
 
 

 
 
 
 

UNIVERSITY OF CALIFORNIA, 
IRVINE 

 
 
 

QA Testing for a Big Data Management System: A Case Study 
 
 

THESIS 
 
 
 

submitted in partial satisfaction of the requirements 
for the degree of 

 
 
 

MASTER OF SCIENCE 
 
 

in Computer Science 
 
 
 

by 
 
 
 

Khurram Faraaz Mohammed Noorullah Hussain 
 
 
 
 
                         Thesis Committee: 

Professor Michael J. Carey, Chair 
Professor Chen Li 

Assistant Professor James A. Jones 
 
 
 
 
 

2013 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2013 Khurram Faraaz Mohammed Noorullah Hussain 
 
 



ii 
 

 
DEDICATION 

 
 

 
To 

 
 
 

my parents and to my wife  
 
 
 

and to professor Michael J. Carey 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AsterixDB Less in the trunk and more in the engine! 
 
 
 
 
 
 
 
 
 
 



iii 
 

 

TABLE OF CONTENTS 
 

                     Page 
 
LIST OF FIGURES              iv 
 
LIST OF TABLES                                                    vi 
 
ACKNOWLEDGMENTS                                                                       vii 
 
ABSTRACT OF THE THESIS                                                             viii  
 
CHAPTER 1: Introduction                                                                 1 
  
CHAPTER 2: Related Work                                                          3 
 
CHAPTER 3: Overview of AsterixDB                                                                   10       
                                                                          
CHAPTER 4: Parallel Partitioned Query Processing in AsterixDB                    16
                                                                             
CHAPTER 5: Strategic Test Plan                                             39
                                                                 
CHAPTER 6: Experiences and Interesting Scenarios            64 
 
CHAPTER 7: Conclusion                                                                                       67 
 
REFERENCES                   69 
 
 
 
 
 
 



iv 
 

LIST OF FIGURES 

 
                           Page 
 
Figure 1: SQL test library coverage should cover region 2                                   4 
      as much as possible 
 
Figure 2 : SSDL snippet                                                                                         6 
 
Figure 3: QAGen Architecture                                                                                7 
 
Figure 4: Scatter plot for plan alternatives                                                              8 
 
Figure 5: AsterixDB system architecture.                                                               11 
 
Figure 6: AsterixDB software stack.                                                                        12 
 
Figure 7: ADM Types to represent Tweets & News articles as records                  13 
 
Figure 8: Hybrid Hashing                                                                                         18 
 
Figure 9: Partitioned Join                                                                                         19 
 
Figure 10: AQL Query to perform equi-join in AsterixDB                                          20 
 
Figure 11: Optimized Query Plan for equi-join in AsterixDB                                     21 

       that uses Hybrid Hash Join method 
 
Figure 12: Indexed nested loops join.                                                                        22 
 
Figure 13: AQL to perform Indexed Nested Loops Join in AsterixDB                        23 
 
Figure 14: Optimized Query Plan for Indexed Nested Loops Join                             24 
 
Figure 15: Algorithm - Block Nested Loops Join                                                        26 
 
Figure 16: AQL query that performs Block Nested Loops Join in AsterixDB              26 
 
Figure 17: Optimized Query Plan for Block Nested Loops Join in AsterixDB             27 
 
Figure 18: Aggregate Query that returns count of employees in AsterixDB.              29 
 
Figure 19: Optimized Logical Plan for count aggregate query in AsterixDB               30 
 
Figure 20: Parallel Group by in AsterixDB                                                                   31  



v 
 

 
Figure 21: Grouped Aggregation in AsterixDB.                                                           32 
 
Figure 22:Optimized Logical Plan for a grouped aggregation                                     33 
                 query in AsterixDB 
 
Figure 23: Order by : Sort at each node and Merge at another node.                         35 
 
Figure 24: AQL Query that performs ordering using Order by clause                          35 
 
Figure 25: Optimized Query Plan for an Order by query in AsterixDB                         36 
 
Figure 26: AQL Query that restricts query results using limit clause in AsterixDB       37 
 
Figure 27: Optimized Logical plan for an AQL query that applies a limit                      38 
 
 
 
 
 



vi 
 

 

LIST OF TABLES 
 

                                  Page 
 
Table 1: Generated relation PAIRS                                                                             6 
 
Table 2: Use cases that apply to different Join methods.                                            28 
 
Table 3: Hybrid Hash Join Tests                                                                                  41 
 
Table 4: Indexed Nested Loops Join Tests                                                                  45 
 
Table 5: Nested Loops Join Tests                                                                                48 
 
Table 6: Different types of inputs from data stored in                                                   50 

   datasets to test aggregate functions. 
 
Table 7 : Tests to verify group by key use on all primitive types                                   52 
 
Table 8 : Grouped Aggregation Tests                                                                           55 
 
Table 9 : Tests to order results by primitive type attribute in order                                58 
 
Table 10: Tests to verify correctness of order by clause.                                               59 
 
Table 11: Tests to verify correctness of limit clause                                                       62 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vii 
 

 
 
 

ACKNOWLEDGMENTS 

 
I would like to express the deepest appreciation to my advisor, Professor Michael Carey, he is an expert 

in the field of database management systems and at the same time very simple and kind hearted: he 

continuously provided feedback and comments on all chapters of this MS Thesis and corrected my 

understanding of certain core database functionality and implementations, which helped me improve the 

quality of the content. Every single interaction with him was a learning for me. Without his guidance and 

persistent help this dissertation would not have been possible. I also thank my advisor for giving me the 

opportunity to work with him and the Asterix team for close to two years, as a research assistant. 

 I would like to thank my committee members, Professor Chen Li and Assistant Professor James 

Jones, who took time out of their busy schedule to review my thesis and gave their valuable comments 

and feedback. 

 I would like to thank every member of the Asterix project, for having helped me understand the 

functionality of the different complex features. I would specifically like to mention Alexander Behm and  

Madhusudan for their help and support. 

 I also take this opportunity to thank my parents and my brother for having provided the much 

required financial help that was required to pursue my masters in Computer Science at University of 

California, Irvine. Last but not the least, without the support, sacrifice  and cooperation of my wife this 

would have been highly impossible to achieve. 

 ASTERIX project is supported by an eBay matching grant, one Facebook Fellowship Award, the 

NSF Awards No. IIS-0910989, IIS-0910859, and IIS-0910820, a UC Discovery grant,  three Yahoo! Key 

Scientific Challenge Awards, and generous industrial gifts from Google, HTC, Microsoft and Oracle Labs. 

I thank all our sponsors for supporting our project. 

 
 
 
 
 
 



viii 
 

 
 
 

ABSTRACT OF THE THESIS 
 

QA Testing for a Big Data Management System: A Case Study 
 

By 
 

Khurram Faraaz Mohammed Noorullah Hussain 
 

Master of Science in Computer Science 
 

 University of California, Irvine, 2013 
 

Professor Michael J. Carey, Chair 
 
 
 

      This thesis reports on the outcome of a six-month case study involving 

software testing of a large, open source code base for Big Data Management. The 

focus is two-fold, covering issues related to both testing a declarative query language 

and to the special challenges related to ensuring its correctness when data is 

partitioned and the execution of queries is parallelized. The system under study, 

AsterixDB, is a Big Data Management System (BDMS) that uses a shared-nothing 

parallel architecture. The parallel query processing abilities of the system, like different 

kinds of parallel joins (Hybrid Hash Join, Index Nested Loop Join and Nested Loop 

Join), aggregate functions, group by, order by, and limits, are extensively tested in a 

parallel shared-nothing environment.  

 

 

 

 



1 
 

Chapter 1 

Introduction 

 
 

 This thesis reports on the outcome of a six-month case study involving 

software testing of a large, open source code base for Big Data Management. The 

focus is two-fold, covering issues related to both testing a declarative query language 

and to the special challenges related to ensuring its correctness when data is 

partitioned and the execution of queries is parallelized. The system under study, 

AsterixDB, is a Big Data Management System (BDMS) that uses a shared-nothing 

parallel architecture. The parallel query processing abilities of the system, like different 

kinds of parallel joins (Hybrid Hash Join, Index Nested Loop Join and Nested Loop 

Join), aggregate functions, group by, order by, and limits, are extensively tested in a 

parallel shared-nothing environment.  

 
 

The remainder of this thesis is organized as follows. We discuss work related to 

testing parallel database systems and their querying capabilities in Chapter 2. We 

introduce the readers to AsterixDB and its architecture in brief in Chapter 3. In Chapter 

4, we give a high-level description of the different parallel partitioned query processing 

capabilities of AsterixDB. In Chapter 5, we give a detailed description of the strategic 

test plan that we have used to execute and test the parallel partitioned query processing 

capabilities of AsterixDB. This test plan is a high-level description of the different test 

scenarios that are applicable to the parallel query processing algorithms of AsterixDB. 

In Chapter 6, we provide an overview of the our experiences, results and reflections on 



2 
 

interesting test scenarios. Finally, we conclude in Chapter 7 with a summary and 

possible further action that can be pursued in this direction. 



3 
 

Chapter 2 

Related Work 

 Testing and quality assurance have a long-standing place in database system 

development [34]. The practice of testing database management systems has led to the 

design and development of several interesting strategies and frameworks to verify and 

validate the correctness of many different DBMS functionalities, as evidenced by 

publications in previous editions of the DBTest workshop series [46]. There have been 

significant contributions in the area of testing of parallel shared-nothing database 

management systems, both from academia and industry.  

 
 

In this section we briefly introduce readers to existing research in the area of 

database management systems testing. Testing any database management system 

involves (i) functional test practices that verify and validate the correctness of the 

functionality of individual components, as well as (ii) system test practices that test the 

database system as a whole end-to-end. Some of the interesting topics in the field of 

testing of parallel database management systems are generating  random test queries 

for execution on a given target database system [25], generating huge volumes of data 

over which many different queries can be executed [36], generating query-aware 

databases  (e.g., QAGen [35]), and testing the accuracy of query optimizers [45]. We 

review each of these briefly. 

 
 

Deterministic testing of SQL-based database systems is human-intensive and 

cannot adequately cover the entire SQL domain. As a response to the need for 



4 
 

automated AQL (Asterix Query Language) testing, a system called RAGS (Random 

Generation of SQL) was built to stochastically generate valid SQL statements and 

execute them a million times faster than a human could [25]. Typical SQL test libraries 

contain tens of thousands of statements, and  it requires an estimated ½ person hour to 

compose a correct query in SQL [25] or any declarative query language. This is why the 

testing of large DBMS software takes a long time; the release of such DBMS software is 

dependent on when the testing is declared as being complete. This adds a significant 

cost to the overall development cost of the product. 

 

 
Figure 1: SQL test library coverage should cover region 2 as much as possible. 

 
 

Figure 1 [25] illustrates the problem of SQL test coverage. Customers tend to use 

the area marked in the hexagon, while bugs are present in the oval, and test libraries 

cover the shaded small circle. Unfortunately, we don’t know the actual region boundaries 

[25]. To increase the area covered by the test libraries, statements are generated 

stochastically (or ‘randomly’) which provides the speed as well as wider coverage of the 

input domain [25]. In a nutshell, RAGS generates SQL statements by randomly walking 



5 
 

a stochastic SQL parse tree and printing queries out. RAGS was able to steadily 

uncover bugs in released SQL products.   

 
Generating huge volumes of related data over a cluster of nodes is another 

interesting topic, where an attempt is made to match the quantity and the quality of the 

data that is handled by production systems in large enterprises. Running realistic 

benchmarks to test the performance and robustness of these applications is becoming 

increasingly difficult because of the amount of data that needs to be generated, the 

number of systems that need to generate the data, and the complex structure of the 

data [36].  

 
PSDG is a parallel synthetic data generator designed to generate “industrial 

sized” data sets quickly using cluster computing. PSDG depends on SDDL, a synthetic 

data description language that provides flexibility in the types of data that can be 

generated [48]. SDDL is an XML-based language that codifies the manner in which 

generated data can be described and constrained. PSDG is designed to generate data 

across multiple processors. Each PSDG data generation process is launched with the 

knowledge of how many processes are participating as well as its own process index. 

With this information, a generation process can determine the extent of the data that it is 

responsible for generating without the need for inter-process communication. PSDG 

slices the generated data horizontally between generation processes. Data generation 

processes handle slices in a “striped” fashion: process 0 of N will generate slices {0, N, 

2N,…}, process 1 of N will generate slices {1, N+1, 2N+1,…}, and so on. PSDG is 

written in Java and it supports direct-to-database data generation; it can also generate 

data to file(s).  



6 
 

As an example, passing the SSDL snippet in Figure 2 as a file to PSDG would 

result in the relation named PAIRS which looks like Table 1. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<database> 
 <seed>1240958412</seed> 
 <pool name=”colors”> 
  <choice=”red”/> 
  <choice=”green”/> 
  <choice=”blue”/> 
 </pool> 
 <table name="PAIRS" length="5"> 
  <field name="F1" type="int"> 
   <min>1</min> 
   <max>50</max> 
  </field> 
  <field name="F2" type="CHAR(5)"> 
   <formula>colors</formula> 
  </field> 
 </table> 
</database> 

 
 

Figure 2 : SSDL snippet  

 
Table 1: Generated relation PAIRS [48]  
 
 

F1 F2 

34 green 

10 blue 

47 green 

17 red 

8 red 

 
 
 QAGen [35], summarised in Figure 3, is a query aware database generator that 

generates test databases. It operates in two phases: (1) a symbolic query processing 



7 
 

phase (SQP) and (2) a data instantiation phase. QAGen applies the concept of symbolic 

execution from software engineering to traditional query processing. Symbolic execution 

is a well-known program verification technique that represents values of program 

variables with symbolic values instead of concrete data and then manipulates 

expressions based on those symbolic values [49]. Using this concept, QAGen first 

instantiates a database which contains a set of symbols instead of concrete data (thus 

the generated database in this phase is called a symbolic database). In the SQP phase, 

the input query is analyzed by a query analyzer. Then, users specify their desired 

constraints and knobs (these knobs allow a user to control the output size of an 

operator) on the operators of the query tree. Later the input query is executed by a 

symbolic query engine. In the data instantiation phase that follows the SQP phase, 

symbolic tuples are read from the symbolic database and used to instantiate the 

symbols with real data values. The instantiated tuples are then inserted into the target 

database [35]. 

 

 
     Figure 3: QAGen Architecture [35] 

 
 



8 
 

Testing the correctness of query optimizers is another very interesting area in the 

field of testing database management systems [45]. The accuracy of a query optimizer 

is intricately connected with a parallel database system’s performance and its 

operational cost: the more accurate the optimizer’s cost model, the better the resulting 

query execution plans. When an optimizer consistently ranks plan alternatives correctly, 

the plan distribution plot shows a monotonic trend. That is, as the estimated plan cost 

increases, the actual cost also increases. In practice, no optimizer achieves perfect 

accuracy for non-trivial queries. Hence, instead of checking whether or not an optimizer 

is perfectly accurate, one can develop a metric that allows accuracy to be measured in 

a nuanced way. In other words, given a query Q and a sample SQ = {p1,...,pn} of plans 

from the plan space, the goal of [45] was to compute a correlation score between the 

ranking of plans in SQ based on estimated costs and their ranking based on actual 

costs. 

 

 
Figure 4: Scatter plot for plan alternatives [45] 

 
 

As noted in [45], if the actual execution cost for two plans is very close (i.e the 

pairwise distance of two points is small), we might not be able to order them 



9 
 

conclusively in an experiment. In this case, a ranking mistake for two such plans should 

not be weighted the same as if they were affiliated with two distant points. For example 

in Figure 4, incorrectly ranking the plan pair (p1, p2) is less significant than getting pair 

(p3, p4) wrong [45]. 

 In addition to these works on DBMS testing, there is also a different kind of 

testing, namely performance testing, that Big Data systems need and are undergoing 

[58, 59, 60].  That kind of testing is orthogonal to correctness testing and plan testing 

and is outside the scope of this thesis. 

In this chapter we have discussed several different areas related to software 

testing of database management systems. The focus of this thesis is towards verifying 

the correctness of the different parallel query processing capabilities of AsterixDB in a 

parallel environment at a functional test level. Coverage includes scenarios that test the 

correctness of the way that AQL statements are handled by the parser and runtime 

system, and for some interesting scenarios the optimized query plans are also verified 

for correctness. We will see in the chapters that follow what the coverage was like and 

what  some of the interesting findings were from this work. As part of the study the 

existing test framework to test AsterixDB was also updated to use the system’s new 

HTTP-based API for DDL and DML statement execution and verification of results. 

 



10 
 

Chapter 3 

Overview of AsterixDB 

A wealth of digital information is being generated daily, information has great 

potential value for many purposes if captured and aggregated effectively. In the past, 

data warehouses were largely an enterprise phenomenon, with large companies being 

unique in recording their day-to-day operations in databases and in warehousing and 

analyzing historical data to improve their businesses. Today, organizations and 

researchers in a wide variety of areas are seeing tremendous potential value and insight 

to be gained by warehousing the emerging wealth of digital information, popularly 

referred to as “big data,” and making it available for analysis, querying, and other 

purposes [50].  

 
AsterixDB has been built as a next-generation data management system in 

response to these trends. AsterixDB was designed by combining and extending ideas 

from semi-structured data management, parallel database systems, and first-generation 

data-intensive computing platforms such as MapReduce and Hadoop. It is a parallel, 

shared-nothing, semi-structured Big Data  Management System (BDMS), with the ability 

to ingest, store, index, query and analyze very large quantities of semi-structured data 

[51]. AsterixDB is well-suited for use cases ranging from "data" use cases - where 

information is well-typed and highly regular - to "content" use cases - where data tends 

to be irregular, much of each datum may be textual, and the ultimate schema for the 

various data types involved may be hard to anticipate up front. 

 
 



11 
 

Figure 5 provides an overview of how the different components of AsterixDB map 

to nodes in a shared-nothing cluster. The bottom-most layer provides storage facilities 

for managed datasets based on LSM-trees, which can be targets of data loads, users’ 

inserts or continuous data ingestion. Further up the stack is Hyracks, which is a data-

parallel runtime [51]. It sits at roughly the same level as Hadoop does for high-level 

languages such as Pig [23], Hive or Jaql [11]. The topmost layer of AsterixDB is a 

parallel DBMS, with a full, flexible data model (ADM) and query language (AQL) for 

describing, querying and analyzing data. AQL and ADM support both the native storage 

and indexing of data as well as access to external data (e.g., in HDFS). 

 

Figure 5: AsterixDB system architecture. [51] 

  

 Figure 6 provides more details about the open-source AsterixDB software stack, 

which supports AsterixDB but also aims to address other Big Data requirements. To 

process AQL queries, AsterixDB compiles each query into an Algebricks algebraic 

program. Algebricks is a model-agnostic, algebraic "virtual machine" for optimizing 



12 
 

parallel queries. The program is then optimized via algebraic rewrite rules that reorder 

the Algebricks operators as well as introducing partitioned parallelism for scalable query 

execution; code generation then translates the resulting physical query plan into a 

corresponding Hyracks job that uses the Hyracks runtime to compute the desired query 

result. The Algebricks layer is data-model-neutral and is therefore able to support other 

high level languages such as Hive and XQuery. 

 

 

Figure 6: AsterixDB software stack [52] 

 
 

The Asterix data model (ADM) borrowed data concepts from JSON [10] and 

added more primitive types as well as type constructors from semi-structured and object 

databases. 

 
 



13 
 

 

 
 

Figure 7 illustrates ADM by showing how it could be used to define a record type for 

modeling Twitter messages. The record type TweetType is defined as an open type, 

meaning that its instances should conform to its specification but will also be allowed to 

contain arbitrary additional fields that can vary from one instance to another. The field 

“location” is defined to be optional, and the field “hashTags” is defined as a nested 

collection of string values. 

 Logical data storage in AsterixDB is based on the concept of a “dataset”, which is 

a declared collection of instances of a given type. Internal datasets are stored and 

managed as partitioned LSM-based B+ trees with optional secondary indexes, while 

external datasets that can reside in local or HDFS files. Data is hash-partitioned across 

different nodes based on the primary key defined in the create dataset DDL statement 

[51]. Given the usefulness of tracking and analyzing data from social media, AsterixDB 

has another powerful feature that can be used to continuously ingest huge volumes of 

data so that later analysis can be performed on that data. Data can be stored in feed 

datasets from many different sources using adapters in AsterixDB; these adapters 

abstract away the mechanism of connecting with an external service. 

 
 



14 
 

To illustrate ADM further, consider the create type and create dataset DDL statements, 

which create an open type named EmpType and a dataset named Employee which is 

defined to be of EmpType. 

create type EmpType as open { 
 id: int32, 
 name: string, 
 age: int8, 
 dept-name: string 
} 
create dataset Employee(EmpType) primary key id; 

 
 
The dataset Employee is defined to be of EmpType in the example, and it will be hash 

partitioned across the nodes in the cluster based on the primary key “id”. If there was a 

predicate of the form “where $l.id = 167”, the system would go to the exact node where 

the tuple with employee id = 167 was stored to fetch it. AsterixDB also allows users to 

define optional secondary indexes (e.g., a B+ Tree or RTree index), e.g., on the “age” 

field in our example. Every node in the cluster would be accessed in parallel if the 

predicate was a range predicate over age, such as: 

 
 

for $l in dataset Employee 
where $l.age > 18 and $l.age < 30 
return $l 

 
 
In this case, each node would use the age index to determine the primary keys of the 

Employee instances in the specified range and then retrieve the Employees via the 

corresponding local primary index partition. 

 As we will see in the next section, AQL is a rich query language that includes 

support for selections, joins, nested queries, aggregates, grouping, ordering and more, 

leading to a challenging correctness testing task. This task is exacerbated by the data 



15 
 

partitioning, primary and secondary index types, and data typing options that ADM 

offers. 



16 
 

Chapter 4 

Parallel Partitioned Query Processing in AsterixDB 

In this chapter we will discuss the different parallel query processing abilities of 

AsterixDB, some of which are joins, aggregates, grouping, ordering and limits. Each of 

those features is explained in the next sections, with a simple AQL example that 

illustrates that feature, and the query plan for that query is also discussed. 

4.1 Joins 

A join in a database management system is an operation where we combine two 

tuples from two relations R and S based on a certain join predicate. A join of the form R 

⋈r.A = s.B S is referred to as an equi-join, where A and B are attributes of relations R and S, 

respectively. Large equi-joins are commonly implemented as hash-based joins in 

database systems. In this chapter we will discuss parallel joins and how they work in 

AsterixDB. Multiprocessor hash based join algorithms are discussed in detail in [42]. In 

the following sections we will discuss details of parallel join methods such as Hybrid 

Hash Join, Indexed Nested Loops Join, and Block Nested Loops Join in AsterixDB at a 

high level. 

 
 
4.1.1 Hybrid Hash Join 
 
 

Before we get to Hybrid Hash Joins, dynamic Hybrid hash algorithms in general 

[13] are described in this section. Dynamic Hybrid hash algorithms start out with the 

(optimistic) premise that no overflow will occur; if it does, however, they partition the 

input into multiple partitions of which only one is written immediately to temporary files 

on disk. The other F-1 partitions remain in memory. If another overflow occurs, another 



17 
 

partition is written to disk. If necessary, all F partitions are written to disk. Thus, hybrid 

hash algorithms use all available memory for in-memory processing, but at the same 

time are able to process large input files by overflow resolution, Figure 8 shows the idea 

of hybrid hash algorithms. As many hash buckets as possible are kept in memory, e.g., 

as linked lists as indicated by solid arrows. The other hash buckets are spooled to 

temporary disk files, called the overflow or partition files, and are processed in later 

stages of the algorithm. Hybrid hashing is useful if the input size R is larger than the 

memory size M but smaller than the memory size multiplied by the fan-out F, i.e., M < R 

< F x M, [13]. 

The parallel version of the Hybrid hash-join algorithm divides the join problem 

into parallel tasks using hashing and then performs the local partitioning and joining 

phases on the same join nodes. Each processor partitions its portion of the source 

relations using the same hash function. Each node allocates excess memory during the 

partitioning phase to a hash table for one bucket of tuples. As the source relations are 

being hash-partitioned, most tuples are written across the network to the appropriate 

join node. Tuples belonging to the bucket associated with a partitioning processor are 

instead immediately used to either build or probe the local hash table [42]. Figure 9 

illustrates a partitioned join in a multiprocessor system. 

 



18 
 

  

     Figure 8: Hybrid Hashing [13] 

 
 If one or both of the relations R and S are already hash partitioned on the join 

attributes, the work needed for partitioning is reduced greatly. If the relations are not 

partitioned, or are partitioned on attributes other than the join attributes, then the tuples 

need to be repartitioned. Skew presents a special problem; however, with a good hash 

function, hash partitioning is likely to have a smaller skew, except when there are many 

tuples with the same values for the join attributes [54]. 



19 
 

 

 
Figure 9: Partitioned Join [54] 

 
 
 
Figure 10 illustrates an AQL query that performs an equijoin on Customers and Orders 

datasets. The Customers dataset has a primary key defined on its “cid” attribute and 

Orders dataset has a primary key defined on its “oid” attribute. The optimized query plan 

for the equi-join AQL query is available in Figure 11. A data source scan (i.e. scan a 

dataset) is performed on the Customers dataset, followed by a one to one exchange of 

data between source and destination nodes, then a stream project is performed to 

retain only the required attributes of the Customers dataset. A data source scan is 

performed on the Orders dataset and it is repartitioned, because Orders.cid is not the 

primary key in Orders dataset. A hybrid hash join is then performed at each node on its 

local fragment of Customers and the received fragment of the Orders dataset. A project 



20 
 

is later performed to project only the required tuples for the required attributes, and 

finally the results are returned. 

 
 

// DDL to create an open type Cust 
create type Cust  
as open { 

cid: int32, 
name: string 

} 
 
 

// DDL to create an other open type Ord 
create type Ord  
as open { 

oid: int32, 
cid: int32, 
shipToName: string 

} 
 
 

// DDL statements to create Customers & Orders datasets. 
create dataset Customers(Cust) primary key cid; 
create dataset Orders(Ord) primary key oid; 

 
 

// Insert data into Customers & Orders datasets. 
 
 

// AQL Query - Equi-join  
for $o in dataset Orders 
for $c in dataset Customers 
where $c.cid = $o.cid 
return {"name":$c.name} 

 
 
 Figure 10: AQL Query to perform Equijoin in AsterixDB 



21 
 

 
Figure 11: Optimized Query Plan for equi-join in AsterixDB that uses Hybrid Hash Join 
method 



22 
 

 
4.1.2 Indexed Nested Loops Join 
 
 
 The goal of implementing an indexed nested loops join is to reduce the amount 

of I/O by replacing the inner join loop of a basic nested loops join by an index lookup. 

This replacement greatly reduces the number of I/O’s that would have been otherwise 

required to scan the entire inner relation to look for matching tuples. However, this 

reduction is achieved at a price, as the sequential I/O spent in scanning the inner 

relation is now turned into random I/O due to the index lookup. The algorithm for an 

indexed nested loops join on a single node is depicted in Figure 12. 

 

Figure 12: Indexed nested loops join. 
 
 
 In the case of a parallel indexed nested loops join, to exploit the degree of 

parallelism, both R and S are declustered across the nodes in the cluster. To effect the 

full join, every tuple from relation R (outer relation) is broadcast to every node in the 



23 
 

cluster. After R is broadcast to every node, every node in the cluster joins R with its 

local fragment of S, using indexed nested loops to perform the local join [56].   

An important improvement available in AsterixDB when performing an indexed 

nested loops join of R and S against a primary index on S is that R is not broadcast. 

Instead, the tuples of R are hash partitioned because we know that a dataset is 

partitioned on its primary key (and we are probing S's primary index in the join). 

// DDL to create an open type Cust 
create type Cust  
as open { 

cid: int32, 
name: string 

} 
 
 

// DDL to create an other open type Ord 
create type Ord  
as open { 

oid: int32, 
cid: int32, 
shipToName: string 

} 
 
 

// DDL to create Customers & Orders datasets. 
create dataset Customers(Cust) primary key cid; 
create dataset Orders(Ord) primary key oid; 

 
 

// DDL to create secondary index on Orders.shipToName 
create index idx-nm on Orders(shipToName); 

 
              // Insert data into Customers and Orders datasets. 
 
           // AQL Query - Indexed Nested Loops Join 

for $o in dataset Orders 
for $c in dataset Customers 
where $c.name /* +indexnl */ = $o.shipToName 
return {"name":$o.shipToName} 

 
 

Figure 13: AQL to perform Indexed Nested Loops Join in AsterixDB 



24 
 

 
Figure 14: Optimized Query Plan for Indexed Nested Loops Join 

 
 



25 
 

An indexed nested loops join in AsterixDB is illustrated in Figure 13, and the 

corresponding optimized query plan for that query is available in Figure 14. A data 

source scan is performed on the Customers dataset, and then a project provides only 

the required attributes to the next level of operators. The Customers dataset is then 

broadcast-exchanged with every other node. An index scan (B+ Tree index lookup) is 

performed using the secondary index "idx-nm" defined on Orders.shipToName attribute 

to look for a match in the Orders dataset. A sort is then performed, so that the primary 

index is looked up efficiently in increasing order of the primary keys. For each match 

found, another index scan is performed using the value received from the earlier 

secondary index lookup, this time on the primary index defined on Orders dataset. Then 

a final project is performed to project only the required attributes to the select operator 

and the results are returned. 

 
4.1.3 Block Nested Loops Join 
 
 
The algorithm for a block nested loops join is similar to a basic tuple oriented nested 

loops join algorithm, except that we compare the outer and the inner relations block by 

block instead of doing a tuple by tuple comparison. Figure, 15 shows this in more detail, 

in a parallel setup every R block is broadcast to every node in the cluster. After 

broadcasting R, every node in the cluster joins R with its local fragment of S, using 

block nested loops to perform the local join [56]. 



26 
 

 

 
 Figure 15: Algorithm - Block Nested Loops Join [54] 

 
 
Block nested loops joins are used for non-equi-joins in AsterixDB. Figure, 16 shows an 

AQL query that performs a block nested loops join on the Orders and Customers 

datasets and Figure 17 shows the query plan.  

// DDL to create an open type Cust 
create type Cust  
as open { 

cid: int32, 
name: string 

} 
 
              // DDL to create an other open type Ord 

create type Ord  
as open { 

oid: int32, 
cid: int32, 
shipToName: string 

} 
// Create Customers and Orders datasets 
create dataset Customers(Cust) primary key cid; 
create dataset Orders(Ord) primary key oid; 

 
// AQL - Block Nested Loops Join 
for $o in dataset Orders 
for $c in dataset Customers 
where $c.cid > $o.cid 
return {"name": $c.name} 
Figure 16: AQL query that performs Block Nested Loops Join in AsterixDB 



27 
 

 

 
Figure 17: Optimized Query Plan for Block Nested Loops Join in AsterixDB 



28 
 

Table 2 summarizes details of some of the common use cases that each of the join 
methods that we discussed is suitable for, 
 
 

Table 2: Use cases that apply to different Join methods. 

Join Algorithm Use case 

Hybrid Hash Join No index and or no-order (R.attrA = S.attrB) 

Indexed nested loops 
join  

Small R (outer relation) and indexed S (outer relation) (R.attrA 
/*+indexnl */ = S.attrB) 

Block nested loops 
join  

Non-equality based joins (R.attrA > S.attrB) 

 
 
4.2 Aggregates 
 
 

Aggregation is a very important statistical concept to summarize information 

about large amounts of data. The idea is to represent a set of items by a single value or 

to classify items into groups and determine one value per group. There are two forms of 

aggregations, called scalar aggregates and aggregate functions. Scalar aggregates 

calculate a single scalar value from a unary input relation, e.g., the sum of the salaries 

of all employees. Scalar aggregates can easily be determined using a single pass over 

a data set. Some systems exploit indices, in particular to calculate minimum, maximum, 

and count. Aggregate functions, on the other hand, determine a set of values from a 

binary input relation, e.g., the sum of salaries for each department. Aggregate functions 

are relational operators, i.e., they consume and produce relations [13]. Parallel 

algorithms for aggregation are best divided into a local step and a global step. First, 

aggregates are calculated locally at each node, and then data is aggregated globally at 

one of the chosen nodes. For aggregation, local and global aggregate functions may 



29 
 

differ. For example, to perform a global count, the local aggregation counts while the 

global aggregation sums local counts into a global count [13]. 

 
               // DDL to create an open type 

create type EmpType  
as open { 

id: int32, 
name: string, 
dname: string 

} 
 
 

// DDL to create Employee dataset 
create dataset Employee(EmpType) primary key id; 

 
// Insert data into Employee dataset. 
 
// Aggregate Query that performs a count of all employees 
count(for $l in dataset Employee return $l) 

 
 
Figure 18: Aggregate Query that returns count of employees in AsterixDB. 

To illustrate an aggregate count function in AsterixDB, consider the example in Figure 

18, that performs a count of all the employees in the Employee dataset. 

In Figure 19, the optimized query plan for the AQL aggregate count query in Figure 18 

is illustrated. A data source scan is performed on the Employee dataset. A project is 

then done to retain only the required attributes of the Employee dataset, which is 

followed by a local aggregation of data at each of the nodes that counts the tuples on 

each node. A random merge exchange is then performed. A global aggregate, sum, is 

applied to the incoming data received from the exchange and the results are 



30 
 

returned.

 

Figure 19: Optimized Logical Plan for count aggregate query in AsterixDB 

 
 
4.3 Group By 
 

AsterixDB internally utilizes both sorting and hashing techniques to achieve efficient 

group-by performance. By choosing among sort-based, hash-based, and hash-sort-

hybrid strategies, AsterixDB can reach good performance on both I/O and CPU costs 

for grouping huge data with different distributions. Specifically, the sort-based grouping 

algorithm sorts the input data based on the grouping key and finishes the group-by 

through a scan over the sorted data to produce running group-by results. This strategy 



31 
 

works best when the data has been pre-sorted on the group-by keys, or when the 

output of the group-by is required to be sorted. The hash-based algorithm uses a 

hybrid-hash strategy to fully utilize the memory for group-by, and it also partitions the 

input data if they cannot be fit into memory; the spilled partitions in the hash-based 

algorithm can be processed recursively. The Hash-based strategy is the best choice in 

most of the group-by scenarios when the data distribution is not highly skewed. Finally 

the hash-sort-hybrid algorithm [57] uses both hashing (to do grouping as early as 

possible in order to save I/O) and sorting (to avoid deep recursion if the data is highly 

skewed), and it works best for skewed data. The working of parallel group by in 

AsterixDB is shown in Figure 20. Figure 21 illustrates a simple AQL query that groups 

employees by department and returns a count of the number of employees per 

department. 

 

Figure 20: Parallel Group by in AsterixDB 



32 
 

// DDL to create an open type 
create type Emp  
as open { 

id: int32, 
name: string, 
dname: string 

} 
 
// DDL to create Employee dataset 
create dataset Employee(Emp) primary key id; 
 
// Insert data into Employee dataset. 
 
// AQL Query that performs grouped aggregation. 
for $l in dataset Employee 
let $x := $l.id 
group by $m := $l.dname with $x 
return { "dname" : $m, "emp-count": count($x) } 
 
Figure 21: Grouped Aggregation in AsterixDB.  

 

Figure 22 illustrates an optimized query plan for the group by query in Figure 21. A data 

source scan of the dataset is performed and a projection is applied to the input data so 

that only the required attributes are retained. A sort of the data is done because the pre-

clustered group by operator requires data to be sorted before grouping. In the pre-

clustered group by step the group by operator gets the local aggregation results since it 

is run on each local node. After the local group-by, the partial group-by results are hash- 

partitioned and distributed to different nodes so that all results about a given grouping 

key are all on a same node. Note that here a hash_partition_merge_exchange_merge 

connector is used; this connector ensures that records are hash partitioned, and on the 

receiver side records are still sorted. Another group-by is then applied on each node 

after the hash distribution. Lastly, the global group by results are fed to a project 

operator which returns only the required attributes and the results are returned. 



33 
 

 

Figure 22:Optimized Logical Plan for a grouped aggregation query in AsterixDB 
 
 



34 
 

4.4 Order By 
 
 
 The order by clause is used in database systems to organize data in a certain 

order, either ascending or descending, as specified by the user, or to provide data in 

sorted order to another operator in the pipeline as required. In a parallel shared-nothing 

database system with N nodes (machines), each of those N nodes performs the sort on 

its local data; later all these nodes can send their data, which is sorted, to a node where 

a merge is performed on the data received from the different nodes; the data after the 

merge operation is in the required sorted order. It must be noted that sorting data is an 

expensive operation, and it can slow down the performance of certain queries 

significantly, ie., if sorting is performed where it is not required to be performed. 

Different techniques for implementing sorting in database management systems are 

covered in [55] 

 In Figure 23, we see the implementation of the order by clause at a high-level in 

AsterixDB. Each node performs a local sort and then a merge is performed on the data 

received from each of the nodes at one of the available nodes. Data is then available in 

the required sorted order, after the merge, for processing by other operators. 



35 
 

 

 
  

Figure 23: Order by : Sort at each node and Merge at another node. 
 
 

// DDL statement to create an open type 
create type Emp  
as open { 

id: int32, 
name: string 

} 
 
// DDL to create Employee dataset 
create dataset Employee(Emp) primary key id; 
 
// Insert data into Employee dataset. 
 
// AQL Query that orders results 
// in ascending order 
for $l in dataset Employee 
order by $l.name 
return $l 

 
Figure 24: AQL Query that performs ordering using Order by clause 
 
 
 



36 
 

In Figure 24, an AQL query that performs ordering of results using the order by clause is 

illustrated. The corresponding optimized query plan is available in Figure 25. A data 

source scan is performed on the Employee dataset, a project is performed to retain only 

the required attribute “name”, followed by a sort operation that sorts data in ascending 

order on each of the nodes. A global merge is then effected by the sort merge exchange 

connector on the sorted data from all nodes at one of the available nodes. The project 

operator later projects only the required attribute and then results are returned in 

ascending order. 

 

Figure 25: Optimized Query Plan for an Order by query in AsterixDB 
 
 



37 
 

4.5 Limit 
 
 Limit is applied to restrict the the number of tuples returned by a query. Limits 

can be used in certain use-cases where the user is interested in knowing only the top N 

results, for example, the employees with the top ten highest salaries. To achieve this we 

can do an order by on the salary attribute of the Employee dataset, in descending order, 

and return only the first ten tuples, which will give us the desired result. It should be 

noted that limits must eventually be applied globally in a parallel environment, rather 

than calculating limits just locally at each of the sites.  

 Figure 26 illustrates an AQL query that applies a limit simply to restrict the 

number of tuples that are returned by a select query. In Figure 27, we see the optimized 

query plan for the query. After a data source scan on each site, a local sort in ascending 

order is performed and a local limit is applied to the data returned by the local sort. A 

sort merge exchange connector is used to merge the data in sorting order and combine 

the tuples on one site. We again apply the global limit on the aggregated tuples to pick 

the first N tuples and the results are returned. 

// DDL to create an open type. 
create type EmpType  
as open { 

id: int32, 
name: string, 
salary: int32 

} 
// DDL to create Employee dataset. 
create dataset Employee(EmpType) primary key id; 
 
// AQL Query that applies a limit to restrict number of results returned. 
for $l in dataset Employee 
order by $l.salary 
limit 5 
return $l 
 

Figure 26: AQL Query that restricts query results using limit clause in AsterixDB 
 
 



38 
 

 
 

            
Figure 27: Optimized Logical plan for an AQL query that applies a limit 



39 
 

Chapter 5 
 
 

Strategic Test Plan 
 
 

In this chapter we discuss the test strategies used to verify and validate the 

correctness of AsterixDB’s parallel query processing  functionalities (eg. joins, group by, 

aggregates, order by, and limits). This chapter is divided into five sections, and each 

section focuses on the tests for the functionality that that section is intended to cover. All 

tests described in each of the sections are  first executed on a standalone setup 

(meaning one Cluster Controller and one Node Controller) on a single machine and 

then executed on a clustered environment where we have one Cluster Controller and 

one or more Node Controllers running on the cluster. Each section gives a high level 

description of the tests, and a reference to the low-level tests written in AQL (the Asterix 

Query Language) is provided in the Appendix section of this thesis for reference. All 

tests are executed via AsterixDB’s existing HTTP-based API test framework. This 

chapter does not provide a comprehensive test plan that covers every area that can be 

tested; however, we attempt to verify and validate certain interesting features of the 

parallel query processing abilities of AsterixDB to the maximum extent possible. 

 

 AsterixDB uses a HTTP-based test framework that in turn uses AsterixDB's 

REST API to submit AQL queries (i.e., DDL/DML statements) for execution by the 

engine. DDL and DML statements are submitted via independent sessions to the engine 

for execution. The results returned by the system after query execution are verified by 

comparing the actual results received with expected results which are available in an 



40 
 

expected result file for each test case. The test framework supports execution of tests 

on a single node and on multi-node environments. AsterixDB has a result distribution 

framework which aggregates results from all the partitions of the cluster and returns a 

single stream of results, that are compared with the expected results. The test 

framework also supports execution of negative tests. An expected Exception message 

and Errors can be specified, for each negative test, for the framework to verify if the 

actual Exception or error message is the same as the expected Exception or error 

message. 

 

5.1 Joins 

5.1.1  Hybrid Hash Join 
 
 
 Equi-joins in AsterixDB are implemented using the Hybrid Hash Join method, 

which was discussed in section 4.1.1 of this thesis. The focus of tests in this section is 

towards testing the equi-join for different distributions of data across the nodes, using a 

join predicate which is equality based, like R.attrA = S.attrB. The tests cover different 

scenarios based on the definition of the two join key attributes of each of the datasets R 

and S. To test different combinations of the join key attributes in an equi-join predicate, 

attributes A and B from R and S can be defined as primary key, or they can be a non 

key or they may be part of a two-part composite key. Query plans are validated for 

“correctness”; one very important verification from the query plan is to verify that only 

that dataset whose join key attribute is not defined as a primary key is repartitioned and 

sent over to the other dataset. Table 3 lists the different test scenarios for Hybrid Hash 



41 
 

Join in AsterixDB. All test scenarios listed in there use two internal datasets which are 

hash partitioned on their primary key. 

 
Table 3: Hybrid Hash Join Tests 

 
 
 

Aim of Test & Description  Predicate used to join  two 
datasets 

Expected Results 

1. Test to verify that there is no 
re-partitioning of data from 
the two datasets, since both 
datasets are hash partitioned 
on their primary key. 
 
 
Equijoin wherein T1.ID and 
T2.ID are primary keys 

for $m in dataset T1 
for $n in dataset T2 
where $m.ID = $n.ID 
return {“m”:$m,”n”:$n} 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. Also 
verify that we do not do a 
hash partition exchange, 
as both join attributes are 
defined as the primary 
key in its dataset. 

2. Equijoin test , in which T2.ID 
is NOT defined as a primary 
key, and T1.ID is defined as 
a primary key. 

for $m in dataset T1 
for $n in dataset T2 
where $m.ID = $n.ID 
return {“m”:$m,”n”:$n} 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. Also 
verify that only dataset 
T2 is hash partition 
exchanged and sent to 
T1. 

3. Equijoin test, in which T1.ID 
is NOT defined as a primary 
key and T2.ID is defined as 
a primary key. 

for $m in dataset T1 
for $n in dataset T2 
where $m.ID = $n.ID 
return {“m”:$m,”n”:$n} 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. Also 
verify that only dataset 
T1 is hash partition 
exchanged and sent to 
T2. 
 
 

4. Equijoin test in which ID is 
not defined as primary key in 
both datasets T1, T2 
respectively. 
Note : The data used in this 
test will include some 
duplicates. 
 
 

for $c in dataset customers 
for $o in dataset orders 
where $c.id = $o.id 
return {"cust-
id":$c.id,"shipToName":$o.shipToN
ame} 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. Also 
verify that both the 
datasets are 
repartitioned, as both the 
join key attributes are not 
defined as primary keys. 

5. Equijoin test in which T1.ID 
and T2.ID are defined as PK 
T2.name is secondary index. 
 
 
Note : The residual name 

for $l in dataset t1 
for $m in dataset t2 
where $l.id=$m.id and $m.name = 
"John Doe" 
return {"t1":$l,"t2":$m} 
 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. Also 
verify that there is no 
repartitioning of either of 



42 
 

predicate must be verified by 
the presence of index scan 
in the query plan. 

 the datasets from the 
query plan. 

6. Equijoin test where join 
predicate is of the form : 
expression1 and 
expression2 
 
 
Customers.ID is PK 
Orders.ID is PK 
 
 
customer.name and 
orders.shipToName are non 
key attributes 

for $l in dataset Customers 
for $m in dataset Orders 
where $l.id=$m.id and 
$l.name=$m.shipToName 
return {"cid":$l.id,"ship-to-
name":$m.shipToName} 
 
 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. Also 
verify that there is no 
repartitioning of either of 
the datasets from the 
query plan. 

7. Equijoin test where join key 
attributes are defined as two-
part primary keys in the 
datasets. 
 
Customer(id1,id2) is PK 
Orders(id1,id2) is PK 

for $l in dataset Customers 
for $m in dataset Orders 
where $l.id1=$m.id1 and $l.id2 = 
$m.id2 
return {"customer":$l,"orders":$m} 
 
 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. Also 
verify that there is no re-
partitioning of either of 
the datasets, from the 
query plan. 

8. Equijoin test, where the join 
key attributes in the join 
predicate are a prefix of a 
two-part primary key. 
 
 
Customers(id1,id2) is PK 
Orders(id1,id2) is PK 

for $l in dataset Customers 
for $m in dataset Orders 
where $l.id1=$m.id1 
return {"customer":$l,"orders":$m} 
 
 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. Also 
verify from the query plan 
that both datasets are re-
partitioned.   

9. Same as case 8, except that 
join key attributes are a 
suffix of the key. 
 
 
Customers(id1,id2) is PK 
Orders(id1,id2) is PK 

for $l in dataset customer 
for $m in dataset orders 
where $l.id2 = $m.id2 
return {"customer":$l,"orders":$m} 
 
 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. Also 
verify from the query plan 
that both the datasets are 
re-partitioned. 

10. Equijoin on internal datasets 
T1 and T2, T1 is defined as 
open type and T2 is defined 
as closed type. 
 
(fname,lname) are two part 
primary keys defined in T1 and 
T2 
 
Note : T1 has additional 
field/data in it, meaning fields 
that were not defined in the 
type. 

for $m in dataset T1 
for $n in dataset T2 
where $m.fname = $n.fname and 
$m.lname = $n.lname  
return {“t1”:$m, “t2”:$n} 
 
 

Verify that join is a Hybrid 
Hash join and verify 
correctness of results 
returned. Also verify that 
neither of the datasets is 
re-partitioned. 



43 
 

11 Equijoin on internal datasets 
T1 and T2, both T1 and T2 
are defined as open. The join 
predicate involves undefined 
field from T1 and T2.  
Note : “city” field of type 
string, is not defined in the 
type for T1 or T2. 

for $m in dataset T1 
for $n in dataset T2 
  where $m.city = $n.city 
return {“t1”:$m,”t2”:$n} 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. 

12 Equijoin on internal datasets 
T1 and T2, both T1 and T2 
are defined as open. The join 
predicate involves undefined 
field from T1 and T2.  
Note : “zip” field of type 
integer, is not defined in the 
type. 

for $m in dataset T1 
for $n in dataset T2 
  where $m.zip = $n.zip 
return {“t1”:$m,”t2”:$n} 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. 

13. Equijoin on internal datasets 
T1 and T2, both T1 and T2 
are defined as open. The join 
predicate is over an 
undefined field from T1 and 
T2.  
Note : “hobbies” field in not 
defined in the type. “hobbies” 
here is an unordered list of 
strings. 

for $m in dataset T1 
for $n in dataset T2 
  for $a in $m.hobbies 
  for $b in $n.hobbies 
where $a = $b 
return {“t1”:$m,”t2”:$n} 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. 

14. Equijoin on internal datasets 
T1 and T2, both T1 and T2 
are defined as open. The join 
predicate is defined over 
values returned by iterating 
over an unordered list from 
T1 and T2.  
Note: “hobbies” field is 
defined in the type as an 
unordered list {{ string }} 

for $m in dataset T1 
for $n in dataset T2 
  for $a in $m.hobbies 
  for $b in $n.hobbies 
where $a = $b 
return {“t1”:$m,”t2”:$n} 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. 

15. Equijoin that involves a three-
part composite key (fname, 
mi, lname) defined as primary 
key in datasets T1 and T2 

for $m in dataset T1 
for $n in dataset T2 
where ( $m.fname=$n.fname and 
$m.mi=$n.mi and 
$m.lname=$m.lname) 
return {“m”:$m,”n”:$n} 

Verify that the join is a 
Hybrid Hash join and 
verify correctness of 
results returned. Also 
verify that neither of the 
datasets is repartitioned. 

16. Test to verify Left Outer Join 
(Equi-join) 
PK = PK 
 
 
Customers.ID is defined as 
primary key 
Orders.ID is defined as 

for $l in dataset Customers 
return { 
             "cust":$l, 
             "orders": for $m in dataset 
Orders               
               where $l.id=$m.id 
                                 
               return $m 

Verify that the left outer 
 join is a Hybrid Hash join 
and verify correctness of 
results returned. Also 
verify that neither of the 
datasets is repartitioned. 
 
 



44 
 

primary key           } 
 
 

17. Test to verify Left Outer Join 
(Equi-join) 
PK = Non-Key 
 
 
Customers.ID is defined as 
primary key 
Orders.ID is NOT defined as 
primary key 
 
 

for $l in dataset Customers 
return { 
             "cust":$l, 
             "orders": for $m in dataset 
Orders               
               where $l.id=$m.id 
                                 
               return $m 
          } 
 
 

Verify that the left outer 
 join is a Hybrid Hash join 
and verify correctness of 
results returned. Also 
verify that Orders dataset 
is repartitioned, because 
Order.id is not defined as 
a primary key. 

18. Test to verify Left Outer Join 
(Equi-join) 
Non-Key = PK 
 
 
Customers.ID is NOT defined 
as primary key 
Orders.ID is defined as 
primary key 

for $l in dataset Customers 
return { 
             "cust":$l, 
             "orders": for $m in dataset 
Orders               
               where $l.id=$m.id 
                                 
               return $m 
          } 
 
 

Verify that the left outer 
 join is a Hybrid Hash join 
and verify correctness of 
results returned. Also 
verify that Customers 
dataset is repartitioned, 
because Customers.id is 
not defined as a primary 
key. 

19. Test to verify Left Outer Join 
(Equi-join) 
Non-Key = Non-Key 
 
 
Both Customers.name and 
Orders.shipToName are not 
defined as primary key. 

for $l in dataset Customers 
return { 
             "cust":$l, 
             "orders": for $m in dataset 
Orders               
 where $l.name=$m.shipToName 
                                 
               return $m 
          } 
 
 

Verify that the left outer 
 join is a Hybrid Hash join 
and verify correctness of 
results returned. Verify 
that both Orders and 
Customers are 
repartitioned as the join 
key attributes are not 
defined as primary keys. 

20 Test to verify that join 
predicate of the form, 
expression(R.attrA) = 
expression(S.attrB) results in 
a hybrid hash join. 

for $c in dataset DsOne 
for $o in dataset DsTwo 
where fun-1(R.attrA) = fun-
2(S.attrB) 
return { “attrA” : $c.attrA , “attrB” : 
$o.attrB } 

Verify that the join is a 
Hybrid Hash join. 

 
 
 
5.1.2 Indexed Nested Loops Join 

In this section we discuss the tests that verify the correctness of indexed nested loops 

join in AsterixDB. Indexed nested loops join is discussed in section 4.1.2 of this thesis. 



45 
 

The focus of these tests is to verify that the outer relation is broadcast (or hash 

partitioned, in the primary key case) to every other node, and that the secondary index 

defined on the join key attribute of the inner relation is used to do an index lookup to find 

a match for the value of the join key attribute of the outer relation. Table 4 lists the 

different tests that have been written and executed to test indexed nested loops joins in 

AsterixDB. Each row in Table 4 actually corresponds to five different tests, as each of 

the scenarios listed in the table is tested using all five forms of the join predicate as 

listed below. A join predicate with a hint to do an index scan ( B+ Tree index ) lookup on 

the inner relation to find the match can be of any one of the following forms; 

i) where $l.<attribute> /*+ indexnl */ = $m.<attribute> 
ii) where $l.<attribute> /*+ indexnl */ < $m.<attribute> 
iii) where $l.<attribute> /*+ indexnl */ > $m.<attribute> 
iv) where $l.<attribute> /*+ indexnl */ <= $m.<attribute> 
v) where $l.<attribute> /*+ indexnl */ >= $m.<attribute> 

 
 

Table 4: Indexed Nested Loops Join Tests 
 
 

 
 

Aim of Test and description Expected Result 

1. Test to verify that secondary index defined on 
Orders.shipToName is picked to find a match for the 
Customers.name attribute, in Orders dataset. 
 
 
A secondary index is defined on Orders.shipToName. 
 
 
for $o in dataset Orders 
for $c in dataset Customers 
where $c.name /* +indexnl */ = $o.shipToName 
return {"name":$o.shipToName} 
 
 
 

Verify that a secondary index scan is 
performed on the Orders dataset and verify 
the correctness of results returned. 

2. Test to verify that secondary index defined on 
Orders.cid is picked to find a match for the 
Customers.cid attribute, in Orders dataset. 

Verify that a secondary index scan is 
performed on the Orders dataset and that 
Orders dataset is broadcast exchanged 



46 
 

 
 
A secondary index is defined on Orders.cid 
 
 
for $o in dataset Orders 
for $c in dataset Customers 
where $c.cid /* +indexnl */ = $o.cid 
return {"name":$o.shipToName} 

and verify the correctness of results 
returned. 

3. Test to verify that the primary index defined on 
Customers.cid is picked to find a match for Orders.cid 
 
 
Customers.cid is the primary index defined on 
Customers dataset. 
 
 
for $o in dataset Orders 
for $c in dataset Customers 
where $o.cid /* +indexnl */ = $c.cid 
return {"name":$c.name} 

Verify that the tuples of Orders dataset are 
Hash partitioned because we know that 
Orders is hash partitioned on its primary 
key, and that we are probing Customers 
dataset’s primary index Customers.cid in 
the join. 
 
 
IMPORTANT : Verify from the query plan 
that dataset Orders is not broadcast 
exchanged! 

4. Test to verify that an indexed nested loops join is NOT 
performed when the join key attribute of the inner 
relation is not defined as a primary or secondary index. 
Instead, AsterixDB chooses to perform a Hybrid Hash 
Join, ignoring the hint. 
 
 
Customers.name is not defined as primary or 
secondary index in Customers dataset. 
 
 
for $o in dataset Orders 
for $c in dataset Customers 
where $o.shipToName /* +indexnl */ = $c.name 
return {"name":$c.name} 

Verify from the query plan that a Hybrid 
Hash join is performed and also verify that 
there is no B+ Tree index scan in the query 
plan. Verify the correctness of results 
returned. 

5. Test to verify that composite secondary index defined 
on attributes of inner relation DsTwo is picked in the 
join. 
 
 
create type TypeOpen as open { 
id: int32, 
fname: string, 
lname: string 
} 
create dataset DsOne(TypeOpen) primary key id; 
create dataset DsTwo(TypeOpen) primary key id; 
 
 
create index indx-dst on DsTwo(fname,lname); 
 

Verify from the query plan that there is a 
broadcast exchange of dataset DsOne, 
since DsTwo’s join key attribute is not its 
primary index and verify that we probe the 
secondary index defined on DsTwo. 



47 
 

 
//insert data into datasets 
 
 
for $o in dataset DsOne 
for $t in dataset DsTwo 
where $o.fname /* +indexnl */ = $t.fname and $o.lname 
/* +indexnl */ = $t.lname 
return {"name":$t.lname} 

6. Test to verify that prefix of a composite secondary 
index defined on attributes of inner relation DsTwo is 
picked in the join. 
 
 
create type TypeOpen as open { 
id: int32, 
fname: string, 
lname: string 
} 
create dataset DsOne(TypeOpen) primary key id; 
create dataset DsTwo(TypeOpen) primary key id; 
 
 
create index indx-dst on DsTwo(fname,lname); 
 
 
//insert data into datasets 
 
 
// Only prefix of two part secondary key is used. 
for $o in dataset DsOne 
for $t in dataset DsTwo 
where $o.fname /* +indexnl */ = $t.fname  
return {"name":$t.lname} 

Verify that an indexed nested loops join is 
performed and verify correctness of 
results. 
 
 
Note: This is currently not supported, an 
enhancement request is reported to 
support this in the future. 

 
 
 
 
5.1.3 Nested Loops Join 
 
 
This section describes the tests that verify the correctness of nested loops join in 

AsterixDB. All tests listed in Table 5 are written and executed on a standalone and a 

cluster setup. Nested loops joins in AsterixDB are discussed in section 4.1.3 of this 

thesis. 

 

 



48 
 

Table 5: Nested Loops Join Tests 

 
 

Test Description and 
Aim of Test case. 

Predicate used to join  two 
internal datasets 

Expected Results 

1. NL join test, with join 
predicate of the form : 
t1.attribute-a > 
t2.attribute-b 

for $m in dataset customers 
for $n in dataset orders 
where $m.id > $n.id 
return {“cust-
name”:$m.name,”order-
id”:$n.id} 

Verify correctness of results and that 
this is a nested loop join. 

2. NL join test, with join 
predicate of the form : 
t1.attribute-a >= 
t2.attribute-b 

for $m in dataset customers 
for $n in dataset orders 
where $m.id >= $n.id 
return {“cust-
name”:$m.name,”order-
id”:$n.id} 

Verify correctness of results and that 
this is a nested loop join. 

3. NL join test, with join 
predicate of the form : 
t1.attribute-a < 
t2.attribute-b 

for $m in dataset customers 
for $n in dataset orders 
where $m.id < $n.id 
return {“cust-
name”:$m.name,”order-
id”:$n.id} 

Verify correctness of results and that 
this is a nested loop join. 

4. NL join test, with join 
predicate of the form : 
t1.attribute-a <= 
t2.attribute-b 

for $m in dataset customers 
for $n in dataset orders 
where $m.id <= $n.id 
return {“cust-
name”:$m.name,”order-
id”:$n.id} 

Verify correctness of results and that 
this is a nested loop join. 

5. NL join test, with join 
predicate of the form : 
t1.attribute-a != 
t2.attribute-b 
 
 
Anti-Join wherein T1.ID 
and T2.ID are defined as 
primary keys 

for $m in dataset T1 
for $n in dataset T2 
where $m.ID != $n.ID 
return {“m”:$m,”n”:$n} 

Verify correctness of results and verify 
that this is a nested loop join in the 
optimized query plan. 

6. NL join test, with join 
predicate of the form : 
 
 
t1.attribute-a > 
t2.attribute-a and 
t1.attribute-b < 
t2.attribute-b 

for $l in dataset t1 
for $m in dataset t2 
where $l.name > $m.name and 
$l.id < $m.id 
return {"l":$l,"m":$m} 

Verify correctness of results and verify 
that this is a nested loop join in the 
optimized query plan. 

7. NL join test, with join 
predicate of the form : 
 

for $l in dataset t1 
for $m in dataset t2 
where $l.name >= $m.name 

Verify correctness of results and verify 
that this is a nested loop join from the 
query plan. 



49 
 

 
t1.attribute-a >= 
t2.attribute-a and 
t1.attribute-b <= 
t2.attribute-border  

and $l.id <= $m.id 
return {"l":$l,"m":$m} 
 
 

8. NL join test, with join 
predicate of the form : 
 
 
t1.attribute-a > 
t2.attribute-a and 
t1.attribute-b <= 
t2.attribute-border  

for $l in dataset t1 
for $m in dataset t2 
where $l.id > $m.id and $l.id <= 
$m.id 
return {"l":$l,"m":$m} 
 
 

Verify correctness of results and verify 
that this is a nested loop join from the 
query plan. 

9. NL join test, with join 
predicate of the form : 
 
 
t1.attribute-a >= 
t2.attribute-a and 
t1.attribute-b < 
t2.attribute-border 

for $l in dataset t1 
for $m in dataset t2 
where $l.id > $m.id and $l.id <= 
$m.id 
return {"l":$l,"m":$m} 
 
 

Verify correctness of results and verify 
that this is a nested loop join from the 
query plan. 

 
 
 
5.2  Aggregates 
 
 
In this section we verify the correctness of different aggregate functions in AsterixDB. 

Aggregates in AsterixDB are discussed in section 4.2 of this thesis. The focus of the 

tests in this section is to ensure that the aggregate functions perform the local and 

global aggregations as designed, and that they handle inputs of different datatypes and 

also handle nulls correctly. All tests discussed in this section were executed on both a 

standalone setup and on a cluster of nodes.   Table 6 summarizes different inputs 

(primitive types) that will be passed to the aggregate functions listed in column one of 

the table. The fields of the primitive types mentioned in Table 6 are defined as 

mandatory fields (not optional fields) of the internal dataset over which each of the 

aggregate functions is executed. Each test will be a scan query over an internal dataset 

without any predicates. 



50 
 

All tests discussed in Table 6 will then be repeated for fields that are defined as 

optional fields in the internal dataset over which each of the aggregate functions is 

executed. Some or all of the tuples may have nulls for those optional fields. Each test 

will again be a scan query over the internal dataset without any predicate.   

Table 6: Different types of inputs from data stored in datasets to test aggregate 
functions.  

 
 

function name int float double string time date datetime duration interval 

sum() Yes Yes Yes NA Yes Yes Yes Yes Yes 

count() Yes Yes Yes Yes Yes Yes Yes Yes Yes 

avg() Yes Yes Yes NA Yes Yes Yes Yes Yes 

max() Yes Yes Yes Yes Yes Yes Yes Yes Yes 

min() Yes Yes Yes Yes Yes Yes Yes Yes Yes 

 
 

Note that the fields that hold data are mandatory. 
  Yes : indicates that feature is supported and will be tested. 

            NA : indicates that feature is not supported and will not be tested 
    

Tests for different uses of aggregate functions in AsterixDB and AQL can be classified 

into three categories: Simple aggregates over a dataset, Grouped aggregates over a 

dataset, and Simple aggregates over nested collections. In all these tests, a schema 

similar to the UserType schema shown below will be used: 

 
 

create type UserType  
as open { 
 name: string, 
 age: int64, 
 kids-ages: {{int8}}, 
 kind: string, 
 hobbies: {{string}} 
} 
create dataset Users(UserType) primary key age; 



51 
 

 
   
5.2.1. Simple aggregates over a dataset 
 
 
 Basic tests to verify the correctness of simple aggregates were described in 

detail in Table 6. An additional set of tests, similar to those discussed in Table 6, use 

the UserType schema. These tests are : 

i) Test to get the average age of Users, using the avg() aggregate function. 

ii) Test to get the count of all Users, using the count() aggregate function. 

iii) Test to get the maximum age of a User, using the max() aggregate function. 

iv) Test to get the minimum age of a User, using the min() aggregate function. 

 

5.2.2 Grouped aggregates over dataset 
 
 Section 5.3 of this thesis discusses the tests for grouped aggregate queries in 

AQL. 

5.2.3 Simple aggregates over a nested collection 
 
 
i) Test to get the names of the Users and their average kids-age 

ii) Test to get the names of the Users and the counts of their hobbies. 

 
 
5.3 Group By 
 
 
 This section covers tests that will be executed to verify the serial and parallel 

correctness of the group by clause and its application to perform grouped aggregation. 

Group by functionality in AsterixDB was discussed in section 4.3 of this thesis. 

 5.3.1.    Tests to cover group by key 



52 
 

  The group by key(s) can be of any of the primitive data types that 

AsterixDB supports. All primitive types will be used as the group by key(s) in tests to 

perform the grouping. These tests are described in Table 7. All tests in Table 7 will use 

the schema AllType and dataset definition DsOne as shown below: 

create type AllType  
as open { 
     id : int32, 
     int_m : int32, 
     int_o : int32?, 
     int_64_m : int64, 
     string_m : string, 
     string_o : string?, 
     tm_m: time, 
     dt_m: date, 
     dt_tim_m: datetime, 
     intrvl: interval, 
     pt_m: point, 
     flt_m: float 
   }; 

 
 

create dataset DsOne(AllType) primary key id; 
 
 

Table 7 : Tests to verify group by key use on all primitive types 

 
 

Test Description & Aim Expected Result 

1. Test to group results based on a mandatory field 
of type int32 
 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.int_m with $id 
   return { "group-by-key": $m, "group-members": 
$id } 

Verify that the results returned are grouped by 
the group by key int_m 
 
 

2. Test to group results based on an optional field of 
type int32 
 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.int_o with $id 

Verify that the results returned are grouped by 
the group by key int_o 
 
 



53 
 

   return { "group-by-key": $m, "group-members": 
$id } 

3. Test to group results based on a mandatory field 
of type string 
 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.string_m with $id 
   return { "group-by-key": $m, "group-members": 
$id } 

Verify that the results returned are grouped by 
the group by key string_m 

4. Test to group results based on an optional field of 
type string 
 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.string_o with $id 
   return { "group-by-key": $m, "group-members": 
$id } 

Verify that the results returned are grouped by 
the group by key string_o 
 
 

5. Test to group results based on a mandatory field 
of type date 
 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.dt_m with $id 
   return { "group-by-key": $m, "group-members": 
$id } 

Verify that the results returned are grouped by 
the group by key dt_m 
 
 

6. Test to group results based on an mandatory field 
of type datetime 
 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.dt_tim_m with $id 
   return { "group-by-key": $m, "group-members": 
$id } 

Verify that the results returned are grouped by 
the group by key dt_tim_m 
 
 

7. Test to group results based on a mandatory field 
of type interval 
 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.intrvl with $id 
   return { "group-by-key": $m, "group-members": 
$id } 

Verify that the results returned are grouped by 
the group by key intrvl 
 
 

8. Test to group results based on an mandatory field 
of type float. 

Verify that the results returned are grouped by 
the group by key flt_m 



54 
 

 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.flt_m with $id 
   return { "group-by-key": $m, "group-members": 
$id } 

 
 

9. Test to group results based on an mandatory field 
of type point. 
 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.pt_m with $id 
   return { "group-by-key": $m, "group-members": 
$id } 

Verify that the results returned are grouped by 
the group by key pt_m 

10. Test to group results based on a mandatory field 
of type int64 
 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.int_64_m with $id 
   return { "group-by-key": $m, "group-members": 
$id } 

Verify that the results returned are grouped by 
the group by key int_64_m 

11. Test to group results based on a mandatory field 
of type time 
 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.tm_m with $id 
   return { "group-by-key": $m, "group-members": 
$id } 

Verify that the results returned are grouped by 
the group by key tm_m 

12. Test to group results based on a multi-field group 
by key, which can be of the form 
[$x.int_m,$x.string_m] 
 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := [$x.int_m,$x.string_m] with $id 
   return { "group-by-key": $m, "group-members": 
$id } 

Verify that the results returned are grouped by 
the multi-part group by key 
[$x.int_m,$x.string_m] 
 
 

 
 
  

 



55 
 

5.3.2.    Tests to cover grouped aggregation. 

  The tests discussed in Table 7, can be slightly modified to iterate over the 

collection that holds the members of each group (i.e. the collection produced by the with 

clause for each of the groups) to perform aggregations over the data. All aggregate 

functions - min, max, sum, avg and count - will be tested for valid data that is part of the 

collection. These tests are discussed in Table 8. All tests will use the AllType schema 

and dataset definition DsOne as shown below, 

create type AllType  
as open { 
     id : int32, 
     int_m : int32, 
     int_o : int32?, 
     int_64_m : int64, 
     string_m : string, 
     string_o : string?, 
     tm_m: time, 
     dt_m: date, 
     dt_tim_m: datetime, 
     intrvl: interval, 
     pt_m: point 
   }; 

 
 

create dataset DsOne(TypeOpen) primary key id; 
 
 

Table 8 : Grouped Aggregation Tests 

 
 

Test description & Aim Expected Results 

1 Test to group results based on a mandatory field of 
type int64 and perform aggregation over the 
collection produced by the with clause, this 
collection is an ordered list that has the members 
that belong to a group. 
 
Grouped aggregation : Get count of members of a 
group. 
 
for $x in dataset DsOne 
   let $id := $x.id 

Verify that the results are grouped and the 
grouped aggregation results are correct and 
verify from the query plan that we do a local pre 
clustered group by followed by a global pre 
clustered group by. 



56 
 

   group by $m := $x.int_64_m with $id 
 return { "group-by-key": $m, "group-member-
count": count($id) } 

2 Test to group results based on a mandatory field of 
type int64 and perform aggregation over the 
collection produced by the with clause, this 
collection is an ordered list that has the members 
that belong to a group. 
 
Grouped aggregation : Get the maximum number 
of members of a group. 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.int_64_m with $id 
 return { "group-by-key": $m, "mx-group-member": 
max($id) } 

Verify that the results are grouped and the 
grouped aggregation results are correct and 
verify from the query plan that we do a local pre 
clustered group by followed by a global pre 
clustered group by. 

3 Test to group results based on a mandatory field of 
type int64 and perform aggregation over the 
collection produced by the with clause, this 
collection is an ordered list that has the members 
that belong to a group. 
 
Grouped aggregation : Get the average of 
members of a group. 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.int_64_m with $id 
 return { "group-by-key": $m, "avg-group-member": 
avg($id) } 

Verify that the results are grouped and the 
grouped aggregation results are correct and 
verify from the query plan that we do a local pre 
clustered group by followed by a global pre 
clustered group by. 

4 Test to group results based on a mandatory field of 
type int64 and perform aggregation over the 
collection produced by the with clause, this 
collection is an ordered list that has the members 
that belong to a group. 
 
Grouped aggregation : Get the minimum of 
members of a group. 
 
for $x in dataset DsOne 
   let $id := $x.id 
   group by $m := $x.int_64_m with $id 
 return { "group-by-key": $m, "min-group-member": 
min($id) } 

Verify that the results are grouped and the 
grouped aggregation results are correct and 
verify from the query plan that we do a local pre 
clustered group by followed by a global pre 
clustered group by. 

 
 
 
 
 
 



57 
 

5.4 Order by clause  
 
 

This section lists the tests that verify the correctness of the order by clause in 

AsterixDB. Order by functionality in AsterixDB was discussed in section 4.4 of this 

thesis. Data is sorted in ascending order by default in AsterixDB. The focus of these 

tests is to verify that the system orders data in the specified order when data is input to 

the order by clause from datasets that are hash partitioned across a cluster of nodes. 

 Table 9 and Table 10 describe the order by tests that are executed on a standalone 

and cluster setup. The dataset used will be an internal dataset which is defined to be of 

an open type. Fields that are defined as optional will have some instances that will hold 

nulls. Results will be ordered by every field that is part of AllType schema, as a separate 

independent test, some of those tests are provided in Table 9.  All tests in Table 9 will 

use the AllType schema and TestDs dataset definition as shown below, 

create type AllType  
as open { 
     id : int32, 
     int_m : int32, 
     int_o : int32?, 
     int_m : int64, 
     int_m : int64?, 
     string_m : string, 
     string_o : string?, 
     tm_m: time, 
     dt_m: date, 
     dt_tim_m: datetime, 
     intrvl: interval, 
     pt_m: point, 
     flt_m: float 
   }; 
 
create dataset TestDs(AllType) primary key id; 

 
 

 



58 
 

Table 9 : Tests to order results by primitive type attribute in order 

 
 

Test Description & Aim Expected Result 

1 Test to order results based 
on a mandatory field of type 
int32 
 
 
for $l in dataset TestDs 
order by $l.int_m 
return $l 

Verify that the result is in ascending order. Verify from the  query 
plan that a local sort is applied in ascending order and the sorted 
data is then merged in ascending order. 
 
 

2 Test to order results based 
on an optional field of type 
int32 
 
 
for $l in dataset TestDs 
order by $l.int_o 
return $l 

Verify that the result is in ascending order. Verify from the  query 
plan that a local sort is applied in ascending order and the sorted 
data is then merged in ascending order. 
 
 

3 Test to order results based 
on a mandatory field of type 
string 
 
 
for $l in dataset TestDs 
order by $l.string_m 
return $l 

Verify that the result is in ascending order. Verify from the  query 
plan that a local sort is applied in ascending order and the sorted 
data is then merged in ascending order. 
 
 

4 Test to order results based 
on an optional field of type 
string 
 
 
for $l in dataset TestDs 
order by $l.string_o 
return $l 

Verify that the result is in ascending order. Verify from the  query 
plan that a local sort is applied in ascending order and the sorted 
data is then merged in ascending order. 
 
 

5 Test to order results based 
on a mandatory field of type 
date 
 
 
for $l in dataset TestDs 
order by $l.dt_m 
return $l 

Verify that the result is in ascending order. Verify from the  query 
plan that a local sort is applied in ascending order and the sorted 
data is then merged in ascending order. 
 
 

 
 
All tests in Table 10 will use the Emp schema and Employee dataset definition shown 

below: 



59 
 

create type Emp  
as open { 
   id : int32, 
   name: string, 
   name: string, 
   salary: int32  
} 
 
create dataset Employee(Emp) primary key id; 

 
 

Table 10: Tests to verify correctness of order by clause. 

 
 

Test Description & Aim Expected Result 

1. Test to order the results (Records) 
returned by a select query based on 
primary key. The default order in which 
results are ordered in ascending order.  
 
 
for $l in dataset Employee  
order by $l.id  
return $l 

Verify that results returned are in ascending order by 
default. Also verify from the query plan that there is no 
sort operation, since the ordering is based on the 
primary index. 

2. Test to order the results (Records) 
returned by a select query based on 
primary key in descending order. 
 
 
for $l in dataset Employee  
order by $l.id desc 
return $l 

Verify that results returned should be in descending 
order. Also verify from the query plan that there is a 
sort operation that orders data in descending order. 

3. Test to order the results (Records) 
returned by a select query based on non 
key attribute. 
 
 
for $l in dataset Employee  
order by $l.name 
return $l 

Verify that results returned are in ascending order by 
default. Verify from the  query plan that a local sort is 
applied in ascending order and the sorted data is then 
merged in ascending order. 

4. Test to order the results (Records) 
returned by a select query based on non 
key attribute in descending order. 
 
 
for $l in dataset Employee  
order by $l.name desc 
return $l 

Verify that results returned should be in descending 
order. Verify from the  query plan that a local sort is 
applied in descending order and the sorted data is 
then merged in descending order. 



60 
 

5. Test to order the results based on an 
undefined field of type string.  
 
 
Note that there is no field named “hobby” 
in the Emp type. 
 
 
for $l in dataset Employee  
order by $l.hobby desc 
return $l 

Verify that results returned should be in descending 
order. Verify from the  query plan that a local sort is 
applied in descending order and the sorted data is 
then merged in descending order. 

6. Test to order the results in descending 
order based on primary key and limit the 
results using limit clause.  
 
 
for $l in dataset Employee  
order by $l.id desc 
limit 10 
return $l.salary 

Verify that a local sort is applied on each of the nodes, 
and the specified limit is applied to the sorted data on 
each of the nodes and then the data is merged and the 
global limit is applied to the merged data. This will give 
the top N results. 

7. Use order by clause in a grouped 
aggregate query, to order the groups 
based on the grouping key. 
 
 
// order by the grouping key  
for $l in dataset Employee 
let $x := $l.id 
group by $m := $l.dname with $x 
order by $m 
return { "dname" : $m, "emp-count": 
count($x) } 

Verify that results returned are in ascending order of 
dname field (order by the group by key). 

8. Test to use order by and limit clause and 
distinct clause in same AQL query. 
 
 
for $l in dataset Employee  
order by $l.id desc 
limit 2 
distinct by $l.name 
return $l.salary 

Verify that results returned are in descending order, 
and that there are no duplicates in the results and that 
the number of results returned are equal to the 
specified limit. 

9. Test to order results (employee name’s) 
and use limit clause. 
Get any five employees and sort the data 
by their names. 
 
 
for $l in dataset Employee  
limit 5 
order by $l.name desc 
return $l.name 

Verify that employee names are sorted in descending 
order.  
 
 
Verify from the query plan that we apply the global limit 
first and then do a sort operation. 
 
 
Note : This is because the limit appears before the 
order by clause in the AQL Query. 



61 
 

10. Test to order results (employee name’s) 
and apply limit to sorted data. 
 
 
Get the top 5 names of employees in 
descending order. 
 
 
for $l in dataset Employee  
order by $l.name desc 
limit 5 
return $l.name 

Verify that employee names are sorted in descending 
order.  
 
 
Verify from the query plan that we perform a sort on 
each node locally and then apply the local limit and 
merge the data and then apply the global limit over the 
merged data. 
 
 
Note : This is because the limit appears after the order 
by clause in the AQL Query. 

11. Test to order results returned by an equi-
join. 
 
// ID is defined as a primary key in T1 and 
T2  
 
for $m in dataset T1 
for $n in dataset T2 
where $m.ID = $n.ID 
order by $m.ID 
return { “m”:$m,”n”:$n } 

Verify that join results returned are in ascending order. 
 
 
Verify from the query plan that a sort operation is 
performed after the join operation and that the sorted 
data is merged and projected. 

12. Test to order results based on multi-field 
order by key. 
 
 
for $l in dataset Employee 
order by $l.name,$l.salary desc 
return $l 

Verify that the results are ordered by the attributes 
specified in the order by clause. 

13. Test to order any N results returned by a 
range search query. 
 
Note that in this test a secondary index is 
defined over the name field. 
 
for $l in dataset Employee  
where $l.name >= "A" and $l.name <= "Z" 
limit 5 
order by $l.name desc 
return $l.name 

Verify that the results are within the specified range 
and that any N of those results are sorted in 
descending order.  

 
 
5.5 Limit clause 

 
 
This section lists the different tests that will be executed to verify correctness of limit 

clauses in AsterixDB. Limits in AsterixDB were explained in section 4.5 of this thesis. 



62 
 

The focus of the tests will be to verify that limits are applied locally and a global limit is 

then correctly applied. Table 11 describes tests that were executed on both a 

standalone setup and a cluster environment. Tests in rows 1, 2 and 3 in Table 11 use 

the Emp schema and Employee dataset definition shown below, 

create type Emp  
as open { 
   id : int32, 
   name: string, 
} 

 
create dataset Employee(Emp) primary key id; 

 
 

Table 11: Tests to verify correctness of limit clause 
 
 

 
 

Aim of test & test description Expected Result 

1. Test to restrict results returned (using limit clause)  
by a select query without a predicate. 
 
 
for $l in dataset Employee  
order by $l.id desc 
limit 10 
return $l 
 
 

Verify from the query plan that there is a local 
limit and a global limit that is applied.  Query  
should return only limit-number of results, in 
descending order. 

2 Test to restrict results returned (using limit clause)  
by a select query without a predicate. 
 
 
for $l in dataset Employee  
order by $l.name desc 
limit 10 
return $l 

Verify from the query plan that data is sorted 
on each node in descending order and that a 
local limit is applied on the sorted data and a 
global limit is applied on the merged data. 
Query should return only limit-number of  
results, in descending order. 
 
 

3 Test to limit the results and order results by a  
missing undefined field of an open type dataset.   
 
 
for $l in dataset Employee  
limit 5 
order by $l.dname desc 
return $l.dname 
 

Verify that results are returned in descending  
order and that only N results are returned as  
specified by the limit.  

 
Verify from the query plan that a limit is  
applied to the data on each node locally, and  
that the data is merged and a global limit is  
applied on the merged data and the results are 
then sorted in descending order.  



63 
 

 

4 Test to restrict results returned by a nested query. 
 
 
for $l in dataset Customers 
return { 
             "cust":$l, 
             "orders": for $m in dataset Orders               
               where $l.id=$m.id      
               limit 50                             
               return $m 
          } 

Verify from the query plan that a limit is  
applied within the nested query. Nested query 
should return only limit-number of results. 

5 Test to restrict results returned by an equi-join. 
 
 
for $m in dataset T1 
for $n in dataset T2 
where $m.ID = $n.ID 
limit 25 
return { “m”:$m,”n”:$n } 

Verify from the query plan that there  
is a local limit and a global limit that is 
applied. Query should return only limit-number 
of join results. 

6 Test to apply limit to data that is inserted into  the  
added open field “F” that can hold a value of any  
type in it. 
 
 
create type Emp  
as open { 
   id: int32 
} 
 
 
create dataset Employee(Emp) primary key id; 
 
 
insert into dataset Employee({“id”:35, “F”:”John 

Doe”}); 
insert into dataset Employee({“id”:15, “F”:”2013-06-

01”}); 
insert into dataset Employee({“id”:25, “F”:55}); 
insert into dataset Employee({“id”:85, 

“F”:{{“scuba”,”diving”,”hiking”}}}); 
insert into dataset Employee({“id”:39, “F”:3.14}); 
 
 
for $l in dataset Employee 
limit 3 
return $l.F 

Verify that the results returned are as per the  
specified limit. 

 
 
 



64 
 

Chapter 6 
 

Experiences and Interesting Scenarios 
 
 
 In this chapter we discuss a few of our experiences and some interesting 

scenarios that we  encountered during execution of tests as part of this thesis work. 

While a few of the issues reported were trivial, some others were interesting. Some of 

the interesting issues were those that were observed when working with aggregations, 

limits, joins, and ordering. 

 Interesting issues reported while working with aggregations included aggregation 

queries initially failing to correctly roll up the answer to one final number. The count 

aggregation function failed to sum up the aggregated counts returned by different nodes 

because the return type of the sum aggregation function was restricted to return values 

up to a maximum threshold supported by the int32 type in AsterixDB. Another 

interesting issue noticed with the count aggregate function was that the count aggregate 

function returned a null as a final result if any of the elements of an ordered list was null, 

which is incorrect for the semantics of count in AQL. Also, the Count aggregate function 

returned a NullPointerException when it was given an ordered list of nested ordered 

lists or an un-ordered list of strings as input. 

Restricting the number of results returned by a select query worked as designed 

on a single node, but to limit the results returned by a select query over a cluster of 

nodes, local limits were being performed as designed on each of the nodes, but the 

global limit operator failed to apply the global limit to the data received from all the 

nodes.  



65 
 

In the case of joins, the hybrid hash join method was not being selected for equi-

joins of datasets R and S if the join criteria given was expression(R) = expression(S). 

Instead, a nested loops join was being selected. The AQL query that uncovered this 

issue was: 

for $l in dataset DsOne 
for $m in dataset DsTwo 
where lowercase($l.name) = lowercase($m.name) 
return { “name”: $m.name} 

 
 
This was reported as a performance issue for join processing. 

The indexed nested loops join was not selected if the entire key was not involved 

in the join criteria, whereas a prefix should have been sufficient to make the composite 

key useful. The test that uncovered this issue was, when a prefix of a two part primary 

key defined on (fname, lname)  was used  to probe the inner relation, the indexed 

nested loops join method was not chosen to perform the join. This was reported as 

another performance issue for join processing. 

Indexed nested loops join hint was not picked up on when used in a join. For 

subquery predicates of the form, “where $R.attrA /* +indexnl */ >= $S.attrB”, and “where 

$R.attrA /* +indexnl */ <= $S.attrB” the system did not recognize these predicates and 

instead returned NullPointerExceptions. 

In all, approximately 31 correctness and performance issues were identified and 

resolved within the scope of this case study.  These included the examples discussed 

here as well as a number of other bugs and issues, including issues such as users 

being able to drop metadata datasets, poor handling of certain syntax errors, errors 

related to dropping and recreating the same user-defined function, ordering results 

based on a field that was part of a record which was in turn an element of an ordered 



66 
 

list of records, comparisons between incompatible types not resulting in an exception, 

and so on. 



67 
 

Chapter 7 
 
 

Conclusion 
 
 

The goal of this thesis was to increase confidence in the correctness of the 

parallel partitioned query processing features of the AsterixDB BDMS, and to uncover 

bugs, report them, and track them to closure, thereby improving both the quality and 

usability of the AsterixDB BDMS. We first reviewed the related work in the area of 

testing database management systems. We then gave an overview of AsterixDB and 

discussed the different parallel query processing abilities of the AsterixDB BDMS. We 

then explained how we verified the correctness of AsterixDB’s parallel query processing 

abilities such are join methods, aggregates, grouping, ordering, and limits. We shared a 

few of our experiences and interesting scenarios from tests that were performed on 

those parallel query processing abilities of AsterixDB. The main focus was towards 

verifying the correctness of operations globally, over a cluster of nodes, for data that 

was partitioned across many nodes in the cluster. All issues (i.e. bug reports) were 

reported on AsterixDB’s GoogleCode issues page whenever incorrect or unexpected 

behavior was observed after executing the tests. These issues were prioritized and, 

based on the severity and importance of the issue, the issue was fixed appropriately by 

the development team.  

 
 
 It will be important for future work to continue in the direction of testing the 

AsterixDB BDMS. One additional clause in AQL that would benefit from the same kind 

of partitioned parallelism testing is the 'distinct by' clause.  This clause is closely related 



68 
 

to 'group by' and 'order by' in nature, so the same methods used here could be (and will 

be, next) applied to verify AsterixDB's parallel handling of queries that include this 

duplicate elimination clause in AQL. A framework to execute rigorous concurrency tests 

and multi-user tests to verify and validate the correctness of the new transaction 

management system in AsterixDB is greatly needed. Crash recovery is another 

important feature that needs to be more heavily tested to ensure that the system can 

recover from unexpected failures such as disk failures, node failures etc. Metadata 

caching also needs to be more fully tested by executing related DDL statements from 

different sessions. Datafeed testing is another area that needs more work, in the future, 

to cover the different types of data that AsterixDB can ingest continuously from different 

sources (e.g., Twitter). Last but not least, code coverage is another strategy that can 

and should be used to identify what parts of the code base have been executed, at a 

statement level and/or function level, and which part of the code is unexercised at 

present, by running tests against the code base. 

 
 



69 
 

References 
 
 
 
[1] DeWitt, D. and Gray, J. 1992. Parallel database systems: The future of high  

performance  database systems. Commun. ACM 35, 6 
 
 
[2] Graefe, G., 2011. Modern B-Tree Techniques. Foundations and Trends in  

Databases 
 
 
[3] Selinger, P. G. et al, 1979. Access path selection in a relational database  

management system. Proc. ACM SIGMOD Int'l. Conf. on Management of Data 
 
 
[4] Shapiro, L. D. 1986. Join processing in database systems with large main  

memories. ACM Trans. Database Systems 
 
 
[5] Hyracks: A Flexible and Extensible Foundation for Data-Intensive Computing 
 
 
[6] ASTERIX: towards a scalable, semi-structured data platform for evolving-world  

models 
 
 
[7] XQuery 1.0: An XML query language. http://www.w3.org/TR/xquery/ 
 
 
[8] Stonebraker, M., et al.: MapReduce and parallel DBMSs: friends or foes?  

Commun. ACM  
 
 
[9] Ramakrishnan, R., Gehrke, J.: Database Management Systems.  

WCB/McGraw-Hill, Boston  
 
 
[10] JSON. http://www.json.org/ 
 
 
[11] Jaql, http://www.jaql.org 
 
 
[12] Hyracks project on Google code. http://code.google.com/p/hyracks 
 
 
[13] Graefe, G.: Query evaluation techniques for large databases. ACM Computing  

Surv. 25(2), 73–170(1993) 
 
 
[14] Google protocol buffers. http://code.google.com/apis/protocolbuffers/ 
 
 
[15] Facebook Thrift. http://incubator.apache.org/thrift 



70 
 

 
 
[16] Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large  

clusters. In: OSDI, pp. 137–150 (2004) 
 
 
[17] Chaiken, R., Jenkins, B., Larson, P.-Å., Ramsey, B., Shakib, D., Weaver, S.,  

Zhou, J.: SCOPE: easy and efficient parallel processing of massive data sets.  
PVLDB 1(2), 1265–1276 (2008) 

 
 
[18] Carey, M.J., Muhanna, W.A.: The performance of multiversion concurrency  

control algorithms. ACM Trans. Comput. Syst. 4(4), 338–378 (1986) 
 
 
[19] Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks: a flexible  

and extensible foundation for data-intensive computing. In: ICDE (2011) 
 
 
[20] Apache Avro, http://hadoop.apache.org/avro/ 
 
 
[21] Apache Hadoop, http://hadoop.apache.org 
 
 
[22] Amer-Yahia, S., Botev, C., Buxton, S., Case, P., Doerre, J., Dyck, M., Holstege,  

M., Melton, J., Rys, M., Shanmugasundaram, J.: XQuery and XPath full text 1.0.  
W3C Candidate Recommendation, July 9 (2009) 

 
 
[23]  Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: a  

not-so-foreign language for data processing. In: SIGMOD Conference, pp.  
1099–1110 (2008) 

 
 
[24] Interpreting the Data: Parallel Analysis with Sawzall 

Rob Pike, Sean Dorward, Robert Griesemer, Sean Quinlan 
 
 
[25] Massive Stochastic Testing of SQL, Donald R Slutz, VLDB '98 
 
 
[26] Kristi Morton , Nicolas Bruno, FlexMin: a flexible tool for automatic bug isolation  

in DBMS software, Proceedings of the Fourth International Workshop on Testing  
Database Systems, p.1-6, June 13-13, 2011, Athens, Greece 

 
 
[27] Shadi Abdul Khalek , Sarfraz Khurshid, Automated SQL query generation for  

systematic testing of database engines, Proceedings of the IEEE/ACM 
international conference on Automated software engineering, September 20-24, 
2010, Antwerp, Belgium 

 
 
[28] Nicolas Bruno, Minimizing database repros using language grammars,  

Proceedings of the 13th International Conference on Extending Database 
Technology, March 22-26, 2010, Lausanne, Switzerland 



71 
 

 
 
[29] M. Muralikrishna, Using the optimizer to generate an effective regression suite:  

a first step, Proceedings of the Third International Workshop on Testing  
Database Systems, p.1-6, June 07-07, 2010, Indianapolis, Indiana 

 
 
[30] Hicham G. Elmongui , Vivek Narasayya , Ravishankar Ramamurthy, A  

framework for testing query transformation rules, Proceedings of the 35th  
SIGMOD international conference on Management of data, June 29-July 02,  
2009, Providence, Rhode Island, USA 

 
 
[31] Florian Haftmann , Donald Kossmann , Eric Lo, Parallel execution of test runs  

for database application systems, Proceedings of the 31st international  
conference on Very large data bases, August 30-September 02, 2005,  
Trondheim, Norway 

 
 
[32] Chaitanya Mishra , Nick Koudas , Calisto Zuzarte, Generating targeted queries  

for database testing, Proceedings of the 2008 ACM SIGMOD international  
conference on Management of data, June 09-12, 2008, Vancouver, Canada 

 
 
[33] Eric Lo , Carsten Binnig , Donald Kossmann , M. Tamer Özsu , Wing-Kai Hon, A  

framework for testing DBMS features, The VLDB Journal — The International  
Journal on Very Large Data Bases, v.19 n.2, p.203-230, April 2010 

 
 
[34] Testing the accuracy of query optimizers, Zhongxian Gu, Mohamed A. Soliman,  

Florian M. Waas; May 2012 DBTest '12: Proceedings of the Fifth International  
Workshop on Testing Database Systems 

 
 
[35] QAGen: generating query-aware test databases, Carsten Binnig, Donald  

Kossmann, Eric Lo, M. Tamer Özsu; June 2007, SIGMOD '07: Proceedings of  
the 2007 ACM SIGMOD International conference on Management of data 

 
 
[36] Parallel data generation for performance analysis of large, complex RDBMS 
 Tilmann Rabl, Meikel Poess June 2011  

DBTest '11: Proceedings of the Fourth International Workshop on Testing  
Database Systems 

 
 
[37] Constraint-based test database generation for SQL queries 

Claudio de la Riva, María José Suárez-Cabal, Javier Tuya 
May 2010; AST '10: Proceedings of the 5th Workshop on Automation of  
Software Test 

 
 
[38] Agrawal R, Carey MJ, Livny M (1987) Concurrency control performance  

modeling: alternatives and implications. ACM Trans Database Syst 12(4): 
609–654 

 
 



72 
 

[39] Carey MJ, Livny M (1988) Distributed concurrency control performance: a study  
of algorithms, distribution and replication. In: Proc of the 14th Intl. Conf. on Very  
Large Database Systems, Los Angeles, California 

 
 
[40] Carey MJ, Stonebraker M (1984) The performance of concurrency control  

algorithms for database management systems. In: Proc of the 10th Intl. Conf. on  
Very Large Database Systems, Singapore 

 
 
[41] Testing challenges for extending SQL server's query processor: a case study 

Torsten Grabs, Steve Herbert, Xin (Shin) Zhang  
June 2008 DBTest '08: Proceedings of the 1st international workshop on Testing  
database systems 

 
 
[42] Multiprocessor hash-based join algorithms 

David J. DeWitt, Robert H. Gerber 
VLDB '85 Proceedings of the 11th international conference on Very Large Data  
Bases 

 
 
[43] The Gamma Database Machine Project (1990) 
 David J. Dewitt , Shahram Ghandeharizadeh , Donovan Schneider , Allan  

Bricker , Hui-i Hsiao , Rick Rasmussen 
 
 
[44] DB2 Parallel Edition 
 C K Baru et al. 
 
 
[45] Testing the Accuracy of Query Optimizers 
 Zhongxian Gu  University of California Davis 

Mohamed A. Soliman Greenplum/EMC 
Florian M. Waas  Greenplum/EMC 

 DBTest '12 Proceedings of the Fifth International Workshop on Testing  
Database Systems 

 
 
[46] G. Graefe and K. Salem, editors. Proc. of the Fourth International Workshop on  

Testing Database Systems, DBTest 2011, Athens, Greece. ACM, 2011. 
 
 
[47] J. Gray et al. “Quickly Generating Billion-Record Synthetic Databases,”  

Proceedings of the ACM International Conference on Management of Data  
(SIGMOD), 1994. 

 
 
[48] A Parallel General-Purpose Synthetic Data Generator 

Joseph E. Hoag, Craig W. Thompson 
DBTest '11 Proceedings of the Fourth International Workshop on Testing  
Database Systems 

 
 
[49] Symbolic execution and program testing 

James C. King, IBM Thomas J. Watson Research Center, Yorktown Heights,  



73 
 

NY Communications of the ACM, Volume 19 Issue 7, July 1976  
 
 
[50] Lohr, S The age of big data The New York Times February 12, 2012 
 
 
[51] ASTERIX: scalable warehouse-style web data integration 

Proceedings of the Ninth International Workshop on Information Integration on  
the Web Sattam, A et al. 

 
 
[52] Big Data Platforms: What’s Next ?  
 Vinayak Borkar, Michael J Carey and Chen Li 
 
 
[53] Some experimental results on distributed join algorithms in a local network 

Hongjun Lu, Michael J. Carey  
VLDB '85 Proceedings of the 11th international conference on Very Large Data  
Bases 

 
 
[54] Database System Concepts, Sixth Edition 
 Abraham Silberschatz, Henry F. Korth,  S. Sudharshan 
 
 
[55] Implementing Sorting in Database Systems 

GOETZ GRAEFE, Microsoft 
ACM Computing Surveys, Volume 38 Issue 3, 2006  

 
 
[56] Nested Loops Revisited 
 David J. DeWitt, Jeffrey F. Naughton, Joseph Burger 

PDIS '93 Proceedings of the 2nd International Conference on Parallel and  
Distributed Information Systems  

 
 
[57] Revisiting Aggregation for Data Intensive Applications: A Performance Study. 
 Jian Wen, Vinayak Borkar, Michael Carey, Vassilis Tsotras 
 Note: This paper is under preparation  
 
[58] Avrilia Floratou, Nikhil Teletia, David J. DeWitt, Jignesh M. Patel, and Donghui Zhang. 2012.  
 Can the elephants handle the NoSQL onslaught?.  
 Proc. VLDB Endow. 5, 12 (August 2012) 
 
[59] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. 
 Benchmarking cloud serving systems with YCSB.  
 In Proceedings of the 1st ACM Symposium on Cloud computing (SoCC '10). 
 
[60] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,  
 Samuel Madden, and Michael Stonebraker. 2009.  
 A comparison of approaches to large-scale data analysis.  
 In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data 
 (SIGMOD '09). 


