
UNIVERSITY OF CALIFORNIA,
IRVINE

Implementation and Analysis of the GroupJoin Operator
in the ASTERIX BDMS

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Science

by

Manish Honnatti

Thesis Committee:
Professor Michael J. Carey, Chair

Professor Chen Li
Professor Harry Xu

2012

c© 2012 Manish Honnatti

DEDICATION

To the patriarchs and the teachers.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

ABSTRACT OF THE THESIS viii

1 Introduction 1

2 The GroupJoin Operator 3
2.1 Basics . 3
2.2 Equivalence Conditions . 8

2.2.1 Condition 1: Maintaining Grouping Granularity w.r.t. Join
and Group Attributes . 8

2.2.2 Condition 2: Maintaining Grouping Granularity w.r.t. Join
Cardinality . 11

2.2.3 Condition 3: Aggregation after Group creation 12
2.2.4 Notes on Equivalence . 13

2.3 GroupJoin Algorithm . 14

3 ASTERIX Implementation 19
3.1 About ASTERIX . 19

3.1.1 Hyracks Runtime Layer . 20
3.1.2 Algebricks . 21
3.1.3 ASTERIX . 21

3.2 GroupJoin in the ASTERIX Stack 22
3.2.1 GroupJoin in Hyracks . 23
3.2.2 GroupJoin in Algebricks . 26
3.2.3 GroupJoin in ASTERIX . 28
3.2.4 Parallel Execution . 28

4 Performance Evaluation 30
4.1 Infrastructure . 30
4.2 TPC-H Datasets & Queries . 31

iii

4.3 Results . 33
4.3.1 Optimized Query Plans . 33
4.3.2 Run times . 36
4.3.3 Conclusion . 37

5 Conclusion 38

Bibliography 39

Appendices 41
A Aggregate Decomposition . 41

iv

LIST OF FIGURES

Page

2.1 TPC-H Query 13 . 5
2.2 Join+Group Plan for TPC-H Q13 . 6
2.3 GroupJoin Plan for TPC-H Q13 . 7
2.4 Illustrative relations L & R; Sample Query 1; Result 9
2.5 Query plans with Join+Group and GroupJoin for Sample Query 1 . . 9
2.6 Illustrative relations L & R; Sample Query 2; Result 10
2.7 Query plans with Join+Group and GroupJoin for Sample Query 2 . . 11
2.8 Illustrative relations L & R; Sample Query 3; Result 12
2.9 Illustrative relations L & R; Sample Query 4; Result 14
2.10 Build phase . 14
2.11 Probe phase with Aggregate state initialization 15
2.12 Probe phase with only Aggregate state update 15
2.13 Output phase . 16
2.14 Algorithm for GroupJoin operator . 17

3.1 The ASTERIX Software Stack . 20
3.2 The ASTERIX Software Stack with GroupJoin Implementation specifics 23
3.3 Hybrid Hash GroupJoin Build Phase 24
3.4 Hybrid Hash GroupJoin Probe Phase 25
3.5 Hybrid Hash GroupJoin Output Phase 26

4.1 TPC-H Query 13 in SQL . 32
4.2 TPC-H Query 13 in AQL . 32
4.3 Complete ASTERIX plan for Query 13 with Join+Group 34
4.4 Complete ASTERIX plan for Query 13 with GroupJoin 35
4.5 Improvement Factor vs. TPC-H Dataset Scale 37

v

LIST OF TABLES

Page

2.1 Notation used in this thesis . 4

4.1 Customer and Orders tables’ schema 31
4.2 Query 13 execution times for different TPC-H dataset scales 36

vi

ACKNOWLEDGMENTS

I would like to thank Professor Carey, first, for giving me the opportunity to work
with the ASTERIX ecosystem. Second, and infinitely more important, I would like to
thank him for his support, guidance and encouragement, which has some times gone
beyond the realm of academia. I will always be grateful for the role he has played in
my life at UC Irvine.

I must thank Professors Li and Mehrotra, for their guidance in the classroom and
outside it. Much have I learned through and from them.

I would like to thank Professor Xu for agreeing to be on my committee at the last
minute.

I would also like to thank the members of the ASTERIX team for letting me tinker
and mess around with the code and for helping me in return. I would specifically like
to mention Vinayak Borkar, Alexander Behm and Yingyi Bu for their unending help
and support.

The initial exploration of the idea in this thesis was done in collaboration with my
good friend and frequent project partner, Manik Sikka. I gratefully acknowledge his
contribution in getting the proof of concept in decent shape.

To all my family, friends and well wishers, who are no doubt sighing in relief as this
thesis work draws to its conclusion - my most sincere thanks for making this possible.

Semper gratiam habeo.

vii

ABSTRACT OF THE THESIS

Implementation and Analysis of the GroupJoin Operator
in the ASTERIX BDMS

By

Manish Honnatti

Master of Science in Computer Science

University of California, Irvine, 2012

Professor Michael J. Carey, Chair

In database management systems with declarative query languages, Joins are arguably

the most essential operators. The choice of Join algorithm often times influences costs

(both I/O and time) by several orders of magnitude. In addition to Joins, Grouping

operators are frequently used for generating summarized views and interpretations

of data. Given commonly used data models and schemas, Grouping operators often

have one or more Join operators preceding them in query plans for analytical queries.

The GroupJoin operator has recently been proposed as a combination of the Join

and Grouping operators and their associated algorithms. The goal of introducing

GroupJoin is to eliminate a significant portion of the costs incurred when using Join

and Grouping operators sequentially. This thesis investigates implementation details

and usage scenarios with respect to GroupJoin in the context of the ASTERIX BDMS.

Further, a comparative performance evaluation is carried out and the results are

examined. In conditions of equivalence with the standard Join and Group queries, the

experiments reported here for the GroupJoin operator show a factor of improvement

in performance of up to 1.23.

viii

Chapter 1

Introduction

Most data models and schemas used in the real world have data normalized, and

thus spread over multiple tables, leading to the recurrent use of Joins in meaningful

queries. The Grouping operator is also frequently used, especially in systems such

as analytics engines. Though some specialized systems do maintain aggregate views

of data at frequent intervals, in general, Grouping queries often contain one or more

Join operator(s).

In queries involving both Joins and Grouping, a significant improvement in costs can

be achieved by the use of a merged operator in which both the Join and Grouping

(and related aggregation) are done together [1, 2]. This operator, called a GroupJoin,

reduces costs due to two important improvements:

1. The full result of the Join operator need not be generated and, crucially, need

not be written/read from the disk.

2. A typical hash-based Join followed by Grouping involves the creation of two hash

tables – one for each operator. The GroupJoin, with its combined operation,

1

requires only one hash table, reducing the query’s memory requirement.

This thesis reports on an effort to implement GroupJoin as a new operator in the AS-

TERIX BDMS [3]. In this effort, hash-based operators were investigated, i.e. Hash

GroupJoin operators were created and compared with the use of separate Hash Join

and Hash Grouping operators. As discussed later on, the GroupJoin operator’s ad-

vantage is significant in the case of large ad-hoc equi-joins, for which the Hash Join

is generally favored.

A brief note on the history of the GroupJoin is in order. von Bultzingsloewen [1]

seems to be the inventor of the operator with the creation of the outer aggrega-

tion. Several others have called the operator by different names until the latest, i.e.

GroupJoin, gained acceptance [2]. The operator has thus existed for at least two

decades, though traditional RDMSs don’t seem to have incorporated it as of yet.

The rest of this thesis is structured as follows. In Section 2, a general introduction to

the GroupJoin operator and the notation used are made. Equivalence conditions be-

tween GroupJoin and Join+Group are introduced. A detailed hash-based algorithm

for the GroupJoin is also described. In Section 3, key implementation details with

respect to ASTERIX are discussed. Section 4 is devoted to an experimental perfor-

mance analysis of GroupJoin – this includes descriptions of the infrastructure setup

and the analysis methodology, and also the results along with their interpretation.

2

Chapter 2

The GroupJoin Operator

In this Chapter we look at the GroupJoin operator in detail. Section 2.1 consists

of a description of the notation used in this thesis and also a broad look at the use

and value of the GroupJoin operator. In Section 2.2 we lay out the conditions under

which the GroupJoin operator is considered equivalent to a sequence of a Join and

a Grouping. These conditions must be met before the GroupJoin can be introduced

into any query plan. A general algorithm for the GroupJoin operator is discussed in

Section 2.3.

2.1 Basics

We begin by introducing the notation to be used in the rest of this thesis. The

notation used here is essentially based on the standard relational algebra notation

used in general DB theory [4, 5]. Table 2.1 lists the notation used.

3

Symbol Description

σp Selection with predicate p

πa1,a2,...,ak Projection of attributes a1, a2, ..., ak

onj Inner Join over join predicate j

onj Left Outer Join over join predicate j

γg1,g2,...,gm;A1,A2,...An Grouping over attributes g1, g2, ..., gm

and aggregation with functions A1, A2, ..., An

τl Sort by attribute l

Table 2.1: Notation used in this thesis

Further, the following symbol for GroupJoin is also introduced:

on¬g1,g2,...,gm;A1,A2,...An

Here, g1, g2, ..., gm are the Grouping attributes

and, A1, A2, ..., An are the Aggregation functions applied on a set of attributes.

To show the use and value of the GroupJoin operator, consider Query 13 from the

TPC-H [6] benchmark query set shown in Figure 2.1 (Query 13 in ASTERIX Query

Language, i.e., AQL, can be found in Section 4.2). This query computes the distri-

bution of customers by the number of orders they have placed, i.e., a count-of-counts

query.

4

select
c_count, count(∗) as custdist

from
(

select
c_custkey, count(o_orderkey)

from
customer left outer join orders on

c_custkey = o_custkey
and o_comment not like ’%special%requests%’

group by
c_custkey

) as c_orders (c_custkey, c_count)
group by

c_count
order by

custdist desc, c_count desc ;

Figure 2.1: TPC-H Query 13

In the absence of the GroupJoin, an optimized query plan generated by a typical

RDBMS engine is shown in Figure 2.2.

5

Customer

Orders

γc_custkey; count(o_orderkey) → c_count

γc_count; count(*) → custdist

πc_custkey, o_orderkey

σo_comment !like '%special%requests%'

πc_count, custdist

c_custkey=o_custkey

τcustdist, c_count

Figure 2.2: Join+Group Plan for TPC-H Q13

In this plan, the result of the Left Outer Join, on, is fed to the first Grouping operator,

γ, after Projecting the required fields. With large data sets, it is highly likely that

some of the join results will be written to disk. When the GroupJoin is introduced in

this query, it would take the place of the Left Outer Join and the Grouping operator.

In this example, i.e., Query 13, the GroupJoin can be written in terms of the Left

6

Outer Join and the subsequent Grouping as:

customer on¬c custkey;count(o orderkey)→c count orders =

γc custkey;count(o orderkey)→c count(πc custkey,o orderkey(customer onc custkey=o custkey orders))

This will yield the query plan as shown in Figure 2.3.

Customer

Orders

σo_comment !like '%special%requests%'

γc_count; count(*) → custdist

c_custkey; count(o_orderkey) → c_count

πc_count, custdist

τcustdist, c_count

Figure 2.3: GroupJoin Plan for TPC-H Q13

7

2.2 Equivalence Conditions

With the GroupJoin operator having to replace a sequence of Join and Group opera-

tors, it is necessary to identify the equivalence conditions for such a replacement. In

particular, it is to be noted that not every sequence of Join and Group operators can

be replaced by the Groupjoin operator.

The conditions that must be satisfied to ensure the GroupJoin operator produces

the same results as the operators it replaces are discussed in the rest of this section.

For incorporation into the ASTERIX query optimizer, these conditions have been

adapted from the equivalence rules presented in [2]. Generally speaking, the equiv-

alence conditions ensure that the GroupJoin is able to maintain the same Grouping

granularity as that of the operators it is going to replace. We will also look at the case

when the GroupJoin’s granularity is smaller than the Join+Grouping in the query

plan, and how the GroupJoin can still be viable for the plan in such a case.

2.2.1 Condition 1: Maintaining Grouping Granularity w.r.t.

Join and Group Attributes

The GroupJoin operator, being an amalgam of the Join and Grouping operators, both

joins and groups its input tuples at the same time. For this to happen, the simplest

criterion is to have both the join and the grouping predicates be over the

same set of attributes. To illustrate, consider the relations L and R, and a simple

query shown in Figure 2.4. The result of Sample Query 1 is also shown in Figure 2.4.

The two alternative plans with Join+Group and GroupJoin are shown in Figure

2.5. For this query, having an Inner Join operator with predicate L.L2=R.R1 and

8

L R
L1 L2 R1 R2
1 1 1 1
1 2 1 3
2 3 2 5
2 4 2 7

select L.L2, sum(R.R2) as sumcol

from L,R

where L.L2=R.R1

group by L.L2

Result
L2 sumcol
1 4
2 12

Figure 2.4: Illustrative relations L & R; Sample Query 1; Result

a Grouping operator over L.L2, the result has just 2 groups since two of the fields

in L.L2 (3, 4) have no join match from R.R1. The granularity is maintained by

GroupJoin insertion because the grouping and join attributes are the same.

L R

L2; sum(R2) → sumcol

πL2, sumcol

γL2; sum(R2) → sumcol

πL2, R2

L2=R1

L R

πL2, sumcol

Figure 2.5: Query plans with Join+Group and GroupJoin for Sample Query 1

NOTE: The effects of a Primary Key in the Join/Grouping attributes are discussed

in Section 2.2.4 as it also concerns the equivalence condition discussed in the next

sub-section.

In case the above attribute match condition is not met, and the granularity of group-

ing over the Join attributes is finer than the granularity of grouping over the Group

9

attributes, the GroupJoin operator can still be introduced. However, an additional

Grouping operator must also then be introduced (or modified, if one already exists)

after the GroupJoin, such that it produces groups of the same granularity as in the

original plan. Also, the Aggregate function(s) must be decomposable for this to be

possible [7]. For example, consider a Grouping operator, γ, with a count aggregate

function being split into two Grouping operators, γ1 and γ2, such that γ1 feeds γ2 in

the plan. The aggregate function in γ1 continues to be count. However, the aggregate

function in γ2 needs to be sum to ensure that the same results are obtained. Decom-

positions of various aggregate functions are presented in Appendix A.

To illustrate this type of equivalence concretely, consider again the relations L and R

and a new query (Sample Query 2) shown in Figure 2.6.

L R
L1 L2 R1 R2
1 1 1 1
1 2 1 3
2 3 2 5
2 4 2 7

select L.L1, sum(R.R2) as sumcol

from L,R

where L.L2=R.R1

group by L.L1

Result
L1 sumcol
1 16

Figure 2.6: Illustrative relations L & R; Sample Query 2; Result

For Sample Query 2, the Join predicate is L.L2=R.R1 but Grouping is over L.L1.

Replacing the Join and Grouping operators with only a GroupJoin in this query

would produce groups based only on L.L2. Thus, an additional Grouping operator

also needs to be introduced after the GroupJoin. The two alternative plans for Sam-

ple Query 2 are shown in Figure 2.7. Attention is drawn to the Grouping operator

γL1;sum(tmpcol)→sumcol in the GroupJoin plan in the right half of Figure 2.7. This Group-

ing operator ensures that the level of grouping, even with the GroupJoin operator in

the plan, is maintained at L.L1.

10

L R

L2; sum(R2) → tmpcol

πL1, sumcol

γL1; sum(R2) → sumcol

πL1, R2

L2=R1

L R

πL1, sumcol

γL1; sum(tmpcol) → sumcol

Figure 2.7: Query plans with Join+Group and GroupJoin for Sample Query 2

2.2.2 Condition 2: Maintaining Grouping Granularity w.r.t.

Join Cardinality

The Cardinality of the Join needs to be one-to-many or one-to-one, i.e., each tuple

from the right relation, R, must join with only one tuple in the left relation, L. This

is necessary because the GroupJoin, like a traditional hash join, creates one group for

each tuple in L. Thus, for a many-to-one or many-to-many Join a tuple from R joins

with more than one tuple in L, i.e., it would go into more than one group. Using the

GroupJoin in such a query would not produce the same number of groups as when

the Join and Group are used.

To illustrate this, consider relations L and R, and Sample Query 3 shown in Figure

2.8.

11

L R
L1 L2 R1 R2
1 1 1 1
1 2 1 3
2 3 2 5
2 4 2 7

select L.L1, sum(R.R2) as sumcol

from L,R

where L.L1=R.R1

group by L.L1

Join+Group Result
L1 sumcol
1 8
2 24

GroupJoin Result
L1 sumcol
1 4
1 4
2 12
2 12

Figure 2.8: Illustrative relations L & R; Sample Query 3; Result

It can be seen that the GroupJoin produces more groups and, thus, cannot be intro-

duced into the plan, as this rewrite would yield incorrect results.

The presence of the unique constraint on any of the attributes from the left relation

used in the Join and the Grouping predicates would be an example of satisying this

condition. The case of the unique constraint being enforced as part of a Primary Key

is discussed in Section 2.2.4.

2.2.3 Condition 3: Aggregation after Group creation

The aggregate attributes, i.e. attributes to which Aggregation functions in γ are

applied, must be in the right relation, R. This condition is necessary as the functions

are applied after the groups are created and as such, aggregating over attributes from

the left relation, L is not possible.

12

2.2.4 Notes on Equivalence

Having laid out the equivalence conditions, the following are some general notes on

introducing GroupJoin into a query plan:

1. Effect of Primary Key in Join/Group attributes : The presence of a Primary

Key(PK) from the left input relation in the Join/Group attributes implies that

Condition 2 described in Section 2.2.2 will be met. The PK enforces the unique

constraint which implies either one-to-many or one-to-one join cardinality.

Further, having a PK also ensures that, regardless of the other grouping at-

tributes, the grouping granularity will be maintained with GroupJoin intro-

duction as long as the Join attributes are a subset of the Grouping attributes

(including the PK). This is because a PK is the finest possible granularity that

can achieved in any relation, i.e., at each row. To illustrate this, consider these

Grouping attributes: {g1, g2, g3, PK, g4, g5}. Attributes g1, g2, g3, g4 and g5 have

absolutely no effect on the Grouping granularity as their granularity cannot be

finer than that of the PK. Thus, if the Join attributes are {g1, g2, g3, PK} the

GroupJoin can be introduced in the query.

2. Outer Join Nature: If the Join in question is of the Left Outer type, the

GroupJoin can be introduced, itself also being of the Left Outer type. Right

Outer Joins disqualify the GroupJoin as the formation of NULL groups would

then be possible. Figure 2.9 shows an example with a Left Outer Join.

13

L R
L1 L2 R1 R2
1 1 1 1
1 2 1 3
2 3 2 5
2 4 2 7

select L.L2, sum(R.R2) as sumcol

from L Left Outer Join R

on L.L2=R.R1

group by L.L2

Result
L2 sumcol
1 4
2 12
3 null
4 null

Figure 2.9: Illustrative relations L & R; Sample Query 4; Result

2.3 GroupJoin Algorithm

The Hash-based GroupJoin algorithm studied in this thesis consists of three major

phases. We begin by describing its behavior when the grouped result fits in memory.

For Sample Query 4 shown in Figure 2.9, the algorithm would work as follows.

Phase 1, Build: In this first phase of GroupJoin, all tuples from L are read page

by page from disk, hashed on L.L2 and inserted into an in-memory hash-table.

This is shown in Figure 2.10. (At this point each tuple’s Aggregate state is

uninitialized.)

.

.

.

.

.

.

.

.

.

L.L2
Agg

state

. . .

. . .

Relation L
on disk

Memory

Hash table H

Input
pages

Hash
function

h

Figure 2.10: Build phase

14

Phase 2, Probe: In the second phase, each tuple from R is hashed on R.R1 and

probes the hash-table generated in the first phase. If a match is found, i.e. join

predicate L.L2=R.R1 is satisfied, then the corresponding aggregate state, s1 is

initialized and updated based on R.R2. This is shown in Figure 2.11.

.

.

.

.

.

.

.

.

.

L.L2 Agg state

s1 = R.R2

. . .

. . .

Relation R
on disk

Memory

Hash table H

Input
pages

Hash
function

h

Figure 2.11: Probe phase with Aggregate state initialization

When a tuple from R joins with a tuple from L that has previously had an

aggregate state initialized, the aggregate state is simply updated with R.R2.

This is shown in Figure 2.12. If no match is found, the tuple from R is discarded.

.

.

.

.

.

.

.

.

.

L.L2 Agg state

s1 = s1+
R.R2

. . .

. . .

Relation R
on disk

Memory

Hash table H

Input
pages

Hash
function

h

Figure 2.12: Probe phase with only Aggregate state update

15

Phase 3, Output: In the third and last phase, final aggregate processing, if needed,

is performed (e.g. for average, where the sum is divided by the count). Null-

processing as defined in the engine is also done. For an Outer Join, since there

can be tuples in L that do not have any match from R, they need to be present

in the GroupJoin output with an aggregate value of NULL. Instead, if the query

contained an Inner Join, the unmatched tuples in L will be discarded. Figure

2.13 shows the output phase with the example of Sample Query 4.

L.L2 Agg state

s1

s2

. . .

. . .

sn

Memory

Hash table H

Output
buffer

Null provider

L.L2 + s1

L.L2 + NULL

Figure 2.13: Output phase

16

The general GroupJoin algorithm can be described as shown in Figure 2.14. L and

R are the left and right input relations respectively. jL is the set of attributes from

L found in join predicates while jR is the set of join attributes from R. g is the set of

Grouping attributes and a is the set of Aggregate attributes (from R). s(t) represents

the Aggregate state for a tuple t.

1 . for each tuple t in L:
2 . insert into hash-table, H:
3 . h(t .jL),
4 . t .g
5 . end for
6 . for each tuple t in R:
7 . probe h(t .jR) in H
8 . i f h(t .jR) exists in H:
9 . i f not s(t) .isInitialized:
10 . s(t) .initialize
11 . end if
12 . s(t) .update(t .a)
13 . end if
14 . end for
15 . for each tuple t in H:
16 . i f s(t) != NULL or (s(t) == NULL and Left Outer Join):
17 . s(t) .finalize
18 . output:
19 . t ,
20 . s(t)
21 . end if
22 . end for

Figure 2.14: Algorithm for GroupJoin operator

In describing the GroupJoin algorithm so far we have focused on the case when the

grouped result fits in memory. For input data sets which cannot be fit in memory

a Hybrid Hash GroupJoin is well suited. Hybrid Hash GroupJoin works similar to

a Hybrid Hash Join, i.e., both the input datasets are partitioned into B+1 blocks

and GroupJoin is performed on each pair of blocks. While partitioning the left input

relation the first block is retained in memory in the form a hash table. While parti-

tioning the right input relation, tuples that would go into its first block are directly

probed in the hash table and a probe phase like in the in-memory operator is exe-

17

cuted. When all the tuples from the first block have been processed, the output phase

from the in-memory operator is executed. This technique is applied to all the block

pairs in sequence. A detailed discussion of the Hybrid Hash GroupJoin operator, as

implemented in ASTERIX, can be found in Section 3.2.1.

18

Chapter 3

ASTERIX Implementation

This Chapter deals with the implementation of GroupJoin in ASTERIX, starting

with an overview of the ASTERIX stack. We will then discuss the implementation

details for GroupJoin with respect to each layer of the stack.

3.1 About ASTERIX

The ASTERIX project at UC Irvine began in early 2009 with the objective of creat-

ing a new parallel, semistructured information management system. The ASTERIX

software stack consists of three distinct and reusable architectural layers - ASTERIX,

Algebricks and Hyracks. These layers are summarized in Figure 3.1. This section

gives a brief overview of each layer in the ASTERIX stack [8].

19

Asterix

Data

Mgmt.

System
Other HLL

Compilers

Algebricks

Algebra Layer

Hadoop M/R

Compatibility

Hyracks Data-Parallel Platform

AsterixQL

HiveQL, Pigl, XQuery,…

Hadoop

M/R Job

Hyracks

Job

Figure 3.1: The ASTERIX Software Stack

3.1.1 Hyracks Runtime Layer

The Hyracks layer of ASTERIX [9] is the bottom-most layer of the stack. Hyracks

is the runtime layer whose job is to accept and manage data-parallel computations

requested either by direct end-users of Hyracks or by the layers above it in the AS-

TERIX software stack.

Jobs are submitted to Hyracks in the form of directed acyclic graphs that are made

up of Operators and Connectors. Operators are responsible for consuming partitions

of their inputs and producing output partitions. Connectors perform redistribution

of data between different partitions of the same logical dataset. Hyracks includes a

library of Operators and Connectors, with various Hash-Join and Grouping operators

being among them.

20

3.1.2 Algebricks

Algebricks is a model-agnostic, algebraic layer for parallel query processing and opti-

mization [10]. Having its origin as the center of the AQL compiler and optimizer of

the ASTERIX system, Algebricks was eventually reborn as a public layer in its own

right. Rewrite rules that apply commonly across data models, including standard

rewrites from relational algebra and various rewrites for partitioning and parallelism,

live at this level of the stack.

To be useful for implementing arbitrary languages, Algebricks has been carefully

designed to be agnostic of the data model of the data that it processes. Logically,

operators operate on collections of tuples containing data values. The data values

carried inside a tuple are not specified by the Algebricks toolkit; the language imple-

mentor is free to define any value types as abstract data types.

3.1.3 ASTERIX

The topmost layer of the ASTERIX software stack is the ASTERIX parallel informa-

tion management system [11]. Data in ASTERIX is based on a semistructured data

model. As a result, ASTERIX is well-suited to handling use cases ranging from rigid,

relation-like data collections, whose types are well understood and invariant, to flex-

ible and potentially more complex data where little is known ahead of time and the

instances in data collections are highly variant and self-describing. The ASTERIX

data model (ADM) is based on borrowing the data concepts from JSON [12] and

adding additional primitive types as well as type constructors borrowed from object

databases [13, 14].

21

ASTERIX queries are written in AQL (the ASTERIX Query Language), a declara-

tive query language designed by taking the essence of XQuery [15], most importantly

its FLWOR expression constructs and its composability, and then simplifying and

adapting it to query the types and modeling constructs of ADM.

ASTERIX compiles an AQL query into an Algebricks program. This program is

then optimized via algebraic rewrite rules that reorder the Algebricks operators as

well as introducing partitioned parallelism for scalable execution, after which code

generation translates the resulting physical query plan into a corresponding Hyracks

job. The resulting Hyracks job uses the operators and connectors of Hyracks to

compute the desired query result.

3.2 GroupJoin in the ASTERIX Stack

The GroupJoin operator in ASTERIX is an internal operator that the optimizer

can introduce (where applicable) to improve performance. The implementation of

Hash based GroupJoin operators was based on existing Hash Join and Hash Group

operators. Implementation specifics as they apply to each layer of the ASTERIX

stack are discussed in the rest of this section. An overview is shown in Figure 3.2

22

Asterix

Data

Mgmt.

System
Other HLL

Compilers

Algebricks

Algebra Layer

Hadoop M/R

Compatibility

Hyracks Data-Parallel Platform

AsterixQL

HiveQL, Pigl, XQuery,…

Hadoop

M/R Job

Hyracks

Job

In-Memory and Hybrid

Hash GroupJoin operators

Rewrite rules for

GroupJoin introduction

GroupJoin

Implementation

Figure 3.2: The ASTERIX Software Stack with GroupJoin Implementation specifics

3.2.1 GroupJoin in Hyracks

In the Hyracks runtime layer, two GroupJoin operators were implemented - an exclu-

sive In-Memory Hash GroupJoin operator and a Hyrbrid Hash GroupJoin operator.

The In-Memory operator is an implementation of the GroupJoin algorithm described

in Section 2.3.

The Hybrid Hash GroupJoin operator runs very similarly to the Hybrid Hash Join

algorithm found in [16]. First, in the build phase, the left input relation, say L, is

partitioned into B+1 partitions by the use of a hash function. Tuples that go into

the first partition L0, are inserted into an in-memory hash table. Other tuples are

written to their corresponding output buffer. Each buffer has a file on disk called a

bucket file. Whenever an output buffer becomes full, it is flushed to its corresponding

bucket file. A feature specific to the GroupJoin implementation is that along with

each tuple’s entry in the in-memory hash table an extra state pointer is also inserted.

23

This pointer is intended to point to the location of the aggregate state of that partic-

ular entry in a state buffer. Initially it is set to -1, as the aggregate state needs to be

initialized only on the first join match in the probe phase. The build phase is shown

in Figure 3.3.

L0

(kept in memory)

.

.

.

.

.

.

.

.

.

L.L2
State

pointer

-1

-1

-1

. . .

. . .

-1

Relation L
on disk

Memory

Hash table H0

Input
pages

Partitioning Hash
Function hp

.

.

.

.

.

.

.

.

.

. . .

.

.

.

.

.

.
. . .

Hash
Function h

L1 . . .

L1

L2

LB

Bucket
files

L2 L3 LB-1 LB

Figure 3.3: Hybrid Hash GroupJoin Build Phase

In the next phase, i.e. the probe phase, tuples from the right input relation, say R, are

hashed with the same function used in the build phase. Tuples that go into partitions

other than the first are written to the corresponding output buffers, much like in

the build phase. For each tuple that goes into the first partition R0, the hash table

held in memory is probed. If a match is found, the corresponding aggregate state is

retrieved and updated using the relevant attributes from the tuple being matched. If

there is no aggregate state initialized, i.e. the state pointer is -1, an aggregate state is

allocated in the state buffer and initialized with the attribute(s) from the tuple being

matched. The pointer is also updated to point to the newly allocated state in the

24

state buffer in this case. The probe phase is illustrated in Figure 3.4.

R0

(probes H0)

.

.

.

.

.

.

.

.

.

L.L2
State

pointer

s1

s2

. . .

. . .

sn

Relation R
on disk

Memory

Hash table H0

Input
pages

Partitioning Hash
Function hp

.

.

.

.

.

.

.

.

.

. . .

.

.

.

.

.

.
. . .

Hash
Function h

R1 . . .

R1

R2

RB

Bucket
files

R2 R3 RB-1 RB

...
State Buffer

s1 s2 sn

Figure 3.4: Hybrid Hash GroupJoin Probe Phase

Another difference with the Hybrid Hash Join is that tuple pairs are not immedi-

ately output when a hash table match is found in the probe phase. Since we are

Grouping (and aggregating) while we are Joining, the Hybrid Hash GroupJoin out-

puts results only after all of the tuples belonging to R0 have been processed. This

necessitates a final output phase for the GroupJoin operator.

In the output phase, all the entries in the hash table are enumerated. For each

entry, the tuple from partition L0 is appended with the aggregate value from its cor-

responding aggregate state and then emitted. The outcome handling for dangling

tuples, i.e., tuples that have had no join match, is dependent on the left outer nature

specified for thr GroupJoin. For a left outer GroupJoin, the dangling tuple from L0

25

is appended with null(s) as defined by the user or the AQL query from upper layers.

For an inner GroupJoin, such tuples are simply discarded. The output phase for a

left outer GroupJoin is shown in Figure 3.5.

L.L2
State

pointer

s1

-1

s2

. . .

. . .

sn

Memory

Hash table H0

Output
buffer

Null provider

L.L2 + aggr at s1

L.L2 + NULL

...
State
Buffer

s1 s2 sn

Figure 3.5: Hybrid Hash GroupJoin Output Phase

The build, probe and output phases described above are then applied to each of the

remaining B partition pairs in sequence.

3.2.2 GroupJoin in Algebricks

To have Algebricks be able to insert GroupJoin in query plans where applicable, two

different sets of implementation tasks were carried out. The first task was the creation

of a logical GroupJoin operator and two physical GroupJoin operators - one each for

the In-Memory and Hybrid Hash operator flavors. The second task was the imple-

26

mentation of the algebraic rewrite rules to determine the suitability of the GroupJoin

operator for the query being optimized. These rewrite rules were an Algebricks-

specific implementation of the equivalence conditions described in Section 2.2. It is

worth mentioning that, though the optimizer in the ASTERIX project is rule-based,

the GroupJoin is generally “safe” to insert, as its performance is at worst the same as

that of the Join and Grouping operators that it replaces. (This worst case scenario

can occur when the join cardinality is one-to-one and the Grouping attributes are the

same as the Join attributes).

As part of the GroupJoin rewrite rule, the following checks are made sequentially,

and at any check failure, the GroupJoin operator is deemed unsuitable for introduc-

tion into the query plan:

1. The most basic check is to match the pattern of a Join operator followed by

Group operator.

2. Check if the Join can be a Hash-based Join, i.e. if it is an equi-join with scalar

attributes in the join predicate. This check is necessary since we are dealing

with only the Hash GroupJoin operator.

3. Check if the equivalence conditions as outlined in Sections 2.2.1 and 2.2.2 are

satisfied, i.e. if the GroupJoin can be introduced without changing the granular-

ity of the grouping. The simplest way to satisfy these conditions is the presence

of a Primary Key in the Group and Join attributes. It should be mentioned that

Functional Dependencies of attributes are also accounted for in these checks.

For example, while Joining on attribute j, and Grouping on attribute g, the

condition in 2.2.1 is deemed to have been met if j has a Functional Dependency

on g.

27

4. Check if the condition outlined in Section 2.2.3 is satisfied, i.e. if the attributes

used in the Aggregate functions come only from the right input relation.

5. A further “safety” check on the Aggregate functions is that they should be

compressive. The presence of a non-compressive Aggregate function, like listify,

could affect the performance of the GroupJoin adversely. This is because the

aggregate state for these types of aggregations tends to occupy increasing space,

and a growing hash-table in the GroupJoin would likely become prone to disk

flushes and quickly negate any advantages of using the GroupJoin.

3.2.3 GroupJoin in ASTERIX

Since the GroupJoin is an internal operator, there were no significant implemenation

necessities in the topmost ASTERIX layer. A minor feature that was implemented

was the provision of a query hint (also known as optimization hint in some RDBMS

products) in AQL, allowing the user to disable the GroupJoin. This is useful when

only a regular Join operator is desired to be allowed in the query being hinted about.

3.2.4 Parallel Execution

Parallelization of the GroupJoin is quite similiar to the parallelization of hash-based

Join operators. ASTERIX being a shared-nothing BDMS, parallelization involves

horizontally partitioning the input datasets on the Grouping attributes using a hash

function and redistributing the partitions over the nodes available in the network.

(Recall that the Join attributes are a subset of the Grouping attributes, so no addi-

tional partitioning is required.) Then, each node locally runs either the In-Memory

GroupJoin operator or the Hybrid Hash GroupJoin operator over its input partitions.

28

As such, the partitioning mechanism is not part of the GroupJoin operator.

The results are then merged and/or redistributed over the network as required in the

query plan.

29

Chapter 4

Performance Evaluation

The experimental setup and the results of some initial performance comparisons of

query execution times with and without GroupJoin are reported in this chapter. First,

the hardware setup and the datasets used for the experiments are described. Next,

the results of the experiments are laid out and performance improvements due to the

GroupJoin are calculated. Finally, the results are investigated.

4.1 Infrastructure

For the experiments, a cluster of 4 IBM machines each with a 4-core Xeon 2.27 GHz

CPU, 12GB of RAM, and 4 locally attached 10K rpm SATA drives was utilized. An

additional master node used was a separate machine which acted as a coordinator

only and did not participate in query execution. At each node, 10GB of the available

12GB memory was allocated for the ASTERIX software stack. The data sets were

pre-loaded into B-tree storage. Each of the 4 available disks was utilized as a data

store.

30

4.2 TPC-H Datasets & Queries

For the experiments we have chosen to focus on TPC-H’s Query 13, since its Grouping

attribute is the same as its Join attribute and it is thus a GroupJoin candidate. The

goal of the experiments was to compare the query execution times with and without

GroupJoin and gauge the performance benefits of the operator.

Query 13 involves the customer and orders tables. The schema of the customer and

orders tables is shown in Table 4.1.

CUSTOMER
C CUSTKEY INTEGER NOT NULL

C NAME VARCHAR(25) NOT NULL
C ADDRESS VARCHAR(40) NOT NULL

C NATIONKEY INTEGER NOT NULL
C PHONE CHAR(15) NOT NULL

C ACCTBAL DECIMAL(15,2) NOT NULL
C MKTSEGMENT CHAR(10) NOT NULL

C COMMENT VARCHAR(117) NOT NULL

ORDERS
O ORDERKEY INTEGER NOT NULL
O CUSTKEY INTEGER NOT NULL

O ORDERSTATUS CHAR(1) NOT NULL
O TOTALPRICE DECIMAL(15,2) NOT NULL
O ORDERDATE DATE NOT NULL

O ORDERPRIORITY CHAR(15) NOT NULL
O CLERK CHAR(15) NOT NULL

O SHIPPRIORITY INTEGER NOT NULL
O COMMENT VARCHAR(79) NOT NULL

Table 4.1: Customer and Orders tables’ schema

The result of Query 13 is the distribution of count of customers by the number of

orders they have made. The SQL for Query 13 (earlier shown in section 2.1) is shown

in Figure 4.1. The corresponding AQL for Query 13 is shown in Figure 4.2.

31

select
c_count, count(∗) as custdist

from
(

select
c_custkey, count(o_orderkey)

from
customer left outer join orders on

c_custkey = o_custkey
and o_comment not like ‘%special%requests%’

group by
c_custkey

) as c_orders (c_custkey, c_count)
group by

c_count
order by

custdist desc, c_count desc ;

Figure 4.1: TPC-H Query 13 in SQL

for $gco in (
for $co in (

for $c in dataset(‘Customer’)
return {

"c_custkey": $c .c_custkey,
"o_orderkey_count": count(

for $o in dataset(‘Orders’)
where $c .c_custkey = $o .o_custkey
and not(like($o .o_comment,‘%special%requests%’))
return $o .o_orderkey)

}
)
/∗+ hash ∗/
group by $c_custkey := $co .c_custkey with $co
return {

"c_custkey": $c_custkey,
"c_count": sum(for $i in $co return $i .o_orderkey_count)
}

)
/∗+ hash ∗/
group by $c_count := $gco .c_count with $gco
let $custdist := count($gco)
order by $custdist desc, $c_count desc
return {"c_count": $c_count, "custdist": $custdist}

Figure 4.2: TPC-H Query 13 in AQL

32

The experiments were run on TPC-H [6] data sets of different sizes, ranging from

scale factors of 0.5 to 1000. Since we are concerned with only the customer and

orders tables, these scale factors amounted to datasets ranging in size from 93MB

(for SF=0.5) to 194GB (for SF=1000). The time taken to load the datasets into the

storage engine is not part of the results.

Query 13 was run for both the GroupJoin plan and the Join+Group plan (by using

the query hint described in section 3.2.3) repeatedly using a randomizing script. The

results shown in the next section are query execution times averaged over 5 runs.

Though the output write time is not included in the results, we found that it was

inconsequential even at the smallest scale factor.

4.3 Results

This section presents and analyzes the resulting query plans for Query 13 and also

the query execution times for both the plans.

4.3.1 Optimized Query Plans

The detailed Join+Group query plan generated by ASTERIX is shown in Figure 4.3.

33

Customer

Orders

γc_custkey;count(o_orderkey)

γc_count;count(*)

πc_custkey,o_orderkey

σo_comment !like

 '%special%requests%'

πc_count,custdist

c_custkey=o_custkey

τcustdist,c_count

πo_custkey,o_orderkey πc_custkey

πc_custkey, count(o_orderkey) → c_count

πc_count;count(*) → custdist

Figure 4.3: Complete ASTERIX plan for Query 13 with Join+Group

34

Similarly, the GroupJoin query plan is shown in Figure 4.4. The highlighted regions

show the difference between the two plans, i.e., the replacement of Join+Group with

a GroupJoin.

Customer

Orders

γc_count; count(*)

σo_comment !like

 '%special%requests%'

πc_count, custdist

c_custkey; count(o_orderkey)

τcustdist, c_count

πo_custkey, o_orderkey πc_custkey

πc_custkey, count(o_orderkey) → c_count

πc_count; count(*) → custdist

Figure 4.4: Complete ASTERIX plan for Query 13 with GroupJoin

35

4.3.2 Run times

Table 4.2 lists the results of the experiments run with Query 13. The Improvement

column is the ratio of query run time with Join+Group to that with GroupJoin.

TPC-H SCALE RUN TIME(s)
IMPROV.

FACTOR SIZE JOIN+GROUP PLAN GROUPJOIN PLAN
0.5 93MB 2.244 1.934 1.160
1 188MB 2.836 2.390 1.187
5 946MB 8.029 6.712 1.196
10 1.85GB 14.586 12.122 1.203
25 4.62GB 34.221 28.074 1.219
50 9.15GB 89.073 72.556 1.228
100 18.3GB 181.524 147.719 1.229
250 46.1GB 454.667 371.333 1.224
500 92GB 895.000 732.000 1.223
1000 194GB 1795.000 1459.000 1.230

Table 4.2: Query 13 execution times for different TPC-H dataset scales

The results show Query 13 execution times for data sets ranging from 93MB to

194GB. The performance improvement when using GroupJoin was found to be up to

1.23x. This improvement was mainly due to the omission of creating the hash table

in the Grouping operator in the Join+Group plan. Operator pipelining ensures that,

for the dataset sizes tested here, there is no spillage of Join results to disk in the case

of the Join+Group plan. Join results are fed to the Grouping operator as they are

created, so the GroupJoin does not provide an I/O cost savings over the Join+Group

plan here.

A plot of Improvement Factor vs. TPC-H data set scale is shown in Figure 4.5. We

can see that after initially increasing, the Improvement Factor becomes steady at

about 1.2x.

36

1.000

1.050

1.100

1.150

1.200

1.250

0 100 200 300 400 500 600 700 800 900 1000

Im
p

ro
ve

m
e

n
t

Fa
ct

o
r

TPC-H Dataset Scale

Figure 4.5: Improvement Factor vs. TPC-H Dataset Scale

4.3.3 Conclusion

This chapter was devoted to a performance evaluation and comparison of the GroupJoin

and Join+Group plans. The improvement due to the use of GroupJoin was found to

be about 1.2x in experiments involving Query 13 from TPC-H. It is interesting to note

that the improvement due to the use of GroupJoin does not match the 3x improve-

ment reported in [2]. This is because performance in our context is driven by disk

I/O cost, and data is effectively pipelined from Join to Grouping in the Join+Group

plan. Thus, GroupJoin did not offer an I/O savings and we did not see such dramatic

performance benefits in our experiments.

37

Chapter 5

Conclusion

In this thesis, we reported on an effort to implement the GroupJoin operator in the

ASTERIX BDMS. We showed the use and value of the operator and discussed the

conditions for GroupJoin equivalence. The GroupJoin algorithm was described for

both In-Memory and Hybrd Hash GroupJoin operators. The ASTERIX software

stack was briefly discussed, followed by GroupJoin implementation details specific to

ASTERIX. Finally, a performance evaluation of the GroupJoin based on a query from

TPC-H was described along with the results. The GroupJoin was found to improve

query performance for this query by a factor of about 1.2.

38

Bibliography

[1] G. von Bultzingsloewen. Optimizing sql queries for parallel execution. In ACM
SIGMOD Record, 18:17-22, December 1989.

[2] G. Moerkotte and T. Neumann. Accelerating queries with groupby and join by
groupjoin. In Proceedings of the VLDB Endowment, Vol. 4, No. 11, August
2011.

[3] S. Alsubaiee, A. Behm, R. Grover, R. Vernica, V. R. Borkar, M. J. Carey, and
C. Li. Asterix: Scalable warehouse-style web data integration. In IIWeb, May
2012.

[4] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill,
2009.

[5] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Com-
plete Book. Prentice Hall, 2002.

[6] The TPC-H Benchmark. http://www.tpc.org/tpch.

[7] S. Cluet and G. Moerkotte. Efficient evaluation of aggregates on bulk types. In
Proc. Int. Workshop on Database Programming Languages, 1995.

[8] V. R. Borkar, M. J. Carey, and C. Li. Inside “big data management”: Ogres,
onions, or parfaits? In EDBT/ICDT 2012 Joint Conference, March 2012.

[9] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks: A
flexible and extensible foundation for data-intensive computing. In Proceedings
of the 2011 IEEE 27th International Conference on Data Engineering, 2011.

[10] V. R. Borkar. A toolkit for the efficient processing of big data on large clusters.
In VLDB, August 2012.

[11] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, , C. Li, N. Onose, R. Vernica,
A. Deutsch, Y. Papakonstantinou, and V. J. Tsotras. Asterix: towards a scalable,
semistructured data platform for evolving-world models. In Distributed Parallel
Databases, March.

[12] JSON. http://www.json.org/.

39

http://www.tpc.org/tpch
http://www.json.org/

[13] R. G. G. Cattell. The Object Database Standard: ODMG 2.0. Morgan Kauffman.

[14] Object database management systems. http://www.odbms.org/odmg/.

[15] XQuery 1.0: An XML query language. http://www.w3.org/TR/xquery/.

[16] D. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and
D. Wood. Implementation techniques for main memory database systems. In
Proceedings of the 1984 ACM SIGMOD international conference on Management
of data, 1984.

40

http://www.odbms.org/odmg/
http://www.w3.org/TR/xquery/

Appendices

A Aggregate Decomposition

Let A be a decomposable Aggregate function. Also, Let A1 and A2 be Aggregate

functions such that A = A2(A1). That is, A is decomposed into the two Aggregate

functions A1 and A2. The following table lists decomposable Aggregate functions and

their decompositions A1 and A2.

A A1 A2

sum sum sum

count count sum

avg sum, count sum, sum

min min min

max max max

It should be noted that as long as A1 and A2 are decomposable, the Aggregate func-

tion A can be expressed in terms of any number of decomposotions. For example, the

count function can be decomposed as

sum(sum(sum(sum(count))))

without loss of accuracy.

41

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE THESIS
	Introduction
	The GroupJoin Operator
	Basics
	Equivalence Conditions
	Condition 1: Maintaining Grouping Granularity w.r.t. Join and Group Attributes
	Condition 2: Maintaining Grouping Granularity w.r.t. Join Cardinality
	Condition 3: Aggregation after Group creation
	Notes on Equivalence

	GroupJoin Algorithm

	ASTERIX Implementation
	About ASTERIX
	Hyracks Runtime Layer
	Algebricks
	ASTERIX

	GroupJoin in the ASTERIX Stack
	GroupJoin in Hyracks
	GroupJoin in Algebricks
	GroupJoin in ASTERIX
	Parallel Execution

	Performance Evaluation
	Infrastructure
	TPC-H Datasets & Queries
	Results
	Optimized Query Plans
	Run times
	Conclusion

	Conclusion
	Bibliography
	Appendices
	Aggregate Decomposition

