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ABSTRACT OF THE DISSERTATION

An Efficient Foundation for Big Data Processing on Modern Clusters

By

Vinayak Borkar

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2016

Professor Michael J. Carey, Chair

In recent years, the world has seen an explosion in the amount of data being generated. Google

proposed the MapReduce framework to allow programmers easily process massive amounts of

data in parallel using a cluster of shared-nothing commodity machines. What started out as a tool

for human efficiency subsequently began to be used as an intermediate representation for queries

compiled from higher-level declarative languages. In this thesis, we present an alternate software

stack for building scalable Big Data systems. We specifically focus on two parts of the stack.

Hyracks is a new partitioned-parallel runtime layer that provides an efficient, generalized model

for executing data-processing jobs on a cluster of commodity machines. Algebricks is a compiler

framework that helps to build high-level declarative language compilers for parallel processing on

top of Hyracks.
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Chapter 1

Introduction

In recent years, the world has seen an explosion in the amount of data. Initially, this data growth

was triggered by the popularity of the Internet, but in the last few years, the growth of social

networks such as Facebook, and micro-blogging services such as Twitter, have been responsible

for producing ever-growing volumes of data. Over the same period of time, the declining cost

of hardware has made it economically possible to set up sizable clusters of cheap computers to

store and process this data. However, programming a cluster of shared-nothing computers is not

an easy problem. Parallel programming has always been a hard problem, mostly owing to the lack

of high-level abstractions to simplify the task.

Google, being at the forefront of this data-tsunami building a web-scale search engine, built the

MapReduce [27] programming model to enable their programmers to be productive on shared-

nothing clusters. The MapReduce platform motivated the creation of the Hadoop [1], an open

source implementation of the MapReduce model. This development kick-started the new age of

Big Data systems.

Initially, programmers used the MapReduce system to implement tools to quickly comb through

very large amounts of data stored on clusters of commodity machines. Over time, it was clear that

1



writing these tools in imperative languages, for analysis, was not the best use of programmers’

time. To further improve programmer productivity, higher-level declarative languages were im-

plemented (Sawzall [56] and Tenzing [48], at Google, and Hive [15], at Facebook). The runtime

layer used to process queries by these systems was still the MapReduce platform. While MapRe-

duce was a simple model for programmers writing simple tools, we believed that it was the wrong

layer for query language compilers to target, as their runtime layer. Sticking to the MapReduce

abstraction forced queries to be evaluated as a sequence of MapReduce jobs with intermediate data

materialized in a distributed filesystem, thus using a whole lot of unneeded resources. Several

decades of database research has shown that pipelined architectures for executing queries consume

fewer system resources, making better use of available hardware. One other problem with the

MapReduce model was the reliance on unary operators for implementing Map and Reduce func-

tions. This limitation of the model forces the need to express binary operations (such as joins) in

an unnatural convoluted fashion. For example, Hive implements join over the MapReduce plat-

form by expressing the operation as a grouping of the tagged union of the two relations being

joined. Another type of inefficiency introduced by the MapReduce platform has to do with the

limited types of query processing algorithms that can be implemented within the framework, ow-

ing to the strict map-followed-by-sort-followed-by-reduce contract. For example, aggregation in

MapReduce is implemented using a sort-based strategy because sorting is built into the system. A

traditional parallel relational database system might have chosen a hash-based strategy to perform

aggregation. This choice would require that the platform provide data redistribution primitives

that offer more control. More details of these inefficiencies are described in Chapter 3. Based on

these observations, we designed and implemented Hyracks, a high-performance parallel dataflow

runtime layer.

Hyracks was being built in the context of AsterixDB [10], a full-fledged, semi-structured, parallel

big data management system that featured a fully functional declarative query language called

AQL. As we started to build the query compilation layer for AQL, we realized that there was an

opportunity to design the compilation framework in such a way that it could be re-purposed to

2



build other declarative languages to be evaluated on the Hyracks platform. We called this layer

Algebricks. Every query compiler built for parallel data-processing at the time ([15], [51]) was

being built from scratch with its own parser, an intermediate representation based on an algebra,

an optimizer to optimize queries, and finally a code generator to produce the runtime code. We

designed Algebricks to provide an algebraic intermediate representation that was general enough

to capture the semantics of the known languages, and also to be extensible to capture semantics of

new, yet-to-come query languages of the future. Algebricks provides a rule-based optimizer and

a library of generally applicable rewrite rules that can be used to quickly put together a compiler

for a new declarative language. Algebricks also provides a code generator that compiles optimized

queries to Hyracks jobs. Details of the Algebricks library can be found in Chapter 4.

Figure 1.1 shows the various layers of the software stack that rests on the Hyracks platform. Alge-

bricks, shown to the left of the figure, supports the AsterixDB compiler. In addition, we modified

the Hive compiler to use Algebricks and run Hive queries as Hyracks jobs. Apache VXQuery [47]

is an open-source XQuery processor that has since been built to use Algebricks as its compilation

framework to run queries over large amounts of XML data, on top of the Hyracks platform.

Figure 1.1: Asterix software stack

Hyracks has also been successfully used to implement a clone of Pregel [50], called Pregelix [21].

Pregelix implements a parallel framework to perform graph data processing at scale. Underneath,

3



it uses Hyracks to implement the Pregel model using dataflow primitives. In terms of performance,

it beats the foremost process-parallel open-source Pregel implementation called Giraph [13]. More

details about the implementation of Pregelix are out of scope of this thesis, but can be found in

[21].

We proceed next to explore the related work in this area in Chapter 2. In Chapter 3 we describe

the design and implementation of the Hyracks layer followed by that of Algebricks in Chapter 4.

Chapter 5 describes how AsterixDB was built using Hyracks and Algebricks. Finally, we conclude

in Chapter 6.
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Chapter 2

Related Work

In this chapter, we describe existing systems and research related to Big Data systems. Hyracks

builds upon prior work in the area of Parallel Database systems and Data-Intensive computing.

We start by providing a brief history of Parallel Database systems, followed by and overview of

Data-Intensive computing systems.

2.1 Parallel Database Systems

The period from the early 80s to the mid-90s of the previous century saw a flurry of work in the area

of parallel database systems, both in the research community as well as in industry. The Gamma

Database Machine Project [32, 33] was a parallel database research project that was developed

at the University of Wisconsin, Madison. Gamma was based on a shared-nothing architecture

consisting of a number of a number of processors connected to each other by a communication

network. The shared-nothing architecture showed promise of being scalable to 1000s of nodes.

Gamma applied partitioned-parallel techniques to process SQL queries over relational data. They

used hash-based parallel algorithms owing to their theoretical infinite scalability due to the lack of
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a need for centralized control. Gamma’s predecessor, DIRECT [19], had shown that centralized

control was an impediment to scalability.

Around the same timeframe as Gamma, the GRACE Database Machine project [34] was being

developed at the University of Tokyo, in Japan. The GRACE machine performed parallel query

processing using a combination of hashing and sorting. The Grace hash join was a by-product of

this project.

Teradata [58] was an industrial parallel database, also based on the shared-nothing architecture,

that used principles similar to Gamma and the GRACE projects. In the early 90s, Teradata was

already shipping parallel database systems that scaled to around 200 processors.

In [30], DeWitt and Gray provide an excellent summary of parallelization techniques that have

been successfully used by parallel database systems to achieve very high scalability.

2.2 Data-Intensive Computing Systems

The area of data-intensive computing was kick-started by the introduction of the MapReduce [27]

system by Google. MapReduce provided a simple programming abstraction for developers to build

data-processing tools that could process massive quantities of data distributed across thousands of

machines. The MapReduce platform assumes that data is organized as files that are split into blocks

and stored in a distributed filesystem (such as the Google Filesystem [35]). The MapReduce model

allows programmers to express data processing tasks by implementing a combination of Map and

Reduce functions. The infrastructure then applies these functions in parallel to large quantities of

data to achieve the final result. For example, if one was interested in counting the number of unique

words in a large number of text files, they would write a Map function that scanned through the

lines of the text file to tokenize each line into words and produce (¡word¿, 1) pairs. The MapRe-

duce contract guarantees that the provided Map function is invoked on each file provided as input

6



to the process. The infrastructure then sorts the output of the Map function on the key (the word,

in our word-count example), and uses a hash function to create a large number of partitions of

the (¡word¿, 1) pairs. The corresponding partitions produced by each Map function invocation are

merged to form the input to the Reduce functions, while maintaining the sorted property of the key.

In the word-count example, the Reduce function would be implemented to accept (¡word¿, count)

pairs and add up the counts of successive entries that have the same word value, thereby producing

the final number of occurrences of each word in the input documents. Since MapReduce targeted

clusters of cheap commodity machines, fault-tolerance was an important requirement. MapReduce

achieved fault-tolerance through repeated execution of failed Map and Reduce function invoca-

tions. Due to its simplicity in enabling data-parallel computing in a fault-tolerant manner, it was

quickly adopted by the open-source community to create the Hadoop [14] platform.

Microsoft introduced Dryad [44], a generalized data-parallel computing platform which abstracted

processing in the form of vertices and edges. Dryad allowed the programmer to instantiate an

arbitrary graph of these vertices and edges and run them in a fault-tolerant, parallel manner on a

cluster of commodity machines.

Nephele/PACTS [17], now renamed to Apache Flink, was a research system that extended the

MapReduce model to add other second-order operators, such as Match, Cross, and Co-group,

while still preserving the Map and Reduce operators.

Spark [63] is a Big Data processing platform that is built around the concept of Reliable Distributed

Datasets (RDDs). RDDs model datasets that are partitioned and distributed across the cluster.

These data partitions could either represent data stored on a distributed filesystem or data that

is pinned in memory. The Spark infrastructure manages these RDDs and guarantees that they

are reliably available to the processing layer, by recomputing partitions, if necessary. Spark has

achieved quite some success over the past few years as a dominant data-parallel compute platform

in the Hadoop stack. In recent years, it has replaced the Hadoop MapReduce layer for Big Data

processing.
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2.3 Extensible Database Systems

There have been a number of research projects over the last several decades that have focused on

developing extensible database frameworks so that system developers can assemble a full-fledged

database system by putting together pre-built components instead of starting from scratch. Gene-

sis [16] investigated the feasibility of decomposing database systems into smaller reusable compo-

nents.

Integration of abstract data types into database systems [59] was a first step into achieving data

model extensibility. EXODUS [22] was a system built in an era of object-oriented databases when

there was heavy experimentation at the language and data model levels. The high-level goal of EX-

ODUS was to provide a general configurable tool-set to build data management systems efficiently.

In this regard, the goals of this work are similar to those of EXODUS. However, EXODUS was not

designed with the aim to parallelize queries. The EXODUS optimizer generator [40] was built as

part of the EXODUS project to provide an extensible optimizer generator. System designers could

use its extensibility to implement their own equivalence rules that the rewriter applied to enumerate

query plans, much like the rewrite rule system in Algebricks. Volcano [38] and Cascades [39] took

the work from EXODUS further by adding support for parallelism.
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Chapter 3

Hyracks: A High-Performance Dataflow

Runtime Engine

In this chapter, we describe the design and implementation of Hyracks. Hyracks, as described in

Chapter 1, is an efficient, parallel, dataflow runtime layer that underpins the AsterixDB stack.

3.1 Hyracks Overview

Hyracks is a partitioned-parallel dataflow execution platform that runs on shared-nothing clusters

of computers. Large collections of data items are stored as local partitions distributed across the

nodes of the cluster. A Hyracks job (the unit of work in Hyracks), submitted by a client, processes

one or more collections of data to produce one or more output collections (also in the form of par-

titions). Hyracks provides a programming model and an accompanying infrastructure to efficiently

divide computations on large data collections (spanning multiple machines) into computations that

work on each partition of the data separately. In this section we utilize a small example to de-

scribe the steps involved in Hyracks job execution. We also provide an introductory architectural
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overview of the Hyracks software platform.

3.1.1 Example

As will be explained more completely in section 3.2, a Hyracks job is a dataflow DAG composed

of operators (nodes) and connectors (edges). Operators represent the job’s partitioned-parallel

computation steps, and connectors represent the (re-) distribution of data from step to step. Inter-

nally, an individual operator consists of one or several activities (internal sub-steps or phases). At

runtime, each activity of an operator is realized as a set of (identical) tasks that are clones of the

activity and that operate on individual partitions of the data flowing through the activity.

Let us examine a simple example based on a computation over files containing CUSTOMER and

ORDERS data drawn from the TPC-H [6] dataset. In particular, let us examine a Hyracks job to

compute the total number of orders placed by customers in various market segments. The formats

of the two input files for this Hyracks job are of the form:

CUSTOMER (C CUSTKEY, C MKTSEGMENT, . . . )

ORDERS (O ORDERKEY, O CUSTKEY, . . . )

where the dots stand for remaining attributes that are not directly relevant to our computation.

To be more precise about the intended computation, the goal for the example job is to compute the

equivalent of the following SQL query:

select C_MKTSEGMENT, count(O_ORDERKEY)

from CUSTOMER join ORDERS on C_CUSTKEY = O_CUSTKEY

group by C_MKTSEGMENT

A simple Hyracks job specification to perform this computation can be constructed as shown in

Figure 3.1. For each data source (CUSTOMER and ORDERS), a file scanner operator is used

to read the source data. A hash-based join operator receives the resulting streams of data (one
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with CUSTOMER instances and another with ORDERS instances) and produces a stream of

CUSTOMER-ORDERS pairs that match on the specified condition (C CUSTKEY = O CUSTKEY).

The result of the join is then aggregated using a hash-based group operator on the value of the

C MKTSEGMENT field. This group operator is provided with a COUNT aggregation function

to compute the count of O ORDERKEY occurrences within a group. Finally, the output of the

aggregation is written out to a file using a file writer operator.

As noted earlier, data collections in Hyracks are stored as local partitions on different nodes in

the cluster. To allow a file scanner operator to access the partitions, its runtime tasks must be

scheduled on the machines containing the partitions. As indicated in the figure, metadata provided

to the two file scanner operators specifies the machines where the partitions of the CUSTOMER

and ORDERS files are available. For the sake of this toy example, the CUSTOMER file has

two partitions that reside on nodes NC1 and NC2, respectively. The ORDERS file also has two

partitions, but each partition is two-way replicated; one can be accessed on either of nodes NC3 or

NC2, and the other on NC1 or NC5. (This information about replication gives Hyracks multiple

scheduling options for the ORDERS file scanner’s tasks.)

Moving downstream, our example Hyracks job specification computes the join in a partitioned

manner as well. To enable this, of course, the data arriving at the join tasks (join partitions) must

satisfy the property that CUSTOMER and ORDERS instances that match will be routed to the

same join task. In the job specification, every edge between two operators carries an annotation

indicating the data distribution logic to be used for routing data from the source (producer) par-

titions to the target (consumer) partitions. The example job in Figure 3.1 uses hash-partitioning

of the CUSTOMER and ORDERS instances on C CUSTKEY and O CUSTKEY, respectively, to

enforce the required data property for the join operator’s partitions. Hash-partitioning is then used

again to repartition the output partitions from the join operator to the grouping operator on the

C MKTSEGMENT field to ensure that all CUSTOMER-ORDERS pairs that agree on that field

will be routed to the same partition for aggregation. The final result of the job will be created as a
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set of partitions (with as many partitions as grouping operators being used) by using a 1:1 connec-

tor between the group operator and the file writer operator; the 1:1 connector will lead Hyracks to

create as many consumer tasks as there are producer tasks and route the results pairwise without

repartitioning.

When Hyracks begins to execute a job, it takes the job specification and internally expands each

operator into its constituent activities. This results in a more detailed DAG, as shown in Figure 3.2.

This expansion of operators reveals to Hyracks the phases of each operator along with any se-

quencing dependencies among them. The hash-based join operator in the example expands into

two activities; its first activity builds a hashtable on one input and the second activity then probes

the resulting hashtable with the other input in order to produce the result of the join. Note that the

build phase of the join operation has to finish before the probe phase can begin; this sequencing

constraint is captured as a dotted arrow (a blocking edge) in the figure from the join-build activity

to the join-probe activity. Similarly, the hash-based grouping operator in our example expands into

an aggregation activity that blocks an output generation activity to model the fact that no output can

be produced by the aggregator until it has seen all of its input data. The reason for having operators

express their internal phases (activities) in this manner is to provide Hyracks with enough insight

into the sequencing dependencies of the various parts of a job to facilitate execution planning and

coordination. Activities that are transitively connected to other activities in a job only through

dataflow edges are said to together form a stage. Intuitively, a stage is a set of activities that can be

co-scheduled (to run in a pipelined manner, for example). Section 3.3 describes more details about

this process.

The planning of the details of a job’s parallel execution is done in the order in which stages become

ready to execute. (A given stage in a Hyracks job is ready to execute when all of its dependencies,

if any, have successfully completed execution.) Figure 3.3 shows the runtime task graph that results

from planning the activities in a stage. While the figure depicts the tasks for all three stages of the

job, Hyracks actually expands each stage into tasks just prior to the stage’s execution. At runtime,
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the three stages in our example will be executed in order of their readiness to run. Hyracks will

start by running the scanning of CUSTOMER data along with the hash-build part of the join tasks,

pipelining (and routing) the CUSTOMER data between the parallel tasks of these initial activities.

Once the first stage is complete, the next stage, which probes the hashtable using the ORDERS data

and performs aggregation, will be planned and executed. After completion of the second stage, the

output generation tasks of the group-by operator along with the file writer tasks will be activated

and executed, thus producing the final results of the job. The job’s execution is then complete.
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Figure 3.1: Example Hyracks job specification
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Figure 3.2: Example Hyracks Activity Node graph

3.1.2 High-level Architecture

Figure 3.4 provides an overview of the basic architecture of a Hyracks installation. Every Hyracks

cluster is managed by a Cluster Controller process. The Cluster Controller accepts job execution

requests from clients, plans their evaluation strategies (e.g., computing stages), and then schedules

the jobs’ tasks (stage by stage) to run on selected machines in the cluster. In addition, it is respon-

13



�✁✁

�✁✂

�✂✁

�✂✂

✄☎✁

✄☎✁✆✆✝ ✄✞✟✠ ☎✡✟☛☞

✄✌✁✆✆✝ ✄✞✟✠ ✌✍✞✎✏

✑✒✁✆✆✓ ✑✔✕✖ ✒✗✗✍✏✗✔✘✏

✙✚✁✆✆✓ ✙✡✘✛✡✘ ✚✏✠✏✍✔✘✞✍

✄☎✂

✄☎✓

✄☎✝

✒✜✕ ✞✡✘✛✡✘ ✟✕ ✖✔✕✖

☞✟✕✘✍✟✎✡✘✏☞ ✘✞ ☎

☎ ✎☛✞✢✣✕ ✡✠✘✟☛ ✒ ✢✞✤✛☛✏✘✏✕

✒ ☎

✒ ☎

✒✜✕ ✞✡✘✛✡✘ ✟✕ ✛✟✛✏☞ ✘✞ ☎ ☞✟✍✏✢✘☛✥

✒ ☎

✄✌✁

�✘✔✗✏ ✁

✄✌✂

✄✌✓

✄✌✝

✑✒✓

✑✒✂

✑✒✁

✙✚✓

✙✚✂

✙✚✁

✦✓

✦✂

✦✁

�✘✔✗✏ ✂

�✘✔✗✏ ✓

Figure 3.3: Parallel instantiation of the example
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Figure 3.4: Hyracks system architecture

sible for monitoring the state of the cluster to keep track of the resource loads at the various worker

machines. The Cluster Controller is also responsible for re-planning and re-executing some or all

of the tasks of a job in the event of a failure. Turning to the task execution side, each worker ma-

chine that participates in a Hyracks cluster runs a Node Controller process. The Node Controller

accepts task execution requests from the Cluster Controller and also reports on its health (e.g., re-

source usage levels) via a heartbeat mechanism. More details regarding the controller architecture

and its implementation are provided in section 3.3.
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3.2 Computational Model

In this section, we describe the Hyracks approach to data representation and the Hyracks program-

ming model as they pertain to two broad classes of users: end users who use Hyracks as a Job

assembly layer to solve problems, and operator implementors who wish to implement new opera-

tors for use by end users. (Compilers for higher-level languages essentially fall into the first class

of users as well.) We also describe the built-in operators and connectors that are available as part

of the initial software distribution of Hyracks.

3.2.1 Data Treatment in Hyracks

In Hyracks, data flows between operators over connectors in the form of records that can have

an arbitrary number of fields. Hyracks provides support for expressing data-type-specific opera-

tions such as comparisons and hash functions. The type of each field is described by providing an

implementation of a descriptor interface that allows Hyracks to perform serialization and deseri-

alization. For most basic types, e.g., numbers and text, the Hyracks library contains pre-existing

type descriptors. The Hyracks use of a record as the carrier of data is a generalization of the (key,

value) concept found in MapReduce and Hadoop. The advantage of the generalization is that op-

erators do not have to artificially package (and repackage) multiple data objects into a single “key”

or “value” object ∗. The use of multiple fields for sorting or hashing also becomes natural in this

model. For example, the Hyracks operator library includes an external sort operator descriptor

that can be parameterized with the fields to use for sorting along with the comparison functions to

use. Type descriptors in Hyracks are similar to the Writable and WritableComparator interfaces

in Hadoop. However, a subtle but important difference is that Hyracks does not require the object

instances that flow between operators to themselves implement a specific interface; this allows

∗It is interesting to note that Apache Flink (previously known as Nephele/PACTS) switched to this model from the

key-value model recently.
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Hyracks to directly process data that is produced and/or consumed by systems with no knowledge

of the Hyracks platform or its interfaces.

3.2.2 End User Model

Hyracks has been designed with the goal of being a runtime platform where users can hand-create

jobs, like in Hadoop and MapReduce, yet at the same time to be an efficient target for the compilers

of higher-level programming languages such as Pig, Hive, or Jaql. In fact, the Hyracks effort was

born out of the need to create an appropriate runtime system for the ASTERIX project at UCI [3],

a project in which we are building a scalable information management system with support for

the storage, querying, and analysis of very large collections of semi-structured nested data objects

using a new declarative query language (AQL). Figure 3.5 shows the entire AsterixDB stack.

3.2.2.1 Hyracks Native User Model

A Hyracks job is formally expressed as a DAG of operator descriptors connected to one another

by connector descriptors, as was indicated in Figure 3.1. In addition to its input and output con-

nectors, an operator descriptor may take other parameters specific to its operation. For example,

the ExternalSortOperatorDescriptor in the Hyracks built-in operator library needs to know which

fields in its input record type are to be used for sorting, the comparators to use to perform the

sorting operation, and the amount of main memory budgeted for its sorting work.

Hyracks currently allows users to choose between two ways of describing the scheduling choices

for each of the operators in a job. One option is to list the exact number of partitions of an operator

to be created at runtime along with a list of choices of worker machines for each partition. Another

option is just to specify the number of partitions to use for an operator, leaving Hyracks to decide

the location assignments for each of its partitions.
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Figure 3.5: End User Models of Hyracks

3.2.2.2 Hyracks Map-Reduce User Model

MapReduce has become a popular paradigm for data-intensive parallel computation using shared-

nothing clusters. Classic example applications for the MapReduce paradigm have included pro-

cessing and indexing crawled Web documents, analyzing Web request logs, and so on. In the

open source community, Hadoop is a popular implementation of the MapReduce paradigm that is

quickly gaining traction even in more traditional enterprise IT settings. To facilitate easy migration

for Hadoop users who wish to use Hyracks, we have built a Hadoop compatibility layer on top of

Hyracks. The aim of the Hyracks Hadoop compatibility layer is to accept Hadoop jobs unmodified

and run them on a Hyracks cluster.

In MapReduce and Hadoop, data is initially partitioned across the nodes of a cluster and stored

in a distributed file system (DFS). Data is represented as (key, value) pairs. The desired

computation is expressed using two functions:

map (k1,v1) → list(k2,v2);

reduce (k2,list(v2)) → list(k3,v3).

A MapReduce computation starts with a map phase in which the map functions are applied in
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parallel on different partitions of the input data. The (key, value) pairs output by each map

function are then hash-partitioned on their key. For each partition, the pairs are sorted by their

key and sent across the cluster in a shuffle phase. At each receiving node, all of the received

partitions are merged in sorted order by their key. All of the pair values sharing a given key are

then passed to a single reduce call. The output of each reduce function is finally written to a

distributed file in the DFS.

To allow users to run MapReduce jobs developed for Hadoop on Hyracks, we developed two extra

operator descriptors that can wrap the map and reduce functionality.† The data tuples provided

as input to the hadoop mapper operator descriptor are treated as (key, value) pairs and, one

at a time, passed to the map function. The hadoop reducer operator descriptor also treats the input

as (key, value) pairs, and groups the pairs by key. The sets of (key, value) pairs that

share the same key are passed, one set at a time, to the reduce function. The outputs of the map

and reduce functions are directly output by the operator descriptors. To emulate a MapReduce

framework we employ a sort operator descriptor and a hash-based distributing connector descriptor.
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Figure 3.6: Hyracks plan for Hadoop jobs

Figure 3.6 shows the Hyracks plan for running a MapReduce job. After data is read by the scan

operator descriptor, it is fed into the hadoop mapper operator descriptor using a 1:1 edge. Next,

using an M :N hash-based distribution edge, data is partitioned based on key. (The “M” value

represents the number of maps, while the “N” value represents the number of reducers.) After

distribution, data is sorted using the sort operator descriptor and passed to the hadoop reducer

operator descriptor using a 1:1 edge. Finally, the hadoop reducer operator descriptor is connected

using a 1:1 edge to a file-writer operator descriptor.

†The combine functionality of MapReduce is fully supported as well, but those details are omitted here for ease

of exposition.
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3.2.3 Operator Implementor Model

One of the initial design goals of Hyracks has been for it to be an extensible runtime platform.

To this end, Hyracks includes a rich API for operator implementors to use when building new

operators. The implementations of operators made available “out of the box” via the Hyracks

operator library are also based on the use of this same API.

Operators in Hyracks have a three-part specification:

1. Operator Descriptors: Every operator is constructed as an implementation of the Operator

Descriptor interface. Using an operator in a job involves creating an instance of the descrip-

tor of that operator. The descriptor is responsible for accepting and verifying parameters

required for correct operation from the user during job assembly. During the job planning

phase, the descriptor is responsible for expanding itself into its constituent activities (as il-

lustrated back in Figure 3.2).

2. Operator Activities: Hyracks allows an operator to describe, at a high level, the various

phases involved in its evaluation. Phases in an operator usually create sequencing depen-

dencies that describe the order in which the inputs of the operator are required to be made

available and the order in which the outputs will become available. Again, Figure 3.2 showed

the expansions for the hash-join and the hash-based grouping operators into their component

activities. As a part of the expansion, activities indicate any blocking dependencies and the

mapping of overall operator inputs and outputs to the activities’ inputs and outputs. For ex-

ample, when the hash-join operator is expanded, it indicates to Hyracks that its join-build

activity consumes one input and its join-probe activity consumes the other. It also indicates

that its join-probe activity produces the output. At a high level, this describes to Hyracks

that the second input is not required to be available until the stage containing the join-build

activity is complete. Conversely, it also indicates that output from the join will not be avail-

able until the stage containing the join-build activity is complete. Hyracks then uses this
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information to plan the stages of a job in order of necessity. Deferring planning to the mo-

ment just prior to execution allows Hyracks to use current cluster conditions (availability of

machines, resource availability at the various machines, etc.) to help determine the schedule

for a stage’s tasks.

3. Operator Tasks: Each activity of an operator actually represents a set of parallel tasks to be

scheduled on the machines in the cluster. Tasks are responsible for the runtime aspect of the

activity – each one consumes a partition of the activity’s inputs and produces a partition of

its output. The tasks corresponding to activities of the same partition of the same operator

may need to share state. For example, the join-probe task needs to be given a handle to

the hashtable constructed by the join-build task. To facilitate such state sharing, Hyracks

co-locates those tasks that belong to a given partition of an activity of the same operator. For

example, in Figure 3.3, the join-probe tasks are co-located with their corresponding join-

build tasks. Note that the join-build task will no longer be active when the join-probe task

is scheduled, but Hyracks provides a shared context for the two tasks to use to exchange the

required information. In the future we plan to explore alternative state transfer mechanisms

(albeit at a higher cost), e.g., to use when co-location is impossible due to resource constraint

violations at a machine. In terms of operator implementation, the implementor of a new

operator can implement the runtime behavior of its activities by providing single-threaded

implementations of an iterator interface (a la [37]), much as in Gamma [33].

3.2.4 Hyracks Library

Hyracks strongly promotes the construction of reusable operators and connectors that end

users can then just use to assemble their jobs. Hyracks, as part of its software distribution,

comes with a library of pre-existing operators and connectors. Here we briefly describe some

of the more important operators and connectors.

20



3.2.4.1 Operators

• File Readers/Writers:

– Line File Reader/Writer: Reads/writes files from/to the local file system, treating a file as

a sequence of lines.

– Delimited File Reader/Writer: Reads/writes files from/to the local file system; the files

contain records separated by record delimiters, and the records contain fields separated by

field delimiters.

– HDFS File Reader/Writer: Reads/writes files from/to the Hadoop Distributed File system.

• Mappers:

– Native mapper: Used to evaluate a function once for each item in the input. Mappers can

be used to implement traditional operators such as projection and selection.

– Hadoop Mapper: Used to call the Mapper interface in the Hadoop MapReduce library. It

is used by the compatibility layer to invoke Hadoop mappers.

• Sorters:

– In-memory Sorter: Uses main memory to sort its input.

– External Sorter: Tries to use a main memory allocation to sort its input data, but when the

input does not fit into memory, it creates and merges runs on disk.

• Joiners:

– In-memory Hash Joiner: Performs an equijoin by using memory to build a hash-table on

one input and then probing the table with the other input.

– Hybrid Hash Joiner: Performs an equijoin using the hybrid hash-join algorithm [37].

– Grace Hash Joiner: Performs an equijoin using the Grace hash-join algorithm [37].

• Aggregators:
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– Hash-based Aggregator: Groups input data using an in-memory hash table. A custom

aggregator function is invoked for each group of the input data.

– Preclustered Aggregator: Groups input data using very little state assuming it is already

clustered on the grouping fields.

3.2.4.2 Connectors

Connectors distribute data produced by a set of sender operators to a set of receiver opera-

tors.

• M:N Hash-Partitioner: Hashes every tuple produced by senders (on a specified set of

fields) to generate the receiver number to which the tuple is sent. Tuples produced by the

same sender keep their initial order on the receiver side.

• M:N Hash-Partitioning Merger: Takes as input sorted streams of data and hashes each

tuple to find the receiver. On the receiver side, it merges streams coming from different

senders based on a given comparator, thus producing ordered partitions.

• M:N Range-Partitioner: Takes the position k of the partitioning field and a set of disjoint

n ranges, each range associated with one of the n receiver operators. (The field at position k

must always contain integer values.) Every tuple produced by a sender is distributed to the

receiver associated with the range in which the value of the k-th field lies.

• M:N Replicator: Copies the data produced by every sender to every receiver operator.

• 1:1 Connector: Connects exactly one sender to one receiver operator.

3.3 Hyracks Implementation details

In this section we describe some of the details of the Hyracks implementation. We first describe

the control portion of Hyracks, which maintains cluster membership and performs job scheduling,
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tracking, and recovery. We then discuss some of the salient implementation details of modules that

help Hyracks to run its operators and connectors efficiently.

3.3.1 Control Layer

As was shown in Figure 3.4, a Cluster Controller (CC) is used to manage a Hyracks cluster. Worker

machines are added to a Hyracks cluster by starting a Node Controller (NC) process on that ma-

chine and providing it with the network address of the Cluster Controller process whose cluster

it is to join. The NC then initiates contact with the CC and requests registration. As part of its

registration request, the NC sends details about the resource capabilities (number of cores, etc.) of

its worker machine. On successful registration, the CC replies to the NC with the rate at which the

NC should provide heartbeats back to the CC to maintain continued membership in the cluster.

On receiving a job submission from a client, the CC infers the stages of the job (as was illus-

trated in Figures 3.2 and 3.3). Scheduling of a stage that is ready to execute is performed using

the latest information available about the cluster. (This may happen much later than when the job

was submitted, e.g., in a long multi-stage job.) Once it has determined the worker nodes that will

participate in the execution of the stage, the CC initiates task activation on those worker nodes in

parallel by pushing a message to start the tasks. This is different from the way the Hadoop Job

Tracker disseminates tasks to the Task Trackers – Hadoop uses a pull model where the Task Track-

ers pull tasks from the Job Tracker by means of a periodic heartbeat. Although eagerly pushing

job start messages increases the number of messages on the cluster, we have adopted this approach

to minimize the wait time for tasks to start execution. This becomes increasingly important as a

platform tries to target short jobs. In the future, we will explore ways of minimizing the network

traffic for control messages by exploiting opportunities to piggyback multiple messages targeting

the same NC.

The control logic of the Hyracks Cluster Controller was initially implemented in Overlog [12]
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using the JOL [4] library. It was later reimplemented in Java due to performance concerns. We

describe the Overlog implementation here since it provides insight into the behavior of the control

layer in Hyracks.

Overlog is an extension of Datalog that has support for events. Integration with JOL was conve-

nient since both JOL and Hyracks are implemented in Java. The JOL implementation of Overlog

models data as tables of records with a declared schema. The fields in the tables can be arbitrary

Java objects. JOL allows Java code to register callbacks that are invoked by the Overlog interpreter

when modifications are made to the tables. JOL also allows insertion and deletion of records in a

table from Java. At a very high level, the Java code in the CC is used to translate events from the

outside world (clients submitting jobs and NC registrations/heartbeats) into inserts and deletes on

JOL tables. This action triggers the JOL interpreter to execute the JOL program which results in

modifications to one or more tables that have Java callbacks attached. When invoked with data that

is inserted into or deleted from the tables by JOL, these callbacks apply the desired effects in the

outside world (e.g., by sending start/abort task messages to the NCs). Figure 3.7 shows the role of

JOL and Java code as a controller framework.

Figure 3.7: Mixed Java/JOL controller framework

Table 3.1 shows a few of the JOL tables that are relevant to identifying the stages of a Hyracks job.
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When a job is submitted, the CC translates the job specification into insertions of records into the

operatordescriptor (one record per Operator Descriptor) and connectordescriptor (one record per

Connector Descriptor) tables. It then visits every Operator Descriptor in the job specification and

inserts a record into the activitynode table for every activity of each Operator Descriptor. As part of

the expansion of the Operator Descriptor into activities, a mapping from the Operator Descriptor

inputs (and outputs) to the Operator Task inputs (and outputs) is provided along with blocking

dependencies between activities. The input/output mapping is captured in the activityconnection

table while the blocking information is captured in the activityblocked table. Once the CC has

inserted records into these tables, it invokes the JOL runtime to evaluate the Overlog program.

Figure 3.7 shows the part of the Overlog program used by the Cluster Controller to infer stages of

activities and populate the activitystage rec and activitystage tables. The activitystage rec table

is populated using rules 1 thru 4 recursively and the final result of stage assignments to activities is

recorded in the activitystage table. The rules specified in Overlog can be summarized as follows:

1. Rule 1: Initially assume all activities can be evaluated in the earliest stage by inserting an

assignment of stage 0 to every activity in the activitynode table.

2. Rule 2: If an activity A1 must block on activity A2, and A1 is assigned a stage earlier than or

the same as A2, insert a stage assignment for A1 that is one greater than the stage assigned

to A2.

3. Rules 3 and 4: If activity A1 is connected to activity A2 through a Connector Descriptor,

and A1 and A2 belong to different stages, insert a stage assignment for A1 that is the later

of A1’s and A2’s stages. This rule occurs twice, once for A1 and once for A2, because the

connectordescriptor table captures a one-way connection whereas for the stage assignment

we concern ourselves with the existence of a connection. Intuitively, if we wish to co-

schedule (for pipelining) the activities connected by a data flow connector, they will both

need to be assigned to the latter of the stages to which they belong.
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Table 3.1: Tables identifying stages of a Hyracks job.
Table Name Table Attributes

operatordescriptor JobId, OperatorDescriptorId, OperatorDescriptor

connectordescriptor JobId, ConnectorDescriptorId, SourceOperatorId,

SourcePort, TargetOperatorId, TargetPort, ConnectorDescriptor

activitynode JobId, OperatorDescriptorId, ActivityId, Activity

activityconnection JobId, OperatorDescriptorId, OperatorPort,

Direction, ActivityId, ActivityPort

activitystage JobId, OperatorDescriptorId, ActivityId, StageNumber

activityblocked JobId, BlockingOperatorDescriptorId, BlockingActivityId,

BlockedOperatorDescriptorId, BlockedActivityId

4. Rule 5: Finally, the actual stage number associated with an activity is the maximum over all

of the stage number assignments and is captured in the activitystage table.

The scheduling and fault-recovery logic was also implemented in Overlog using the general princi-

ples described above. Although Overlog was very expressive and could succinctly represent most

logic that was necessary for performing scheduling actions and handling faults, it had some ma-

jor drawbacks. The simple act of assigning a monotonically increasing integer to each item in a

collection, which can be implemented to have linear complexity in any imperative language, is

a quadratic operation in Overlog. Assigning such an integer, involves repeatedly computing the

maximum number assigned so far, and assigning one more than that number to the “next” item in

the collection. Quite a few places in the Hyracks control layer needed the assignment of sequential

numbers (for example, the assignment of partition ids to the Hyracks Operator Nodes), and the

quadratic complexity of this operation created a performance bottleneck when the collection sizes

were large. This directly translated to longer scheduling times for large jobs. Since there was no

easy way to work around this issue (and it was not our focus, at that time), we decided to reim-

plement the control layer in Java to recapture all the lost performance in an expedient manner. It

would be interesting to investigate ways of adding efficient mechanisms for number assignment to

a language like Overlog.
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3.3.2 Task Execution Layer

Once a stage of a Hyracks job becomes ready to run, the CC activates the stage on the set of NCs

that have been chosen to run the stage and then waits until the stage completes or until an NC

failure is detected. In the remainder of this section we explore the task activation process and then

discuss some details of the implementation of the data-processing and data-movement aspects of

Tasks and Connectors, respectively.

3.3.2.1 Task Activation

When a stage becomes ready to run, the Cluster Controller sends messages to the Node Controllers

participating in that stage’s execution to perform task activation in three steps.

1. Receiver Activation: The CC initiates a ReceiverActivation request to every NC that partici-

pates in a stage’s execution. Each NC, on receipt of this request, creates the Task objects that

have been designated to run at that NC (as determined by the scheduler). For each Task that

accepts inputs from other Tasks, it creates an endpoint that has a unique network address.

The mapping from a Task object’s input to the endpoint address is relayed back to the CC as

the response to this request.

2. Sender-Receiver Pairing: Once the CC receives the ReceiverActivation responses containing

local endpoint addresses from the NCs, it merges all of them together to create a global

endpoint address map. This global map is now broadcast to each NC so that the send side of

each Task object at that NC knows the network addresses of its consumer Tasks.

3. Connection Initiation: Once pairing has completed on all NCs, the CC informs all of the

NCs that the Tasks can be started.
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3.3.2.2 Task Execution and Data Movement

The unit of data that is consumed and produced by Hyracks tasks is called a Frame. A frame is

a fixed-size (configurable) chunk of contiguous bytes. A producer of data packs a frame with a

sequence of records in a serialized format and sends it to the consumer who then interprets the

records. Frames never contain partial records; in other words, a record is never split across frames.

A naive way to implement tasks that process records is to deserialize them into Java objects and

then process them. However, this has the potential to create many objects, resulting in more data

copies (to create the object representation) and a burden on the garbage collector (later) to reclaim

the space for those objects. To avoid this problem, Hyracks provides interfaces for comparing and

hashing fields that can be implemented to work off of the binary data in a frame. Hyracks includes

implementations of these interfaces for the basic Java types (String, integer, float, etc.). Hyracks

also provides Task implementors with helper functions to perform basic tasks on the binary data

such as to copy complete records, copy specific fields, and concatenate records from source frames

to target frames.

A task’s runtime logic is implemented as a push-based iterator that receives a frame at a time from

its inputs and pushes result frames to its consumers. Note that the task-runtime only implements the

logic to process streams of frames belonging to one partition without regards to any repartitioning

of the inputs or outputs that might be required. Any repartitioning is achieved by using a Connector.

The connector runtime has two sides, the send-side and the receive-side. There are as many send-

side instances of a connector as tasks in the producing activity, while there are as many receive-

side instances as tasks in the consuming activity. The send-side instances are co-located with the

corresponding producer tasks, while the receive-side instances are co-located with the consuming

tasks. When a send-side instance of a connector receives a frame from its producing task, it applies

its redistribution logic to move records to the relevant receive-side instances of the connector. For

example, the M:N hash-partitioning connector in Hyracks redistributes records based on their hash-

value. The send-side instances of this connector inspect each record in the received frame, compute
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the hash-value, and copy it to the target frame meant for the appropriate receive-side instance.

When a target frame is full, the send-side instance sends the frame to the receive-side instance. If

the send-side and receive-side instances of a connector are on different worker machines (which

is most often the case), sending a frame involves writing it out to the network layer. The network

layer in Hyracks is responsible for making sure that the frame gets to its destination.

In order to use network buffers efficiently on the receive-side of a connector, Hyracks allows the

connector implementation to specify the buffering strategy for received frames. Figure 3.8 shows

two buffering strategies that could be chosen by a connector. If the receive-side logic of a connector

does not differentiate between the frames sent by the various send-side instances, it can choose to

use one network buffer for all senders. On the other hand, if the connector’s logic requires treating

frames from different senders separately, it can use one network buffer per send-side instance.

For example, the M:N hash-partitioning connector does not differentiate frames based on their

senders. However, an M:N sort-merge connector, which assumes that frames sent by a sender

contain records that are pre-sorted, needs to decide which sender’s frame to read next in order to

perform an effective merge.

Shared buffer One buffer per sender

Figure 3.8: Buffering strategies for connectors.
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3.4 Experimental Results

In this section we report the results of early performance comparisons (erformed in 2011) of

Hadoop and Hyracks as data-intensive computing platforms. First, we compare the performance

of jobs written using the MapReduce paradigm by running them on Hadoop and running the same

jobs unchanged on Hyracks using its Hadoop compatibility layer. Next, we show the difference

in performance that results from not being limited to the MapReduce model in Hyracks. Finally,

we explore the performance of Hadoop and Hyracks when node failures occur by using a simple

model for generating failures.

For all of the experiments shown in this section, we used a cluster of ten IBM machines each with

a 4-core Xeon 2.27 GHz CPU, 12GB of main memory, and four locally attached 10,000 rpm SATA

drives. The same cluster was used for Hyracks as well as Hadoop. The Hadoop version used was

0.20.1 (the latest release available when these experiments were performed, in 2011).

3.4.1 MapReduce on Hyracks

In this section, we compare the running times of three very different kinds of jobs (K-Means

clustering, a TPC-H style query, and Set-Similarity Joins) on Hadoop versus on Hyracks using the

compatibility layer.

3.4.1.1 K-Means

K-Means is a well known clustering algorithm that tries to find clusters given a set of points.

Mahout [2] is a popular open source project that includes a Hadoop implementation of the K-Means

algorithm as MapReduce jobs. The clustering problem consists of grouping a set of n points into

k clusters {Ci}i=1,k with centers {µi}i=1,k, such that each point is assigned to the cluster with the
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closest center. The K-Means MapReduce implementation [60] starts with a randomized algorithm

(called canopy computation) to heuristically determine the number of clusters that the K-Means

algorithm must try to find. The canopy MapReduce job finds k points to serve as initial centroids

of the k clusters that will then be refined by subsequent iterations of the K-Means algorithm. Each

iteration of the K-Means algorithm is also implemented as a MapReduce job. The Map phase scans

over the set of data points in the input and finds their closest centroid µj among the k centroids

computed in the previous step. Once the closest centroid is found, that input point is deemed to

belong to cluster j. The output of the Map phase is regrouped by the cluster assignment of each

point and routed to the Reducers. The Reduce phase computes a new cluster centroid for each of

the k clusters by averaging the coordinates of all points assigned to that cluster.
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Figure 3.9: K-Means on Hadoop and Hyracks

In Figure 3.9 we show separately the time taken by the canopy computation phase and by the

iterations for K-Means on both systems. We further explore the efficiency tradeoffs of Hyracks

vs. Hadoop as a data-platform by presenting the average running-time of the iterations both with

and without combiners in the two systems. Turning off combiners for the iterative part of the K-

Means algorithm increases dramatically the amount of data that is moved from the Map phase to

the Reduce phase (although it does not change the final result).
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From Figure 3.9 we see that the canopy computation phase benefits the least from running on

Hyracks since it is mostly CPU intensive. This phase initially (for 0.5 and 1 million points) shows

faster time to completion on Hyracks. However, as the size of the data grows from 1.5 to 3 million

points, the two lines essentially converge. This is because Hyracks runs the same CPU-intensive

user functions that Hadoop runs, and hence there is not much room for improvement there. On the

other hand, when much of a job’s time is spent in re-organizing data by partitioning and sorting,

running the MapReduce job on Hyracks performs better. The K-Means iteration results clearly

show this behavior. This improvement owes itself to the more efficient nature of the data-movement

layer that forms the foundation for the Hyracks operators and connectors.

In Hadoop, moving data from the mappers to the reducers is performed rather inefficiently. All

data from the mappers is written to disk before it is moved to the reducer side. When a reducer

is notified of a mapper’s completion, it initiates a pull of its partition using HTTP. The resultant

near-simultaneous fetch requests from all reducers to the mappers leads to disk contention on the

Map side as the reducers try to read all of the requested partitions from disk; there is also a surge

in network traffic created by such simultaneous requests [25].

In Hyracks, data is instead pushed from the producers to the consumers in the form of fixed sized

chunks (on the order of 32KB) incrementally, as they are produced. This leads to a much smoother

utilization of the network throughout the processing time of the producer. Also, since the pro-

ducer decides when a block is sent out, the aforementioned disk contention issue does not arise in

Hyracks.

3.4.1.2 Set-Similarity Joins

Set-Similarity Joins match data items from two collections that are deemed to be similar to each

other according to a similarity function. Work reported in [61] performed an extensive evaluation

of algorithms for computing such joins using the MapReduce framework. From that work we took
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Figure 3.10: Example data flow of Stage 1 of Set-Similarity Joins. (Basic Token ordering for a

self-join on attribute “a”.)

Figure 3.11: Example data flow of Stage 2 of Set-Similarity Joins. (Basic Kernel for a self-join on

attribute “a”.)

the best MapReduce algorithm to compare its performance on Hadoop vs. on Hyracks using the

Hadoop compatibility layer. This “fuzzy join” computation requires three stages of MapReduce

jobs, as shown in Figures 3.10, 3.11, and 3.12. The first stage tokenizes the input records and

produces a list of tokens ordered by frequency using two MapReduce jobs. The second stage (one

MapReduce job) produces record-id pairs of similar records by reading the original data and using

the tokens produced in the first stage as auxiliary data. The final stage of SSJ computes similar

record pairs from the record-id pairs from Stage 2 and the original input data using two MapReduce

jobs. We refer the reader to [61] for more details about the algorithm.
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Figure 3.12: Example data flow of Stage 3 of Set-Similarity Joins using Basic Record Join for

a self-join case. “a1” and “a2” correspond to the original attribute “a”, while “b1” and “b2”

correspond to attribute “b”.
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For comparing the performance of Set-Similarity Joins (SSJ), we used the algorithm shown in the

figures to find publications with similar titles in the DBLP dataset [26] by performing a join of the

DBLP data with itself. In order to test performance for different sizes of data, we increased the

DBLP data sizes to 5x, 10x, and 25x over the original dataset (which contains approximately 1.2M

entries) using the replication scheme of [61]. Table 3.2 shows the running times for the three stages

of the SSJ algorithm on the three different sizes of data. The row labeled “Hadoop” represents the

time taken to run each stage as a Hadoop job; “Compat” shows the time taken to run the same

MapReduce jobs using the compatibility layer on Hyracks (Please ignore the row labeled “Native”

for now; it will be explained shortly).

Table 3.2: Size-up for Parallel Set-Similarity Joins (10 nodes)

Stage 1 Stage 2 Stage 3 Total time

5x

Hadoop 75.52 103.23 76.59 255.34

Compat 24.50 38.92 23.21 86.63

Native 11.41 32.69 9.33 53.43

10x

Hadoop 90.52 191.16 107.14 388.82

Compat 42.15 128.86 38.47 209.49

Native 16.14 81.70 14.87 112.71

25x

Hadoop 139.58 606.39 266.26 1012.23

Compat 105.98 538.74 60.62 705.34

Native 34.50 329.30 27.88 391.68

In the column labeled “Stage 1” in Table 3.2, we see that the MapReduce jobs running on Hadoop

scale smoothly with increasing data sizes. The Hadoop compatibility layer on Hyracks also shows

this trend. However, the job running on Hyracks is faster because it benefits from two improve-

ments: low job startup overhead and more efficient data movement by the infrastructure. Hyracks

uses push-based job activation, which introduces very little wait time between the submission of a

job by a client and when it begins running on the node controllers.

In the column labeled “Stage 2” in Table 3.2, we observe a near constant difference between the

running times of Hadoop and Hyracks. This is because most of the time in this stage is spent in

the Reducer code that uses a quadratic algorithm [61] to find matching records. The key thing to
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note is that most of the work in this stage is done in the Reduce phase in user-defined code, so the

only improvement we can expect is due to lower overhead of the infrastructure.

The column labeled “Stage 3” in Table 3.2, shows that at 5x data size, the ratio of the Hadoop

completion time to the Hyracks compatibility layer completion time is 3.3; the ratio drops to about

2.8 at the 10x data size. As the amount of data grows to 25x, we see the compatibility layer

completing about 4 times faster than Hadoop. This is because Stage 3 performs two “joins” of the

record-ids with the original data to produce similar-record-pairs from the similar-record-id-pairs

that were produced by the previous stage. Every join step reshuffles all of the original input data

from the Map to the Reduce phase, but the output of the join is fairly small. Most of the work is

thus performed in moving the data (as the Map and Reduce code is fairly simple). At smaller data

sizes, Hadoop times are dominated by startup overhead, while for larger data sizes the dominating

factor is data redistribution.

3.4.1.3 TPC-H

The TPC-H query is the query from the Hyracks running example that was introduced in Sec-

tion 3.1.1. Figure 3.13 shows the structure of the two MapReduce jobs corresponding to the run-

ning example from Figure 3.1.

The first MapReduce job in Figure 3.13 performs the join using the tagged-join method described

in [55], while the second job computes the aggregation. The Mapper of the first job generates the

value field as a tagged output that indicates whether the record is from the CUSTOMER source or

the ORDER source. The associated key is generated by extracting the C CUSTKEY field if it is a

customer record or the O CUSTKEY if it is an ORDER record. The Reducer of the join job then re-

ceives all records (both CUSTOMER and ORDER) that match on the join key. The Reducer func-

tion then generates the CUSTOMER-ORDER pairs to be sent to the output. The data generated

from this first MapReduce job is used as the input for the second MapReduce job, which performs
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Figure 3.13: Hadoop implementation of TPC-H query from Fig. 3.1.

the aggregation step by grouping the data on the value of the C MKTSEGMENT field and then

computing the desired count. The Mapper of this job produces the value of C MKTSEGMENT

as the key and the CUSTOMER-ORDER pair as the value. The Reducer thus receives a list of

CUSTOMER-ORDER pairs for the same value of C MKTSEGMENT that it then counts. The

final query output is emitted as a pair of C MKTSEGMENT and count values.

As with the other tasks, we measured the end-to-end response time of the jobs by running them

on Hadoop and comparing that with the time it took to run the same MapReduce jobs on Hyracks

using the compatibility layer. In addition to the standard configuration of running the two MapRe-

duce jobs sequentially, with HDFS used to store the intermediate join result, we also executed the

compatibility layer with “pipelining” between jobs turned on. In this case the join job pipelines

data to the aggregation MapReduce job without the use of HDFS.

As we see from Figure 3.14, TPC-H on Hadoop takes about 5.5 times the time taken by the com-

patibility layer on Hyracks for smaller data sizes (scale 5). Job start-up overhead in Hadoop is

responsible for this slowness. As data sizes grow, we observe that the running times for Hadoop

and the compatibility layer grow super-linearly. This is not surprising since there are two sort steps
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involved, one in the first MapReduce job to perform the join of CUSTOMER and ORDER data,

and the second to perform aggregation in the second MapReduce job. The result of the join is quite

large, and hence a substantial amount of time is spent in partitioning and sorting. To measure the

time spent in writing the join results to HDFS and reading it back in, we also ran in compatibility

mode with pipelining turned on. We observe from Figure 3.14 that I/O to and from HDFS adds

significant overhead. At scale 40, the compatibility layer takes about 133 seconds (about 25%

longer than the pipelined execution). Note however that all of the MapReduce running times ex-

hibit a super-linear curve owing to the sort operations (We will ignore the “Hyracks Native” curve

for now).
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Figure 3.14: TPC-H query from Fig. 3.1 with Hadoop and Hyracks.

3.4.2 Beyond MapReduce

We now show the results of running two experiments to study the performance improvements

obtainable in Hyracks by not being restricted to the MapReduce programming model. We present

results for Set-Similarity Joins and the TPC-H join/aggregate example query.
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3.4.2.1 Set-Similarity Joins (Take 2)
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Figure 3.15: Hyracks-native plan for Stage 1 of Set-Similarity Self-Joins.
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Figure 3.16: Hyracks-native plan for Stage 2 of Set-Similarity Self-Joins.

�✁✂✄✄☎✆

✝✞✟✠✡✞☛�☞

✌✂✍✎ ✏✑✒✄

✞✟✠✡✞☛✓✞✔☛✕

✞✔☛✖✗✔✞✓✞✔☛✘

✙✆✒✚☎✆

✝✞✟✠✡✞☛✖✗✔✞�☞

✘✛✘�✁✂✄✄☎✆

✝✞✔☛✖✗✔✞�☞

✜✛✢

✎✂✍✎✝✞✔☛☞

✜✛✢

✎✂✍✎✝✞✔☛✘☞

�✁✂✄✄☎✆

✝✞✟✠✡✞☛�☞

✌✂✍✎ ✏✑✒✄

✞✟✠✡✞☛✓✞✔☛✕

✞✔☛✖✗✔✞✓✞✔☛✣

✜✛✢

✎✂✍✎✝✞✔☛✣☞

✜✛✢

✎✂✍✎✝✞✔☛☞

Figure 3.17: Hyracks-native plan for Stage 3 of Set-Similarity Self-Joins.

Figures 3.15, 3.16, and 3.17 show the native Hyracks job specifications to implement the three

stages of the Hadoop based Set-Similarity Join examined in the previous subsection.

In Table 3.2, the row labeled “Native” shows the time required by the Hyracks jobs to perform Set-

Similarity Joins. We can now compare these times to those that we examined previously. These

faster Native times are due in part to the savings already discussed, but here we also see additional
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algorithmic benefits. Stage 1 benefits the most from the Native formulation due to the use of hash

based grouping, which does not need to sort the input data like in Hadoop. Stage 3, in the Native

case, benefits from using hash join operators that perform the joins by building a hash-table on one

of their inputs and then probing the table using the other input. This strategy is cheaper than first

sorting both inputs on the join key to bring the matching values from both the sides together (which

is what happens in Hadoop). In Stage 2, we used sort-based grouping since it performed slightly

better than its hash-based counterpart. Usually, hash-based aggregation works well for traditional

aggregates when grouping is performed on relatively low cardinality attributes, as compression

is achieved by the aggregation. In the case of Stage 2, however, the grouping operation is used

to separate the input into groups without applying an incremental aggregation function. The sort

operator in Hyracks implements the “Poor man’s normalized key” optimization mentioned in [41]

which can be exploited when building Hyracks Native jobs. This optimization helps in terms of

providing cheaper comparisons and better cache locality. After sorting, the “aggregation” function

performs a quadratic scan of the items within each group. This is seen in Table 3.2 as a super-linear

growth in the completion time for Stage 2.

In summary, we see that the Native formulation of Set-Similarity Joins run about 2.6 to 4.7 times

faster than their MapReduce formulation running on Hadoop and about 1.6 to 1.8 times faster than

running the same MapReduce jobs on Hyracks using its compatibility layer.

3.4.2.2 TPC-H (Take 2)

We now compare the two MapReduce TPC-H implementations with the native Hyracks implemen-

tation. The “Hyracks Native” line in Figure 3.14 shows the results of natively running the TPC-H

query in Figure 3.1. Notice that for large data the TPC-H query executes on Hyracks much faster

than the MapReduce counterparts on Hadoop or on Hyracks via the compatibility layer. As in

the native expression of Set-Similarity Joins, this is due in part to the fact that the TPC-H query

uses hash-joins and hash-based aggregation. In addition, Hyracks does not need to materialize
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intermediate results between the joiner and the aggregator. In contrast, since Hadoop accepts one

MapReduce job at a time, it needs to persist the output of the Join job for this example in HDFS.

To minimize the “damage” caused by this materialization on the Hadoop completion time, we set

the replication factor in HDFS to 1 (meaning no replication). We observe that the Hyracks job

scales linearly with growing data size since all operations in the pipeline have linear computational

complexity for the memory and data sizes considered here.

To conclude, Hyracks is a more efficient alternative to Hadoop for MapReduce jobs, and even

greater performance benefits can be achieved by not being restricted to the MapReduce program-

ming model. Here we have compared the performance characteristics of Hadoop and Hyracks

in detail for K-Means clustering, Set-Similarity joins, and an example TPC-H query. We have

measured even greater benefits for simpler jobs. For example, the standard Hadoop Word-Count

MapReduce job on 12 GB of data ran approximately twice as fast on Hyracks using the compatibil-

ity layer than on Hadoop, and a Native Word-Count implementation on Hyracks ran approximately

16 times as fast as the Hadoop MapReduce version.

3.4.3 Fault Tolerance Study

A system designed to run on a large number of commodity computers must be capable of detecting

and reacting to possible faults that might occur during its regular operation. In this part of the

thesis, we perform a very simple experiment to illustrate the fact that, while being able to run jobs

through to the end despite failures is valuable, doing so by being pessimistic and ever-prepared for

incremental forward-recovery is not a general “right” answer. Hadoop uses a naive strategy based

on storing all intermediate results to durable storage before making progress. While such a naive

strategy is a safe first approach, we wish to begin exploring the path of applying more selective

fault-tolerance. Hyracks is in a better position to exploit operator and connector properties to

achieve the same degree of fault tolerance while doing less work along the way. As our first step
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in this direction, the Hyracks fault-tolerance strategy that we use for the experiment in this section

is to simply restart all jobs impacted by failures. Although such a strategy cannot be the only

one in a system like Hyracks, we believe that this is actually an effective strategy for smaller to

medium-sized jobs.

We used the TPC-H example query shown in Figure 3.1 on data scale 40 for this experiment. In

our experimental set-up, we had the client submit the same job request over and over again in

an infinite loop without any think time and we measured the observed completion time for every

request. Separately, we killed a randomly chosen cluster node at regular intervals. In different

runs of the experiment, we changed the mean time between failures from 100 seconds to 1600

seconds. The same experiment was performed with the jobs running on Hyracks and then with the

corresponding jobs running on Hadoop. Figure 3.18 shows the observed request completion time

(retry times included) for the two systems for different MTBF (mean time between failure) values.

The data inputs to the jobs in both systems were replicated so that a node failure could still allow

progress of the job.
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Figure 3.18: TPC-H query from Fig. 3.1 in the presence of failures.

In Hadoop in order to provide as much isolation from failures as possible, every map task writes
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its output to the local disk before its data is made available to the reducer side. On the reducer side,

every partition fetched from every map task is written to local disk before a merge is performed.

The goal of the extra I/O in Hadoop is to make sure that at most one task needs to be restarted

when a failure occurs. In the current implementation of Hyracks, however, data is pipelined from

producers to consumers, so a single failure of any one node requires a restart of all of the operators

that are currently part of the same pipelined stage.

We observe from Figure 3.18 that Hyracks runs the TPC-H job to completion faster even when

failures are injected into the cluster very frequently. Note also that, since a given Hyracks job runs

to completion much faster than the “fault-tolerant” Hadoop job, a given Hyracks job is less likely

to be hit by a failure during its execution in the first place.

As we mentioned earlier, a strategy that requires a complete restart cannot be the only fault recovery

strategy in a system. If the mean time between failures is less than the mean time to complete a

job, then such a job may never complete.

3.5 Conclusion

This chapter described the design and implementation of Hyracks. Hyracks was built from the

group-up to serve as an efficient, parallel, dataflow runtime platform. Based on the the performance

comparison performed with the Hadoop MapReduce layer for a variety of tasks, we can conclude

that the design philosophy of Hyracks has merit. Since its availability as an open-source project,

Hyracks has also proven to be a successful research platform that has been used to build various

other systems on top of. For example, Hyracks has been used to build the Pregelix layer to perform

graph analytics at massive scale, which in turn has been used to solve graph problems arising in

the field of genetics.
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Chapter 4

Algebricks: A Data Model-Agnostic

Compiler Backend

In this chapter, we describe the design and implementation of the Algebricks layer. As we started

to build the AQL compiler for the AsterixDB platform, we realized that having a generic com-

piler framework to compile declarative languages to evaluate using a parallel dataflow platform

like Hyracks would be useful to the community at large. Based on prior research in the area of

extensible systems and query algebras, we designed the Algebricks library to help query language

implementors avoid spending time building a lot of boiler plate code that goes into implementing

a full-fledged compiler. Algebricks, along with Hyracks, enables query language implementors to

have a complete parallel query compiler in a matter of days.

4.1 The Algebricks Framework

Algebricks is an algebraic layer for parallel query processing and optimization. To be useful to

implement various data-intensive query languages, Algebricks has been carefully designed to be
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agnostic of the data model of the data that it processes. Logically, operators operate on collections

of tuples containing data values. The types and formats of data values carried inside a tuple are

not specified by the Algebricks toolkit; language implementors are free to define any value types

as abstract data types. For example, a language developer implementing a SQL compiler on top

of Algebricks would define SQL’s scalar data types to be the data model, provide a type computer

for SQL expressions, and implement runtime functions such as scalar functions and aggregate

functions as well as runtime operations such as comparison and hashing. AQL [10] has a richer set

of data types, including various collection types and nested types, and these have been implemented

on top of the Algebricks API as well.

The Algebricks framework consists of the following parts:

• A set of logical operators,

• A set of physical operators,

• A rewrite rule framework,

• A set of generally applicable rewrite rules,

• A metadata provider API that exposes metadata (catalog) information to Algebricks, and,

• A mapping of physical operators to the runtime operators and connectors in Hyracks.

Compilation Flow. Figure 4.1 shows the typical sequence of compilation steps followed by a

query processor built using Algebricks. An incoming query string is first lexically analyzed and

parsed to construct an abstract syntax tree (AST). This AST is then translated into the Algebricks

logical plan, which is composed of logical operators (described in Section 4.1.2) and serves as an

intermediate representation to perform the next steps involved in query compilation. Type infer-

ence and checking is done over the initial logical plan, using a language-provided expression type

computer which infers the type and checks type errors for each individual expression. The logical

plan is then handed to the logical optimizer which rewrites it heuristically using logical rewrite

rules. The physical optimizer translates the optimized logical plan to an Algebricks physical plan
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Figure 4.1: Flowchart of a typical Algebricks-based compiler.

by selecting physical operators (described in Section 4.1.3) for every logical operation in the plan.

Both optimizers are rule-based and configured by selecting the set of rules to execute during the

optimization phases. The resulting physical plan is processed by the Hyracks Job Generator to

produce a Hyracks job that is parallelized and evaluated by the Hyracks execution engine.

Rewriting Rules. The query parser and translator (the first two stages in Figure 4.1 are query lan-

guage specific and must be implemented by a query language developer. The next three stages (the

optimizers and Hyracks job generator) are provided by the Algebricks library to be used by the de-

veloper. Algebricks also includes a library of language-agnostic rewrite rules that can be reused by
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the compiler developer. Additional language-specific rules are usually required in the optimization

process, too. These need to be implemented by the developer by extending well-defined inter-

faces in the Algebricks library. Note that a language-provided expression type computer should

be called during certain rule applications to propagate updated types for the updated intermediate

logical plans. The rewrite rule framework is described in Section 4.1.4.

Metadata Catalog. As shown in Figure 4.1, the various phases of the query compilation process

need access to information about the environment in which the query is being compiled (usually

described as catalog metadata). The catalog is the authoritative source of logical properties of

sources (such as schema, integrity constraints, key information, etc.) and their physical properties

(access methods, physical location, etc.) Algebricks provides a Metadata Interface (Section 4.1.1)

that must be implemented by the compiler developer so that the various parts of the Algebricks

compiler can access relevant metadata information.

Runtime Operations/Functions. The Hyracks Job Generator maps physical operators selected

by the Physical Optimizer to Hyracks runtime operators and connectors. In the process of this

translation, the runtime operators need to be injected with data model-specific operations. The

exact nature of the operation depends on the runtime operator being used. For example, the Sort

operator must be provided a comparator to compare two data model instances so that the input

records can be sorted; the Hash-Join operator needs a hash-function and a comparator to compute

its result; the Select operator requires a boolean interpreter to interpret the result of its filtering

condition expression; the Outer-Join operators need a null writer to generate null fields accord-

ing to the language-defined data format. When using Algebricks, the language developer must

provide families of operations (usually one family for each data type, for example, comparators

and hash functions) that are needed for correct runtime Job construction. Finally, the language

developer must implement a mapping from function expressions to its own function runtime im-

plementations (e.g., arithmetic functions, string functions, aggregate function, etc.) so that the

data model agnostic runtime operators (e.g., select, assign, aggregate, etc.) can evaluate the data
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model-dependent functions.

4.1.1 Metadata Interface

Every data-management system that accesses stored data or external data sources to process queries

requires some form of metadata that describes locations of the stored files or external data sources

and the various access paths available to get to the data bits. For example, relational databases

use a catalog to store information (schema) about the tables and indexes present in the database;

such information is used by the query compiler when compiling query plans. Algebricks provides

a Metadata Interface which must be implemented by the author of the host language so that the

Algebricks compiler can access metadata information required during the compilation process.

The goal of this interface is to allow Algebricks access to all relevant details about datasources

while not constraining the host language to a specific representation of the metadata internally.

The Metadata Interface provides the following pieces of information to the compiler:

• Data Source Metadata. Stored collections of data or external data sources are both modeled as

a Data Source in Algebricks. For example, in HiveQL, a table would be considered a Data Source

while a dataset or an external data feed would be modeled as a Data Source in AsterixDB [10, 42].

The Data Source interface enables Algebricks to get metadata about the data that it represents.

Source metadata can be broadly classified as Logical Metadata and Physical Metadata. Logical

Metadata about a Data Source includes the type information of the data it represents and other

logical properties such as functional dependencies and integrity constraints (keys, etc.). Physical

Metadata provides details of how the data is physically stored or obtained, specifically providing

partitioning information and any local ordering present in the stored data.

• Access Path Binding. The Metadata Interface in Algebricks also serves as a factory to create

the runtime binding to connect the compiled Hyracks job to the “last mile” (operators that are
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capable of reading the data from the stored location).

• Function Metadata. Algebricks further uses the Metadata Interface to find Function Metadata

to optimize function applications that appear in the plan being compiled.

4.1.2 Logical Operators

The logical operators in Algebricks draw inspiration from a variety of algebraic systems proposed

for nested-relational models description [45, 43] and for the processing of semi-structured data

[54, 46, 28]. Tuples in Algebricks are used as an abstraction that hold values. Algebricks operators

logically consume and produce collections of tuples. Tuples contain fields that are created and

manipulated by the operators; field names are represented by names prepended with a $ sign in

the description that follows. Note that tuples as used in this section are not to be confused with

tuples in the relational model, as Algebricks tuple field values are allowed to be of arbitrary data

types (not just scalar types like in the relational model). For example, in AsterixDB, an entire

record (a composite data structure that contains name-value pairs) can be the value of a field in an

Algebricks tuple and a concrete field type (i.e., open type in AQL [10]) can even be determined at

runtime.

Operators may also contain references to scalar or aggregation functions wrapped inside a generic

logical expression interface which exposes the used fields and allows for field name substitution.

This allows Algebricks to rewrite the plan, while at runtime native functions are run against the data

model of the implemented language. A logical expression also has methods for computing logical

constraints that can be inferred from that expression. The constraints currently implemented are

functional dependencies and equivalence classes. They are used during rewriting, e.g. to reason

about interesting orders and partitioning properties. There are three implementations of the logical

expression interface:
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• Constant holds constant values.

• VariableReference points to a logical variable (with a logical id) which is a column in a tuple.

• FunctionCall holds a function identifier and references to argument expressions. It models all

expressions which are not constants nor variables and it is the only kind of expression that is not

a leaf in an expression tree.

FunctionCall is further refined by four implementations:

• ScalarFunctionCall is used for functions that compute their result by looking at only one tuple.

• AggregateFunctionCall functions produce a result after iterating over a collection of tuples. SQL

aggregate functions belong here.

• StatefulFunctionCall is similar to AggregateFunctionCall, but produces a result after each tuple,

not only at the end. Position variables in XQuery fall in this category: for every binding in a

for-clause, they output the binding’s index in the sequence.

• UnnestingFunctionCall is given an input tuple and then can be called multiple times, each time

returning a possibly different result, until a special value is returned. Examples are the range

function in Asterix which returns integer values from a specified range or the collection function

in XQuery which returns nodes according to the arguments’ available collection.

From a given function expression, a query language implementation can create the runtime artifact,

i.e., an evaluator, which is capable of implementing its language-specific runtime semantics. Eval-

uators run code specific to every language: in the case of Hivesterix (a HiveQL implementation on

top of Algebricks; see Section 4.2.1), it runs the native Hive evaluators, which were not designed

specifically for Algebricks. Translation between logical function calls and evaluators is done at

job generation time (Section 4.1.5). This design has the advantage that it allows multiples ways

of implementing the translation from logical to physical. In Hivesterix, this is done by having the

function call expressions reference their evaluators. In AsterixDB, evaluators register themselves

in a global map which is keyed on function identifiers.
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4.1.3 Physical Operators

While the logical operators described in Section 4.1.2 capture the semantics of an Algebricks log-

ical plan, physical operators are used to specify the exact algorithm to use for evaluating each

operator. During the query rewrite process (described in Section 4.1.4) rules assign physical op-

erators to each logical operator in the query plan, thus deciding the concrete algorithms to use

in evaluating the query. Most logical operators in Algebricks map to a unique physical opera-

tor. However, Join and Group-By operators have multiple concrete implementations. Physically,

joins can be performed using the Hybrid-Hash Join [31] or the Nested-Loop Join algorithms. The

Group-By operation can be performed using a pre-clustered implementation that assumes that its

input is already clustered with respect to the grouping keys or by using a hash-based or sort-based

Group-By algorithm that is capable of spilling to disk when the in-memory state exceeds available

memory [62].

In addition to physical operators corresponding to logical operators, Algebricks also provides phys-

ical operators to enforce order properties as well as partitioning properties of data distributed to

individual operations during parallel evaluation of the query. Data distribution between opera-

tor partitions is expressed using an Exchange operator, motivated by [36]. Currently, the data

distribution strategies offered by Exchange operators in Algebricks are:

• One-to-One Exchange: This strategy is used for the local movement of data without redistribu-

tion of data between partitions.

• Hash Exchange: The Hash Exchange strategy hashes specified fields to determine how tuples

are to be routed to the destination partitions. This operator helps in partitioning data based on field

values so that two tuples with the same partitioning field values are routed to the same destination.

• Range Exchange: The Range Exchange strategy uses a provided range vector to determine the

destination partition to send a record to, based on the values of specified fields. The range vector
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maps disjoint ranges of values to target partitions. The value of the partitioning fields of each

record are used to probe the range vector to decide the target partition. In addition to sending equal

values to the same partition, range-based partitioning also sends close-by values to the same site.

Such a distribution strategy is useful for performing a global sort in a parallel manner.

• Random Exchange: Sometimes it is desirable to redistribute data to a set of partitions in a load-

balanced manner, but without necessarily maintaining a value-based partitioning property. The

Random Exchange Operator does exactly that by sending each record to a randomly determined

partition.

• Broadcast Exchange: The Broadcast Exchange strategy is used to make sure that the same

data is delivered to every partition of the next operator. An example situation for the use of the

Broadcast Exchange operator is while joining a small relation with a large partitioned relation. The

small relation is broadcast to each machine where a partition of the large relation resides prior to

performing a local join at each site.

Moreover, the Hash Exchange, Range Exchange, and Random Exchange strategies have a second

variant each, namely, Hash-Merge Exchange, Range-Merge Exchange, and Random-Merge Ex-

change. A merge variant applies the same partitioning strategy as the non-merge variant, but uses a

priority queue on the receiving side that merges all incoming streams so as to maintain a specified

sort order that the data originally possessed before partitioning.

In Algebricks, the physical operator layer is extensible. Compilers on top of Algebricks can register

new physical operators by implementing the following interface:

public interface IPhysicalOperator {

public PhysicalRequirements requiredPropertiesForChildren(

IPhysicalPropertiesVector requiredByParent);

public void deliveredProperties(ILogicalOperator op,

IOptimizationContext context);
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public void contributeRuntimeOperator(

IHyracksJobBuilder builder,

IOpSchema propagatedSchema, IOpSchema[] inputSchemas,

IOpSchema outerPlanSchema);

}

The methods requiredPropertiesForChildren and deliveredProperties compute and

propagate ordering, grouping and partitioning properties, close in spirit to SCOPE [65]. These

properties guarantee that the correct semantics of the operators are implemented, e.g., a Pre-

Clustered Group-By will have its inputs partitioned by (a subset of) the group-by key and locally

clustered on each partition, while allowing for optimizations, e.g., if the data partitioning already

satisfies the requirements, no re-partitioning of the input is needed. The contributeRuntimeOperator

method is essential in the job generation phase, discussed in Section 4.1.5.

In AsterixDB, we need physical operators for B-tree indexes, to enable efficient access to the

native storage layer [11]. Since they are AsterixDB specific, they cannot be part of the Algebricks

library, so they are added as language specific operators for accessing its native storage layer [11].

The BTreeSearch physical operator’s contributeRuntimeOperator constructs a Hyracks B-

Tree search runtime operator which is added to the job DAG together with an incoming edge

from the Hyracks operator that produces the search intervals. BTreeSearch generally delivers a

local ordering property on the key fields. For a primary index, the operator also delivers a hash-

partitioning property of the key fields. The operator generally requires its input (a stream of key

intervals) be broadcast over the locations where the index is partitioned, but for primary indexes,

the required property is hash-partitioning.

4.1.4 Rewriter

The Algebricks optimizer uses Logical-to-Logical rewrite rules to create alternate logical formu-

lations of the initial DAG. Logical-to-Physical rewrite rules then generate a DAG of physical op-
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erators that specify the algorithms to use to evaluate the query. For example, a Join operator might

be rewritten to a Hash-Join physical operator. We expect that most language implementors using

Algebricks will need a rewriting framework to perform additional useful data model-specific opti-

mizations. The Algebricks toolkit contains a rewriting framework that allows users to write their

own rewrite rules, but it also comes with a number of “out of the box” rules that the user can choose

to reuse for compiling their high-level language. Examples of rules that apply for most languages

include:

• Push Selects: Rule for pushing filters lower in the plan to eliminate data that is not useful to the

query.

• Introducing Projects: Rule to limit the width of intermediate tuples by eliminating values that

are no longer needed in the plan.

• Query Decorrelation: Rule to decorrelate nested queries to use joins when possible.

An example rule implemented in AsterixDB that is not of general applicability is one that uses AS-

TERIX metadata [10] to determine if a field is present in the declared schema (i.e., if its presence

is known a priori) in order to determine which field access method to use: field-access-by-index or

field-access-by-name.

The rewriter uses the properties below, which, together with the graph of operators, dictate whether

a rule is fired or not.

• Used/Produced Variables. Operators schemas determine how projections and selections are

pushed and are needed by most rules that change the order of operators.

• Functional Dependencies and Data Properties. The process of rewriting into a physical

DAG uses partitioning properties and local physical properties (grouping, ordering) of input

data sources. Similar to SCOPE [65], these are computed based on functional dependencies and
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variable equivalence classes. Based on partitioning properties, Data Exchange operators [29, 38]

are introduced to perform data redistribution between partitions.

• Equivalence Classes. The optimizer analyzes equivalence classes of variables. For example,

after an equal inner join, a variable in the left-hand side join key and its corresponding variable

in the right-hand side join key are equivalent after the join operator. With the information of

equivalent classes, functional dependencies and data properties are further propagated.

4.1.5 Job Generation

The job generation component outputs a Hyracks job implementing the Algebricks plan (Fig-

ure 4.1). The job is constructed by walking the plan and calling the contributeRuntimeOperator

method on the physical operators. A physical operator can contribute either (a) a full Hyracks

operator, (b) a micro-operator, which becomes part of a pipeline running inside one Hyracks oper-

ator, (c) a connector, typically when the Algebricks operator is an exchange. The Hyracks runtime

for DataSourceScan and WriteResult operators are obtained through the Metadata Interface

which also returns partitioning information needed to instantiate those operators. While the job

generator currently only generates Hyracks jobs, its architecture conceptually supports other run-

times (e.g. Spark, Tez). E.g., instead of generating Hyracks connectors, in Tez we would create

“edges” and in Spark “partitioners”, which are all similar concepts representing data movement

from producers to consumers.

4.2 Using Algebricks

In this section we delve into the details of how three query processing systems — Hivesterix (Hive-

on-Hyracks), AsterixDB, and VXQuery — use Algebricks to compile queries.
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Column Name l orderkey l partkey l suppkey l linenumber l quantity l extendedprice l discount l tax

Data Type bigint bigint bigint bigint float float float float

Column Name l returnflag l linestatus l shipdate l commitdate l receiptdate l shipinstruct l shipmode l comment

Data Type string string string string float float string string

Table 4.1: Schema of the TPC-H lineitem table.

4.2.1 Hivesterix

Hivesterix compiles HiveQL queries to run on the Hyracks platform. For each HiveQL query,

Hivesterix obtains the physical query plan from the Hive compiler and turns that into an Alge-

bricks logical plan for Algebricks to produce a Hyracks job that calls back to Hive’s function

evaluators at runtime. Let us walk through a HiveQL example. A simple HiveQL query shown

below filters records from a TPC-H “lineitem” table to retain only those records which satisfy the

filter predicate. Furthermore, the aggregated overall “revenue” from selected records are returned.

The “lineitem” table used in the query has the schema shown in Table 4.1.

1 select sum(l_extendedprice*l_discount) as revenue

2 from lineitem

3 where l_shipdate >= ’1994-01-01’

4 and l_shipdate < ’1995-01-01’

5 and l_discount >= 0.05 and l_discount <= 0.07

6 and l_quantity < 24;

Hivesterix translates this query into the Algebricks plan below. In the plan, “algebricks-*” (e.g.,

algebricks-gte, algebricks-lte) is a function that Algebricks can recognize during rewriting but will

use a language-provided runtime implementation at evaluation time.

1 WRITE_RESULT( $$revenue )

2 AGGREGATE( $$revenue:sum($$l_extendedprice*$$l_discount) )

3 SELECT( algebricks-and(

4 algebricks-gte($$1_shipdate, ’1994-01-01’),

5 algebricks-lt($$1_shipdate, ’1995-01-01’),

6 algebricks-gte($$l_discount, 0.05),

7 algebricks-lte($$l_discount, 0.07),

8 algebricks-lt($$l_quantity, 24)) )
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9 ASSIGN( $$l_shipdate, $$l_discount, $$l_extendedprice,

10 $$l_quantity:

11 column_expr($l, "l_shipdate"),

12 column_expr($l,"l_discount"),

13 column_expr($l, "l_extendedprice"),

14 column_expr($l,"l_quantity") )

15 UNNEST( $$l:dataset(lineitem) )

16 EMPTY_TUPLE_SOURCE

While reading Algebricks plans, it is important to note that the dataflow is assumed to flow from

the bottom of the plan to the top. The “unnest” operator produces the tuple streams from rows in

the “lineitem” table. The Metadata Interface (Section 4.1.1) implemented in Hivesterix probes the

Hive meta-store (the catalog database used by Hive-on-Hadoop) to get schema information about

the table accessed by the query. As seen in Table 4.1, the “lineitem” table has sixteen columns.

Note that the translator does not prune the source fields not used in the query. Algebricks includes

the logic necessary to perform this pruning. Continuing on with the initial plan for the query, the

translator creates an “assign” operator to extract fields from input tuples and a “select” operator to

represent the “where” clause in the query. Finally, the “aggregate” operator is used to perform the

aggregate sum and a “write” operator is used to write the results to HDFS.

After the translated plan is constructed, Hivesterix proceeds to optimize the query. The Hivesterix

optimizer is populated with a total of 61 optimization rules out of which 4 rules are specific to

Hivesterix and the rest are part of the common Algebricks framework. Figure 4.2 visualizes the

finally generated Hyracks job from the optimizer. The Algebricks rewrite rules have all the logic

necessary to parallelize the query without the need for Hivesterix to provide any additional code.

Note that most of the final Hyracks job looks similar to the original translated plan with the fol-

lowing differences:

• A project operator is injected into the plan to prune unnecessary columns.
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Figure 4.2: Hivesterix Hyracks Job.

• An additional aggregate operator is injected to perform local aggregate in order to save the

network bandwidth consumption, since the aggregation function sum is distributive.

• An exchange operator with the associated data redistribution strategy has been introduced be-

tween every pair of operators. Operators below the lower aggregate operator use only one-to-one

exchange operators. A m-to-one exchange is placed between the lower (local) aggregate and the

higher (global) aggregate.
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4.2.2 Apache AsterixDB

Apache AsterixDB is a full-featured Big Data Management System for managing large quantities

of semi-structured data. It is currently undergoing incubation at the Apache Software Foundation

(ASF). AsterixDB’s data model supports JSON-like data and adds more primitive and structured

data types to JSON’s data types.

As a slightly more complex example, consider the query below in the Asterix Query Language

(AQL) [10]. This query performs a join between two natively stored data collections, “Gleam-

bookMessages” and “GleambookUsers”, that matches records from the two datasets on the “au-

thor id” and “id” fields respectively. Note that as allowed by the flexible AsterixDB data model,

“author id” is not in the declared schema of “GleambookMessages” but “id” is part of the “Gleam-

bookUsers” schema. Furthermore, we limit the results to contain users whose “user since” is

within a time range and messages whose “send time” is within a specific time interval. Results are

in the form of ADM (Asterix Data Model) [10] records with two attributes, “uname” and “mes-

sage”.

1 for $message in dataset GleambookMessages

2 for $user in dataset GleambookUsers

3 where $message.author_id = $user.id

4 and $user.user_since >= datetime(’2008-10-24T14:21:21’)

5 and $user.user_since < datetime(’2008-10-25T14:21:21’)

6 and $message.send_time >=datetime(’2011-02-24T20:01:48’)

7 and $message.send_time < datetime(’2011-02-25T05:01:48’)

8 return {"uname": $user.name, "message": $message.message}

The AQL translator translates the query to the following equivalent logical plan representation:

1 DISTRIBUTE-RESULT( $$20 )

2 PROJECT( $$20 )

3 ASSIGN( $$20:open-record-constructor(

4 "uname", field-access-by-name($$1, "name"),

5 "message", field-access-by-name($$0, "message")) )
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6 SELECT( algebricks-and(

7 algebricks-eq(field-access-by-name($$0, "author_id"),

8 field-access-by-name($$1, "id")),

9 algebricks-ge(field-access-by-name($$1, "user_since"),

10 datetime("2008-10-24T14:21:21")),

11 algebricks-lt(field-access-by-name($$1, "user_since"),

12 datetime("2008-10-25T14:21:21")),

13 algebricks-ge(field-access-by-name($$0, "send_time"),

14 datetime("2011-02-24T20:01:48")),

15 algebricks-lt(field-access-by-name($$0, "send_time"),

16 datetime("2011-02-25T05:01:48"))) )

17 UNNEST( $$1:dataset("GleambookUsers") )

18 UNNEST( $$0:dataset("GleambookMessages") )

19 EMPTY_TUPLE_SOURCE

Then, the Algebricks optimizer transforms the initial logical plan into an optimized physical plan

by applying logical and physical rewriting rules. The optimizer utilizes 48 AsterixDB specific rules

and 41 generic Algebricks rules. Figure 4.3 visualizes the generated Hyracks job for this example

query.

Note that the final optimized Hyracks job has the following main differences from the original

plan:

• A hybrid hash join operator is introduced to evaluate the equality join condition.

• The original select conditions are pushed into the two join branches.

• Project operators are injected into the plan wherever necessary.

• A hash partition exchange operator is enforced for the “GleambookMessages” branch to make

sure data from this branch is partitioned by “author id”. Note that there is no re-partition ex-

change for the “GleambookUsers” branch because data from this branch has already been hash

partitioned across the cluster according to the primary key “id”.
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4.2.3 Apache VXQuery

Apache VXQuery is an XQuery processor built for handling large collections of XML data. It uses

Algebricks and Hyracks to process XML by adding a binary representation of the XQuery Data

Model (XDM), an XQuery parser, an XQuery optimizer, and the data model dependent expres-

sions. VXQuery is intended to implement the complete XQuery specification.

The example XQuery statement is based on weather data provided by the NOAA [5]. The query

finds all precipitation (”PRCP”) records for the ”GHCND:USW00014771” station that occurred

during 1999. The precipitation readings are recorded in tenths of an inch. After summing all

readings, the result is divided by 10 to find the total precipitation for 1999 in inches. The query

(also included in our experiments as VQ2) is shown below followed by a sample XML weather

record:

1 fn:sum(

2 for $r in collection("sensors")/dataCollection/data

3 where $r/station eq "GHCND:USW00014771"

4 and $r/dataType eq "PRCP"

5 and year-from-dateTime(xs:dateTime(data($r/date)))

6 eq 1999

7 return $r/value

8 ) div 10

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <dataCollection pageCount="1" totalCount="3">

3 <data>

4 <date>1999-12-02T00:00:00.000</date>

5 <dataType>PRCP</dataType>

6 <station>GHCND:USW00014771</station>

7 <value>0</value>

8 <attributes>

9 <attribute></attribute>

10 <attribute></attribute>

11 <attribute>a</attribute>

12 <attribute></attribute>
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13 </attributes>

14 </data>

15 <data>

16 <date>1999-12-02T00:00:00.000</date>

17 <dataType>TMIN</dataType>

18 <station>GHCND:USW00014771</station>

19 <value>-6</value>

20 <attributes>

21 <attribute></attribute>

22 <attribute></attribute>

23 <attribute>0</attribute>

24 <attribute></attribute>

25 </attributes>

26 </data>

27 </dataCollection>

Apache VXQuery begins by translating the XQuery statement into a logical query plan using the

Algebricks logical operators. The translator follows the XQuery specification and creates a correct

Algebricks query plan with all the XQuery type checking expressions translated into the query

plan. The optimizer will use these expressions to type check the query plan.

XQuery is a complex language with well-defined but complicated semantics for various parts of

the language [7]. Below we show the initial Algebricks logical plan generated by the VXQuery

translator for the weather query. Note that what appears as a simple path-step in XQuery (the /

operator), is equivalent to a more complex expression that involves unnesting, sorting, duplicate-

elimination, etc. For example, lines 68-74 in the listing below represent ”/dataCollection”. Please

note that while we do not expect the reader to glean all the details of the plan shown, we wish

to communicate the fact that Algebricks is capable of implementing the semantics of a complex

query language like XQuery.

62



1 DISTRIBUTE-RESULT( $$59 )

2 UNNEST( $$59:iterate($$58) )

3 ASSIGN( $$58:divide(promote(<anyAtomicType?>, data($$56)),

4 promote(<anyAtomicType?>, data($$57))) )

5 ASSIGN( $$57:10 )

6 ASSIGN( $$56:sum(promote(<anyAtomicType*>, data($$55))) )

7 SUBPLAN {

8 AGGREGATE( $$55:sequence($$54) )

9 ASSIGN( $$54:sort-distinct-nodes-asc-or-atomics($$53) )

10 SUBPLAN {

11 AGGREGATE( $$53:sequence(child("value",

12 treat(<node*>, $$51))) )

13 UNNEST( $$51:iterate($$49)

14 NESTED-TUPLE-SOURCE

15 }

16 ASSIGN( $$49:treat(<item>, $$19) )

17 SELECT( boolean($$48) )

18 ASSIGN( $$48:and(boolean(data($$36)),

19 boolean(data($$47))) )

20 ASSIGN( $$47:value-eq(promote(<anyAtomicType?>,

21 data($$45)), promote(<anyAtomicType?>,data($$46))) )

22 ASSIGN( $$46:1999 )

23 ASSIGN( $$45:year-from-dateTime(promote(<dateTime?>,

24 data($$44))) )

25 ASSIGN( $$44:cast(<dateTime?>, $$43) )

26 ASSIGN( $$43:data(treat(<item*>, $$42)) )

27 ASSIGN( $$42:sort-distinct-nodes-asc-or-atomics($$41) )

28 SUBPLAN {

29 AGGREGATE( $$41:sequence(child("date",

30 treat(<node*>, $$39))) )

31 UNNEST( $$39:iterate($$37) )

32 NESTED-TUPLE-SOURCE

33 }

34 ASSIGN( $$37:treat(<item>, $$19) )

35 ASSIGN( $$36:and(boolean(data($$27)),

36 boolean(data($$35))) )

37 ASSIGN( $$35:value-eq(promote(<anyAtomicType?>,

38 data($$33)), promote(<anyAtomicType?>,data($$34))) )

39 ASSIGN( $$34:"PRCP" )

40 ASSIGN( $$33:sort-distinct-nodes-asc-or-atomics($$32))
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41 SUBPLAN {

42 AGGREGATE( $$32:sequence(child("dataType",

43 treat(<node*>, $$30))) )

44 UNNEST( $$30:iterate($$28) )

45 NESTED-TUPLE-SOURCE

46 }

47 ASSIGN( $$28:treat(<item>, $$19) )

48 ASSIGN( $$27:value-eq(promote(<anyAtomicType?>,

49 data($$25)),promote(<anyAtomicType?>,data($$26)) ) )

50 ASSIGN( $$26:"GHCND:USW00014771" )

51 ASSIGN( $$25:sort-distinct-nodes-asc-or-atomics($$24) )

52 SUBPLAN {

53 AGGREGATE( $$24:sequence(child("station",

54 treat(<node*>, $$22))) )

55 UNNEST( $$22:iterate($$20) )

56 NESTED-TUPLE-SOURCE

57 }

58 ASSIGN( $$20:treat(<item>, $$19) )

59 UNNEST( $$19:iterate($$18) )

60 ASSIGN( $$18:sort-distinct-nodes-asc-or-atomics($$17) )

61 SUBPLAN {

62 AGGREGATE( $$17:sequence(child("data",

63 treat(<node*>, $$15))) )

64 UNNEST( $$15:iterate($$13) )

65 ASSIGN( $$13:sort-distinct-nodes-asc-or-atomics($$12))

66 NESTED-TUPLE-SOURCE

67 }

68 SUBPLAN {

69 AGGREGATE( $$12:sequence(child("dataCollection",

70 treat(<node*>, $$10))) )

71 UNNEST( $$10:iterate($$8) )

72 ASSIGN( $$8:sort-distinct-nodes-asc-or-atomics($$7) )

73 NESTED-TUPLE-SOURCE

74 }

75 SUBPLAN {

76 AGGREGATE( $$7:sequence(child("root",

77 treat(<node*>, $$5))) )

78 UNNEST( $$5:iterate($$3) )

79 NESTED-TUPLE-SOURCE

80 }

81 ASSIGN( $$3:collection(promote(<string>, data($$2))) )
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82 ASSIGN( $$2:treat(<item>, $$1) )

83 ASSIGN( $$1:"/sensors" )

84 NESTED-TUPLE-SOURCE

85 }

86 EMPTY-TUPLE-SOURCE

After translating the plan, the Algebricks query optimization phase uses 22 Apache VXQuery rules

and 30 generic Algebricks rules to create an optimized logical plan. Apache VXQuery rules ap-

ply basic XQuery data type rules and path step expression optimizations to streamline the plan.

One of Algebricks’ benefits to this plan is a more efficient way to calculate the aggregation. Us-

ing Algebricks logical operators, the built-in rules enable efficient two-step aggregation across the

cluster. Further, the VXQuery query optimizer provides data specific details - enabling paralleliza-

tion of the query plan. Apache VXQuery achieves parallel execution simply by providing XQuery

function properties to Algebricks.

In the job generation phase, the VXQuery Metadata Interface implementation finds how the non-

fragmented XML documents are partitioned throughout a cluster. Each machine has a unique set

of XML documents residing in a directory specified by the query’s fn:doc or fn:collection function.

While AsterixDB has a native storage option, Apache VXQuery scans external XML documents

for each query. The weather query uses the collection function to identify the “sensors” directory

on all nodes. Using the plan and the metadata interface, Algebricks creates the Hyracks job shown

in Figure 4.4.

In the current implementation of VXQuery, we assume a collection of many (typically small)

XML files. Nevertheless, Algebricks can also handle parallelization of queries over a single large

document stored on a distributed storage system such as HDFS. We are currently implementing a

parallel XML parser similar to [52] to enable these use cases.
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4.3 Experimental Evaluation

In this section, we demonstrate experimentally the parallel efficiency of Hivesterix, AsterixDB,

and VXQuery. In addition to showing proof of their existence, these experiments aim to expose

the direct benefits of using Algebricks in achieving good parallelization characteristics. We report

performance for a representative set of queries for each system for different sizes of data and

different numbers of nodes, with the goal of showing the scale-up and speed-up characteristics of

each system.

4.3.1 Hivesterix

Cluster: We ran Hivesterix experiments on a 40-node cluster with a Gigabit Ethernet switch. Each

node had a Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz, 16GB of RAM, and 3TB RAID0

(3x1TB disks, linux software RAID). We compared Hivesterix and Hive-on-Hadoop (Hive-0.12.0).

In the experiments, the RAID0 disk on each node is used for the HDFS data directory and the

spilling workspace for query processing. Data: For speedup experiments, we used TPC-H 250×

( 250GB). For scaleup experiments, we used TPC-H 250×, 500×, 750×, 1000× ( 1TB) for 10, 20,

30, and 40 machines respectively. Configuration: We ran eight partitions per machine. Queries:

We report three representative queries from the TPC-H benchmark, a filter and aggregate query, a

group-by query, and a join with group-by query, shown below.

HQ1: Filter + Aggregate Query (TPC-H Q14)

1 select sum(l_extendedprice*l_discount) as revenue

2 from lineitem

3 where l_shipdate >= ’1994-01-01’

4 and l_shipdate < ’1995-01-01’

5 and l_discount >= 0.05 and l_discount <= 0.07

6 and l_quantity < 24;
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HQ2: Group-by Query (TPC-H Q1)

1 select l_returnflag, l_linestatus, sum(l_quantity),

2 sum(l_extendedprice),

3 sum(l_extendedprice*(1-l_discount)),

4 sum(l_extendedprice*(1-l_discount)*(1+l_tax)),

5 avg(l_quantity), avg(l_extendedprice), avg(l_discount),

6 count(1)

7 from lineitem

8 where l_shipdate <= ’1998-09-02’

9 group by l_returnflag, l_linestatus

10 order by l_returnflag, l_linestatus;

HQ3: Join + Group-By Query (TPC-H Q9)

1 select nation, o_year, sum(amount) as sum_profit

2 from (

3 select n_name as nation, year(o_orderdate) as o_year,

4 l_extendedprice * (1 - l_discount) -

5 ps_supplycost * l_quantity as amount

6 from orders o join (

7 select l_extendedprice, l_discount, l_quantity,

8 l_orderkey, n_name, ps_supplycost

9 from part p join (

10 select l_extendedprice, l_discount, l_quantity,

11 l_partkey, l_orderkey, n_name, ps_supplycost

12 from partsupp ps join (

13 select l_suppkey, l_extendedprice, l_discount,

14 l_quantity, l_partkey, l_orderkey, n_name

15 from (

16 select s_suppkey, n_name

17 from nation n join supplier s

18 on n.n_nationkey = s.s_nationkey

19 ) s1 join lineitem l on s1.s_suppkey = l.l_suppkey

20 ) l1 on ps.ps_suppkey = l1.l_suppkey

21 and ps.ps_partkey = l1.l_partkey

22 ) l2 on p.p_name like ’%green%’

23 and p.p_partkey = l2.l_partkey

24 ) l3 on o.o_orderkey = l3.l_orderkey

25 ) profit
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26 group by nation, o_year

27 order by nation, o_year desc;

As indicated by Figures 4.5 and 4.6, all queries show good speed-up and scale-up characteristics.

All three benefit from scanning blocks of HDFS data in parallel. In HQ1 and HQ2, filtering is

parallelized and aggregation is done in two phases, reducing the amount of data transferred across

machines. HQ3 benefits from parallelizing joins across the cluster. We have also executed TPC-H

using Hive-on-Hadoop (Hive-0.12.0) and a comparison with Hivesterix is shown in Figure 4.7.

(An interesting future exercise might include the new generation of ”SQL on Hadoop” systems.)

4.3.2 Apache AsterixDB

Cluster: We ran the reported experiments on a 10-node IBM x3650 cluster with a Gigabit Eth-

ernet switch. Each node had one Intel Xeon processor E5520 2.26GHz with four cores, 12GB

of RAM, and four 300GB, 10K RPM hard disks. On each machine 3 disks were used for data.

The other disk was used to store ”system’s data” (transaction logs and system logs). Data: We

used a synthetic data generator to create records for the collections related to these tests (“Gleam-

bookUsers” etc.) For the speedup experiments, we generated 338GB of data, loaded on 9, 18 and

27 partitions. For the scaleup experiments, we generated 169GB, 338GB and 507GB of data for

9, 18 and 27 partitions respectively. A secondary index was constructed on the user since field of

the GleambookUsers dataset. Configuration: We ran three partitions on each machine. We as-

signed a maximum of 6GB of memory to each node controller. The buffercache size for each node

controller was set to be 1GB. Queries: We executed four representative AQL queries, as follows.

AQ1: Filter Query

1 for $t in dataset GleambookMessages

2 where $t.author_id < 0

3 return $t
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AQ2: Filter Query Using Indexes

1 for $user in dataset GleambookUsers

2 where $user.user_since >= datetime(’2005-08-16T15:52:14’)

3 and $user.user_since < datetime(’2005-08-16T15:57:14’)

4 return $user

AQ3: Aggregate Query

1 avg(

2 for $t in dataset ChirpMessages

3 where $t.send_time >= datetime(’2008-11-15T19:42:51’)

4 and $t.send_time < datetime(’2008-11-15T23:27:51’)

5 return string-length($t.message_text)

6 )

AQ4: Join Query

1 for $message in dataset GleambookMessages

2 for $user in dataset GleambookUsers

3 where $message.author_id = $user.id

4 and $user.user_since >= datetime(’2011-02-24T20:01:48’)

5 and $user.user_since < datetime(’2011-02-25T05:01:48’)

6 and $message.send_time >=datetime(’2008-10-24T14:21:21’)

7 and $message.send_time < datetime(’2008-10-25T14:21:21’)

8 return {

9 "uname": $user.name,

10 "message": $message.message

11 }

Figure 4.8 and Figure 4.9 depict the parallel speedup and scaleup of the four AQL queries. AQ1

and AQ3 benefit from the same rules in Algebricks that helped HQ1 and HQ2 in Hivesterix. Scan-

ning partitions and filtering is done in parallel on the different nodes of the cluster. In AQ3, the
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aggregation is performed in two phases to reduce network transfer. Join parallelism allows AQ4 to

use the cluster effectively. AQ2 uses an index in AsterixDB to evaluate filters instead of scanning

all the data. The index range scan is performed in parallel on the different partitions. Note that

Algebricks includes facilities for utilizing indexes for query processing, but AsterixDB is currently

the only system built on top of Algebricks that implements indexing at the storage level. Detailed

AsterixDB performance characteristics can be found in [10].

4.3.3 Apache VXQuery

Cluster: Experiments were run on a cluster whose nodes have two Dual-Core AMD Opteron(tm)

processor 2212 HE CPUs, 8GB of RAM, and two 1TB hard drives. Data: We used NOAA’s

Global Historical Climatology Network (GHCN)-Daily dataset that includes daily summaries of

climate recordings (e.g., high and low temperatures, wind speed, rainfall). The complete XML

data definition can be found on NOAA’s site [5]. For the speed-up experiments, we used 57GB of

weather XML data partitioned over the number of machines (varied from 1 to 8) for each run. The

scale-up experiments were performed while keeping the amount of data per machine constant at

7.2GB and varying the number of machines from 1 to 8. Configuration: We ran four partitions

per machine. Queries: We used the following three XQuery queries:

VQ1: Filter Query

Query VQ1 filters the data to show all readings that report an extreme wind warning. Such warn-

ings occur when the wind speed exceeds 110 mph. (The wind measurement unit, tenths of a meter

per second, has been converted to miles per hour.)

1 for $r in collection("sensors")/dataCollection/data

2 where $r/dataType eq "AWND"

3 and xs:decimal(data($r/value)) gt 491.744

4 return $r
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VQ2: Aggregate Query

Query VQ2 finds the annual precipitation for Syracuse, NY using the airport weather station

(USW00014771) for 1999. The precipitation is reported in tenths of an inch.

1 sum(

2 for $r in collection("sensors")/dataCollection/data

3 where $r/station eq "GHCND:USW00014771"

4 and $r/dataType eq "PRCP"

5 and year-from-dateTime(xs:dateTime(data($r/date)))

6 eq 1999

7 return $r/value

8 ) div 10

VQ3: Join + Aggregate Query

Query VQ3 finds the lowest recorded temperature (TMIN) in the United States for 2001. This

query includes nested loops which are commonly used in XQuery. While XQuery does not have

a join expression, these nested loops can be converted into a join operation using the Algebricks

join operator. Converting a nested loop into a more efficient join algorithm provides the expected

performance improvement for Apache VXQuery.

1 min(

2 for $s in

3 collection("stations")/stationCollection/station

4 for $r in collection("sensors")/dataCollection/data

5 where $s/id eq $r/station

6 and (some $x in $s/locationLabels satisfies

7 ($x/type eq "CNTRY" and $x/id eq "FIPS:US"))

8 and $r/dataType eq "TMIN"

9 and year-from-dateTime(xs:dateTime(data($r/date)))

10 eq 2001

11 return $r/value

12 ) div 10

Figure 4.10 and Figure 4.11 show the parallel speedup and scaleup of Apache VXQuery. The
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Algebricks AsterixDB Hivesterix VXQuery

LOC 42K 40K 3.4K 12.8K

# Rules 50 61 4 29

# Logical Ops 39 2 0 0

# Physical Ops 44 6 0 0

Table 4.2: Code metrics as a proxy for the effort required to build query compilers using Algebricks

optimizations implemented in Algebricks help VQ1, VQ2, and VQ3 to achieve good parallel per-

formance by parallelizing scans, filters, aggregations, and joins. More performance results for the

current Apache VXQuery implementation on top of Algebricks can be found in [23].

4.4 Conclusion

Algebricks has served as a useful tool to build not just the AsterixDB query compiler, but also

query compilers for HiveQL and XQuery. Table 4.2 shows the lines of code, the number of rewrite

rules, the number of logical operators, and the number of physical operators that were provided by

Algebricks, and those that needed to be additionally implemented in AsterixDB, Hivesterix, and

VXQuery. Algebricks provides about 50 rewrite rules, 39 logical operators, and 44 physical opera-

tors that are helpful for all three query processors. Additionally, AsterixDB required only 2 logical

operators and 6 physical operators. These operators were AsterixDB specific and related to access-

ing indexes. The extensibility offered by Algebricks allowed the AsterixDB platform to implement

these operators and plug them into the Algebricks framework. 61 rewrite rules were implemented

in the AsterixDB platform to deal with rewrites specific to the Asterix data model. Hivesterix and

VXQuery did not require any additional operators. Operators available in Algebricks were suffi-

cient to implement the entire HiveQL and XQuery language compilers. Hivesterix and VXQuery

required 4 and 29 rewrite rules, respectively, that were specific to the datamodel semantics of the

two systems.
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In the next chapter, we look more in detail at how Algebricks was used in implementing the query

processing layer of AsterixDB.
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Figure 4.3: AsterixDB Hyracks Job.
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Figure 4.4: VXQuery Hyracks Job.

Figure 4.5: Hivesterix cluster speed up (percentage of 10 machines).
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Figure 4.6: Hivesterix cluster scale up (percentage of 10 machines).
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Figure 4.7: Hivesterix and Hive-on-Hadoop Comparison on TPC-H.
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Figure 4.8: AsterixDB cluster speed up (percentage of 3 machines).

Figure 4.9: AsterixDB cluster scale up (percentage of 3 machines).

77



Figure 4.10: VXQuery cluster speed up (percentage of 1 machine).

Figure 4.11: VXQuery cluster scale up (percentage of 1 machine).
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Chapter 5

AsterixDB: Putting It All Together

5.1 Overview

Hyracks (Chapter 3) and Algebricks (Chapter 4) were developed in the context of the AsterixDB

project, as mentioned in Chapter 1. AsterixDB is a scalable Big-Data Management system built

from the ground up to ingest, manage, index, query, and analyze mass quantities semi-structured

data [18]. As a concluding case study, this chapter of the thesis describes how Hyracks and Alge-

bricks form the underpinnings of this Big-Data Management system. We begin by first providing

an overview of AsterixDB’s data definition capabilities (Section 5.2) and its data manipulation ca-

pabilities (Section 5.3). In Section 5.4, we describe how Algebricks and Hyracks come together to

form the bottom half of AsterixDB.

5.2 Data Definition

In this section we describe AsterixDB’s data definition features. We illustrate them by example

through a scenario based on information about users and their messages from a hypothetical social
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network called Mugshot.com.

5.2.1 Dataverses, Datatypes, and Datasets

The top-level organizing concept in AsterixDB is the Dataverse. A Dataverse, short for ”data

universe”, is a place (akin to a database in an RDBMS) within which one can create and manage

the types, Datasets, functions, and other artifacts for a given application. Initially, an AsterixDB

instance contains no data other than the system catalogs, which live in a system-defined Dataverse

(the Metadata Dataverse). To store data in AsterixDB, one creates a Dataverse and then populates it

with the desired Datatypes and Datasets. A Datatype specifies what its definer wants AsterixDB to

know, a priori, about a kind of data that it will be asked to store. A Dataset is a stored collection of

data instances of a Datatype, and one can define multiple Datasets of a given Datatype. AsterixDB

ensures that data inserted into a Dataset conforms to its specified type.

Since AsterixDB targets semi-structured data, its data model provides the concept of open (vs. closed)

Datatypes. When defining a type, the definer can use open Datatypes and tell AsterixDB as little

or as much about their data up front as they wish. (The more AsterixDB knows about the potential

residents of a Dataset, the less it needs to store in each individual data instance.) Instances of open

Datatypes are allowed to have additional content, beyond what the type specifies, as long as they

at least contain the information prescribed by the Datatype definition. Open types allow data to

vary from one instance to another, leaving ”wiggle room” for instance-level variations as well as

for application evolution (in terms of what can be stored in the future). To restrict the objects in a

Dataset to contain only what a Datatype says, with nothing extra in instances, one can opt to define

a closed Datatype for that Dataset. AsterixDB prevents users from storing objects with extra or il-

legally missing data in such a data set. The closed, flat subset of ADM is thus relational. Datatypes

are open by default and closed only if their definition says so, the reason for this choice being

that many Big Data analysts seem not to favor a priori schema design and ADM’s design targets

80



semi-structured data. To the best of our knowledge, this support for open and closed Datatypes is

novel—we have not seen similarly flexible schema facilities in other data management systems,

and it consistently garners very positive reactions when AsterixDB is presented to outside groups.

Shape-wise, ADM is a superset of JSON [66]—ADM is what one gets by extending JSON with a

larger set of Datatypes (e.g. datetime) and additional data modeling constructs (e.g. bags) drawn

from object databases and then giving it a schema language. We chose JSON for its self-describing

nature, relative simplicity, and growing adoption in the Web world. Note that, unlike AsterixDB,

current JSON-based data platforms do not offer the option to define all (or part) of their data’s

schema.

1 drop dataverse TinySocial if exists;

2 create dataverse TinySocial;

3 use dataverse TinySocial;

4

5 create type EmploymentType as open {

6 organization-name: string,

7 start-date: date,

8 end-date: date?

9 }

10

11 create type MugshotUserType as {

12 id: int32,

13 alias: string,

14 name: string,

15 user-since: datetime,

16 address: {

17 street: string,

18 city: string,

19 state: string,

20 zip: string,

21 country: string

22 },

23 friend-ids: {{ int32 }},

24 employment: [EmploymentType]

25 }

26

27 create type MugshotMessageType as closed {

28 message-id: int32,

29 author-id: int32,

30 timestamp: datetime,

31 in-response-to: int32?,

32 sender-location: point?,

33 tags: {{ string }},

34 message: string

35 }

Data definition 5.1: Dataverse and data types

We illustrate ADM by defining a Dataverse called TinySocial to hold the Datatypes and Datasets

for Mugshot.com. The data definition statements in Data definition 5.1 show how we can create
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the Dataverse and a set of ADM types to model Mugshot.com’s users, their users’ employment

histories, and their messages. The first three lines tell AsterixDB to drop the old TinySocial Data-

verse, if one exists, and to create a new Dataverse and make it the focus of the statements that

follow. The first type creation statement creates a Datatype to hold information about one piece of

a Mugshot user’s employment history. It defines a record type with a mix of string and date data,

much like a (flat) relational tuple. Its first two fields are mandatory, with the last one (end-date)

being optional as indicated by the ”?” that follows it. An optional field in ADM is like a nullable

field in SQL – it may be present or missing, but when present, its data type will conform to the

Datatype’s specification for it. Also, because EmploymentType is open, it is important to note that

additional fields will be allowed at the instance level.

Types functions

string contains

like

matches

replace

word-tokens

edit-distance

edit-distance-check

edit-distance-contains

bag similarity-jaccard

similarity-jaccard-check

date/time/datetime current-date/time/datetime

interval interval-start-from-date/time/datetime

duration adjust-datetime-for-timezone

day-time-duration adjust-time-for-timezone

year-month-duration subtract-date/time/datetime

interval-bin

Allen’s relations on intervals

point spatial-distance

line spatial-area

rectangle spatial-intersect

circle spatial-cell

polygon

Table 5.1: Sample of advanced types and functions

The second create type statement creates a Datatype for Mugshot users. MugshotUserType is

also open since that is the default for AsterixDB Datatypes. This second type highlights several
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additional features of ADM. The address field illustrates one way that ADM is richer than the

relational model; it holds a nested record containing the primary address of a user. The friend-

ids field shows another extension of ADM over the relational model and also over JSON. This

field holds a bag (unordered list) of integers – presumably the Mugshot user ids for this user’s

friends. Lastly for this type, its employment field is an ordered list of employment records, again

a beyond-flat-relational structure.

The last create type statement in the example defines a Datatype to store the content of a Mugshot

message. In this case, since the type definition for Mugshot messages says closed, the fields that

it lists will be the only fields that instances of this type will be allowed to contain in Datasets of

this type. Also, among those fields, in-response-to and sender-location are optional, while the rest

must be present in valid instances of the type.

Recall that AsterixDB aims to store and query not just Big Data, but Big Semi-structured Data.

Most of the fields in the create type statements above could be omitted, if desired, while changing

only two things in terms of the example. One change would be the size of the data on disk.

AsterixDB stores information about the fields defined a priori as separate metadata; information

about fields that are ”just there” in instances of open Datatypes is stored within each instance. A

logical change would be that AsterixDB would be more flexible about the contents of records in

the resulting Datasets, as it enforces only the specified details of the Datatype associated with a

given Dataset. The only fields that must currently be specified a priori are the primary key fields.

One other important feature of AsterixDB for managing today’s Big Data is its built-in support for

useful advanced primitive types and functions, specifically those related to space, time, and text.

Table 5.1 lists some of the advanced ADM primitive types as well as some of their corresponding

AQL functions. A complete list and more details can be found in the AsterixDB documentation

[64].
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5.2.2 Dataset and Index Creation

Having defined our Datatypes, we can now proceed to create a pair of Datasets to store the actual

data.

1 create dataset MugshotUsers(MugshotUserType)

2 primary key id;

3 create dataset MugshotMessages(MugshotMessageType)

4 primary key message-id;

5

6 create index msUserSinceIdx

7 on MugshotUsers(user-since);

8 create index msTimestampIdx

9 on MugshotMessages(timestamp);

10 create index msAuthorIdx

11 on MugshotMessages(author-id) type btree;

12 create index msSenderLocIndex

13 on MugshotMessages(sender-location) type rtree;

14 create index msMessageIdx

15 on MugshotMessages(message) type keyword;

Data definition 5.2: Datasets and indexes

The two ADM DDL statements shown in Data definition 5.2 will create Datasets to hold data in the

TinySocial Dataverse. The first creates a Dataset called MugshotUsers; this Dataset will store data

conforming to MugshotUserType and has the id field as its primary key. The primary key is used

by AsterixDB to uniquely identify instances for later lookup and for use in secondary indexes.

Each AsterixDB Dataset is stored (and indexed) as a B+-tree keyed on primary key; secondary

indexes point to indexed data by its primary key. Also, in an AsterixDB cluster, the primary key is

used to hash-partition (shard) the Dataset across the cluster’s nodes. The create dataset statement

for MugshotMessages is similar.

The two create dataset statements are followed by five more DDL statements, each requesting

the creation of a secondary index on a field of one of the Datasets. The first two will index

MugshotUsers and MugshotMessages on their user-since and timestamp fields. These indexes

will be B+-tree indexes, as their type is unspecified and btree is the default. The other three show

how to explicitly specify the desired index type. In addition to btree, rtree and inverted keyword

indexes are supported. Indexes can have composite keys, and more advanced text indexing is also

available (ngram(k), where k is the gram length, for fuzzy searching).
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1 12.34.56.78 - Nicholas [22/Dec/2013:12:13:32 -0800] "GET / HTTP/1.1" 200 2279

2 12.34.56.78 - Nicholas [22/Dec/2013:12:13:33 -0800] "GET /list HTTP/1.1" 200 5299

Figure 5.1: Apache HTTP server common log format

1 12.34.56.78|2013-12-22T12:13:32-0800|Nicholas|GET|/|200|2279

2 12.34.56.78|2013-12-22T12:13:33-0800|Nicholas|GET|/list|200|5299

Figure 5.2: CSV version of web server log

5.2.3 External Data

So far we have explained how to specify Datatypes, Datasets, and indexes for AsterixDB to store

and manage in its role as a full BDMS. AsterixDB also supports direct access to externally resident

data. Data does not need to be pre-loaded and handed to AsterixDB for storage and management

just to be queried—avoiding the costly (and often infeasible) transfer or duplication of “Big Data”.

The current AsterixDB system offers external data adaptors to access local files that reside on the

Node Controller nodes of an AsterixDB cluster and to access data residing in HDFS. To illustrate,

Data definition 5.3 shows the definition of an external Dataset based on a local file. In this case, the

local file is a CSV version (Figure 5.2) of an Apache log file (Figure 5.1). When accessed at query

time, CSV parsing of the data into ADM object instances will be driven by the type definition

associated with the Dataset.

Once defined in this manner, an external Dataset can be accessed in a query just like any internal

Dataset. Unlike an internal Dataset, however, external Datasets in the current release of AsterixDB

are limited to being read-only. More details about external datasets can be found in [9].

5.2.4 Data Feed Creation

Data Feeds [42] are a built-in mechanism that AsterixDB offers to allow new data to be contin-

uously ingested into one or more Datasets from external sources, incrementally populating the
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1 create type AccessLogType as closed {

2 ip: string,

3 time: string,

4 user: string,

5 verb: string,

6 path: string,

7 stat: int32,

8 size: int32

9 }

10

11 create external dataset AccessLog(AccessLogType)

12 using localfs

13 (("path"="{hostname}://{path}"),

14 ("format"="delimited-text"),

15 ("delimiter"="|"));

Data definition 5.3: External data

Datasets and their associated indexes. Feed support is provided because the need to persist and

index ”fast flowing” data is ubiquitous in the Big Data world, and it otherwise involves gluing

together multiple systems. We feel that, just as current DBMSs were created to provide the com-

monly required functionality to support data-centric applications, a BDMS should provide support

for continuous data ingestion and should be responsible for managing the performance and fault-

tolerance of the ingestion pipeline.

An AsterixDB data feed ingests a continuous stream of data into a Dataset. User queries then work

against the stored data, not on the incoming stream, just as if the Dataset’s contents had arrived

via loading or insertions. With this approach, the system does not require a separate notion of

queryable streams (with their different semantics, etc.) distinct from its support for stored data

sets.

Data definition 5.4 shows the declaration of a Data Feed and the connecting of it to a Dataset for

storage. A socket-based feed adaptor is used, allowing data from outside to be pushed at AsterixDB

via a TCP/IP socket where the adaptor will listen for data.

1 use dataverse TinySocial;

2

3 create feed socket_feed

4 using socket_adaptor

5 (("sockets"="{address}:{port}"),

6 ("addressType"="IP"),

7 ("type-name"="MugshotMessageType"),

8 ("format"="adm"));

9

10 connect feed socket_feed to dataset MugshotMessages;

Data definition 5.4: Data feeds
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In addition to the socket adaptor there are a few built-in adaptors included with AsterixDB. To

customize an existing adaptor it is also possible to apply a previously defined function (see Section

5.2.5) to the output of the adaptor. Finally, AsterixDB also provides a mechanism to add custom

adaptors to the system.

Feeds that process external data, like the one above, are called Primary Feeds. AsterixDB also

supports Secondary Feeds that are fed from other feeds. Secondary Feeds can be used, just like

Primary Feeds, to transform data and to feed Datasets or feed other feeds. More about the user

model for feeds, its extensibility, and its implementation and performance can be found in [42].

5.2.5 User Defined Functions

One final DDL feature that should be mentioned is support for reusable user-defined functions

(UDFs), which are similar in nature to views in relational databases. (AsterixDB’s AQL UDFs are

essentially views with parameters.) As the definition of such a function requires an AQL function

body, we will provide an example in Query 5.8 in Section 5.3 and will provide more information

about UDFs once we have introduced the reader to the basics of AQL.

5.3 Data Manipulation

The query language for AsterixDB is AQL (Asterix Query Language). Given the nature of ADM,

we needed a language capable of dealing nicely with nesting and a lack of a priori schemas; we also

wanted its semantics to be the same with and without schemas. XQuery [24] had similar require-

ments from XML, so we chose to base AQL loosely on XQuery. ADM is simpler than XML, and

XPath compatibility was irrelevant, so we jettisoned the “XML cruft” from XQuery—document

order and identity, elements vs. attributes, blurring of atomic and sequence values—keeping its

core structure and approach to handling missing information. We could have started over, but
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XQuery was co-designed by a diverse band of experienced language designers (SQL, functional

programming, and XML experts) and we wanted to avoid revisiting many of the same issues and

making mistakes that the W3C XQuery team had made, identified, and fixed in their years of

work. Starting from SQL would have been messier, syntactically and semantically, as ANSI SQL

was designed for flat data—subqueries often have scalar-at-runtime-else-error semantics—and its

treatment of nesting for its nested table feature is ugly and complex. We wanted a much cleaner

start for AQL.

AQL is an expression language; as such, the expression 1+1 is a valid AQL query that evaluates

to 2. Most useful AQL queries are based on the FLWOR expression structure that AQL borrows

from XQuery. FLWOR stands for for-let-where-order by-return, naming the five most frequently

used clauses of the full AQL query syntax. A for clause provides an incremental binding of ADM

instances in a sequence (e.g. a Dataset) to variables, while the let clause provides a full binding of

variables to entire intermediate result expressions. Roughly speaking, the for clause in AQL is like

the FROM clause in SQL, the return clause in AQL is like the SELECT clause in SQL (but goes

at the end of a query), the let clause in AQL is like SQL’s WITH clause, and the where and order

by clauses in both languages are similar. AQL also has group by and limit clauses, as we will see

shortly.

We will describe AQL by presenting a series of illustrative AQL queries based on our Mugshot.com

schema. Most of the salient features of AQL will be presented, and of course more detail can be

found in the online AsterixDB documentation [64].

1 for $ds in dataset Metadata.Dataset return $ds;

2 for $ix in dataset Metadata.Index return $ix;

Query 5.1: All Datasets and indexes in the system

We begin our AQL tour with Query 5.1, which shows two queries that use the simplest (useful)

for and return clauses and show how the keyword dataset is used to access an AsterixDB Dataset

in AQL. The queries each return the instances in a target Dataset, and each targets a Dataset in

the Metadata Dataverse. The first one returns the set of all Datasets that have been defined so far,
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and the second one returns the set of all known indexes. These queries highlight the useful fact

that AsterixDB “eats its own dog food” with respect to system catalogs—AsterixDB metadata is

AsterixDB data, so (unlike Hive, for example) AsterixDB catalogs are stored in the system itself,

as is also true in most RDBMSs.

1 for $user in dataset MugshotUsers

2 where $user.user-since >= datetime(’2010-07-22T00:00:00’)

3 and $user.user-since <= datetime(’2012-07-29T23:59:59’)

4 return $user;

Query 5.2: Datetime range scan

Query 5.2 illustrates an AQL where clause. This query’s for clause conceptually iterates over

all records in the Dataset MugshotUsers, binding each to the variable $user, returning the ADM

records for users that joined mugshot.com from July 22, 2010 to July 29, 2012. (Of course, the

query’s actual evaluation may be more efficient, e.g., using an index on user-since under the cov-

ers.)

1 for $user in dataset MugshotUsers

2 for $message in dataset MugshotMessages

3 where $message.author-id = $user.id

4 and $user.user-since >= datetime(’2010-07-22T00:00:00’)

5 and $user.user-since <= datetime(’2012-07-29T23:59:59’)

6 return {

7 "uname" : $user.name,

8 "message" : $message.message

9 };

Query 5.3: Equijoin

Query 5.3 shows a first example where new records are being synthesized by a query. It first selects

user records like Query 5.2, but then it also selects matching message records whose author-id is

equal to the user’s id—an equijoin expressed in AQL. For each match, it creates a new ADM record

containing two fields, uname and message, that will contain the users name and the message text,

respectively, for that user/message pair. Note that the query returns a sequence of flat records, i.e.,

it repeats the user name with every message. Also, as the match predicate is only true when a match

exists, users without matching messages and messages without matching users are not returned.

Query 5.4 shows a more natural way to match users and messages in AQL. Users of interest are

targeted by the first for and where clause, and a nested FLWOR expression synthesizes a bag of
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1 for $user in dataset MugshotUsers

2 where $user.user-since >= datetime(’2010-07-22T00:00:00’)

3 and $user.user-since <= datetime(’2012-07-29T23:59:59’)

4 return {

5 "uname" : $user.name,

6 "messages" :

7 for $message in dataset MugshotMessages

8 where $message.author-id = $user.id

9 return $message.message

10 };

Query 5.4: Nested left outer-join

matching messages for each user. In contrast to Query 5.3, the result will include users who have

not yet sent any messages, and the result will be a set of nested ADM records, one per user, with

each user’s messages listed “inside” their user record. This is the equivalent of a SQL left outer

join in AQL, but with a more natural result shape since ADM permits nesting (unlike the relational

model).

1 for $t in dataset MugshotMessages

2 return {

3 "message" : $t.message,

4 "nearby-messages":

5 for $t2 in dataset MugshotMessages

6 where spatial-distance($t.sender-location,

7 $t2.sender-location) <= 1

8 return { "msgtxt" : $t2.message }

9 };

Query 5.5: Spatial join

Query 5.5 shows another “join” example, one that illustrates the use of AsterixDB’s spatial data

support. This query goes through the set of all Mugshot messages and, for each one, uses a nested

query to pair it with a bag of messages sent from nearby locations.

1 set simfunction "edit-distance";

2 set simthreshold "3";

3

4 for $msu in dataset MugshotUsers

5 for $msm in dataset MugshotMessages

6 where $msu.id = $msm.author-id

7 and (some $word in word-tokens($msm.message)

8 satisfies $word ˜= "tonight")

9 return {

10 "name" : $msu.name,

11 "message" : $msm.message

12 };

Query 5.6: Fuzzy selection

Query 5.6 illustrates some of AsterixDB’s fuzzy matching capabilities. This query returns the

sending user name along with a message if one of the words in a tokenization of the message
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fuzzily matches (˜=) ”tonight”. Fuzzy in this case means that the edit-distance is less than or equal

to 3, e.g., a message that contains the word ”tonite” would also be returned. The set statements

in the query’s prologue are used to specify the desired fuzzy matching semantics; a functional

syntax for fuzzy matching is also available to specify the matching semantics within the matching

predicate itself (which is needed if a query requires multiple fuzzy match predicates, each with

different match semantics).

1 for $msu in dataset MugshotUsers

2 where (some $e in $msu.employment

3 satisfies is-null($e.end-date)

4 and $e.job-kind = "part-time")

5 return $msu;

Query 5.7: Existential quantification

Query 5.7 illustrates two more advanced aspects of AQL, namely existential quantification and

the use of an open field (one that’s not part of the type definition for the data in question). This

example query uses existential quantification in its where clause to find users who have a current

employment record (i.e., one with a null end-date) that has a job-kind field whose value is ”part-

time”. (Note that job-kind is not declared to be a field of EmploymentType.)

1 create function unemployed() {

2 for $msu in dataset MugshotUsers

3 where (every $e in $msu.employment

4 satisfies not(is-null($e.end-date)))

5 return {

6 "name" : $msu.name,

7 "address" : $msu.address

8 }

9 };

Query 5.8: Universal quantification and function definition

1 for $un in unemployed()

2 where $un.address.zip = "98765"

3 return $un

Query 5.9: Function use

Query 5.8 defines a function (similar to a view in SQL) that returns the name and address of

unemployed users. It tests for unemployed users by seeing that all their employments have ended.

Query 5.9 then uses this function and selects all unemployed users in the ZIP code 98765. Such a

function can be written by an experienced user (one with a taste for universal quantifiers) and then

used by a novice user (one with more normal tastes).
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1 avg(

2 for $m in dataset MugshotMessages

3 where $m.timestamp >= datetime("2014-01-01T00:00:00")

4 and $m.timestamp < datetime("2014-04-01T00:00:00")

5 return string-length($m.message)

6 )

Query 5.10: Simple aggregation

Like any reasonably expressive query language, AQL includes support for aggregation. Query

5.10 is a first example of an AQL aggregate query, computing the average message length during

a time interval of interest. AQL aggregates include count, min, max, avg, and sum as well as sql-

count, sql-min, sql-max, sql-avg, and sql-sum. AQL’s own aggregates have what we consider to

be “proper” semantics regarding null values; e.g., the average of a set of values is null (unknown)

if any of the values encountered is null. AQL also offers a set of aggregate functions with SQL’s

“best guess” null handling semantics, wherein the average of a set of values with nulls is the sum

of the non-null values divided by the number of non-null values.

1 for $msg in dataset MugshotMessages

2 where $msg.timestamp >= datetime("2014-02-20T00:00:00")

3 and $msg.timestamp < datetime("2014-02-21T00:00:00")

4 group by $aid := $msg.author-id with $msg

5 let $cnt := count($msg)

6 order by $cnt desc

7 limit 3

8 return {

9 "author" : $aid,

10 "no messages" : $cnt

11 };

Query 5.11: Grouping with sorting and limits

AQL supports grouped aggregation as well and also provides the machinery to get the ‘top” results.

Query 5.11 illustrates how the group by, order by, and limit clauses can be used to group and

count messages by their sender and to report the results only for the three chattiest Mugshot.com

users. The group by construct in AQL is designed to perform grouping on the specified keys

($msg.author-id in Query 5.11), and implicitly create collections of the variable refernced in the

with clause. Logically, after the group by clause, the variables present in the query until then go

out of scope. The only values that are present after grouping are the keys and the collection created

by the with clause. In order to be able to access the keys, each key can be optionally bound to a

variable that is in scope after grouping. In Query 5.11, $aid holds the value of author-id for each
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group. The with variable is re-bound after grouping to the collection.

1 let $end := current-datetime()

2 let $start := $end - duration("P30D")

3 for $user in dataset MugshotUsers

4 where some $logrecord in dataset AccessLog

5 satisfies $user.alias = $logrecord.user

6 and datetime($logrecord.time) >= $start

7 and datetime($logrecord.time) <= $end

8 group by $country := $user.address.country with $user

9 return {

10 "country" : $country,

11 "active users" : count($user)

12 }

Query 5.12: Active users

Query 5.12 identifies all active users and then counts them grouped by country. The query con-

siders users that had activity in the last 30 days to be active. Activity data is taken from the web

server logs that are exposed as an external dataset (see Figure 5.2). This example also shows the

use of datetime arithmetic in AQL.

1 set simfunction "jaccard";

2 set simthreshold "0.3";

3

4 for $msg in dataset MugshotMessages

5 let $msgsSimilarTags := (

6 for $m2 in dataset MugshotMessages

7 where $m2.tags ˜= $msg.tags

8 and $m2.message-id != $msg.message-id

9 return $m2.message

10 )

11 where count($msgsSimilarTags) > 0

12 return {

13 "message" : $msg.message,

14 "similarly tagged" : $msgsSimilarTags

15 };

Query 5.13: Left outer fuzzy join

Last but not least, Query 5.13 closes out our tour of AQL’s query power by showing how one can

express fuzzy joins in AQL. This example analyzes Mugshot.com’s messages by finding, for each

message where there are one or more counterparts with similar tags, the similarly tagged messages.

Here similarity means Jaccard similarity of 0.3 (messages with more than 30% of the same tags).

Under the covers AsterixDB has built-in support for both ad hoc parallel fuzzy joins as well as

indexed fuzzy joins.

Data can enter AsterixDB via loading, feeds, or insertion. AQL’s support for insert operations is

illustrated in Update 5.1; its corresponding support for doing delete operations is shown in Update
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1 insert into dataset MugshotUsers

2 (

3 {

4 "id":11,

5 "alias":"John",

6 "name":"JohnDoe",

7 "address":{

8 "street":"789 Jane St",

9 "city":"San Harry",

10 "zip":"98767",

11 "state":"CA",

12 "country":"USA"

13 },

14 "user-since":datetime("2010-08-15T08:10:00"),

15 "friend-ids":{{ 5, 9, 11 }},

16 "employment":[{

17 "organization-name":"Kongreen",

18 "start-date":date("2012-06-05")

19 }]

20 }

21 );

Update 5.1: Simple insert

1 delete $user from dataset MugshotUsers

2 where $user.id = 11;

Update 5.2: Simple delete

5.2. The data to be inserted is specified as any valid AQL expression; in this case the expression

is a new record whose content is known a priori. Delete operations’ where clauses can involve any

valid AQL boolean expression. Currently the AsterixDB answer for modifying data in a Dataset

is “out with the old, in with the new”—i.e., a delete followed by an insert. (We are targeting

append-heavy use cases initially, not modification-heavy scenarios.)

In terms of the offered degree of transaction support, AsterixDB supports record-level ACID trans-

actions that begin and terminate implicitly for each record inserted, deleted, or searched while a

given AQL statement is being executed. This is quite similar to the level of transaction support

found in todays NoSQL stores. AsterixDB does not support multi-statement transactions, and

in fact an AQL statement that involves multiple records can itself involve multiple independent

record-level transactions [64, 11].
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Figure 5.3: Architecture

5.4 System Architecture

Figure 5.3 shows the architecture of AsterixDB. The top box shows the components of a Query

Control Node, which in the current release coincides with the Hyracks Cluster Controller, from

Hyracks, described in detail in Section 3.3.1.

This node receives queries via an HTTP-based API and returns their results to the requester ei-

ther synchronously or asynchronously (in which case a handle to the result is returned and the

client can inquire about the query’s status and request the result via the handle). The Query Con-

trol Node also runs (a) the AQL compiler that translates AQL statements to Job Descriptions for

the dataflow-engine Hyracks and (b) the Job Executor that distributes the Job Descriptions to the

Hyracks Node Controllers and starts the execution. The AQL Compiler internally uses Alge-

bricks to compile queries into Hyracks Jobs, that are then executed by the Hyracks Job Executor.

Algebricks has access to the Metadata Manager through the metadata interface described in Sec-

tion 4.1.1 in Chapter 4. The Worker Nodes – represented by the boxes at the bottom of Figure 5.3

– have to (a) manage their partitions of the data stored in LSM-trees and to (b) run their parts of

95



each Hyracks Job. In the following subsection we will describe Hyracks and Algebricks.

Figure 5.4: Asterix software stack

5.4.1 Hyracks and Algebricks

The Hyracks layer of AsterixDB is the bottom-most layer of the Asterix software stack as de-

scribed before, and shown in Figure 5.4 repeated here for readability. Hyracks is the runtime

layer (a.k.a. executor) whose responsibility is to accept and manage data-parallel computations

requested either by one of the layers above it in the Asterix software stack or potentially by direct

end-users of Hyracks. In the case of AsterixDB, Hyracks serves as the scalable runtime engine for

AQL queries once they have been compiled down into Hyracks Jobs for execution.

As mentioned before, jobs are submitted to Hyracks in the form of DAGs made up of Operators

and Connectors. As described in 3, Hyracks Operators are responsible for consuming partitions of

their inputs and producing output partitions. Connectors redistribute data from the output partitions

and provide input partitions for the next Operator.

Figure 5.5 depicts the Hyracks Job for Query 5.10. The boxes represent its Operators and the lines

represent Connectors. One thing that we see is that all Connectors, except for the last one, are

OneToOneConnectors. This means that no redistribution of data is required for this part of the

plan—and it can be evaluated on the node that stores the data. The degree of parallelism (the num-
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ber of Operator instances evaluating in parallel) for these Operators is the number of partitions that

is used to store the Dataset. Looking at the Operators bottom-up, we see that the first 2 Operators

perform a search on a secondary index. This will return a set of primary key values that are fed into

the search Operator on the primary index. Note that the primary keys are sorted first to improve

the access pattern on the primary index. Above the primary index access we see two Operators

that evaluate a predicate that should intuitively always be true for records that were identified by

the search on the secondary index. This test is needed owing to the specific record-level transac-

tion model implemented by AsterixDB. For more details about the transaction model supported by

AsterixDB, please refer to [10]. Finally, we see that the avg function that encapsulates the rest of

the query has been split into two Operators: a Local Aggregation Operator that pre-aggregates the

records for the local node and a Global Aggregation Operator that aggregates the results of the the

Local Aggregation Operators. Between these Operators is a MToNReplicatingConnector. As the

degree of parallelism for the Global Aggregation Operator is constrained to be 1, the Connector

replicates the results of all instances of the Local Aggregation Operators to the single instance of

the Global Aggregation Operator. This split maximizes the distributed computation and minimizes

network traffic.

As the first step in the execution of a submitted Hyracks Job, its Operators are expanded into their

constituent Activities. While many Operators have a single Activity, some Operators consist of

two or more Activities. For example, a HybridHash Join Operator is made up of two Activities,

the Join Build Activity and the Join Probe Activity. This expansion is made possible by APIs that

Hyracks provides to Operator implementors to enable them to describe such behavioral aspects

of an Operator. Although Hyracks does not understand the specifics of the various activities of

an Operator, exposing the blocking characteristics of Operators provides important scheduling

information to Hyracks – the separation of an Operator into two or more Activities surfaces the

constraint that it can produce no output until all of its input has been consumed.

To execute a Job, Hyracks analyzes the Activity graph produced by the expansion described above
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Figure 5.5: Hyracks job of the aggregation query in Query 5.10

to identify the collections of Activities (Stages) that can be executed at any time (while adhering

to the blocking requirements of the Operators). Each Stage is parallelized and the resulting graph

is executed in the order of the dependencies. More details about Hyracks’ computational model,

as well as its implementation and performance, are available in [20].

The Hyracks job shown above, is generated by the Algebricks layer in AsterixDB. AsterixDB’s

AQL parser parses the query (Query 5.10, in this case) and produces a logical query expression

using Algebricks operators, shown in the listing below.

1 DISTRIBUTE-RESULT( $$temp1 )

2 PROJECT $$temp1

3 AGGREGATE $$temp1: avg( $$temp0 )

4 ASSIGN( $$temp0:string-length(

5 field-access-by-name($$m, "message")) )

6 SELECT( algebricks-and(

7 algebricks-ge(field-access-by-name($$m, "timestamp"),

8 datetime("2014-01-01T00:00:00")),

9 algebricks-lt(field-access-by-name($$1, "timestamp"),

10 datetime("2014-04-01T00:00:00")) )
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11 UNNEST( $$m:dataset("MugshotMessages") )

12 EMPTY_TUPLE_SOURCE

After the initial logical plan is created, the compilation of the query proceeds using the Alge-

bricks compiler. The metadata provider implemented within AsterixDB exposes source meta-

data to the Algebricks compiler. In the example above, the metadata provider is used to check if

“MugshotMessages” is a valid dataset, and if so, also fetch the type associated with this dataset.

In this specific instance, Algebricks realizes that the dataset has a secondary index on the “times-

tamp” field, and hence the time-range selection can be achieved by using that index. Based on this

information, the Algebricks compiler rewrites the bottom part of the logical expression into one

that would use the secondary index. Furthermore, Algebricks also optimizes the aggregate step

of the query by converting it into a two-step distributed aggregate operation so that the amount of

data transported over the network is minimized. The rewrite rule that utilizes indexes is specific

to AsterixDB and lives in the AsterixDB codebase. On the other hand, the rule that optimizes

aggregation for parallelism is available as part of the core Algebricks distribution.

AsterixDB uses the Algebricks framework to perform some optimizations specific to itself. As

mentioned before, AsterixDB supports open types. A field accessed in a record of an open type

might fall under one of two categories. The field could be one that was defined in the open type

definition of the record type, or it could be a non-declared field. The concrete datamodel represen-

tation of record values in AsterixDB stores these two types of fields in different ways. Declared

fields are stored without storing their field names in every record instance, and can be accessed

using the index of the field. The undeclared fields, on the other hand, are stored along with their

name. Although the declared fields can be accessed by name (by first probing the record type

definition for the index, and then accessing the actual field value in the record instance by in-

dex), it is more efficient to “constant-fold” the name-to-index mapping step, so that the field can

be looked up directly by index at runtime. AsterixDB uses a rewrite rule to perform data-flow

analysis at compile-time to identify type lineage of values to maximize the locations in the query
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where the name-to-index mapping can be performed during compilation. All such occurrences

of “field-access-by-name” invocations are then replaced by the “field-access-by-index” function,

thus making the cost of accessing declared fields no worse than the costs associated with accessing

fields in a fully typed language like SQL.

5.5 Conclusion

In this chapter, we took a look at AsterixDB, a semi-structured, parallel Big Data Management

System and the roles of Hyracks and Algebricks in its architecture. Hyracks and Algebricks form

core foundational pieces that provide significant functionality for compiling AQL queries and then

running them in parallel on commodity clusters.
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Chapter 6

Conclusions and Future Work

This thesis presented Hyracks, a high-performance parallel dataflow runtime layer, and Algebricks,

a parallel query compilation layer, both of which underpin the AsterixDB stack. Hyracks in con-

junction with Algebricks also support quite a few other query processing systems. In addition to

AsterixDB, described in Chapter 5, Hivesterix and Apache VXQuery are two other query process-

ing engines that have been built on top of Hyracks + Algebricks. Hyracks has also served as a

research platform for building specialized Big Data processing systems. Pregelix [21] is a clone of

the Pregel [50] programming model for performing graph analytics over large distributed graphs,

using a dataflow approach rather than a message-passing approach to solve the problem. Hyracks

has also been used to implement a highly scalable version of the Batch Gradient Descent Algorithm

for machine learning [57].

Since Hyracks was first implemented and tested in 2011 [20], we had the opportunity to test the

software at scale (thanks to Yahoo! Research collegues who gave us access to their 180-node

research cluster). The inter-process communication layers in Hyracks were re-architected based

on lessons learned while running at that scale. Hyracks has also been used by outside groups as

a research system. Researchers at Rice University used Hyracks to prototype Online Aggrega-
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tion [53]. A research group at UCSD working on Lineage Analysis instrumented Hyracks with

their algorithms [49].

Hyracks still has a lot of room for improvement. For example, Hyracks implements a fairly simple

form of fault-tolerance where a failed part of a job is re-executed until it succeeds. More sophis-

ticated strategies, perhaps one that checkpoints operators periodically, could be used to reduce the

amount of time spent in reruns. Furthermore, a cost-based analysis could be used to decide on

the best operators to checkpoint in order to reduce the cost of the entire job. Automatic resource

management is one other area that remains very open in the Hyracks platform. Distributing com-

pute resources among concurrent queries is an important field of study that is not dealt with in

this thesis. Hyracks uses a manual approach to resource management, where it is the program-

mer’s or query compiler’s responsibility to specify the amount of parallelism to use when running

a job. In the future, Hyracks could benefit from an automatic resource management architecture,

so that jobs could be optimized using various policies without the over (or under) consumption of

available resources.

The Algebricks compilation framework has proven to be a valuable resource in building parallel

query compilers, including several in addition to the AQL compiler in AsterixDB. As mentioned

earlier, Algebricks has been used to build both Hivesterix (a Hive clone on Hyracks) and Apache

VXQuery. Based on our experience building these query compilers, we have encountered some

areas that could be explored in the future. Algebricks currently contains a rule-based optimizer.

Cost-based optimization inside the Algebricks framework would be a welcome addition, and it

would then benefit all the compilers built on top of Algebricks. In fact, the Database Research

Group at IIT, Bombay has been working to embed their cost-based optimizer into the platform.

Algebricks could also be extended to model iterative processing by perhaps adding an operator

similar to the Alpha Operator [8]. Native iterative processing support would in turn allow Alge-

bricks to be used to model systems like Pregelix and IMRU (both of which are currently hand-

coded on top of Hyracks) and thus benefit from having an optimization step instead of relying on
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hand-coded plans as they do today.

AsterixDB, a project that originally started as a collaboration between the three Universities of Cal-

ifornia, at Irvine, Riverside, and San Diego, is now incubating at the Apache Software Foundation.

Hyracks and Algebricks are now distributed as part of the AsterixDB project.
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[65] J. Zhou, N. Bruno, M.-C. Wu, P.-Å. Larson, R. Chaiken, and D. Shakib. SCOPE: Parallel

Databases Meet MapReduce. VLDB J., 21(5):611–636, 2012.

[66] JSON. http://www.json.org/.

108

http://asterixdb.ics.uci.edu/documentation/
http://www.json.org/

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Related Work
	Parallel Database Systems
	Data-Intensive Computing Systems
	Extensible Database Systems

	Hyracks: A High-Performance Dataflow Runtime Engine
	Hyracks Overview
	Example
	High-level Architecture

	Computational Model
	Data Treatment in Hyracks
	End User Model
	Operator Implementor Model
	Hyracks Library

	Hyracks Implementation details
	Control Layer
	Task Execution Layer

	Experimental Results
	MapReduce on Hyracks
	Beyond MapReduce
	Fault Tolerance Study

	Conclusion

	Algebricks: A Data Model-Agnostic Compiler Backend
	The Algebricks Framework
	Metadata Interface
	Logical Operators
	Physical Operators
	Rewriter
	Job Generation

	Using Algebricks
	Hivesterix
	Apache AsterixDB
	Apache VXQuery

	Experimental Evaluation
	Hivesterix
	Apache AsterixDB
	Apache VXQuery

	Conclusion

	AsterixDB: Putting It All Together
	Overview
	Data Definition
	Dataverses, Datatypes, and Datasets
	Dataset and Index Creation
	External Data
	Data Feed Creation
	User Defined Functions

	Data Manipulation
	System Architecture
	Hyracks and Algebricks

	Conclusion

	Conclusions and Future Work
	Bibliography

