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Abstract 

Depression is a serious problem around the world, and while there has been much research on 

the topic, the stigma surrounding mental illness still causes missed diagnoses. This study seeks to 

predict if a user is at risk for depression using their combined Facebook status updates as the 

predictors; all data is taken from myPersonality. I used the Big Data Management System 

AsterixDB to store and query my data, and ran algorithms such as Logistic Regression, Support 

Vector Machines, and Random Forests to solve this classification problem. While one major 

finding is that more data is needed, we are able to see an improvement from our baseline 

accuracy using a model that employs both Regression and a text analysis feature representation 

called Term Frequency-Inverse Document Frequency (TF-IDF). 

 

Introduction 

 According to the National Institute of Mental Health, in America alone, approximately 

16.2 million adults suffered from at least one major depressive episode in 2012. This represents 

6.7% of all US adults. 37% of these did not receive any treatment (NIMH). One reason for this is 

that factors such as stigma surrounding mental health can lead to those struggling with 

depression not being diagnosed. As social media plays a huge role in society today, we begin to 

wonder how we can apply this field to the problem of underdiagnosis in depression.  

 To solve this problem, text analysis and supervised machine learning can be applied in an 

attempt to predict if a Facebook user is at risk for depression based off their Facebook status 

updates. Supervised machine learning is a type of machine learning that predicts a known target 

variable from a set of features. In this case, the target variable is if the user is depressed or not, 

and the features are the individual words that make up the status posts made by all users (a 

common technique in text analysis).  

Models are then trained, and the accuracy of the model is determined by seeing how often 

the model can accurately classify users as at risk for depression or not. As the target variable is a 

discrete class, this is a classification problem (as opposed to a regression problem where the 



predicted variable is a real value on a continuous scale). Machine learning models that will be 

used in this problem are Logistic Regression, Random Forests, and Support Vector Machines.  

Related Work 

 While using social media to study psychological phenomena is relatively new, there has 

been much work done in this field over the past few years, as “Natural Language Processing in 

Mental Health Applications using Non-Clinical Texts” describes (Calvo, et al.). This review 

focuses on data sources and techniques used in labelling and diagnosing individuals, as well as 

ways to use these results to personalize mental health interventions. Major social media data 

sources include Twitter and Facebook, and studies have included manual analysis and the 

tagging of posts that indicate depression in addition to automated labeling. One successful 

attempt used Naïve Bayes to detect emotions in Facebook posts.  

 More specifically, using the myPersonality Project databases, which is also used and 

discussed later on for this project, many researchers were able to do studies on topics such as 

predicting subjective well-being using Facebook status updates (Liu, et al.), predicting 

personality using various features of Facebook data (Markovikj, et al.), and even using Facebook 

information to help identify users with self-destructive behaviors such as suicidal ideation, self-

harm, and extreme drug abuse (Inkster, et al.).  

Data 

Data Source and Description 

 All data used to solve this problem come from an organization called myPersonality that 

was founded by Michal Kosinski and David Stillwell. From 2009-2012, the organization used a 

Facebook application that received voluntary access to Facebook data, such as status updates 

from users. In addition, users could use the app to take psychological tests, such as the BIG5 



Personality test, and release those results as well. myPersonality curated these results into many 

datasets; each user is given an anonymized unique user ID, so that user test scores and social 

media information can be correlated.  

 The two datasets used in this project include a Facebook status updates dataset, as well as 

a CES-D Depression Inventory dataset. 

The CES-D Depression Inventory is a 

standardized tool used to diagnose and 

rate depression. Figure 1 shows a list 

of the twenty questions asked in this 

inventory. For example, the first 

question states “I was bothered by 

things that usually don’t bother me.” 

The user would respond with a score 

between 0 and 3, with 0 being rarely or 

none of the time, and 3 being all of the 

time. The scores will be added (some questions are reverse scored) for a total score ranging from 

0 to 60, where 60 is the most depressed. The National Institute of Mental Health uses a cutoff 

score of 16 to signify that an individual is at risk for depression. myPersonality’s data does not 

include the total score, but does have all the itemized responses for users who have taken this 

test. Using this data, a total score can be calculated, and each user can be given a rating of 0 for 

“not depressed,” or a 1 for “is depressed”—a 0 if the total depression score is less than 16, and 1 

otherwise.  

Figure 1: CES-D Depression Inventory 



 The Facebook Status Updates dataset includes status posts made by users, where each 

record represents an individual status post by a user, similar to what is shown in Figure 2—so a 

user will have multiple records depending on the number of Facebook posts they have made.  

UserId Status Message Date Posted 

User1  Today was a good day.  5/10/2010 

User1  Got a dog today! 6/2/2010 

User2 First day of school… 9/2/2010 

… … … 
Figure 2: Facebook Status Updates Dataset in myPersonality 

 In this supervised machine learning problem, the depression classification is the target 

variable we are trying to predict, and the combined status messages for each user make up the 

features we will use. 

Data Summary Statistics  

 As mentioned, the two datasets must be joined using the unique user ID provided by 

myPersonality. This means that only data where both information for users’ Facebook Status 

Updates and their CES-D Depression Inventory results are present can be used. Figure 3 shows 

the number of unique users and status updates in each individual dataset and for the intersection 

of the two datasets. That intersection is the total number of users and status updates that we can 

use to train and test our models.  

 # Unique Users # Status Updates 

statusUpdates 153727 22043394 

depressionUsers 5946 -- 

statusUpdates ∩ 

depressionUsers 

1055 197230 

Figure 3: Summary Statistics of Data 



myPersonality has curated over 22 million status updates for over 150 thousand users. 

Unfortunately, their dataset with the depression inventory results is much smaller—less than 

6000 users are represented. When the intersection of the two datasets is taken, approximately 200 

thousand status updates from about 1000 users are left. This means there is only about 1000 

samples for training and testing purposes, which is an extremely small amount for machine 

learning; we will see later how this affects the findings and models.  

Figure 4 shows a histogram of the 

distribution of the total depression scores 

among the 1000 users. The distribution is a 

standard Gaussian, but what is important to 

note here is the red line at x=16, which 

signifies the cutoff for being at risk for 

depression. Since the cutoff is half of the 

average, it makes sense that most of the users 

represented are at risk for depression – about 75% of the sample. This leads to a large imbalance 

between non-depressed users and depressed users, which will also affect the results.  

Technical Approach 

A flowchart for the technical approach to this problem is shown in Figure 5. To begin, the 

two datasets, the Facebook Status Updates Dataset and the CES-D Depression Inventory Dataset, 

will be imported into AsterixDB, a new and upcoming Big Data Management System. Using 

Figure 4: Distribution of Depression Scores 



AsterixDB, two 

datasets can be 

created that have 

only the necessary 

information from 

each of the 

myPersonality 

files (both 

datasets contains 

information irrelevant to this problem). The depression dataset will have the attributes of the 

unique user ID and the twenty question responses to the CES-D. The Facebook Status Updates 

dataset will have the unique user ID and the text of a status update that the user has posted. 

Statuses posted by users who have not taken the CES-D Depression Inventory will be filtered 

out. 

 From here, the datasets can be moved into the Python Dataframes, PANDAS. While 

doing this, the Facebook Status Updates dataset will be normalized in a way so that each user is 

represented only once, no matter the number of status updates they have. Each user will now be 

associated with a combination of all their status updates, simply separated by a space; the 

depression dataset will remain the same. The data is moved into PANDAS so that Python 

libraries can be used to preprocess the data and run machine learning algorithms on them.  

 The first step in PANDAS is to calculate a total depression score for each user. All scores 

for the twenty questions are added up, reverse scoring four of them. This provides the target 

variable for each user. Next, the status updates need to be prepared into a feature set that can be 

Figure 5: Technical Approach Diagram 



used for training. A common feature representation in text analysis is a Bag-of-Words 

representation. Bag-of-Words is a representation that uses all possible words as individual 

features, and their values are the counts of that word in the “document” (in this case, the 

document is the combination of all the status updates for one user). For example, in Figure 5, 

User1 has used the word “happy” twice, and “movie” once across all their posts – these will be 

their feature values for those two words. These values will be normalized so that the sum of each 

user’s feature values is 1 – this is to account for the fact that users have very different 

frequencies in creating status updates, so some users have many more words in their 

“document”. Stopword removal will also be accounted for so that common words such as “the,” 

“a,” “I,” and other words that we believe to have no impact on the problem will be discarded.  

 Now that the feature values and target values are prepared, the machine learning models 

can be trained and tested. As previously mentioned, this study will primarily focus on Logistic 

Regression, Support Vector Machines, and Random Forests. The models will be evaluated using 

the percentage accuracy of the classifiers. To get this accuracy, a train-test split where we train 

the model on 90% of the data and test on the remaining 10% will be used. Since the sample size 

is so small, a method called cross-validation will also be used. Cross-validation is a method that 

takes different folds of train and test data, obtains accuracies on all the folds, and then averages 

them together—this way, all data is being utilized for training purposes, instead of leaving 10% 

out.  

 In addition to testing the classifiers with the standard method of accuracy, tools such as 

precision-recall and the probability of classifications among extremely depressed individuals can 

be used—both these methods can show how the classifiers can be used in slightly different 

manners and will be discussed more in the next section.  



Experimentation and Findings 

Initial Results 

 The initial results using Logistic Regression, Support Vector Machines, and Random 

Forests can be seen in Figure 6. These models were created with the default settings and nothing 

done to the data other than normalization of counts and removing common English stopwords 

(stopwords taken from one of the Python libraries, NLTK).  

 Training Accuracy Test Accuracy (10%) Cross-Validation 

(k=3) 

Baseline 74.4% 72.6% 74.2% 

Logistic Regression 74.5% 72.6% 74.2% 

Support Vector 

Machines 

74.4% 72.6% 74.2% 

Random Forests 97.5% 74.5% 71.6% 
Figure 6: Initial Results 

 To determine the baseline accuracy, a common classification trick where we predict the 

most common class for every case is used. In this problem, depressed is the most common class, 

so everyone is predicted to be depressed. Since about 75% of the sample is classified as at risk 

for depression, the baseline accuracy is about 75%.  

 Looking at the results, none of the models are performing very well. They are all 

performing at about the baseline accuracy of 75% with no improvement, and the Random Forests 

model has a severe overfitting problem of over 20% (this can be seen since the training accuracy 

is so much higher than the test accuracy; overfitting is the phenomenon in which the model is 

focusing too much on the training samples and is unable to generalize to new data not included 

in the training phase).  

 To get a better look at how the models are classifying the samples, a confusion matrix 

can be viewed. In binary classification problems, a confusion matrix shows the rates for True 



Positives, True Negatives, False Positives, and False Negatives. Figure 7 shows the confusion 

matrix for the test data of our Random Forests model.  

 The top left quadrant shows the 

True Negative rate and the bottom 

right quadrant shows the True Positive 

rate. In a perfect model, both these 

quadrants would have ratios of 1—

correctly classifying all depressed 

individuals as depressed and correctly 

classifying all non-depressed 

individuals as not depressed—while 

the other quadrants would both be 0s. In this case, it is seen that the model is simply predicting 

the majority of users as depressed; this leads to a high True Positive rate, but also a high False 

Positive rate as well. Logistic Regression and Support Vector Machines are also predicting 

virtually all users as depressed as well, so these models are useless.  

Increasing Sample Size 

 One of the reasons that the models are performing so poorly has to do with the skew 

between the amount of non-depressed users and depressed users. Not only is the skew large, but 

the sample size is small as well. So, before continuing to train new models, it needs to be seen 

how to increase the sample size. 

 A possible solution is to simulate new depression data for users who have status updates 

but did not take the depression inventory. myPersonality has many other datasets for 

psychological tests, including a Satisfaction with Life Survey (SWL). Intuitively, it can be 

Figure 7: Initial Confusion Matrix for Random Forests 



believed that there must be a negative correlation between depression and Satisfaction with Life; 

if this is found to be true, a model that predicts depression scores based on Satisfaction with Life 

scores can be built, and then some of the missing depression scores for users in the Facebook 

Status Updates dataset can be filled in. Unfortunately, as can see in Figure 8, there is a slight 

negative correlation between Satisfaction 

with Life and depression, but there is so 

much noise and it is not nearly strong enough 

to build an accurate model (in fact, it was 

only able to correctly predict the depression 

classifications about 75% of the time).  

 As the first attempt was not a viable 

way to increase the sample size, a simpler solution is to duplicate the non-depressed data—this 

increases sample size while decreasing the skew between the two classes as well. Figure 9 shows 

the results of training the same models on this duplicated dataset. 

 Training Accuracy Test Accuracy (10%) Cross-Validation 

(k=3) 

Baseline 59.0% 59.4% 59.0% 

Logistic Regression 84.3% 67.7% 70.0% 

Support Vector 

Machines 

59.0% 59.4% 59.0% 

Random Forests 98.2% 87.2% 85.1% 
Figure 9: Results using Duplicated Dataset 

 The baseline accuracy has gone down to 59%. Support Vector Machines are still mainly 

classifying everyone as depressed, but there is an improvement in Logistic Regression and 

Random Forests. While there is still a problem with overfitting, this is a good starting point to 

seeing how different models are working, so that when new and increased data is available in the 

Figure 8: Correlation between Depression and Satisfaction with Life 



future, these models can be tested 

first. Once again, a Confusion 

Matrix for Random Forests can be 

viewed, as shown in Figure 10.  

 The True Positive and True 

Negative rates are much more 

balanced now, which is a good 

sign, showing that the model is not 

just predicting depressed for every individual now. Something worth noting is that the False 

Negative rate has increased (the model classifying depressed individuals as not depressed). This 

leads us to question whether it is better for the model to have more False Positives or False 

Negatives. Ideally, there would be neither, but it is often the case that different models have 

tradeoffs such as this. Looking at this problem from the viewpoint of the disease prevention 

model, we prefer False Positives over False Negatives; this way, individuals who are not truly 

depressed can be ruled out later, but no individuals who really are depressed will be “missed” by 

classifying them in the negative class.  

Regression 

 While this is a classification problem, regression techniques can be applied here. This can 

be done by using the total depression score as the target variable instead of the simple “is 

depressed” or “is not depressed” classification (as mentioned earlier, total depression score 

ranges from 0 to 60 on a continuous scale). Using linear regression and random forest regressors, 

r-squared scores that show the models are performing quite poorly are calculated – 0.02 for 

Figure 10: Random Forests Confusion Matrix (Duplicated Data) 



linear regression and 0.09 for random forest regressors (r-squared is a metric for evaluating 

regression; it is on a scale of 0 to 1, with 1 being the best).  

 However, these predicted scores from the regression models can be converted back to “is 

depressed” or “is not depressed” based on the threshold of 16. By doing this and then 

determining what the accuracy is, the results shown in Figure 11 are found.  

 Training Accuracy Test Accuracy (10%) Cross-Validation 

(k=3) 

Baseline 60.0% 51.9% 59.0% 

Linear Regression 97.7% 86.5% 80.4% 

Random Forests 92.8% 70.0% 73.8% 
Figure 11: Regression Results 

Purely through numbers, it is seen that Linear Regression is performing better than Random 

Forests by about 6%. However, something else interesting appears when the confusion matrices 

for these two models are viewed (shown in Figure 12). While Linear Regression shows a better 

balance 

between True 

Positives and 

True 

Negatives (as 

well as False 

Positives and 

False Negatives), the False Negative rate is lower in Random Forests than in Linear Regression. 

The increase of False Positives in Linear Regression is not very high though (17% compared to 

21% for False Negatives), but it is good to keep this in mind depending on what specific purpose 

the model is to be used for. 

Figure 12: Confusion Matrices for Linear Regression and Random Forests 



TF-IDF 

 Another tool used to improve text analysis models is Term Frequency-Inverse Document 

Frequency (TF-IDF). TF-IDF is an alternative feature representation to the Bag-of-Words 

representation this study has used so far. Instead of simply normalizing the counts, TF-IDF 

accounts for not only the word count, but also the amount of times a word appears in all users’ 

posts. So, if every user has used a specific word several times, TF-IDF will give less importance 

to this word. Figure 13 shows the results of running classification models where TF-IDF was 

used.  

 Training Accuracy Test Accuracy (10%) Cross-Validation 

(k=3) 

Baseline 59.0% 59.4% 59.0% 

Logistic Regression 93.1% 74.4% 81.4% 

Random Forests 98.2% 83.5% 84.6% 
Figure 13: TF-IDF Classification Results 

Logistic Regression is overfitting by a high amount (almost 20%) and performs a bit worse than 

Random Forests. However, Random Forests does not have a high improvement, and is still 

overfitting by about 15%.  

Regression and TF-IDF 

 Combining regression models and TF-IDF is what turns out to yield the best results (as 

seen in Figure 14). Linear Regression has an accuracy of about 88%, and the overfitting rate is 

only about 5% (still a decent amount, but much lower than the 10-20% seen in previous 

attempts).  

 Training Accuracy Test Accuracy (10%) Cross-Validation 

(k=3) 

Baseline 59.0% 58.6% 59.0% 

Linear Regression 97.0% 91.7% 88.2% 

Random Forests 91.5% 80.5% 75.3% 
Figure 14: Regression and TF-IDF Results 



Looking at the confusion matrix in Figure 

15, the True Positive and True Negative 

rates are both high and approximately even. 

The False Positive rate is also higher than 

the False Negative rate, so this is good from 

the lens of the disease prevention model as 

well.  

 It is also possible to look at the 

words that the linear regression model has the highest coefficients for (the ones that have the 

highest impact on predicting if a user is depressed or not). In order from lowest to highest, here 

are the top ten words: “wit”, “headed”, “jeg”, “im”, “tomarrow”, “cleverbot”, “past”, “derby”, 

“hates”, “slightly”. While some of these words seem unrelated and many are misspelled, some 

are seen that make sense. “Im” is a first-person pronoun, and there is research showing that the 

use of more first-person pronouns is a signifier of greater depression (Calvo, et al.). Furthermore, 

the word “hates” appears, and we could also extract that a person using the word “past” may be 

more depressed because they are ruminating on the past too often. To confirm any of these 

findings though, the model needs to be run on a larger dataset.   

Feature Engineering 

 Another technique to improve the models is Feature Engineering. Feature Engineering 

alters the features used when training models in order to focus on features that have the highest 

correlations with the target variable. In this case, the features are all the unique words used 

across everyone’s posts; one technique for feature engineering in a text analysis problem like this 

is stopword removal. As mentioned previously, the Python library NLTK has a stopword list that 

Figure 15: Confusion Matrix for TF-IDF and Linear Regression 



can be used. However, this is an interesting problem in social media because there have been 

studies that show that the use of first person pronouns shows a greater tendency for depression 

and other psychological symptoms (Calvo, et al.). By manually altering the stopwords list, we 

can include many of these first-person pronouns such as “my” and “I”. Performing this alteration 

did not change the results by any significant amount though.  

 Other Feature Engineering techniques include limiting the number of features used as 

predictors. This is especially something to note in this problem because there are over 100,000 

unique words (including misspellings, slang, and so on), but only 1000 samples. In machine 

learning, it is typical to have more samples compared to the number of features. Techniques to 

limit the features include most commonly used features and mutual information. The first simply 

picks the top used features—for example, ten thousand features—and ignores all other words. 

Mutual information looks at both the counts of the words and the target variable, and outputs the 

correlations these features have with the target variable if the user is depressed. The words with 

the top correlations can then be taken, and all other words can be removed. Both these techniques 

were applied to the problem, but unfortunately did not yield any results either.   

 An alternative feature engineering method is to use different features altogether (instead 

of the individual words). Since there has been some research showing that the use of first person 

pronouns signifies a higher risk of depression, it could be useful to use parts of speech as features 

(Calvo, et al.). Using a Part-of-Speech tagger from NLTK, 45 different parts of speech are used 

as the features that the models are trained on (results shown in Figure 16).  

 Training Accuracy Test Accuracy (10%) Cross-Validation 

(k=3) 

Baseline 59.0% 59.4% 59.0% 

Logistic Regression 61.8% 60.2% 60.0% 

Random Forests 98.1% 85.0% 76.8% 
Figure 16: Part-of-Speech Results 



Logistic Regression does not perform above baseline, and while Random Forest is performing 

better, there is still 13% of overfitting.  

 There can still be more work done in feature engineering for this problem, especially if 

there is more data. The Part-of-Speech tagger used in these results does not separate first-person 

pronouns from third-person pronouns, so that would be something to investigate in future work.  

Precision-Recall 

 There are other ways of evaluating the use of classifiers than just simple accuracy 

percentages; one of these ways is precision-recall. In problems such as this one, precision is the 

ability to not label negative samples as positive, and recall is the ability to find all the positive 

samples. We have seen through our initial confusion matrices that our models are easily able to 

achieve a high recall rate (finding all the depressed users) but have trouble with precision (not 

having such a high false positive rate). So, instead of focusing on precision-recall together, it is 

more useful to look at precision by itself.  

 When machine learning models make their predictions, the predictions are also associated 

with the probability that algorithm has deemed 

the prediction to be a positive sample. In this 

case, since this is a two-class problem, if that 

probability is over 50%, then the user has been 

predicted to be at risk for depression.  

These probabilities can be used as 

thresholds and we can see how the precision 

rate changes as the threshold increases (Figure 

17 shows this for Logistic Regression). There is a steep increase initially before the slope 

Figure 17: Precision Graph for Logistic Regression 



decreases, but it does continue to rise. This can be useful in settings where the threshold can be 

increased, and a higher precision is achieved on those that are still being classified.   

Classifying Extremely Depressed Users 

 These probabilities of predictions can also be viewed against the total depression scores. 

As depression scores increase and users are more heavily depressed, it is important to make sure 

these users are being accurately classified 

since they could be at higher risk for 

dangerous behaviors. While this is the 

case when using a regression model, we 

can also look at this for the classification 

model of Random Forests as shown in 

Figure 18.  

 While the fit is not perfect and 

there is a decent amount of noise, there is a positive trend—meaning that the more depressed a 

user is, the higher chance the model has to classify them as depressed. This is a positive sign that 

shows us that the model can be used in situations where it is important to specifically target users 

with a high risk of behaviors associated with depression.  

Verifying Results 

 Because of the small amount of data there is access to, it is hard to verify if these results 

will be valid in real-time use.  Furthermore, the non-depressed data has been duplicated, so even 

though there appears to be little overfitting in the TF-IDF and regression model, it is possible 

that there is overfitting occurring that cannot be currently seen.  

Figure 18: Probability of Predicting Depressed vs. Total Depression Score 



 One way to see if the results will still hold is to train the model on the duplicated data, but 

test on the original data with no repeats. Unfortunately, when this is attempted, the results found 

previously do not hold (including the TF-IDF with regression model). One possibility is that 

these models are simply overfitting to the duplicated data and that is why the accuracies were 

previously so high. Either way, it is difficult to be sure without having a higher sample of data to 

train on—preferably a sample that has a more even ratio of depressed and non-depressed users 

without the need to duplicate any data. 

Conclusion 

 In this supervised learning problem, the features appear to not be as strongly correlated 

with the target variable; this work shows that such a problem necessitates more data. It is seen 

that the strongest model employs TF-IDF and regression, but it is unclear if this is a result of 

overfitting to the duplicated data or not.  

 While the final results are uncertain, it is also possible to see other methods that can be 

used to test the models such as precision and examining model probabilities compared to total 

depression scores. These evaluations showed positive signs but need to be checked when more 

data is available for this problem as well.  

 The first step for future work is obtaining a larger sample size, specifically targeting 

Facebook users who cannot be classified as depressed. Once a larger sample size is obtained, not 

only can all the models and methods described in this paper be checked, but it will also be 

possible to move on to new techniques as well. For example, there is much more work to be done 

in feature engineering. Some examples include more specific part-of-speech tagging, feature 

limitations, and grouping together words that are misspelled but have the same meaning. Another 

method to be attempted is using ordinal regression to predict the individual question responses 



and then adding those results up to create a predicted value. This problem is clearly an important 

one, and working on it in these ways can show if it truly is possible to predict depression based 

off social media.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix  

Software 

Publicly Available 

Software/Code 

Description 

AsterixDB Big Data Management System used to query and filter 

data 

PANDAS Python dataframes used to store and manipulate data 

before using for Machine Learning purposes 

NLTK Python library used for English stopwords list and Part-

of-Speech tagging 

SciKit-Learn Python library used for running and evaluating Machine 

Learning algorithms, as well as creating Bag-of-Words 

and TF-IDF feature representations from the text of the 

status updates 

 

Code Written by Me Description 

AsterixDB importing and 

Dataset Creation 

Importing myPersonality CSV and JSON files into 

AsterixDB and creating Dataset Types to hold this data 

AsterixDB into PANDAS Scripts with queries that moved data in a manner I 

wanted 

Depression Score 

Calculation 

Function to calculate the total depression score of a user 

Preprocessing of Data (in 

Python) 

Scripts for cleaning and manipulating data (including 

transforming data into TF-IDF and BOW matrices using 

SciKit-Learn) 

Scripts to run Algorithms Scripts using SciKit-Learn to train and test models 

Part-of-Speech Feature 

Representation 

Function using NLTK’s POS Tagging, and then 

manipulating that data into a NumPy array that can be 

used by SciKit-Learn 

 

Jupyter Notebook Description 

 The following Jupyter notebook demonstrates some of the main high-level concepts in 

my project. It goes through the process of moving the data from AsterixDB over to PANDAS, as 

well as the cleaning and preparation of the depression data and status updates. It shows the 

calculation of the total depression scores, as well as the classification to if the user is at risk for 

depression or not. We then see the data being merged together by the unique user ID so we have 



both our features and target variable. Then we duplicate the non-depressed data and prepare our 

data to be used by machine learning algorithms implemented by SciKit-Learn. This notebook 

shows how to do this for our most accurate model of TF-IDF with Regression. We also see how 

as the probability of predicting depressed (using Random Forest classification) increases as the 

total depression score increases.  
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In [1]: import pandas as pd 
import numpy as np 

import json 
import requests 
import pickle 

import matplotlib.pyplot as plt 

import itertools 

from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.feature_selection import mutual_info_classif 

from sklearn.model_selection import cross_val_score 
from sklearn.model_selection import cross_val_predict 
from sklearn.metrics import accuracy_score 

from sklearn.metrics import confusion_matrix 

from sklearn.linear_model import LogisticRegression 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.svm import SVC 

from sklearn.ensemble import RandomForestRegressor 
from sklearn.linear_model import LinearRegression 

from sklearn.model_selection import train_test_split 

from sklearn import preprocessing 

from nltk.corpus import stopwords 
nltkEnglishStopwords = stopwords.words('english') 
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In [53]: # taken from Sci-Kit Learn, used to create confusion matrix graphics 

def plot_confusion_matrix(cm, classes, 
                         normalize=False, 
                         title='Confusion matrix', 
                         cmap=plt.cm.Blues): 
   """ 
   This function prints and plots the confusion matrix. 
   Normalization can be applied by setting `normalize=True`. 
   """ 
   if normalize: 
       cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] 
       print("Normalized confusion matrix") 
   else: 
       print('Confusion matrix, without normalization') 

   print(cm) 

   plt.imshow(cm, interpolation='nearest', cmap=cmap) 
   plt.title(title) 
   plt.colorbar() 
   tick_marks = np.arange(len(classes)) 
   plt.xticks(tick_marks, classes, rotation=45) 
   plt.yticks(tick_marks, classes) 

   fmt = '.2f' if normalize else 'd' 
   thresh = cm.max() / 2. 
   for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): 
       plt.text(j, i, format(cm[i, j], fmt), 
                horizontalalignment="center", 
                color="white" if cm[i, j] > thresh else "black") 

   plt.tight_layout() 
   plt.ylabel('True label') 
   plt.xlabel('Predicted label') 

Importing from AsterixDB into PANDAS Dataframes
In [2]: url = 'http://localhost:19002/query/service' 

head = {'Content-Type': 'application/json'} 

Importing CES-D Data
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In [5]: query = 'SELECT * FROM depressionUsers;' 
payload = {'statement': query} 
response = requests.post(url, data=payload) 
answer = response.json()['results'] 
cesdItemizedScores = pd.DataFrame(columns=['userid', 'q1', 'q2', 'q3', 'q4', 
'q5', 'q6', 'q7', 'q8', 'q9', 'q10', 'q11', \ 
                                          'q12', 'q13', 'q14', 'q15', 'q16', 
'q17', 'q18', 'q19', 'q20']) 

In [6]: for i in range(0, len(answer)): 
   cesdItemizedScores = cesdItemizedScores.append({'userid': answer[i]['depre
ssionUsers']['userid'], \ 
                                                   'q1': answer[i]['depressio
nUsers']['q1'], \ 
                                                   'q2': answer[i]['depressio
nUsers']['q2'], \ 
                                                   'q3': answer[i]['depressio
nUsers']['q3'], \ 
                                                   'q4': answer[i]['depressio
nUsers']['q4'], \ 
                                                   'q5': answer[i]['depressio
nUsers']['q5'], \ 
                                                   'q6': answer[i]['depressio
nUsers']['q6'], \ 
                                                   'q7': answer[i]['depressio
nUsers']['q7'], \ 
                                                   'q8': answer[i]['depressio
nUsers']['q8'], \ 
                                                   'q9': answer[i]['depressio
nUsers']['q9'], \ 
                                                   'q10': answer[i]['depressi
onUsers']['q10'], \ 
                                                   'q11': answer[i]['depressi
onUsers']['q11'], \ 
                                                   'q12': answer[i]['depressi
onUsers']['q12'], \ 
                                                   'q13': answer[i]['depressi
onUsers']['q13'], \ 
                                                   'q14': answer[i]['depressi
onUsers']['q14'], \ 
                                                   'q15': answer[i]['depressi
onUsers']['q15'], \ 
                                                   'q16': answer[i]['depressi
onUsers']['q16'], \ 
                                                   'q17': answer[i]['depressi
onUsers']['q17'], \ 
                                                   'q18': answer[i]['depressi
onUsers']['q18'], \ 
                                                   'q19': answer[i]['depressi
onUsers']['q19'], \ 
                                                   'q20': answer[i]['depressi
onUsers']['q20']}, ignore_index=True) 
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In [7]: len(cesdItemizedScores) 

There are 6561 users in the CES-D Depression Inventory.

In [8]: cesdItemizedScores.head() 

Importing Status Updates

We only want to take Status Updates made by users represented in CES-D Dataset, so we filter for that in our
query.

In [3]: query = 'SELECT su2.messageid, su2.userid, su2.message FROM statusUpdates AS s
u2 WHERE su2.userid IN \ 
   (FROM statusUpdates su, depressionUsers du WHERE su.userid = du.userid SEL
ECT VALUE su.userid);' 
payload = {'statement':query} 
response = requests.post(url, data=payload) 
answer = response.json()['results'] 

In [6]: individualStatusUpdates = pd.DataFrame(columns=['messageid', 'userid', 'messag
e']) 

for i in range(0, len(answer)): 
   individualStatusUpdates = individualStatusUpdates.append({'messageid': ans
wer[i]['messageid'], \ 
                                                             'userid': answer
[i]['userid'], \ 
                                                             'message': answe
r[i]['message']}, ignore_index=True) 

Out[7]: 6561

Out[8]:
userid q1 q2 q3 q4 q5 q6 q7 q8 q9 ... q11 q12 q

0 a54988e326d76a28f52a4b82d0efcd5d 1 1 1 4 2 1 1 3 2 ... 2 3 2

1 6ef14eaaa9afbea3d61ede82103000d6 2 3 3 1 2 2 3 1 2 ... 3 1 2

2 ef3cdac5925aa968584c541faea886e6 1 1 1 4 1 1 1 4 1 ... 2 4 1

3 66495ec54feb9e2399db05a67a80f2c6 2 1 1 3 2 1 3 3 1 ... 2 3 4

4 ad9db3d0050106be4de5ff97ccd2bdf9 2 1 1 4 1 1 3 2 1 ... 2 2 1

5 rows × 21 columns
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In [7]: len(individualStatusUpdates) 

In [8]: individualStatusUpdates.head() 

After filtering, we are left with only 197230 status updates.

Cleaning and Preparing Data

CES-D Cleaning and Preparation

We first need to remove all the data where users have not responded to all questions in the inventory (signified
by a 0 or -1 denoted by myPersonality)

Out[7]: 197230

Out[8]:
messageid userid message

0 10000853 0c5d06511ef79fba34da417e8c751fff STAR TREK!!!!!!!!:):):):):):):):):):):):):):)

1
10000942 29d45563f343fc0a8cecbb92066c666b

Raaaawww I am a purpledino that
will eat you!!...

2 10001131 be6a4370aa73880f9470b3e453c57fee I like it on the dresser

3 10001439 3fc16d9aa62562b2b2552bb581889da1 wants to go on da beer tonight!

4
10001469 a21ede1d1d60b4b606a14edac886d62c

wish i had somethinng to do... that i
wouldn't...
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In [12]: toDrop = [] 

for index, row in cesdItemizedScores.iterrows(): 
   if row['q1'] == 0 or row['q1'] == -1 or row['q2'] == 0 or row['q2'] == -1 
or row['q3'] == 0 or row['q3'] == -1 or \ 
   row['q4'] == 0 or row['q4'] == -1 or row['q5'] == 0 or row['q5'] == -1 or 
row['q6'] == 0 or row['q6'] == -1 or \ 
   row['q7'] == 0 or row['q7'] == -1 or row['q8'] == 0 or row['q8'] == -1 or 
row['q9'] == 0 or row['q9'] == -1 or \ 
   row['q10'] == 0 or row['q10'] == -1 or row['q11'] == 0 or row['q11'] == -1
or row['q12'] == 0 or row['q12'] == -1 or \ 
   row['q13'] == 0 or row['q13'] == -1 or row['q14'] == 0 or row['q14'] == -1
or row['q15'] == 0 or row['q15'] == -1 or \ 
   row['q16'] == 0 or row['q16'] == -1 or row['q17'] == 0 or row['q17'] == -1
or row['q18'] == 0 or row['q18'] == -1 or \ 
   row['q19'] == 0 or row['q19'] == -1 or row['q20'] == 0 or row['q20'] == -1
: 
       toDrop.append(index) 

cesdItemizedScores = cesdItemizedScores.drop(toDrop) 

In [13]: len(cesdItemizedScores) 

We also need to subtract one from every question answer (to get standardized scores, questions must range
from 0 to 3, but myPersonality's range from 1 to 4).

Out[13]: 5833
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In [14]: cesdItemizedStandardScores = pd.DataFrame(columns=cesdItemizedScores.columns) 

for index, row in cesdItemizedScores.iterrows(): 
   cesdItemizedStandardScores = cesdItemizedStandardScores.append({'userid': 
row['userid'], 'q1': row['q1']-1, \ 
                                                                   'q2': row[
'q2']-1, 'q3': row['q3']-1, \ 
                                                                   'q4': row[
'q4']-1, 'q5': row['q5']-1, \ 
                                                                   'q6': row[
'q6']-1, 'q7': row['q7']-1, \ 
                                                                   'q8': row[
'q8']-1, 'q9': row['q9']-1, \ 
                                                                   'q10': row
['q10']-1, 'q11': row['q11']-1, \ 
                                                                   'q12': row
['q12']-1, 'q13': row['q13']-1, \ 
                                                                   'q14': row
['q14']-1, 'q15': row['q15']-1, \ 
                                                                   'q16': row
['q16']-1, 'q17': row['q17']-1, \ 
                                                                   'q18': row
['q18']-1, 'q19': row['q19']-1, \ 
                                                                   'q20': row
['q20']-1}, ignore_index=True) 

We can then write helper functions to calculate the total depression score for each user.

In [16]: def calculateDepressionScore(qScores): 
   score = 0 
   reverseScoreQuestionIndeces = [3, 7, 11, 15] 
   for i in range(0, len(qScores)): 
       if i in reverseScoreQuestionIndeces: 
           score += findReverseScore(qScores[i]) 
       else: 
           score += qScores[i] 
    
   return score 

def findReverseScore(score): 
   if score == 3: 
       return 0 
   if score == 2: 
       return 1 
   if score == 1: 
       return 2 
   if score == 0: 
       return 3 



6/10/2018 project

file:///C:/Users/sharo/OneDrive/UC%20Irvine/Thesis/project.html 8/14

In [17]: cesdTotalScores = pd.DataFrame(columns=['userid', 'totalScore']) 

for index, row in cesdItemizedStandardScores.iterrows(): 
   score = calculateDepressionScore([row['q1'], row['q2'], row['q3'], row['q
4'], row['q5'], row['q6'], row['q7'], \ 
                                     row['q8'], row['q9'], row['q10'], row['q
11'], row['q12'], row['q13'], row['q14'], \ 
                                     row['q15'], row['q16'], row['q17'], row[
'q18'], row['q19'], row['q20']]) 
   cesdTotalScores = cesdTotalScores.append({'userid': row['userid'], 'totalS
core': score}, ignore_index=True) 

Status Updates Preparation

We need to create a combination of each user's status updates to be stored, instead of the current
representation we have with individual status updates. PostgreSQL has a string_agg function to help us do this,
but as this is not yet implemented in AsterixDB, we will use PANDAS to do so.

In [22]: groupedStatusUpdates = pd.DataFrame(individualStatusUpdates.groupby('userid')[
'message'].apply(lambda x : ' '.join(x))) 

In [27]: groupedStatusUpdates = groupedStatusUpdates.reset_index() 

In [28]: len(groupedStatusUpdates) 

In [29]: groupedStatusUpdates.head() 

Merging Status Updates and Depression Scores

In [30]: statusUpdatesWithDepressionScores = cesdTotalScores.join(groupedStatusUpdates.
set_index('userid'), how='inner', on='userid') 

Out[28]: 1047

Out[29]:
userid message

0 009d96a823b6f6c085c092fb177491f6 missing my Girly :( Can't believe I went to be...

1 00c69df4ec41f61da30ed2874b9fbfaf you can't achieve anything if you don't get th...

2
011679a3ae49998801ada93d822b7302

Goodbye Shark Week :( See you next year. [<3
M...

3 013df2d13511f23adefe80a3347911dc Roon MegaJew Foster Oy Giraffe glue, get onlin...

4 01530624766b3be63c7709c6581c335d I never expected to be mothering one of Bella'...
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In [31]: statusUpdatesWithDepressionScores.head() 

Creating Depression Classifications

We can also create a depression classification based off the NIMH threshold of 16.

In [32]: isDepressedList = [] 
depressionCutoff = 16 

for index, row in statusUpdatesWithDepressionScores.iterrows(): 
   if row['totalScore'] >= depressionCutoff: 
       isDepressedList.append(1) 
   else: 
       isDepressedList.append(0) 
        
statusUpdatesWithDepressionScores["isDepressed"] = isDepressedList 

Out[31]:
userid totalScore message

0
a54988e326d76a28f52a4b82d0efcd5d 10

still has Reversi skillz is back in
England. h...

2
ef3cdac5925aa968584c541faea886e6 4

On paradise from now ^^ Be good
but not too m...

3
66495ec54feb9e2399db05a67a80f2c6 16

is still awake at 4 a.m. oops! is
heading back...

7
b57dcbe1b484eb302cb9da59bf83f6a2 40

COLUMBUS, NO!!! is now officiallly
taking ap e...

3700
b57dcbe1b484eb302cb9da59bf83f6a2 41

COLUMBUS, NO!!! is now officiallly
taking ap e...

Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu


Sharon Babu




6/10/2018 project

file:///C:/Users/sharo/OneDrive/UC%20Irvine/Thesis/project.html 10/14

In [33]: statusUpdatesWithDepressionScores.head() 

Duplicating Non-Depressed Data

Finally, we will duplicate the non-depressed data so that the two classes are more equally represented.

In [37]: notDepressed = statusUpdatesWithDepressionScores[statusUpdatesWithDepressionSc
ores.isDepressed == 0] 
duplicatedData = statusUpdatesWithDepressionScores 
duplicatedData = duplicatedData.append([notDepressed], ignore_index=True) 

In [38]: np.count_nonzero(duplicatedData["isDepressed"])/len(duplicatedData["isDepresse
d"]) 

In [39]: np.count_nonzero(statusUpdatesWithDepressionScores["isDepressed"])/len(statusU
pdatesWithDepressionScores["isDepressed"]) 

Depressed users now represent about 60% of the data (as opposed to about 75% before).

Out[33]:
userid totalScore message isDepressed

0
a54988e326d76a28f52a4b82d0efcd5d 10

still has Reversi
skillz is back in
England. h...

0

2
ef3cdac5925aa968584c541faea886e6 4

On paradise from
now ^^ Be good but
not too m...

0

3
66495ec54feb9e2399db05a67a80f2c6 16

is still awake at 4
a.m. oops! is
heading back...

1

7
b57dcbe1b484eb302cb9da59bf83f6a2 40

COLUMBUS, NO!!!
is now officiallly
taking ap e...

1

3700
b57dcbe1b484eb302cb9da59bf83f6a2 41

COLUMBUS, NO!!!
is now officiallly
taking ap e...

1

Out[38]: 0.5900527505651846

Out[39]: 0.7421800947867299
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Model Training and Evaluation with TF-IDF and
Regression

We will now prepare our features for training using TF-IDF, as well as put our target variables in NumPy arrays
that can be used by the SciKit-Learn library.

In [41]: vectorizer = TfidfVectorizer(analyzer="word", stop_words=nltkEnglishStopwords) 
tfidfmatrix = vectorizer.fit_transform(duplicatedData["message"]) 
depressionClassifications = np.array(duplicatedData["isDepressed"]) 
depressionScores = np.array(duplicatedData["totalScore"]) 

This demonstration shows linear regression being used with TF-IDF, and then the corresponding confusion
matrix.

In [42]: X_train, X_test, y_train_scores, y_test_scores = train_test_split(tfidfmatrix,
depressionScores, test_size=0.1) 
y_train = np.array([0 if y<16 else 1 for y in y_train_scores]) 
y_test = np.array([0 if y<16 else 1 for y in y_test_scores]) 

In [43]: lr = LinearRegression() 
lr.fit(X_train, y_train_scores) 

In [44]: lr_train_predicted_scores = lr.predict(X_train) 
lr_train_predicted = np.array([0 if r<16 else 1 for r in lr_train_predicted_sc
ores]) 

lr_test_predicted_scores = lr.predict(X_test) 
lr_test_predicted = np.array([0 if r<16 else 1 for r in lr_test_predicted_scor
es]) 

In [45]: accuracy_score(y_train, lr_train_predicted) 

In [46]: accuracy_score(y_test, lr_test_predicted) 

In [47]: np.count_nonzero(y_train)/len(y_train) 

In [48]: np.count_nonzero(y_test)/len(y_test) 

Out[43]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

Out[45]: 0.97571189279731996

Out[46]: 0.91729323308270672

Out[47]: 0.5896147403685092

Out[48]: 0.5939849624060151
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We see that we get a train accuracy of 97.6%, and a test accuracy of 91.7% (compared to our baseline
accuracies of 59.0% and 59.4%).

In [50]: lr = LinearRegression() 
lr_predicted_scores = cross_val_predict(lr, tfidfmatrix, depressionScores) 
lr_predicted = np.array([0 if l<16 else 1 for l in lr_predicted_scores]) 

In [51]: accuracy_score(depressionClassifications, lr_predicted) 

Using cross-validation, we get a confusion matrix of 88.0%.

In [54]: plt.clf() 
cnf_matrix = confusion_matrix(depressionClassifications, lr_predicted) 
class_names = [0, 1] 
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title=
"Linear Regression TF-IDF") 
plt.tight_layout() 
plt.show() 

We can see our true positive rates and true negative rates are both high, and that our false positive rate is higher
than the false negative rate (good from a disease prevention viewpoint).

Probabilities of Predicting Depressed vs. Total
Depression Score

Out[51]: 0.88018085908063304

Normalized confusion matrix 
[[ 0.81617647  0.18382353] 
 [ 0.07535121  0.92464879]] 
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Using a random forest classification model, we can see that the probability of predicting depressed increases as
total depression score increases. This is useful for situtations where we want to make sure we identify depressed
individuals who may be at higher risk for more dangerous behaviors.

In [55]: rf = RandomForestClassifier() 
rf.fit(X_train, y_train) 

In [56]: rf.score(X_train, y_train) 

In [57]: rf.score(X_test, y_test) 

In [58]: probs = rf.predict_proba(X_test) 

In [63]: def plotProbsAndScores(probs, y_test_scores): 
   plt.clf() 
    
   depressedProbs = [p[1] for p in probs] 
    
   plt.scatter(y_test_scores, depressedProbs, color="blue") 
   fit = np.polyfit(np.array(y_test_scores, dtype=float), np.array(depressedP
robs, dtype=float), deg=1) 
   plt.plot(y_test_scores, fit[0]*y_test_scores + fit[1], color="red") 
    
   plt.xlabel("Depression Score") 
   plt.ylabel("Probability of Predicting Depressed") 
   plt.title("Probability of Predicting Depressed -- Random Forests") 
   plt.tight_layout() 
   plt.show() 

Out[55]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', 
            max_depth=None, max_features='auto', max_leaf_nodes=None, 
            min_impurity_decrease=0.0, min_impurity_split=None, 
            min_samples_leaf=1, min_samples_split=2, 
            min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, 
            oob_score=False, random_state=None, verbose=0, 
            warm_start=False)

Out[56]: 0.98743718592964824

Out[57]: 0.84210526315789469
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In [62]: plotProbsAndScores(probs, y_test_scores) 


