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ABSTRACT OF THE THESIS

Optimizing External Parallel Sorting in AsterixDB

By

Ali Alsuliman

Master of Science in Computer Science

University of California, Irvine, 2018

Professor Michael J. Carey, Chair

In parallel database systems, when a query is evaluated, each operation in the query

plan is typically parallelized. This allows a large cluster of machines to process a vast

amount of data efficiently since all the machines work simultaneously. AsterixDB, a big data

management system, leverages this fact to parallelize operations when executing a query,

and sort is one such operation.

This work is an attempt to optimize the sort operation in AsterixDB to make the entire

sort process parallel from start to finish without the need for an additional final merge step

at the end of the sort operation. We state our problem and highlight some of the issues with

the current approach to sorting. We present the architecture and high-level design of the

proposed optimization. Then, we describe the implementation details and how the different

components interact with each other. We conclude by showing the results of a performance

evaluation before and after this optimization.
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Chapter 1

Introduction

The concept of parallelism has a long history in the computing world. It has enabled us

to do computing in an efficient manner. We see it in hardware where nowadays a typical

CPU, for example, would host multiple cores running instructions in parallel. We see it in

software where one would write a multi-threaded program to gain performance among other

things. We also see it in the database management world where we have parallel database

management systems that try to evaluate queries in a parallel fashion [5].

Over the years, data has been growing to unprecedented levels. This led to the birth of

Big Database Management Systems (BDMS). Generally, such systems run on a cluster of

commodity machines in order to handle the large volume of data. AsterixDB [2] is one

example of such a system. In AsterixDB, data lives at many sites across the cluster. The

data is hash-partitioned to achieve balance. This fits the parallel execution paradigm very

well since an operation in a query plan can be carried out simultaneously at all the sites.

Indeed, in AsterixDB, most of the time the operators of an evaluation plan are executed in

“partitioned” mode, meaning there are multiple instances of the operator that are running

in parallel. However, some operators require an additional serial step in order to produce
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the correct result. Particularly, an order-by operator in AsterixDB runs in parallel in all the

nodes of the cluster where each node sorts its part of the data and produces a partition.

However, there is no global ordering across the nodes. Therefore, one single node merges

all of those partitions in order to enforce global ordering (this single node’s step runs in

“unpartitioned” mode, i.e., only one instance is running). This final merge step has been

seen to be a bottleneck and wastes some of the benefits gained by sorting the data in parallel

[7]. We will call the current sort behaviour “parallel sort global merge” (PSGM). In this

thesis, we attempt to optimize the whole sort process by first repartitioning the data across

the nodes of the cluster such that there is a global ordering to begin with. After that, all the

nodes can proceed to sort their parts in parallel. By doing this, we eliminate the global merge

step in exchange for a step with lower overhead, the repartitioning step. We will call this

optimized version “repartitioning parallel sort” (RPS). The technique we have implemented

to partition the data is simple yet decent enough that we are already observing promising

performance gains.

The remainder of this thesis is organized as follows: in Chapter 2, we discuss related work in

regard to parallel sorting in the realm of database management systems. In Chapter 3, we

present our work to enhance the sort operation and describe its design and implementation.

We show the results of an empirical performance evaluation in Chapter 4. In Chapter 5, we

conclude and talk about future work.
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Chapter 2

Related Work

[7] gives a detailed discussion about past work on parallel external sorting in the literature,

and [10] explores parallel algorithms in database management systems in detail including

external sorting. Several of the initial works relied on a final merge step to enforce a global

ordering after sorting subfiles locally in parallel. This is similar to AsterixDB’s current

sort, PSGM. Much of the later work that followed was focused on the idea of redistributing

the original data so that there is a global ordering to begin with. This removes the need

for the final merge. In this approach, a “splitting vector” is employed to determine how

to redistribute the data and to which node or processor a tuple should be sent. The work

presented in [9] describes an implementation of parallel sorting that utilizes a splitting vector

that is supplied by the user. This is similar to an already existing feature of AsterixDB where

a user can provide a splitting vector as a hint to make AsterixDB repartition the data first

and then sort. For previous algorithms that compute the splitting vector at runtime, there

are different variations. Some of the algorithms compute what is called an “exact” splitting

vector. In those algorithms, all the data is examined and processed in order to find this

exact splitting vector. On the other hand, there are algorithms that compute what is known

as an “approximate” splitting vector. The latter use a variety of sampling techniques to
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find a splitting vector that could be considered representative of the whole data. According

to the evaluation in [7], parallel sorting that uses an approximate splitting vector based on

sampling outperforms parallel sorting using an exact splitting vector. Our work is similar in

spirit and draws many commonalities. However, there are several points to highlight here.

The first point is that in a typical sorting problem, the multiple input files are presumed to

initially reside on different disks, and the sorting task is to read those files and write back to

the disks a sorted result whether in one output file or multiple output files. In our work, we

are instead addressing an order-by problem where the input is fed by some other operator

in a general query evaluation plan, and the task is to produce a sorted stream to be fed to

the next operator consuming the data. As a result, rereading the input after sampling, for

example, is not an option. The second point is that we are dealing with a heterogeneous

environment, “NoSQL”, where a single field might have values of heterogeneous data types.

Furthermore, some values may be missing from a tuple.
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Chapter 3

Design and Implementation

3.1 Overview of AsterixDB

This section gives a brief background on AsterixDB and serves as an introduction to state our

problem and the use case of interest. Figure 3.1 shows an overview of the AsterixDB system

architecture. As mentioned before, AsterixDB runs on a cluster of commodity machines. It

follows a shared-nothing model where each machine or node has its own disks and memory.

In AsterixDB, each dataset is hash-partitioned on the primary key of the dataset across the

cluster nodes into what we refer to as partitions, which reside on different disks. There can

be one or more partitions on a disk. The cluster is managed by the cluster controller that is

the query entry point and handles requests coming into AsterixDB. The node controllers in

Figure 3.1 work collectively to process the requests [2].
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Figure 3.1: AsterixDB system architecture

Figure 3.2: Partitioning of a dataset in AsterixDB
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When a SQL++ query is submitted to AsterixDB, it goes through different stack layers for

processing as illustrated in Figure 3.3. First, the cluster controller receives the query as a

string and parses it into a syntax tree. Afterward, the syntax tree is translated into a logical

plan for further manipulations. The logical plan goes through several optimizations and

rewrites, and the output of this step is a Hyracks job specification [4, 3]. The job specification

is expanded into a set of separate stages with operators having activities connected using

various types of connectors. The activities themselves are organized as a DAG. Most often,

stages have dependencies between them, which means some stages will not be executed

until some other stage has finished. The cluster controller submits this final output to the

node controllers for execution by the Hyracks runtime engine. Figure 3.4 summerizes the

processing flow of a query.

Figure 3.3: AsterixDB software stack layers
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Figure 3.4: Processing flow of a query

AsterixDB follows a push-based architecture for query execution. Data flows through the

operators (and through their activities) in units of frames. A frame is nothing but a page

full of tuples. The flow of execution follows a well-defined sequence. In its simplest form,

an activity opens the pipeline and starts pushing frames to the next consuming activity. It

may ask the consuming activity to close the pipeline to indicate end of stream or may fail

to indicate a runtime error.

3.2 High-level Architecture and Implementation

In this section, we explain the current status of sorting in AsterixDB, state the problem

we are dealing with, and present our solution to it. Listing 3.1 shows a simple SQL++

query that retrieves all the tuples of the dataset “Wisconsin” ordered by the integer field

“unique2”. The definition of the given dataset is provided in Chapter 4 in Listing 4.1.
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SELECT VALUE w
FROM Wiscons in w
ORDER BY w. un ique2 ;

Listing 3.1: SQL++ query

3.2.1 Parallel Sort Global Merge (PSGM)

When the logical plan of the query in Listing 3.1 is compiled, it is turned into two stages

that have a dependency between them. Stages are formed when there is an activity that

has a blocking edge to another activity. It is at the blocking edges where stages are created

and the dependency between them is established. In the case of sorting, when the first

stage is executed, each partition scans its data and generates sorted runs. After that, the

second stage starts, in which each partition merges their initial sorted runs down into one

run. For very large inputs, this may be a multi-pass process [10]. While each partition is

merging and writing their resulting single run, they push their output over the network to a

single node controller, where a final merge from all the partitions occur and the final sorted

result is produced. Figures 3.5 and 3.6 depict the whole process and outline the activities

involved and the sequence of execution. (We omit some details that are not important to our

discussion.) Note that we are dealing with an order-by problem as pointed out before. The

input to the sort-related activities are not necessarily files sitting on disk, and the output

may not necessarily be written back to disk. That is, the input could come from a subquery,

for example, and the output might be consumed by other activities before producing the

final query result. Listing 3.2 shows one such query borrowed from TCP-H (query 5) and

written in SQL++.

The issue with the execution plan in Figure 3.6 lies in the final merge step [7]. It greatly

impacts the performance and slows down the sort process. This final merge step is required

since we started with a dataset that has been hash-partitioned, and therefore there is no
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SELECT o1 . n name AS n name ,
sum( o1 . l e x t e n d e d p r i c e ∗ (1 − o1 . l d i s c o u n t ) ) AS r e venue

FROM Customer c JOIN (
SELECT l 1 . n name AS n name , l 1 . l e x t e n d e d p r i c e AS l e x t e n d e d p r i c e ,

l 1 . l d i s c o u n t AS l d i s c o u n t , l 1 . s n a t i o n k e y AS s n a t i o nk e y ,
o . o c u s t k e y AS o cu s t k e y

FROM Orders o JOIN (
SELECT s1 . n name AS n name , l . l e x t e n d e d p r i c e AS l e x t e n d e d p r i c e ,

l . l d i s c o u n t AS l d i s c o u n t , l . l o r d e r k e y AS l o r d e r k e y ,
s1 . s n a t i o n k e y AS s n a t i o n k e y

FROM L ine I t em l JOIN (
SELECT n1 . n name AS n name , s . s suppkey AS s suppkey ,

s . s n a t i o n k e y AS s n a t i o n k e y
FROM Su p p l i e r s JOIN (

SELECT n . n name AS n name , n . n na t i o nk e y AS n na t i o nk e y
FROM Nat ion n JOIN Region r
ON n . n r e g i o n k e y = r . r r e g i o n k e y AND r . r name = ’ASIA ’

) AS n1 ON s . s n a t i o n k e y = n1 . n na t i o nk e y
) AS s1 ON l . l s u ppk e y = s1 . s suppkey

) l 1 ON l 1 . l o r d e r k e y = o . o o r d e r k e y
AND o . o o r d e r d a t e >= ’1994−01−01 ’
AND o . o o r d e r d a t e < ’ 1995−01−01 ’

) o1
ON c . c n a t i o n k e y = o1 . s n a t i o n k e y AND c . c c u s t k e y = o1 . o cu s t k e y
GROUP BY o1 . n name
ORDER BY r e venue DESC ;

Listing 3.2: SQL++ query involving “order by”

Figure 3.5: PSGM logical plan
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Figure 3.6: PSGM activity graph

global ordering among the initial partitions with respect to the sort keys. A solution to this

is to redistribute the data first based on the sort keys before doing any sort so that there is

a global partition ordering. The next subsection describes our application of this solution in

more detail.

3.2.2 Repartitioning Parallel Sort (RPS)

Figures 3.7 and 3.8 show the new logical plan and the corresponding activity graph. We will

explain the role of each component and provide a close-up view of the interaction between

them.
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Figure 3.7: RPS logical plan

Figure 3.8: RPS activity graph: stage 1 execution
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Figure 3.9: RPS activity graph: stage 2 execution

Figure 3.10: RPS activity graph: stage 3 execution

Sampling Function

One major task when seeking to redistribute and range-partition the data before doing

the actual sort is determining the proper splitting vector. We employ essentially the same

technique used in [7]. In our implementation, the whole process is divided into two steps, a
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local step and a global step. In the local step, as each partition receives input data, it picks

the first 100 tuples and considers them as samples. Each partition sends its 100 samples over

the network to a small global step task (“Compute Range” in Figure 3.8). The global step

takes the samples from all the partitions and sorts them (ascending or descending based on

the query). It then divides this set of values into equal ranges and picks k - 1 values, where

k is the number of target partitions. The output of this entire process is the splitting vector

or what we call in our implementation a “RangeMap” object. The splitting values in this

RangeMap object are serialized and stored consecutively in a byte array. The RangeMap

object also contains another integer array that specifies the offset of each splitting value.

Figure 3.11 shows how it is represented.

Figure 3.11: RangeMap representation

Note that the RangeMap stores the type of a split value in addition the actual value. This

enables us to handle fields of heterogeneous types because AsterixDB’s generic comparator

has the ability to compare values of different types. It will compare the values if it finds that

the types of the values match; it will promote and demote the values if the types do not match

but are compatible (e.g., integer and float); it will resort to comparing the types themselves if

they are not compatible. In AsterixDB, type tags are comparable for the purposes of sorting

and grouping. It is worth mentioning that the resulting RangeMap may contain multiple

identical split values. This indicates that such a value is so prevalent in the dataset that

sampling yields several instances of it, as the RangeMap serves as a representative of the

14



distribution of the values in a dataset. This effect manifests itself in one of our experiments

in which the dataset distribution is non-uniform.

The process of combining the samples and producing the RangeMap resembles aggregation

operations such as SUM or AVG. Therefore, we chose to use the aggregate operator ab-

straction and framework that are already available in AsterixDB and supply our sampling

functions as the functions to be applied. There are several advantages to this approach

besides just reusing code. One advantage is that we get the communication setup between

the local step and global step for free since it is a part of the implementation of aggregate

operators. All we need to do is just designate which function is the local function and which

is the global one. Also, there are many rewrite and optimization rules for aggregate opera-

tors, and we get those for free as well. Finally, the global step serializes and broadcasts its

computed RangeMap object to all of the participating partitions. After reading it, they can

start redistributing their part of the data.

Replicate Operator

The use of AsterixDB’s replicate operator in the execution plan in Figure 3.7 is important.

The replicate operator’s job is to take an input and route it to multiple branches. This is

needed since we want to send the input frames to both the sampling function and to the

partitioner that is going to partition the data in the frames. However, we cannot send the

input frames to the partitioner yet since the partitioner first needs to know the splitting

vector produced by the sampling branch. This is solved by enabling materialization on that

specific replicate operator branch leading to the partitioner (leading to the forward data

activity, in fact, and then to the partitioner), which will create a blocking edge and mark

a new stage (stage 2). Hence, those replicated input frames will not be pushed until the

sampling branch has finished.
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Forward Operator

The forward operator is used for several purposes. First, it marks the end of stage 1 of

the plan and defines proper stage dependencies. Second, upon receiving the RangeMap

object from the sampling function, it communicates it (locally) to the partitioner and then

starts pushing the materialized data to the partitioner. The forward operator consists of two

activities. The first activity’s job is to receive the RangeMap object and hand it to the next

activity. We make the edge between them blocking so that the second activity forwarding

the tuples waits for the sampling function to finish. Next, the second activity of the forward

operator opens the pipeline and passes the RangeMap object to the partitioner. We exploit

the fact that the second activity of the forward operator and the partitioner belong to the

same Hyracks task. There exists a map in the Hyracks task, which is shared among these

activities. We use this shared map for storing (communicating) the RangeMap object using

a unique UUID that is already known beforehand by both of them. (A Hyracks task is just

a thread that executes several activities that are connected directly to each other, which

indicates that the connection is not over the network.) The partitioner looks up the shared

map using the UUID when the pipeline is opened. After that, the forward operator starts

forwarding the data. The “MtoN” partitioner receives the data and distributes it across the

cluster nodes according to the RangeMap’s contents. The rest of the execution is the typical

sort process, but now with the final merge removed from the plan.

Range-Based Partitioner

As mentioned before, AsterixDB already supports a feature that allows a user to supply a

splitting vector as a hint in the query. This will trigger another path for PSGM where the final

merge is removed. Therefore, AsterixDB already has a partitioner (or connector) that can

partition the data based on a range, but that range has to be known during compilation when
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constructing the connector. We modified this connector so that it receives this information

during runtime. Now, when constructed, the range-based connector accepts a “key” that

should be used to look up the splitting vector. This key is the same UUID used by the

forward operator to pass the RangeMap object.

Optimization Rule

We have talked about the details of both the new logical plan and its corresponding execution

plan for RPS, but we have not yet talked about how to produce it. In order for us to

accomplish this, we need the query optimizer to produce our desired plan when optimizing

a logical plan. It starts when parsing and translating a query. When a query is parsed

and translated into a logical plan, we annotate the order-by operators so that the optimizer

knows that it needs to optimize the order-by operator. This gives the user flexibility to

choose between PSGM and RPS. By default, order-by operators will now be annotated to

use RPS. If a user would still like to use PSGM, they can provide a hint in the query that

will choose PSGM. (An example is provided in Chapter 4.) The logical plan goes through

two phases of optimization, a logical optimization and a physical optimization. We added

a new optimization rule to be fired during the physical optimization phase. This new rule

is called “IntroduceRPSRule”, which checks for several conditions first to make sure the

given order-by operator is a candidate for optimization. For example, it considers only those

operators that have been annotated to use RPS, and it only considers those operators that

are executing in a “partitioned” mode. (In a “local” mode, a sort is only done locally to

feed some other operator. In this case, the final merge step is not present in the plan, and

therefore, RPS is not applicable.)

After checking that RPS applies, the optimizer modifies the logical plan to look like the

one in Figure 3.7. This rule also generates the UUID used by the forward operator and the

partitioner to transfer the splitting vector. A UUID, short for Universal Unique Identifier,
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is defined by a canonical format using hexadecimal text with inserted hyphen characters.

“5a28ce1e-6a74-4201-9e8f-683256e5706f” is an example. This guarantees that if we have

multiple order-by operators in one plan, each operator will have its own UUID. This resolves

any conflict that might happen when passing splitting vectors through the shared map as

described before. Since the rule uses aggregate operators in the sampling branch, it is

oblivious to the sampling function being used. This means that we can utilize various

sampling implementations without the need to modify the rule. We just need to provide the

rule with the desired sampling function, and it will put it inside the aggregate operators.

The new optimization rule works hand in hand with another AsterixDB optimization rule

called the “EnforceStructuralPropertiesRule”. The “IntroduceRPSRule” is fired just before

the “EnforceStructuralPropertiesRule”. As the name suggests, the “EnforceStructuralProp-

ertiesRule” is responsible for, among other things, making sure that all the connections

between the different operators are properly set up as required by each operator. It intro-

duces all kinds of connectors to satisfy the requirements of each operator. We modified the

requirements of the order-by operator so that it requires the data to be range-partitioned.

By doing this, this rule will automatically introduce the range-based partitioner we need and

place it between the order-by operator and the forward operator as shown in Figure 3.7.

Alternatively, with small modifications, we could integrate the logic of the new optimization

rule into the “EnforceStructuralPropertiesRule”. In this way, all of the plan modifications

happen at the same time including inserting the replicate operator, the forward operator,

the aggregate operators, and the range-based partitioner.

There are several differences, commonalities, and tradeoffs between “parallel sort global

merge” (PSGM) and “repartitioning parallel sort” (RPS). Both strategies parallelize part of

the sort process. However, PSGM needs one additional step to finish off its sort, while RPS

requires re-distribution of data to start off. In RPS, we incur the overhead of sampling and

materializing the data. There is also the potential overhead of high volume communication
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over the network as every partition sends data to every partition. Moreover, data skew can

come into the picture with sampling and redistribution, and can degrade the performance

if skew is not handled properly [8]. On the other hand, in PSGM, everything proceeds

locally in each partition until the final step where the partitions need to communicate their

locally sorted results to one single place. However, the overhead of this final merge can be

remarkably high, which makes RPS seem a better alternative. Our performance evaluation

will give more insights into these tradeoffs.
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Chapter 4

Performance Evaluation

In this chapter, we share our experiments and results. We evaluate the performance of RPS

under different environment and problem settings. We compare and analyze the performance

of PSGM and RPS and show the improvement that we gain.

4.1 Experimental Environment and Setup

For the majority of our experiments, we used a cluster of 6 nodes. We varied the number of

nodes in the cluster for some of the experiments, but the node specifications and AsterixDB

instance configuration were the same for all experiments. Each node was a Dell PowerEdge

1435SC with 2 Opteron 2212HE processors with a total of 4 cores. Each node had a memory

of 8GB DDR2. There were two disks attached to each node. Each disk was a 1 TB drive

with 7200 RPM speed. AsterixDB was configured to use both of the I/O devices in each

node and to store one partition per disk. This gave us a total of 12 partitions when we use

6 nodes. The AsterixDB sort memory budget was set to 32MB. The JVM running in each

node and hosting AsterixDB was given 4GB of RAM memory. We used the same schema
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as the one used in the Wisconsin Benchmark [6]. We made just a small modification to

generate tuples of size approximately 600 bytes [1]. Listing 4.1 shows the resulting SQL++

DDL statements.

CREATE TYPE WisconsinSchemaType AS {
un ique1 : int ,
un ique2 : int ,
two : int ,
f o u r : int ,
t en : int ,
twenty : int ,
onePercent : int ,
t e nPe r c en t : int ,
twentyPe rcen t : int ,
f i f t y P e r c e n t : int ,
un ique3 : int ,
evenOnePercent : int ,
oddOnePercent : int ,
s t r i n g u 1 : s t r ing ,
s t r i n g u 2 : s t r ing ,
s t r i n g 4 : s t r i ng

} ;

CREATE DATASET Wiscons in (WisconsinSchemaType ) PRIMARY KEY un ique1 ;

Listing 4.1: Dataset definition for experiments

Table 4.1 shows the different sizes and cardinalities of the datasets used throughout the

experiments.

Number of Tuples (Million) Total Dataset Size
12 6 GB
36 19 GB
72 38 GB
108 57 GB
144 76 GB
180 94 GB

Table 4.1: Datasets sizes for experiments

The datasets were hash-partitioned on the primary key, unique1. For all our experiments,

the sort key was unique2. Listing 4.2 contains our running queries.
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// RPS query
SELECT VALUE w
FROM Wiscons in w
ORDER BY w. un ique2 ;

// PSGM query
SELECT VALUE w
FROM Wiscons in w
/∗+ no−rps−s o r t ∗/
ORDER BY w. un ique2 ;

// an example o f a query tha t p r o v i d e s a range
SELECT VALUE w
FROM Wiscons in w
/∗+ range [6000000 , 12000000 , 18000000 ] ; ∗/
ORDER BY w. un ique2 ;

Listing 4.2: SQL++ queries for experiments

4.2 Results and Analysis

4.2.1 Speedup Experiment

In this experiment, we measured the speedup of both RPS and PSGM. The total dataset

size was 19GB. We fixed the dataset size parameter and increased the number of partitions

for each subsequent measurement. We started with a setting of 4 partitions. We then

incremented it to 2x, 3x, 4x, and finally 5x. In an ideal parallel system, one would expect

that if we double the hardware, the same problem can be solved in half of the original

time. That is, one would expect to observe a linear speedup. In practice, if the execution

is truly parallelized, it shows a trend close to the ideal situation. Indeed, the results in

Figure 4.1 show that RPS exhibited this trend as expected. Of course, there are factors that

affect the speedup [5]. For example, in our case, we incur some overhead due to network

communications as we redistribute the tuples. There is also the sampling cost that we have to

pay and the materialization cost that comes with it in our current implementation. However,

there are also other factors from which we gain benefits; these are visible at the far right in
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the graph where the speedup is a bit higher than 5. The reason for that is that the partition

size was so small that all the data fit in memory, which saved I/O. In comparison, Figure

4.1 shows that PSGM did not demonstrate signs of speedup. This is attributed to the fact

that the final serial merge step dominated the execution time, and here we had to do the

final serial merge in all cases. The cost is roughly the same for each case since we were

merging the same amount of data. Figure 4.2 shows a performance comparison between the

two approaches.

Figure 4.1: Speedup
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Figure 4.2: Performance comparison of different cases of the speedup experiment

4.2.2 Scaleup Experiment

Scaleup is another metric that we are interested in. In this experiment, we started with a

dataset of size 19GB and a cluster 4 partitions. We changed the problem size as well as the

number of partitions by the same factor. We increased both by factors of 2x, 3x, 4x, and

finally 5x. In a scaleup experiment, the curve is expected to be flat with a ratio value of 1

for the old execution time and new execution time. Figure 4.3 gives us a sense that RPS

scales very nicely given the factors previously mentioned in the speedup experiment. This

is not the case for PSGM, however, as seen in the same figure. As we increase the problem

size, the final merge will suffer no matter how many partitions we add to the cluster. This

is due to the fact that there is only a single node performing the final merge. This again

shows that PSGM’s execution time is mostly determined by the final serial merge step.
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Figure 4.3: Scaleup

Figure 4.4: Performance comparison of different cases of the scaleup experiment
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4.2.3 Improvement Experiment

In this experiment, we try to measure the execution time of both approaches and compare

how they perform. The new RPS approach uses sampling to determine the splitting vector;

we talked about the sampling technique in Section 3.2. Although the field values of the sort

key “unique2” did not have skew, the data ended up not being redistributed evenly across

the partitions with our current implementation. One partition can receive fewer or more

tuples than it would if the splitting vector was exact. To explore the implications of this,

we also wanted to measure the execution time when the partitioner was able to distribute

the data evenly. To that end, we also ran the same query but supplied the exact splitting

vector ourselves in the query as a hint. We will call this case the “balanced” RPS. We used

a cluster of 6 nodes for a total of 12 partitions. Figure 4.5 shows the execution time of the

three versions, namely balanced RPS, RPS, and PSGM. The results are promising and show

the potential of RPS: the query execution time was significantly reduced by a factor of 3-5

fold as compared to PSGM.

4.2.4 Skewed Data Experiment

Data skew is one of the “threats” to parallelism [5]. Special handling of data skew must

exist whenever partitioning comes into the picture. If not handled properly, the performance

of a parallel execution of an algorithm will degrade. In this experiment, we want to see

the impact of skew, as our current implementation does not handle skew as well as desired.

The dataset size was 38 GB, and the cluster setup was our usual one, 6 nodes with 12

partitions. For each run of the experiment, we had a different dataset setting. The first

one operated on a regular dataset with no skew. In the second run, we set 20% of the sort

column values to be null to give us some skew. We further increased it to 40% and 60% in

the third and fourth run, respectively. We ran the same query for both RPS and PSGM.
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Figure 4.5: RPS and PSGM performance comparison

As shown in Figure 4.6, we clearly see that skew was taking its toll on RPS’s performance.

This is something we expected since the whole execution time will be determined by the

overloaded nodes that receive more data than others. Figure 4.7 shows how many sorted

runs each partition generated relative to each other, which gives us a sense of how skew

affects RPS. For example, for the 20% null setting, we see that partitions 1 and 2 generated

zero runs, which put more pressure on partition 3. This can be explained by looking at

Figure 4.8, which shows the splitting vector computed for that case. First, we notice that

the splitting vector contained a few identical split values, namely null. This is because null

values constituted 20% of the dataset; many null values made their way to the RangeMap

during sampling, which increased the likelihood that several of them were picked as split

values. In this case, the first two split values in that splitting vector were null. This means

that P1 (partition 1) and P2 will receive all values that are less than null (only missing
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values are less than null). Null values will end up in P3 together with other values that are

less than the split value “x3”. The same phenomenon occurred, only more so, for the other

two cases (40% null and 60% null). In the PSGM case, the effect did not arise since PSGM

does not redistribute data. This is because PSGM starts with each partition performing a

sort of its part of the data, and each partition has approximately an equal share to sort since

the incoming data is hash-partitioned. The interesting point, however, is that even with

skew RPS outperformed PSGM. RPS essentially degrades to PSGM as we greatly increase

the degree of skew.

Figure 4.6: Skewed-data experiment
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Figure 4.7: Data distribution across partitions

Figure 4.8: Splitting vectors for each experiment setting
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4.2.5 Varied Number of Samples Experiment

Recall that our sampling function takes the first 100 tuples of each partition and forms a

splitting vector out of them. That number gives us a decent redistribution. In the last

experiment, we are interested in seeing how even the partitioning will be as we increase

the number of samples. Furthermore, we want to see how the execution time varies since

taking more samples will result in a better splitting vector but at the same time increase

the cost of sampling. We used a dataset of size 38 GB and a cluster of 12 partitions.

We measure the evenness of a particular partitioning by taking the difference between the

number of runs generated in RPS and the number of runs generated in the balanced RPS.

(Balanced RPS gives an even distribution since we supply the splitting vector, and we know

the exact ranges.) In the charts in Figures 4.9 through 4.14, the horizontal axis indicates the

partition number. A value of “2” in the vertical axis means that the corresponding partition

generated 2 more runs than it would in balanced RPS. Similarly, a value of “-3” means that

the corresponding partition generated 3 fewer runs than it would in balanced RPS. (In other

words, it means that the partition received either more data or less data.) This approach of

measuring evenness is, of course, not accurate, but is sufficient to give us useful insights. We

can see from the charts that as we increased the number of samples, the partitioning started

to become more even. For example, in Figures 4.9 and 4.10, all the partitions either received

more or less data than in balanced RPS. When we increased the number of samples, now

several partitions received the same amount of data as in balanced RPS, and the partitioning

of data became more and more even as seen in Figures 4.11 and 4.12. Finally, Figure 4.14

shows that raising the number of samples to an even higher number yielded a partitioning

similar to balanced RPS. As for the impact of sampling on the query execution time of RPS,

we see a tradeoff in Figure 4.15. With more samples, we get a more even partitioning, but

the cost of sampling starts to kick in and increase the execution time; with fewer examples,

the sampling cost is less but at the expense of a less even partitioning.
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Figure 4.9: Number of runs generated by partitions taking 200 samples

Figure 4.10: Number of runs generated by partitions taking 400 samples
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Figure 4.11: Number of runs generated by partitions taking 800 samples

Figure 4.12: Number of runs generated by partitions taking 1,600 samples
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Figure 4.13: Number of runs generated by partitions taking 3,200 samples

Figure 4.14: Number of runs generated by partitions taking 128K samples
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Figure 4.15: Execution time when taking different numbers of samples
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we presented an approach to optimizing external sorting in AsterixDB. We

started by explaining that AsterixDB currently performs sorting in two stages. In the first

stage, each partition sorts its part of the data and produces a single sorted run. Next, in

the second stage, a single node merges all the runs and produces the final sorted output.

We identified the issues with this approach and presented our solution, which relies on

redistributing the data to eliminate the final merge step. The redistribution step employs

an approximate splitting vector that is computed using sampling. We shared the results

and findings from a set of experiments that we conducted to evaluate our solution. We

showed that repartitioning parallel sort (RPS) has excellent potential and that it significantly

outperforms the current AsterixDB parallel sort global merge (PSGM) approach.
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5.2 Future Work

5.2.1 Data Skew

We have seen in one of our experiments that RPS’ performance starts to degenerate when

skew exists in the data. This is because our current implementation does not take any specific

action in that regard. In other words, the partitioner is not “fair” when it distributes the

tuples across the partitions in the face of skewed data. If a certain value exists in a dataset

in large numbers, most likely the splitting vector will contain multiples of it assuming the

sampling is good enough that the samples are representative of the whole dataset. One

potential solution would be to tweak the partitioner and make it aware of the fact there

are multiple instances of the same value in the splitting vector. We could, then, modify the

partitioner so that it does not pick one specific partition and overload it. Another alternative

would be to explore the option of optimal splitters described in [11].

5.2.2 Materialization Step

In our current implementation, in addition to the cost introduced by sampling, we also incur

overhead caused by materializing the input tuples and reading them again. We needed that

step because we scan the whole input (incoming subquery results, in the general case) even

though we just pick the first 100 tuples as our samples. (We just ignore all the tuples

after the first 100 as they come in.) An improvement could be to create a new multi-stage

operator that would take in the first 100 tuples from each partition, save them, determine

the splitting vector, and send it to the partitioner; then, it could resume processing by first

forwarding the first batch of the tuples it saved before continuing to take in the rest of

the input tuples and forward them. This would eliminate the need for (and cost of) the

intermediate materialization.
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