In Giraph’s PageRank implementation, the concrete types for
I , V , E, and M are LongWritable, DoubleWritable,

2 in revision 1232166.

Figure 2. The compact layout of a vertex.

FloatWritable, and DoubleWritable, respectively. Each
edge in the graph is equi-weighted, and thus the list referenced by
destEdgeValueList is always empty. Assume that each ver-
tex has an average of m outgoing edges and n incoming messages.
Table 1 shows the memory consumption statistics of a vertex data
structure in the Oracle 64-bit HotSpot JVM. Each row in the table
reports a class name, the number of its objects needed in this repre-
sentation, the number of bytes used by the headers of these objects,
and the number of bytes used by the reference-typed fields in these
objects. It is easy to calculate that the space overhead for each ver-
tex in the current implementation is 16(m+n)+148 (i.e., the sum
of the header size and pointer size in Table 1).

On the contrary, Figure 2 shows an ideal memory layout that
stores only the necessary information for each vertex (without
using objects). In this case, the representation of a vertex requires
m+1 long values (for vertex IDs), n double values (for messages),
and two 32-bit int values (for specifying the number of outgoing
edges and the number of messages, respectively), which consume
a total of 8(m+ n+ 1) + 16 = 8(m + n) + 24 bytes of memory.
This memory consumption is even less than half of the space used
for object headers and pointers in the object-based representation.
Clearly, the space overhead of the object-based representation is
greater than 200%.

2.2 Large Volumes of Objects and References

In a JVM, the GC threads periodically iterate all live objects in
the heap to identify and reclaim dead objects. Suppose the number
of live objects is n and the total number of edges in the object
graph is e, the asymptotic computational complexity of a tracing
garbage collection algorithm is O(n + e). For a typical Big Data
application, its object graph consists of a great number of isolated
object subgraphs, each of which represents either a data item or
a data structure created for processing items. As such, there often
exists an extremely large number of in-memory data objects, and
both n and e can be orders of magnitude larger than those of a
regular Java application.

We use an exception example from Hive’s user mailing list to
analyze the problem. This exception was found in a discussion
thread named “how to deal with Java heap space errors”3:

FATAL org.apache.hadoop.mapred.TaskTracker:

Error running child : java.lang.OutOfMemoryError:

Java heap space

org.apache.hadoop.io.Text.setCapacity(Text.java:240)

at org.apache.hadoop.io.Text.set(Text.java:204)

at org.apache.hadoop.io.Text.set(Text.java:194)

at org.apache.hadoop.io.Text.<init>(Text.java:86)

3 http://mail-archives.apache.org/mod mbox/hive-user/201107.mbox/

......

at org.apache.hadoop.hive.ql.exec.persistence.Row

Container.next(RowContainer.java:263)

org.apache.hadoop.hive.ql.exec.persistence.Row

Container.next(RowContainer.java:74)

at org.apache.hadoop.hive.ql.exec.CommonJoinOperator.

checkAndGenObject(CommonJoinOperator.java:823)

at org.apache.hadoop.hive.ql.exec.JoinOperator.

endGroup(JoinOperator.java:263)

at org.apache.hadoop.hive.ql.exec.ExecReducer.

reduce(ExecReducer.java:198)

......

at org.apache.hadoop.hive.ql.exec.persistence.Row

Container.nextBlock(RowContainer.java:397)

at org.apache.hadoop.mapred.Child.main(Child.java:170)

We inspected the source code of Hive and found that the
top method Text.setCapacity() in the stack trace is not
the cause of the problem. In Hive’s join implementation, its
JoinOperator holds all the Row objects from one of the input
branches in the RowContainer. In cases where a large number of
Row objects is stored in the RowContainer, a single GC run can
become very expensive. For the reported stack trace, the total size
of the Row objects exceeds the heap upper bound, which causes the
OutOfMemory error.

Even in cases where no OutOfMemory error is triggered,
the large number of Row objects can still cause severe perfor-
mance degradation. Suppose the number of Row objects in the
RowContainer is n. Hence, the GC time for traversing the in-
ternal structure of the RowContainer object is at least O(n). For
Hive, n grows proportionally with the size of the input data, which
can easily drive up the GC overhead substantially. The following
is an example obtained from a user report at StackOverflow4. Al-
though this problem has a different manifestation, the root cause is
the same.

“I have a Hive query which is selecting about 30 columns and
around 400,000 records and inserting them into another table. I
have one join in my SQL clause, which is just an inner join. The
query fails because of a Java GC overhead limit exceeded.”

In fact, complaints about large GC overhead can be commonly
seen on either Hive’s mailing list or the StackOverflow website.
What makes the problem even worse is that there is not much that
can be done from the developer’s side to optimize the application,
because the inefficiencies are inherent in the design of Hive. All the
data processing-related interfaces in Hive require the use of Java
objects to represent data items. To manipulate data contained in
Row, for example, we have to wrap it into a Row object, as des-
ignated by the interfaces. If we wish to completely solve this per-
formance problem, we would have to re-design and re-implement
all the related interfaces from scratch, a task that any user could
not afford to do. This example motivates us to look for solutions
at the design level, so that we would not be limited by the many
(conventional) object-oriented guidelines and principles.

3. The Bloat-Aware Design Paradigm

The fundamental reason for the performance problems discussed in
Section 2 is that the two Big Data applications were designed and
implemented the same way as regular object-oriented applications:
everything is object. Objects are used to represent both data pro-
cessors and data items to be processed. While creating objects to
represent data processors may not have significant impact on per-
formance, the use of objects to represent data items creates a big
scalability bottleneck that prevents the application from processing
large data sets. Since a typical Big Data application does similar
data processing tasks repeatedly, a group of related data items of-

4 http://stackoverflow.com/questions/11387543/performance-tuning-a-
hive-query.

ten has similar liveness behaviors. They can be easily managed to-
gether in large chunks of buffers, so that the GC does not have to
traverse each individual object to test its reachability. For instance,
all vertex objects in the Giraph example have the same lifetimes; so
do Row objects in the Hive example. A natural idea is to allocate
them in the same memory region, which is reclaimed as a whole if
the contained data items are no longer needed.

Based on this observation, we propose a bloat-aware design
paradigm for developing highly efficient Big Data applications.
This paradigm includes the following two important components:
(1) merging and organizing related small data record objects into
few large objects (e.g., byte buffers) instead of representing them
explicitly as one-object-per-record, and (2) manipulating data by
directly accessing buffers (e.g., at the byte chunk level as opposed
to the object level). The central goal of this design paradigm is to
bound the number of objects in the application, instead of mak-
ing it grow proportionally with the cardinality of the input data.
It is important to note that these guidelines should be considered
explicitly at the early design stage of a Big Data processing sys-
tem, so that the resulting APIs and implementations would comply
with the principles. We have built our own Big Data processing
framework Hyracks from the scratch by strictly following this de-
sign paradigm. We will use Hyracks a running example to illustrate
these design principles.

3.1 Data Storage Design: Merging Small Objects

As described in Section 2, storing data in Java objects adds
much overhead in terms of both memory consumption as well as
CPU cycles. As such, we propose to store a group of data items to-
gether in Java memory pages. Unlike a system-level memory page,
which deals with virtual memory, a Java memory page is a fixed-
length contiguous block of memory in the (managed) Java heap.
For simplicity of presentation, we will use “page” to refer to “Java
memory page” in the rest of the paper. In Hyracks, each page is
represented by an object of type java.nio.ByteBuffer. Ar-
ranging records into pages can reduce the number of objects created
in the system from the total number of data items to the number of
pages. Hence, the packing factor in such a system can be much
closer to that in the ideal representation where data are explicitly
laid out in memory and no bookkeeping information needs to be
stored. Note that grouping data items into a binary page is just one
of many ways to merge small objects; other merging (inlining) ap-
proaches may also be considered in the future to achieve the same
goal.

Multiple ways exist to put records into a page. The Hyracks sys-
tem takes an approach called “slot-based record management” [36]
used widely in the existing DBMS implementations. To illustrate,
consider again the PageRank algorithm. Figure 3 shows how 4 ver-
tices are stored in a page. It is easy to see that each vertex is stored
in its compact layout (as in Figure 2) and we use 4 slots (each takes
4 bytes) at the end of the page to store the start offset of each vertex.
These offsets will be used to quickly locate data items and support
variable-length records. Note that the format of data records is in-
visible to developers, so that they could still focus on high-level
data management tasks. Because pages are of fixed size, there is
often a small residual space that is wasted and cannot be used to
store any vertex. To understand the packing factor for this design,
we assume each page holds p records on average, and the residual
space has r bytes. The overhead for this representation of a vertex
includes three parts: the offset slot (4 bytes), the amortized resid-
ual space (i.e., r/p), and the amortized overhead of the page object
itself (i.e., java.nio.ByteBuffer). The page object has an
8-byte header space (in the Oracle 64-bit HotSpot JVM) and a ref-
erence (8 bytes) to an internal byte array whose header takes 12

Figure 3. Vertices aligning in a page (slots at the end of the page
are to support variable-sized vertices).

bytes. This makes the amortized overhead of the page object 28/p.
Combining this overhead with the result from Section 2.1, we need
a total of (8m+ 8n) + 24 + 4 + r+28

p
bytes to represent a vertex,

where (8m + 8n) + 24 bytes are used to store the necessary data
and 4 + r+28

p
is the overhead. Because r is the size of the residual

space, we have:

r ≤ 8m+ 8n+ 24

and thus the space overhead of a vertex is bounded by 4 +
8m+8n+52

p
. In Hyracks, we use 32KB (as recommended by lit-

erature [23]) as the size of a page, and p ranges from 100 to
200 (as seen in experiments with real-world data). To calculate
the largest possible overhead, consider the worst case where the
residual space has the same size as a vertex. The size of a ver-
tex is thus between (32768 − 200 ∗ 4)/(200 + 1)=159 bytes
and (32768 − 100 ∗ 4)/(100 + 1)=320 bytes. Because the resid-
ual space is as large as a vertex, we have 159 ≤ r ≤ 320.
This leaves the space overhead of a vertex in the range between
4 bytes (because at least 4 bytes are required for the offset slot) and
(4+(320+28)/100)=7 bytes. Hence, the overall overhead is only
2− 4% of the actual data size, much less than the 200% overhead
of object-based representation (as described in Section 2.1).

3.2 Data Processor Design: Access Buffers

To support programming with the proposed buffer-based memory
management, we propose an accessor-based programming pattern.
Instead of creating a heap data structure to contain data items and
represent their logical relationships, we propose to define an acces-
sor structure that consists of multiple accessors, each to access a
different type of data. As such, we need only a very number of ac-
cessor structures to process all data, leading to significantly reduced
heap objects. In this subsection, we discuss a transformation that
can transform regular data structure classes into their correspond-
ing accessor classes. We will also describe the execution model
using a few examples.

3.2.1 Design Transformations

For each data item class D in a regular object-oriented design, we
transform D into an accessor class Da. Whether a class is a data
item class can be specified by the developer. The steps that this
transformation includes are as follows.

• S1: for each data item field f of type F in D, we add a field fa
of type Fa into Da, where Fa is the accessor class of F . For
each non-data-item field f ’ in D, we copy it directly into Da.

• S2: add a public method set(byte[] data, int

start, int length) into Da. The goal of this method
is to bind the accessor to a specific byte region where the data
items of type D are located. The method can be implemented
either by doing eager materialization, which recursively binds
the binary regions for all its member accessors, or by doing
lazy materialization, which defers such bindings to the point
where the member accessors are actually needed.

• S3: for each method M in D, we first create a method Ma

which duplicates M in Da. Next, Ma’s signature is modified in
a way so that all data-item-type parameters are changed to use
their corresponding data accessor types. A parameter accessor
provides a way for accessing and manipulating the bound data
items in the provided byte regions.

Note that transforming a regular object-oriented design into the
above design should be done at the early development stage of a
Big Data application in order to avoid the potential development
overhead of re-designing after the implementation. Future work
will develop compiler support that can automatically transform
designs to make them compatible with our memory system.

3.2.2 Execution Model

At run time, we form a set of accessor graphs, and each accessor
graph processes a batch of top-level records. Each node in the
graph is an accessor object for a field and each edge represents
a “member field” relationship. An accessor graph has the same
skeleton as its corresponding heap data structure but does not store
any data internally. We let pages flow through the accessor graphs,
where a accessor binds to and processes a data item record one-
at-a-time. For each thread in the program, the number of accessor
graphs needed is equal to the number of data structure types in the
program, which is statically bounded. Different instances of a data
structure can be processed by the same accessor graph.

If one uses eager materialization in the accessor implementa-
tion, the number of accessor objects that need to be created during
a data processing task is equal to the total number of nodes in all the
accessor graphs. If lazy materialization is chosen to implement ac-
cessors, the number of created accessor objects can be significantly
reduced, because a member accessor can often be reused for ac-
cessing several different data times of the same type. In some cases,
additional accessor objects are needed for methods that operate on
multiple data items of the same type. For example, a compare

method defined in a data item class compares two argument data
items, and hence, in order to the transformed version of the method
would need two accessor objects at run time to perform the com-
parison. Despite these different ways of implementing accessors,
the number of accessor objects needed is always bounded at com-
pile time and does not grow proportionally with the cardinality the
dataset.

3.2.3 A Running Example

Following the three steps, we manually transform the vertex exam-
ple in Section 2.1 into the following form.

public abstract class EdgeListVertexAccessor<

/** by S1: */

Figure 4. A heap snapshot of the example.

I extends WritableComparableAccessor,

V extends WritableAccessor,

E extends WritableAccessor,

M extends WritableAccessor>

extends MutableVertexAccessor<I, V, E, M> {
private I vertexId = null;

private V vertexValue = null;

/** by S1: indices of its outgoing edges */

private ListAccessor<I> destEdgeIndexList = new

ArrayListAccessor<I>();

/** by S1: values of its outgoing edges */

private ListAccessor<E> destEdgeValueList = new

ArrayListAccessor<E>();

/** by S1: incoming messages from

the previous iteration */

private ListAccessor<M> msgList = new

ArrayListAccessor<M>();

......

/** by S2:

* binds the accessor to a binary region

* of a vertex

*/

public void set(byte[] data, int start, int length){
/* This may in turn call the set method

of its member objects. */

......

}

/** by S3: replacing the return type*/

public ListAccessor<I> getEdegeIndexes(){
...

}
}

In the above code snippet, we highlight the modified code and
add the transformation steps as the comments. Figure 4 shows a
heap snapshot of the running example. The actual data are laid out
in pages while an accessor graph is used to process all the vertices,
each-at-a-time. For each vertex, the setmethod binds the accessor
graph to its byte region.

4. Programming Experience

The bloat-aware design paradigm separates the logical data access
and the physical data storage to achieve both compact in-memory
data layout and efficient memory management. However, it appears
that programming with binary data is a daunting task that creates

much burden for the developers. To help reduce the burden, we have
developed a comprehensive data management library in Hyracks.
In this section, we describe case studies and report our own experi-
ence with three real-world projects to show the development effort
under this design.

4.1 Case Study 1: Quick Sort

In this case study, we compare the major parts of two implementa-
tions of quick sort, one in Hyracks manipulating binary data using
our library, and the other manipulating objects using the standard
Java library (e.g., Collections.sort()). The code shown be-
low is the method siftDown, which is the core component of the
quick sort algorithm. We first show its implementation in JDK.

private static void siftDown(Accessor acc,

int start, int end) {
for (int parent = start ; parent < end ;) {
int child1 = start + (parent - start) * 2 + 1;

int child2 = child1 + 1;

int child = (child2 > end) ? child1

: (acc.compare(child1, child2)

< 0) ? child2 : child1;

if (child > end)

break;

if (acc.compare(parent, child) < 0)

acc.swap(parent, child);

parent = child;

}
}

The corresponding implementation using our library is a seg-
ment in the sort method, shown as follows:

private void sort(int[] tPointers, int offset, int length){
......

while(true){
......

while (c >= b) {
int cmp = compare(tPointers, c, mi, mj, mv);

if (cmp < 0) {
break;

}
if (cmp == 0) {

swap(tPointers, c, d--);

}
--c;

}
if (b > c)

break;

swap(tPointers, b++, c--);

}
......

}

The comparemethod eventually calls a user-defined compara-
tor implementation in which two accessors are bound to the two
input byte regions once-at-a-time for the actual comparison. The
following code snippet is an example comparator implementation.

public class StudentBinaryComparator implements

IBinaryComparator{
private StudentAccessor acc1 =

StudentAccessor.getAvailableAccessor();

private StudentAccessor acc2 =

StudentAccessor.getAvailableAccessor();

public int compare(byte[] data1, int start1, int len1,

byte[] data2, int start2, int len2){
acc1.set(data1, start1, len1);

acc2.set(data2, start2, len2);

return acc1.compare(acc2);

}
}

Method getAvailableAccessor can be implemented in dif-
ferent ways, depending on the materialization mode. For example,
it can directly return a new StudentAccessor object or use an

object pool to cache and reuse old objects. As one can tell, the data
access code paths in both implementation are well encapsulated
with libraries, which allows application developers to focus on the
business logic (when to call compare and swap) rather than writ-
ing code to access data. As such, the two different implementations
have comparable numbers of lines of code.

4.2 Case Study 2: Print Records

The second case study is to use a certain format to print data records
from a byte array. A typical Java implementation is as follows.

private void printData(byte[] data) {
Reader input = new BufferedReader(new InputStreamReader(

new DataInputStream(new ByteArrayInputStream(

data))));

String line = null;

while((line = input.readLine())!= null){
String[] fields = line.split(‘,’);

//print the record

......

}
input.close();

}
}

The above implementation reads String objects from the in-
put, splits them into fields, and prints them out. In this implementa-
tion, the number of created String objects is proportional to the
cardinality of records multiplied by the number of fields per record.
The following code snippet is our printer implementation using the
bloat-aware design paradigm.

private void printData(byte[] data) {
PageAccessor pageAcc =

PageAccessor.getAvailableAccessor(data);

RecordPrintingAccessor recordAcc =

RecordPrintingAccessor.getAvailableAccessor();

while(pageAcc.nextRecord()){
//print the record in the set call

recordAcc.set(toBinaryRegion(pageAcc));

}
}

In our implementation, we build one accessor graph for printing,
let binary data flow through the accessor graph, and print every
record by traversing the accessor graph and calling the setmethod
on each accessor. It is easy to see that the number of created objects
is bounded by the number of nodes of the accessor graph while the
programming effort is not significantly increased.

4.3 Big Data Projects using the Bloat-Aware Design

The proposed design paradigm has already been used in six Java-
based open-source Big Data processing systems, listed as follows:

• Hyracks [4] is a data parallel platform that runs data-intensive
jobs on a cluster of shared-nothing machines. It executes jobs in
the form of directed acyclic graphs that consist of user-defined
data processing operators and data redistribution connectors.

• Algebricks [1] is a generalized, extensible, data model-
agnostic, and language-independent algebra/optimization layer
which is intended to facilitate the implementation of new high-
level languages that process Big Data in parallel.

• AsterixDB [2] is a semi-structured parallel Big Data manage-
ment system, which is built on-top-of Algebricks and Hyracks.

• VXQuery [6] is data-parallel XQuery processing engine on top
of Algebricks and Hyracks as well.

• Pregelix [5] is Big Giraph analytics platform that supports the
bulk-synchronous vertex-oriented programming model [29]. It
internally uses Hyracks as the run-time execution engine.

• Hivesterix [3] is a SQL-like layer on top of Algebricks and
Hyracks; it reuses the modules of the grammar and first-order
run-time functions from HiveQL [11].

In these six projects, the proposed bloat-aware design paradigm
is used in the data processing code paths (e.g., the runtime data
processing operators such as join, group-by, and sort, as well as the
user-defined runtime functions such as plus, minus, sum, and count)
while the control code paths (e.g., the runtime control events, the
query language parser, the algebra rewriting/optimization, and the
job generation module) still use the traditional object-oriented de-
sign. Note that for Big Data applications, usually the control path is
well isolated from the data path changes (e.g., data format changes)
because they execute on different machines — the control path is
on the master (controller) machines while the data path is on the
slave machines.

We show a comparison of the lines-of-code (LOC) of the control
paths and the data paths in those projects, as listed in Table 2. On
average, the data path takes about 36.84% of the code base, which
is much smaller than the size of the control path. Based on the
feedback from the development teams, programming and debug-
ging the data processing components consumes approximately 2×
as much time as doing that with the traditional object-orientated de-
sign. However, overall, since the data processing components take
only 36.84% of the total development effort, the actual develop-
ment overhead should be much smaller than 2×.

4.4 Future Work

The major limitation of the proposed technique is that it requires
developers to manipulate low-level, binary representation of data,
leading to increased difficulty in programming and debugging.
We are in the process of adding another-level-of-indirection to
address this issue— we are developing annotation and compiler
support to allow for the declarative specifications of data structures.
The resulting system will allow developers to annotate data item
classes and provide relational specifications. The compiler will
automatically generate code that uses the Hyracks library from the
user specifications. We hope this system will enable developers to
develop high-performance Big Data applications with a low human
effort.

5. Performance Evaluation

This section presents a set of experiments focusing on performance
comparisons between implementations with and without the pro-
posed design paradigm. All experiments were conducted on a clus-
ter of 10 IBM research machines. Each machine has a 4-core Intel
Xeon 2.27 GHz processor, 12GB RAM, and 4 300GB 10,000 rpm
SATA disk drives, and runs CentOS 5.5 and Java HotSpot(TM) 64-
bit server VM (build17.0-b16, mixed node). JVM command line
option “-Xmx10g” was used for all our experiments. We use a par-
allel generational GC in HotSpot, which combines parallel Scav-
enge (i.e., copying) for the young generation and parallel Mark-
Sweep-Compact for the old generation. We collected the applica-
tion running times and the JVM heap usage statistics in all the 10
machines. Their average is reported in this section. The rest of this
section presents experimental studies of our design paradigm on the
overall scalability (Section 5.1), the packing factors (Section 5.2),
and the GC costs (Section 5.3).

5.1 Effectiveness On Overall Scalability: Using PageRank

The Pregelix [5] system mentioned in Section 4 supports nearly
the same user interfaces and functionalities as Giraph, but uses
the bloat-aware design paradigm. Internally, Pregelix employs a
Hyracks runtime dataflow pipeline that contains several data pro-
cessing operators (i.e., sort, group-by and join) and connectors (i.e.,

m-to-n hash partitioning merging connector) to execute graph pro-
cessing jobs. Pregelix supports out-of-core computations, as it uses
disk-based operators (e.g., external sort, external group-by, and in-
dex outer join) in the dataflow to deal with large amounts of data
that cannot be accommodated in the main memory. In Pregelix,
both the data storage storage design and data processor design are
enabled: it stores all data in pages but employs accessors during
data processing. The code shown in Section 3.2 is exactly what we
used to process vertices.

In order to quantify the potential efficiency gains, we compared
the performance of PageRank between Pregelix and Giraph. The
goal of this experiment is not to understand the out-of-core perfor-
mance, but rather to investigate the impact of memory bloat. There-
fore, the PageRank algorithm was performed on a subset of Ya-
hoo!’s publicly available AltaVista Web Page Hyperlink Connec-
tivity Graph dataset [48], a snapshot of the World Wide Web from
2002. The subset consists of a total of 561, 365, 953 vertices, each
of which represents a web page. The size of the decompressed data
is 27.8GB, which, if distributed appropriately, should easily fit into
the memory of the 10 machines (e.g., 2.78GB for each machine).
Each record in the dataset consists of a source vertex identifier and
an array of destination vertex identifiers forming the links among
different webpages in the graph.

In the experiment, we also ran PageRank with two smaller
(1/100 and 1/10 of the original) datasets to obtain the scale-up
trend. Figure 5 (a), (b), and (c) show, respectively, the overall
execution times for the processing of the three datasets, their GC
times, and their heap usages. It is easy to see that the total GC
time for each dataset is less than 3% of the overall execution time.
The JVM heap size is obtained by measuring the overall JVM
memory consumption from the operating system. In general, it
is slightly larger than the raw data size for each machine (i.e.,
2.78GB). This is because extra memory is needed to (1) store object
metadata (as we still have objects) and (2) sort and group messages.
We also ran the Giraph PageRank implementation on the same
three input datasets, but could not succeed for any of the datasets.
Giraph crashed with java.lang.OutOfMemoryError in all
the cases. We confirmed from the Giraph developers that the crash
was because of the skewness (e.g., www.yahoo.com has a huge
number of inbound links and messages) in the Yahoo! AltaVista
Web Page Hyperlink Connectivity Graph dataset, combined with
the object-based data representation.

5.2 Effectiveness On Packing Factor: Using External Sort

As the second experiment, we compared the performance of two
implementations of the standard external sort algorithm [36] on
Hyracks. One uses Java objects to represent data records, while the
other employs Java memory pages. The goal here is to understand
the impact of the low packing factor of the object-based data repre-
sentation on performance as well as the benefit of the bloat-aware
design paradigm.

In the Java object-based implementation, the operator takes
deserialized records (i.e., in objects) as input and puts them into
a list. Once the number of buffered records exceeds a user-defined
threshold, method sort is invoked on the list and then the sorted
list is dumped to a run file. The processing of the incoming data
results in a number of run files. Next, the merge phase starts. This
phase reads and merges run files using a priority queue to produce
output records. During the merge phase, run files are read into the
main memory one-block(32KB)-at-a-time. If the number of files is
too large and one pass can not merge all of them, multiple merge
passes need be performed.

In the page-based implementation, we never load records from
pages into objects. Therefore, the page-based storage removes the
header/pointer overhead and improves the packing factor. We im-

Project Overall #LOC Control #LOC Data #LOC Data #LOC Percentage
Hyracks 125930 71227 54803 43.52%
Algebricks 40116 36033 4083 10.17%
AsterixDB 140013 93071 46942 33.53%
VXQuery 45416 19224 26192 57.67%
Pregelix 18411 11958 6453 35.05%
Hivesterix 18503 13910 4593 33.01%

Overall 388389 245323 143066 36.84%

Table 2. The line-of-code statistics of Big Data projects which uses the bloat-aware design.

(a) Overall Performance (b) GC Time (c) JVM Heap Usage

Figure 5. PageRank Performance on Pregelix.

(a) Overall Performance (b) GC Time (c) JVM Heap Usage

Figure 6. ExternalSort Performance.

plemented a quick sort algorithm to sort in-memory records at the
binary level. In this experiment, we used the TPC-H5 lineitem table
as the input data, where each record represents an item in a transac-
tion order. We generated TPC-H data at 10×, 25×, 50× and 100×
scales, which correspond to 7.96GB, 19.9GB, 39.8GB and 79.6GB
line-item tables, respectively. Each dataset was partitioned among
the 10 nodes in a round-robin manner. Particularly, it was divided
into 40 partitions, one partition per disk drive (recall that each ma-
chine has 4 disk drives).

The task was executed as follows: we created a total of 40
concurrent sorters across the cluster, each of which reads a partition
of data locally, sorted them, and wrote the sorted data back to
the disk. In this experiment, the page-based implementation used
a 32MB sort buffer. The object-based implementation used 5000
the maximal number of in-memory records. The results of two

5 The standard data warehousing benchmark, http://www.tpc.org/tpch/

different external sort implementations are plotted in Figure 6. The
run-time statistics include the overall execution time (Figure 6 (a)),
the GC overhead (Figure 6 (b)), and the JVM heap usage (Figure 6
(c)). Note that the Scavenge and Mark-Sweep lines show the GC
costs for the young generation and the old generation, respectively.
Because sorting a single memory buffer (either 32MB pages or
5000 records) is fast, most data objects are short-lived and small,
and their lifetimes are usually limited within the iterations where
they are created. They rarely get copied into old generations and
thus the nursery scans dominate the GC effort.

From Figure 6 (a), it is clear to see that as the size of dataset
increases, the page-based implementation scales much better (e.g.,
2.5× faster on 79.6GB input) than the object-based implementa-
tion, and the improvement factor keeps increasing with the increase
of the dataset size. The following two factors may contribute to
this improvement: (1) due to the low packing factor, the object-

(a) Overall Performance (b) GC Time (c) JVM Heap Usage

Figure 7. Hash-based Grouping Performance.

based implementation often has more merge passes (hence more
I/O) than the page-based implementation, and (2) the use of ob-
jects to represent data items leads to increased JVM heap size and
hence the operating system has less memory for the file system
cache. For example, in the case where the size of the input data is
79.6GB, the page-based implementation has only one merge pass
while the object-based one has two merge passes. The page-based
implementation also has much less GC time than the object-based
implementation (Figure 6 (b)). Figure 6 (c) shows that the amount
of memory required by the object-based implementation is almost
4× larger than that of the page-based implementation, even though
the former holds much less actual data in memory (i.e., reflected by
the need of an additional merge phase).

5.3 Effectiveness On GC Costs: Using Hash-Based Grouping

The goal of the experiment described in this subsection is to under-
stand the GC overhead in the presence of large volumes of objects
and references. The input data and scales for this experiment are
the same as those in Section 5.2. For comparison, we implemented
a logical SQL query by hand-coding the physical execution plan
and runtime operators, in order to count how many items there are
in each order:

SELECT l_orderkey, COUNT(*) AS items

FROM lineitem

GROUP BY l_orderkey;

We created two different implementations of the underlying
hash-based grouping as Hyracks operators. They were exactly the
same except that one of them used the object-based hash table
(e.g., java.util.Hashtable) for grouping and the other used
a page-based hash table implementation (e.g., all the intermediate
states along with the grouping keys were stored in pages). The hash
table size (number of buckets) was 10,485,767 for this experiment,
because larger hash tables are often encouraged in Big Data appli-
cations to reduce collisions.

The Hyracks job of this task had four operators along the
pipeline: a file scan operator (FS), a hash grouping operator (G1),
another hash grouping operator (G2), and a file write operator
(FW). In the job, FS was locally connected to G1, and then the
output of G1 was hash partitioned and fed to G2 (using a m-to-n
hash partitioning connector). Finally, G2 was locally connected to
FW. Each operator had 40 clones across the cluster, one per parti-
tion. Note that G1 was used to group data locally and compress the
data in order for it to be sent to the network. G2 performed the final
grouping and aggregation.

Figure 7 shows the performance of the two different hash-
based grouping implementations over the four input datasets. The

measurements include the overall performance (Figure 7 (a)), the
GC time (Figure 7 (b)), and the JVM heap size (Figure 7(c)). From
Figure 7(a), one can see that the implementation with the page-
based hash table scales much better to the size of data than the other
one: in the case where the size of input data is 79.6GB, the former
is already 3.5× faster than the latter and the improvement factor
keeps growing. In Figure 7 (b), we can clearly see that the use of
the object-based hash table makes the GC costs go up to 47% of
the overall execution time while the page-based hash table does not
add much overhead (<3% of the overall execution time). A similar
observation can be made on the memory consumption: Figure 7 (c)
shows that the object-based implementation leads to much larger
memory consumption than the page-based one.

Summary Our experimental results clearly demonstrate that,
for many data-processing tasks, the bloat-aware design paradigm
can lead to far better performance. The source code of all the
experiments can be found at: http://code.google.com/p/hyracks.

6. Related Work

There exists a large body of work on efficient memory management
techniques and data processing algorithms. This section discusses
only those that are most closely related to the proposed work. These
techniques are classified into three categories: data-processing in-
frastructures implemented in managed languages, software bloat
analysis, and region-based memory management systems.

Java-based data-processing infrastructures Telegraph [37] is
a data management system implemented in Java. It uses native byte
arrays to store data and has its own memory manager for object
allocation, deallocation, and memory de-fragmentation. However,
because it is built on top of native memory, developers lose various
benefits of a managed language and have to worry about low-
level memory correctness issues such as dangling pointers, buffer
overflow, and memory leaks. Our approach overcomes the problem
by building applications on top of the Java managed memory,
providing high efficiency and yet retaining most of the benefits
provided by a managed runtime.

Hadoop [10] is a widely-used open-source MapReduce imple-
mentation. Although it provides a certain level of object reuse for
sorting algorithms, its (major) map and reduce interfaces are object-
based. The user has to create a great number of objects to imple-
ment a new algorithm on top of Hadoop. For example, the reduce-
side join implementation in Hive [11] uses a Java HashMap in
the reduce function to hold the inner branch records, which is very
likely to suffer from the same performance problem (i.e., high GC
costs) as discussed in Section 2.

Other data-processing infrastructures such as Spark [49] and
Storm [40] also make heavy use of Java objects in both their
core data-processing modules and their application programming
interfaces, and thus they are vulnerable to memory bloat as reported
in this paper.

Software bloat analysis Software bloat analysis [8, 30–
33, 38, 41–47] attempts to find, remove, and prevent performance
problems due to inefficiencies in the code execution and the use of
memory. Prior work [32, 33] proposes metrics to provide perfor-
mance assessment of use of data structures. Their observation that
a large portion of the heap is not used to store data is also confirmed
in our study. In addition to measure memory usage, our work pro-
poses optimizations specifically targeting the problems we found
and our experimental results show that these optimizations are very
effective.

Work by Dufour et al. [20] uses a blended escape analysis to
characterize and find excessive use of temporary data structures.
By approximating object lifetimes, the analysis has been shown to
be useful in classifying the usage of newly created objects in the
problematic areas. Shankar et al. propose Jolt [38], an approach
that makes aggressive method inlining decisions based on the iden-
tification of regions that make extensive use of temporary objects.
Work by Xu et al. [43] detects memory bloat by profiling copy ac-
tivities, and their later work [42] looks for high-cost-low-benefit
data structures to detect execution bloat. Our work is the first at-
tempt to analyze bloat under the context of Big Data applications
and perform effective optimizations to remove bloat.

Region-based memory management Region-based memory
management was first used in the implementations of functional
languages [7, 39] such as Standard ML [25], and then was extended
to Prolog [28], C [21, 22, 24, 26], and real-time Java [13, 17, 27].
More recently, some mark-region hybrid methods such as Im-
mix [15] combine tracing GC with regions to improve GC perfor-
mance for Java. Our work uses a region-based approach to manage
pages, but in a different context — the emerging Big Data applica-
tions. Data are stored in pages in the binary form leading to both
increased packing factor and decreased memory management cost.

Value types Expanded types in Eiffel and value types in C# are
used to declare data with simple structures. However, these types
cannot solve the entire bloat problem. In these languages, objects
still need to be used to represent data with complicated structures,
such as hash maps or lists. The scalability issues that we found in
Big Data applications are primarily due to inefficiencies inherent
in the object-oriented system design, rather than problems with any
specific implementation of a managed language.

7. Conclusion

This paper presents a bloat-aware design paradigm for Java-based
Big Data applications. The study starts with a quantitative analy-
sis of memory bloat using real-world examples, in order for us to
understand the impact of excessive object creation on the memory
consumption and GC costs. To alleviate this negative influence, we
propose a bloat-aware design paradigm, including: merging small
objects and accessing data at the binary level. We have performed
an extensive set of experiments, and the experimental results have
demonstrated that implementations following the design paradigm
have much better performance and scalability than the applications
that use regular Java objects. The design paradigm can be applied
to other managed languages such as C# as well. We believe that
the results of this work demonstrate the viability of implementing
efficient Big Data applications in a managed, object-oriented lan-
guage, and open up possibilities for the programming language and
systems community to develop novel optimizations targeting data-
intensive computing.

Acknowledgements

We thank anonymous reviewers for their thorough comments. Our
Big Data projects using the bloat-aware design are supported by
NSF IIS awards 0910989, 0910859, 0910820, and 0844574, a grant
from the UC Discovery program, a matching donation from eBay,
and generous industrial gifts from Google, HTC, Microsoft and
Oracle Labs.

References

[1] Algebricks. https://code.google.com/p/hyracks/
source/browse/#git%2Ffullstack%2Falgebricks.

[2] AsterixDB. https://code.google.com/p/asterixdb/
wiki/AsterixAlphaRelease.

[3] Hivesterix. http://hyracks.org/projects/hivesterix/.

[4] Hyracks: A data parallel platform.
http://code.google.com/p/hyracks/.

[5] Pregelix. http://hyracks.org/projects/pregelix/.

[6] VXQuery. http://incubator.apache.org/vxquery/.

[7] A. Aiken, M. Fähndrich, and R. Levien. Better static memory manage-
ment: improving region-based analysis of higher-order languages. In
ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), pages 174–185, 1995.

[8] E. Altman, M. Arnold, S. Fink, and N. Mitchell. Performance analysis
of idle programs. In ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pages 739–753, 2010.

[9] Giraph: Open-source implementation of Pregel.
http://incubator.apache.org/giraph/.

[10] Hadoop: Open-source implementation of MapReduce.
http://hadoop.apache.org.

[11] The Hive Project. http://hive.apache.org/.

[12] The Mahout Project. http://mahout.apache.org/.

[13] W. S. Beebee and M. C. Rinard. An implementation of scoped memory
for real-time java. In International Conference on Embedded Software

(EMSOFT), pages 289–305, 2001.

[14] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li, N. Onose,
R. Vernica, A. Deutsch, Y. Papakonstantinou, and V. J. Tsotras. AS-
TERIX: towards a scalable, semistructured data platform for evolving-
world models. Distrib. Parallel Databases, 29:185–216, June 2011.

[15] S. M. Blackburn and K. S. McKinley. Immix: a mark-region garbage
collector with space efficiency, fast collection, and mutator perfor-
mance. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), pages 22–32, 2008.

[16] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and R. Vernica.
Hyracks: A flexible and extensible foundation for data-intensive com-
puting. In International Conference on Data Engineering (ICDE),
pages 1151–1162, 2011.

[17] C. Boyapati, A. Salcianu, W. Beebee, Jr., and M. Rinard. Ownership
types for safe region-based memory management in real-time java. In
ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), pages 324–337, 2003.

[18] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum. Flumejava: easy, efficient data-parallel
pipelines. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), pages 363–375, 2010.

[19] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 137–150, 2004.

[20] B. Dufour, B. G. Ryder, and G. Sevitsky. A scalable technique for
characterizing the usage of temporaries in framework-intensive Java
applications. In ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), pages 59–70, 2008.

[21] D. Gay and A. Aiken. Memory management with explicit regions. In
ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), pages 313–323, 1998.

http://hyracks.org/projects/hivesterix/
http://code.google.com/p/hyracks/
http://hyracks.org/projects/pregelix/
http://incubator.apache.org/vxquery/
http://incubator.apache.org/giraph/
http://hadoop.apache.org

[22] D. Gay and A. Aiken. Language support for regions. In ACM SIG-

PLAN Conference on Programming Language Design and Implemen-

tation (PLDI), pages 70–80, 2001.

[23] G. Graefe. Query evaluation techniques for large databases. ACM

Comput. Surv., 25(2):73–170, 1993.

[24] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in cyclone. In ACM SIGPLAN
Conference on Programming Language Design and Implementation

(PLDI), pages 282–293, 2002.

[25] N. Hallenberg, M. Elsman, and M. Tofte. Combining region inference
and garbage collection. In ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI), pages 141–152,
2002.

[26] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Experience with safe
manual memory-management in cyclone. In International Symposium

on Memory Management (ISMM), pages 73–84, 2004.

[27] S. Kowshik, D. Dhurjati, and V. Adve. Ensuring code safety without
runtime checks for real-time control systems. In International Confer-
ence on Architecture and Synthesis for Embedded Systems (CASES),
pages 288–297, 2002.

[28] H. Makholm. A region-based memory manager for prolog. In Inter-

national Symposium on Memory Management (ISMM), pages 25–34,
2000.

[29] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In ACM SIGMOD International Conference on Manage-

ment of Data (SIGMOD), pages 135–146, 2010.

[30] N. Mitchell, E. Schonberg, and G. Sevitsky. Making sense of large
heaps. In European Conference on Object-Oriented Programming
(ECOOP), pages 77–97, 2009.

[31] N. Mitchell, E. Schonberg, and G. Sevitsky. Four trends leading to
Java runtime bloat. IEEE Software, 27(1):56–63, 2010.

[32] N. Mitchell and G. Sevitsky. The causes of bloat, the limits of health.
In ACM SIGPLAN International Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA), pages
245–260, 2007.

[33] N. Mitchell, G. Sevitsky, and H. Srinivasan. Modeling runtime be-
havior in framework-based applications. In European Conference on

Object-Oriented Programming (ECOOP), pages 429–451, 2006.

[34] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: a not-so-foreign language for data processing. In ACM SIG-

MOD International Conference on Management of Data (SIGMOD),
pages 1099–1110, 2008.

[35] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank cita-
tion ranking: Bringing order to the web. Technical Report 1999-66,

Stanford InfoLab, November 1999.

[36] R. Ramakrishnan and J. Gehrke. Database Management Systems (3.

ed.). McGraw-Hill, 2003.

[37] M. A. Shah, S. Madden, M. J. Franklin, and J. M. Hellerstein. Java
support for data-intensive systems: Experiences building the telegraph
dataflow system. SIGMOD Record, 30(4):103–114, 2001.

[38] A. Shankar, M. Arnold, and R. Bodik. JOLT: Lightweight dynamic
analysis and removal of object churn. In ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA), pages 127–142, 2008.

[39] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value
lamda-calculus using a stack of regions. In ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL), pages
188–201, 1994.

[40] Storm: dstributed and fault-tolerant realtime computation.
https://github.com/nathanmarz/storm.

[41] G. Xu. Finding reusable data structures. In ACM SIGPLAN Inter-

national Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA), pages 1017–1034, 2012.

[42] G. Xu, M. Arnold, N. Mitchell, A. Rountev, E. Schonberg, and G. Se-
vitsky. Finding low-utility data structures. In ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation (PLDI),
pages 174–186, 2010.

[43] G. Xu, M. Arnold, N. Mitchell, A. Rountev, and G. Sevitsky. Go with
the flow: Profiling copies to find runtime bloat. In ACM SIGPLAN

Conference on Programming Language Design and Implementation
(PLDI), pages 419–430, 2009.

[44] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky. Software
bloat analysis: Finding, removing, and preventing performance prob-
lems in modern large-scale object-oriented applications. In FSE/SDP
Working Conference on the Future of Software Engineering Research

(FoSER), pages 421–426, 2010.

[45] G. Xu and A. Rountev. Precise memory leak detection for Java
software using container profiling. In International Conference on

Software Engineering (ICSE), pages 151–160, 2008.

[46] G. Xu and A. Rountev. Detecting inefficiently-used containers to avoid
bloat. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), pages 160–173, 2010.

[47] G. Xu, D. Yan, and A. Rountev. Static detection of loop-invariant data
structures. In European Conference on Object-Oriented Programming

(ECOOP), pages 738–763, 2012.

[48] Yahoo! Webscope Program. http://webscope.sandbox.yahoo.com/.

[49] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: cluster computing with working sets. USENIX Workshop on
Hot Topics in Cloud Computing, page 10, Berkeley, CA, USA, 2010.

	Introduction
	Memory Analysis of Big Data Applications
	Low Packing Factor
	Large Volumes of Objects and References

	The Bloat-Aware Design Paradigm
	Data Storage Design: Merging Small Objects
	Data Processor Design: Access Buffers
	Design Transformations
	Execution Model
	A Running Example

	Programming Experience
	Case Study 1: Quick Sort
	Case Study 2: Print Records
	Big Data Projects using the Bloat-Aware Design
	Future Work

	Performance Evaluation
	Effectiveness On Overall Scalability: Using PageRank
	Effectiveness On Packing Factor: Using External Sort
	Effectiveness On GC Costs: Using Hash-Based Grouping

	Related Work
	Conclusion

