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ABSTRACT OF THE DISSERTATION

Towards Analytics-Optimized Document Stores
By
Wail Y. Alkowaileet
Doctor of Philosophy in Computer Science
University of California, Irvine, 2022

Professor Michael J. Carey, Chair

In the last two decades, relational databases for analytics have been specialized to address
the needs of analytical workloads. For instance, analytical workloads often focus on a few
attributes (or columns) instead of the whole tuple. Thus, many analytical databases have
opted to store the data in a columnar layout to reduce the I/O cost. Additionally, relational
databases for analytics have shifted from interpreter structures for query processing to com-
piling queries into executable programs that can achieve the performance of hand-written

specialized programs.

Document store database systems have gained traction for storing and querying large vol-
umes of semi-structured data without requiring the users to pre-define a schema. This
flexibility allows users to change the structure of incoming records without worrying about
taking the system offline or hindering the performance of currently running queries. Despite
their popularity, document stores have lacked the advances made for analytics-specialized
relational databases for handling analytical workloads. In fact, the redundant information in
the records (“embedded schemas”) stored in document stores can introduce an unnecessary
storage overhead that can render document stores even less performant than non-analytics-

specialized relational databases.

Despite the performance gap between relational and document databases, many users have

xiil



no choice but to use the slower yet flexible document stores. In this dissertation, we aim
to optimize document stores and show that users can enjoy a similar performance of the
analytics-specialized relational databases without sacrificing the flexibility of the document

model. Specifically, this dissertation makes the following main contributions:

We first address the lack of schemas and the storage overhead in document stores by
proposing the tuple compactor, a framework for inferring and extracting the schemas of
self-describing semi-structured records. Our tuple compactor exploits the events of Log-
structured Merge tree (LSM) storage, namely the flush operation, to infer and extract the
schema during data ingestion. We experimentally demonstrate the efficiency of our tuple

compactor on real, large datasets.

Second, we use the inferred schema and introduce two layouts for storing nested semi-
structured data in columnar formats. We also propose several extensions to the Dremel
format, a popular columnar format for nested data, to comply with document stores’ flexi-
ble data model. Our experiments show significant performance gains, improving the query

execution time by orders of magnitude while minimally impacting ingestion performance.

Third, we present our code generation framework, which can handle the document data
model’s polymorphic nature and improve query execution performance in Apache Aster-
ixDB. We analytically and empirically show that the CPU overhead of an interpreter-style
execution engine can be a bottleneck even in disk-based databases like AsterixDB. However,
our code generation framework can remedy the CPU overhead and significantly improve the
performance of analytical queries. We also propose several improvements to AsterixDB’s
aggregation framework to optimize group-by queries, a crucial class of queries in analytical

workloads.
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Chapter 1

Introduction

Specialized Database Management Systems (DBMSs) for analytics have been around since
the 1970s; Teradata [27] is an example of an analytical DBMS founded in 1979 [? |. How-
ever, the market for analytical DBMSs flourished in the 2000s due to the internet boom.
Nowadays, analytical DBMSs are highly specialized to address the challenges of analyzing
the ever-growing size of data. For example, systems such as Vertica [29, 89] and MonetDB
21, 94] store relational tables as columns instead of rows to accelerate analytical workloads,
which tend to focus on querying a few attributes instead of the whole tuples. Another
architectural shift in analytical DBMSs is the query execution model. For instance, in Mon-
etDB\X100 [94], the authors proposed a query execution model (moving from the iterator
model [69]) that is cache-friendly, which consequently reduces the overhead of accessing
memory when executing CPU-intensive analytical queries. The advancement in query pro-
cessing took another step to further reduce the CPU overhead by translating queries into
code that can be compiled and executed to obtain the desired results [12, 65, 77, 83]. This
code generation and query compilation approach can improve query execution performance

and bring it closer to the performance of hand-written specialized programs.



Self-describing semi-structured data formats like JSON have become the de-facto format for
storing and sharing information as developers are moving away from the rigidity of schemas
in the relational model. As a result, document store systems have emerged as popular solu-
tions for storing, indexing, and querying self-describing semi-structured data. In document
stores, users do not need to define a schema or transform the data before ingesting it — mak-
ing document stores more attractive for schema-flexible (or even schemaless) applications.
However, document stores relinquished the advancements made for improving the perfor-
mance of analytical workloads in the relational model by forgoing the rigidity of schemas.
The lack of schema, for instance, makes it impossible to store nested semi-structured in a
columnar-oriented fashion as the attributes (or fields) are unknown. Additionally, adopt-
ing the code generation and compilation model mentioned earlier would be challenging as
values’ types are only known at runtime and not compile time. For those reasons, major
document stores such as MongoDB [22] and Couchbase Server [17] (at the time of writing
this dissertation) do not support storing the data in a columnar format nor employ the code
generation and compilation execution model — rendering them less performant for analytical

workloads compared to relational DBMSs.

In this dissertation, we aim to bridge the performance gap between document stores and
relational databases for handling analytical workloads without affecting the flexibility pro-
vided by the former. In particular, we study three problems and provide an efficient solution

for each one in the context of Apache AsterixDB [3] based on the following topics:

Schema Inference and Tuple Compaction. Due to the lack of a centralized schema, each
record stored in a document store embeds additional (schema) information that describes
its structure and the stored values’ types. By storing the “schema” within each record,
records can have different structures and even types for a single field (e.g., storing birth
dates as integers or strings). The cost of such an approach can be high since records often

share the same schema; hence, storing such information in each record is redundant and can



unnecessarily inflate the storage footprint. Extracting the schema information from each
record and storing it in a “centralized” manner can alleviate this storage overhead. In the
first part of this dissertation, we introduce the tuple compactor, a framework that infers and
compacts the schema for document stores’ semi-structured records during data ingestion.

The tuple compactor appeared in VLDB’20 [36].

Columnar Formats for Document Stores. Since the scheme can be inferred efficiently,
one possible extension to the previous topic is to store documents as columns — a step
further to bring document stores closer to matching the performance of analytical relational
databases. In this topic, we explore different approaches for storing data in columnar formats
without compromising the flexibility of the document model. We also study the viability of
secondary indexes for querying data stored in a columnar format, where secondary indexes
have at times been deemed unnecessary for columnar databases. The proposed techniques

for storing semi-structured data in a columnar format will appear in VLDB’22 [37]

Code Generation and Compilation. Storing the data in a columnar format can reduce
the I/O cost significantly for analytical workloads. With the current advancement in stor-
age technologies, disks have become faster — shifting the cost to the CPU, which became
apparent, especially for complex analytical workloads. Relational DBMS developers have
addressed this issue by translating queries into compilable and executable code. However,
document stores still employ interpreter-like execution engines, where values (or records) are
passed from one operator to another for processing. As in dynamically-typed programming
languages, a major challenge for shifting to a code generation and compilation model is the
polymorphic nature of document stores, where values’ types are only known at runtime. In
the last part of this dissertation, we propose a solution for translating AsterixDB’s SQL-++
queries into code written using an internal language that can be compiled and executed
efficiently. The generated code, which runs using Oracle’s Truffle Framework [93], can adapt

dynamically to type changes at runtime using Truffle’s Just-in-Time (JIT) compiler. We also



propose several improvements to AsterixDB’s aggregation framework to further improve the

performance of analytical workloads.

The rest of this dissertation is organized as follows. Chapter 2 discusses the differences
between the various physical storage formats and query execution models, and gives back-
ground information on Apache AsterixDB’s internals. Chapter 3 discusses related work on
inferring schemas, storing data in columnar formats, and translating queries into compilable
and executable code. Chapter 4 presents a novel approach for inferring the schema and
using the inferred schema to compact ingested records. Chapter 5 proposes one approach
for storing schemaless semi-structured data in columnar formats. Chapter 6 describes the
design and implementation of our code generation framework in Apache AsterixDB. Finally,

Chapter 7 concludes this dissertation and discusses future research directions.



Chapter 2

Background

2.1 Storage Formats

In any data management system, the storage subsystem determines how the data is stored
and retrieved. Different data management systems store the data differently to accelerate the
data ingestion and retrieval process for specific workloads. For instance, database systems
targeted for analytical workloads focus on processing a large volume of data while minimizing
query execution time. Thus, a suitable physical storage format that reduces the overall 1/O
and CPU costs is crucial for analytical databases. In this section, we summarize the traits

of the two major physical storage formats: row and columnar formats.

2.1.1 Row Format

In row-store data management systems, the records are stored contiguously on disk (or in
memory for in-memory databases) as rows; hence the name “row-store”. Figure 2.1 shows

the Employee table whose records are stored as contiguous rows on disk. In document stores



ID Age Name
0 25 Ann

3 Sam 21

1
2 35 Dan
3 21 Sam

Figure 2.1: The Employee table stored in a row format

such as AsterixDB, records could also be stored in a row-like format, where each row is a
document (e.g., a JSON document). Handling inserts, deletes, and updates efficiently are
crucial for operational workloads. Since the records (or tuples) are the operational units (for
insert, delete, and update operations) in database systems, storing the data as rows makes
it naturally easier to manipulate. For instance, inserting a new record can be achieved
by simply appending the record (as-is) to a file. Thus, operational databases often store
data as rows to maximize the performance of processing a large number of record-oriented

transactions.

2.1.2 Columnar Format

ID Age Name

GGl Ann 012 3|25 19 35 21
19

Bob
Ann Bob Dan Sam
35 Dan

21 Sam

Figure 2.2: The Employee table stored in a columnar format

Handling operational workloads was initially the main objective for database systems. Thus,

6



storing data as rows is still the default format in legacy systems. However, using database
systems has gone beyond handling operational workloads to analyze the stored data to draw
valuable insights. In contrast to operational workloads, analytical workloads are heavy on
running ad-hoc queries against a large volume of data. Furthermore, analytical queries tend
to focus only on a few attributes (or columns) relevant to specific questions or insights.
Therefore, column-store data management systems have emerged to address those needs. As
opposed to rows, column-store systems store the records as contiguous columns on disk (or

in memory). Figure 2.2 shows the columnar storage layout for the same table in Figure 2.1.

To illustrate the benefits of storing the data as columns for analytical workloads, let us take

the following simple analytical query:

SELECT AVG(age) FROM Employee

The query computes the average age of all employees in the Employee table. When stored
as rows, the system reads each record and extracts the age value to compute the required
aggregate. However, when the data is stored as columns, the system reads only the age’s
column and skips all irrelevant columns. Consequently, the I/O cost for such a query becomes

significantly lower in column-store systems compared to row-store systems.

Additionally, storing the values of each column separately and contiguously allows for en-
coding the data to reduce the I/O cost further. Let us take an example where we want to
encode the ID’s values (Figure 2.2): 1, 2, 3, and 4. The values are first encoded using the
delta-encoding, which produces the numerical sequence [1, 1, 1, 1], where the first value of
the sequence is the first unencoded value (i.e., ID = 1), and the rest of the values repre-
sent the differences (deltas) between the original values. The resulting sequence can then
be passed to a Run-length encoder, which encodes the sequence’s values as a pair of two
integers < 1,4 > — indicating that the value “1” is repeated four times. As a result, using

the two encoding schemes, it takes two integers to store the ID’s four integer values — a 50%



reduction.

However, storing the data as columns comes with a cost. In contrast to row-stores, column-
stores systems must shred newly inserted records into columns before persisting them to
disk (an additional cost). Consequently, the system must also ensure that the columns can
be reassembled (or restitched) back to their original form. Some mechanisms are used to
track which columns’ values belong to which record. For instance, a naive approach would
be attaching a record identifier (RID) to each column’s value — requiring the system to store
the same RIDs for as many columns as a table has (e.g., three times for the table shown
in Figure 2.2). Another approach could exploit the position of each value (i.e., the order in
which the values are stored) to associate each value to its record. However, handling updates
using the latter approach would be more challenging, as a new column value may need more
space, which requires moving the new column’s value to a different position. With encoding,

handling updates would be even more challenging for both approaches.

2.2 Query Execution Models

Similar to the storage formats, different data management systems employ different models
for processing queries, and each model has its pros and cons. When a user submits a query,
the system translates the submitted query into a “physical” algebraic expression (also known
as the query plan), which the system evaluates to produce the query result. In this section,
we explain the workflow of different query execution models — namely, the iterator model,
the vectorized model, and the code generation and query compilation model. We also give

an overview of the advantages and disadvantages of each execution model.



SELECT name, age
FROM Employee
WHERE age > 20

Figure 2.3: A query against the Employee table (Section 2.1)

2.2.1 Iterator Model

In the iterator model [69] (sometimes referred to as the Volcano model [60]), the evaluation of
a query plan starts by calling the next () function of the root algebraic operator of the query
plan. That, in turn, calls the next () function for the root’s child operator. The callings
of next() cascade to every operator in the query plan until it reaches the leaf operators.
The result of each calls to next () is a processed tuple and the resulting tuples from calling

next () on the root operator are the query result.

@ next() <25fAnn>

l
RESULT

@next() C @<25,Ann>

SELECT: age > 20

@ next() @ <25,Ann>

PROJECT: name, age

@next() )> @<l,25,Ann>
|

SCAN: Employee

<1,25,Ann>
<2,19,Bob>

<3,35,Dan>
<4,21,Sam>

Figure 2.4: The execution plan for the query in Figure 2.3

To illustrate, Figure 2.4 shows the query plan for the query in Figure 2.3 as well as the
sequence in which the function next () is called. Each call to next() cascades until the
next () of the leaf SCAN operator is called, which feteches the first tuple from disk and
passes it as an output of calling its next() function. Then, each operator processes the
received tuple and produces a new one as a result of calling its next () function as shown in

Figure 2.4.



The workflow of the iterator model resembles the interpreter model in programming lan-
guages. As opposed to compilers, interpreters are easy to implement; however, interpreted
programming languages tend to be less performant than compiled ones. Similarly, the iter-
ator model is less performant than other query execution models for the reasons explained

in [77] and summarized in the following points:

e The many calls to the function next () in the iterator model can hinder the performance

(e.g., one million tuples and three operators equates to three million calls).

e Each call to next () is probably a virtual call that the compiler cannot inline and can

degrade the ability of the CPU’s branch predictor.

2.2.2 Vectorized Model

To address the issues of the iterator model, the vectorized model [81, 94] (also known as the
batch-at-a-time model) produces a batch of tuples (instead of a single tuple) for each call to
the function next (). This batching mechanism reduces the number of calling next (), as the
cost of each call is “distributed” among the produced tuples in the batch. However, in this
model, each operator materializes the processed tuples into some temporary memory buffer
to form a batch for the next operator. Some operators, such as the SELECT operator, do not
alter the form of the received tuples. One advantage of the iterator model over the vectorized
model is that the results of such operators are pipelined — avoiding the unnecessary cost of

the materialization.

2.2.3 Code Generation and Query Compilation Model

Akin to the performance of a compiled language vs. an interpreted language, a compiled

hand-written code outperforms both the iterator and the vectorized models [84, 94]. For
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instance, in [84], the authors compared the performance of the iterator model against “a
hand-written code written by a college freshman” when evaluating a simple aggregate query.
They found that the “college freshman” hand-written code was an order of magnitude faster

than the iterator model for the following reasons:

e The hand-written code eliminated the virtual function calls in the iterator model.

e The hand-written code placed the intermediate results in CPU registers (vs. in memory

in the iterator model).

e The hand-written code benefited from the compiler’s optimizations, such as unrolling
loops and exploiting SIMD instructions to process multiple values in a single CPU

instruction.

Several data systems [12, 65, 77, 83] translate algebraic operators into code, which can then be
compiled and executed efficiently. The translated code “fuses” the work of multiple operators
into a single function call. Thus, the generated code processes the data in situ instead of
passing the data from one operator to another. In Chapter 6, we describe our approach

(inspired by [77]) to translating the algebraic operators of a query into an executable code.

Despite the performance gains that systems can get from this model, one should consider
the compilation time, which can be significantly high — especially for latency-sensitive ap-
plications (i.e., operational workloads). Thus, the code generation model is often used to

reduce the execution times of complex analytical queries.

2.3 Apache AsterixDB

Apache AsterixDB is our system of choice for implementing the proposed techniques in this

dissertation. Apache AsterixDB is a parallel semi-structured Big Data Management System
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(BDMS), which runs on large, shared-nothing, commodity computing clusters. To prepare
the reader, we give a brief overview of AsterixDB [38, 51] and its query execution engine

Hyracks [49].

2.3.1 User Model

The AsterixDB Data Model (ADM) extends the JSON data model to include types such
as temporal and spatial types as well as data modeling constructs (e.g., bag or multiset).
Defining an ADM datatype (akin to a schema in an RDBMS) that describes at least the

primary key(s) is required to create a dataset (akin to a table in an RDBMS).

CREATE TYPE DependentType CREATE TYPE EnployeeType

. id: int,
name: string, name: string
. age: Int dependents: {{DependentType} }?
’ b

CREATE DATASET Employee (EmployeeType) PRIMARY KEY id;

Figure 2.5: Defining Employee type and dataset in ADM

There are two options when defining a datatype in AsterixDB: open and closed. Figure 2.5
shows an example of defining a dataset of employee information. In this example, we first
define DependentType, which declares two fields name and age of types string and int,
respectively. Then, we define Employee Type, which declares id, name and dependents of
types int, string and a multiset of DependentType, respectively. The symbol “?” indicates
that a field is optional. Note that we defined the type EmployeeType as open, where data
instances of this type can have additional undeclared fields. On the other hand, we define
the DependentType as closed, where data instances can only have declared fields. In both
the open and closed datatypes, AsterixDB does not permit data instances that do not have

values for the specified non-optional fields. Finally, in this example, we create a dataset
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Employee of the type Employee Type and specify its id field as the primary key.

SELECT VALUE nameGroup FROM Employee AS emp
GROUP BY emp.name GROUP AS nameGroup

Figure 2.6: An example of a SQL++ query

To query the data stored in AsterixDB, users can submit their queries written in SQL++ [52,
80], a SQL-inspired declarative query language for semi-structured data. Figure 2.6 shows

an example of a SQL++ aggregate query posed against the dataset declared in Figure 2.5.

SQL++ Queries
and Results
A

v
Cluster Controller

’ SQL++ Compiler ‘

Data Feeds Algebricks Data Publishing
(From External Query Optimizer and (to External
Sources) Rewriter Sources/Apps)
| Job Manager 4

Node Controller 0 Node Controller 1 Node Confroller 2
’ Metadata Manager ‘

’ Hyracks Dataflow Layer ‘ ’ Hyracks Dataflow Layer ‘ ’ Hyracks Dataflow Layer ‘
’ Buffer Cache ‘ ’ Buffer Cache ‘ ’ Buffer Cache ‘
LSM Tree Manager LSM Tree Manager LSM Tree Manager
’ Partition 0 ‘ ’ Partition 1 ‘ ’ Partition 2 ‘ ’ Partition 3 ‘ ’ Partition 4 ‘ ’Porﬁfion 5 ‘

T 8§ §®§ 8§ &§ B

Figure 2.7: An AsterixDB cluster configured with two partitions in each of the three NCs

2.3.2 Storage and Data Ingestion

In an AsterixDB cluster, each worker node (Node Controller, or NC for short) is controlled by
a Cluster Controller (CC) that manages the cluster’s topology and performs routine checks

on the NCs. Figure 2.7 shows an AsterixDB cluster of three NCs, each of which has two data
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partitions that hold data on two separate storage devices. Data partitions in the same NC
(e.g., Partition 0 and Partition 1 in NCO0) share the same buffer cache and memory budget for
LSM in-memory components; however, each partition manages the data stored in its storage
device independently. In this example, NCO also acts as a metadata node, which stores and

provides access to AsterixDB metadata such as the defined datatypes and datasets.

AsterixDB stores the records of its datasets, spread across the data partitions in all NCs,
as rows in primary LSM BT-tree indexes. During data ingestion, each new record is hash-
partitioned using the primary key(s) into one of the configured partitions (Partition 0 to
Partition 5 in Figure 2.7) and inserted into the dataset’s LSM in-memory component. As-
terixDB implements a no-steal /no-force buffer management policy with write-ahead-logging
(WAL) to ensure the durability and atomicity of ingested data. When the in-memory compo-
nent is full and cannot accommodate new records, the LSM Tree Manager (called the “tree
manager” hereafter) schedules a flush operation. Once the flush operation is triggered, the
tree manager writes the in-memory component’s records into a new LSM on-disk component
on the partition’s storage device, Figure 2.8a. On-disk components during their flush oper-
ation are considered INVALID components. Once it is completed, the tree manager marks
the flushed component as VALID by setting a validity bit in the component’s metadata
page. After this point, the tree manager can safely delete the logs for the flushed compo-
nent. During crash recovery, any disk component with an unset validity bit is considered
invalid and removed. The recovery manager can then replay the logs to restore the state of

the in-memory component before the crash.

Once flushed, LSM on-disk components are immutable, and hence, updates and deletes are
handled by inserting new entries. A delete operation adds an ”anti-matter” entry [39] to
indicate that a record with a specified key has been deleted. An upsert is an insert of a new
record with the same key, which replaces the older record. For example, in Figure 2.8a, we

delete the record with ¢d = 0. Since the target record is stored in Cy, we insert an ”anti-
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(a) Flushing component C4

Metadata Page

VALID
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Metadata Page

INVALID
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Co Merge

VALID
(Flushed)

<1, "John", age: 22
<2, “Bob", age: 21>

[Co C4]

(b) Merging the two components Cp and C into a new component [Cp, C]

Figure 2.8: An example of LSM flush and merge operations

matter” entry to indicate that the record with ¢d = 0 is deleted. As on-disk components
accumulate, the tree manager periodically merges them into larger components according
to a merge policy [39, 70] that determines when and what to merge. Deleted and updated
records are garbage-collected during the merge operation. In Figure 2.8b, after merging Cj
and C into [Cy, Cy], we do not write the record with id = 0 since the record and the anti-
matter entry annihilate each other. As in the flush operation, on-disk components created
by a merge operation are considered INVALID until their operation is completed. After

completing the merge, older on-disk components (Cy and C) can be safely deleted.

On-disk components in AsterixDB are identified by their component IDs, where flushed
components have monotonically increasing component IDs (e.g., Cy and C) and merged
components have components IDs that represent the range of component IDs that were
merged (e.g., [Cy, C1]). AsterixDB infers the recency ordering of components by inspecting

the component ID, which can be useful for maintenance [70]. In this work, we explain how
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to use this property later in Section 4.3.2.

Datasets’ records (of both open and closed types) in the LSM primary index are stored in a
binary-encoded physical ADM format [5]. Records of open types that have undeclared fields
are self-describing, i.e., the records contain additional information about the undeclared
fields such as their types and their names. For our example in Figure 2.8, AsterixDB stores
the information about the field age as it is not declared. For declared fields (id and name in

this example), their type and name information are stored separately in the metadata node

(NCO).
Scanner - ,
" —> Project Fo----------- SortGroupBy —> ResultWriter
(Partition 0) ) 2
S ,\z\<\ //\,\
canner . AR .
" — ko--- PRl — W
(Partition 1] Project Y + SortGroupBy ResultWriter
\\’ ,\(\/
Scanner : o -
o — Project  f------------ 4 SortGroupBy —{ ResultWriter
(Partition 5) ) PLY
—» Llocal-Exchange connector
--------- + Hash-Partition-Exchange connector

Figure 2.9: A compiled Hyracks job for the query in Figure 2.6

2.3.3 Runtime Engine and Query Execution

To run a query, the user submits an SQL++ query to the CC, which optimizes and compiles
it into a Hyracks job. Next, the CC distributes the compiled Hyracks job to the query

executors in all partitions where each executor runs the submitted job in parallel *.

Hyracks jobs consist of operators and connectors, where data flows between operators over
connectors as a batch of records (similar to the vectorized execution model explained in

Section 2.2.2). Figure 2.9 depicts the compiled Hyracks job for the query in Figure 2.6. As

!The default number of query executors is equal to the number of data partitions in AsterixDB.
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shown in Figure 2.9, batches (or frames) of records can flow within an executor’s operators
through Local- Exzchange connectors or they can be repartitioned or broadcast to other execu-
tors’ operators through non-local exchange connectors such as the Hash-Partition- Exchange

connector in this example.

Operators in a Hyracks job process the ADM records in a received frame using AsterixDB-
provided functions. For instance, a field access expression in a SQL++ query is trans-
lated into AsterixDB’s internal function getField(). AsterixDB’s compiler Algebricks [50]
may rewrite the translated function when necessary. As an example, the field access ex-
pression e.name in the query shown in Figure 2.6 is first translated into a function call
getField(emp, “name”) where the argument emp is a record and “name” is the name of
the requested field. Since nmame is a declared field, Algebricks can rewrite the field access
function to getField(emp, 1) where the second argument 1 corresponds to the field’s index

in the schema provided by the Metadata Node.
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Chapter 3

Related Work

In this section, we overview current work relevant to inferring schemas in schemaless DBMSs,
storing records in a columnar-oriented fashion, and using code generation and compilation

techniques to accelerate query execution for analytical workloads.

3.1 Schema Inferrence

Schema inference for self-describing, semi-structured data has appeared in early work for the
Object Exchange Model (OEM) and later for XML and JSON documents. For OEM (and
later for XML), [57] presented the concept of a dataguide, which is a summary structure
for schema-less semi-structured documents. A dataguide could be accompanied by values’
summaries and samples (annotations) about the data. In [91], Wang et al. presented an
efficient framework for extracting, managing, and querying a schema-view of JSON datasets.
Their work targeted data exploration, where showing a frequently appearing structure can
be good enough. In another work [54], the authors detailed an approach for automatically

inferring and generating a normalized (flat) schema for JSON-like datasets, which can be
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utilized in an RDBMS to store the data.

The schemas inferred in [57] and [91] were targeted for users to explore and build a gen-
eral understanding of the data. As we describe later in Chapter 4, we share some of the
mechanisms proposed in both works to infer the schema for schemaless semi-structured data.
However, our objective differs in that we use the inferred schemas to reduce the storage over-
head in document stores. Thus, inferring the exact schema efficiently under heavy inserts
and updates is crucial. Also, our work in Chapter 4 is orthogonal to [54]; we target document

stores without the need for changing the underlying data model of such systems.

3.2 Column Stores

Open-source and commercial column-store systems [1, 8, 16, 21, 29, 43| have gained more
popularity as data warehouse solutions due to their superior performance in handling ana-
lytical workloads. Furthermore, legacy systems such as Microsoft SQL Server have added
the capability to store tables as columns [67, 66], either as a primary or secondary index, to
improve the performance of analytical workloads. For nested data, Parquet [9], which is a
columnar file format, has become the de-facto format for big data systems such as Apache
Spark [12] and Apache [7] due to Parquet’s compactness. Those systems, however, still re-
quire the user to declare a schema a priori. Hence, the process of columnizing the data in
such systems cannot be adopted in document stores, where declaring a schema is either not

required or optional.

In [55], the authors have proposed Json Tiles, a columnar format for semi-structured records
integrated into Umbra [78], a disk-based column-store RDBMS. The proposed approach
infers the structure of the ingested records and materializes the common parts of the records’

values, including heterogeneous values, as JSON Tiles. Similarly, Sinew [90] utilizes an
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RDBMS (potentially a columnar one) to store the JSON data, where JSON scalar values
are either stored physically as columns (i.e., declared in the RDBMS schema) or virtually
as key-value pairs in a separate table. However, our work in Chapter 5 aims to support

columnar formats for existing document stores.

In Chapter 5, we detail our approach to storing schemaless semi-structured data in document
stores using the inferred schema from Chapter 4. Additionally, in the same chapter, we
compare our approach to other recent work on storing data in columnar formats in schemaless
document stores. We defer those discussions to the end of Chapter 5 as some of the discussion

points require background knowledge of previous work that Chapter 5 details.

3.3 Code Generation and Compilation for DBMSs

Instead of using an interpreter structure (either the iterator or the vectorized models), several
big data analytical systems [12, 65, 75, 77] have adopted the code generation and compilation
model due to its superior performance for processing complex queries. Those systems utilize
strongly-typed languages (e.g., Java, C++, or LLVM bitcode) to translate declarative queries

into imperative code — relying on pre-declared schemas to provide the values’ types.

For schemaless document stores, little work has focused on addressing the challenge of han-
dling their polymorphic nature for code generation and compilation. For instance, [76]
extends JSINQ [64], a JavaScript implementation of Language-integrated Query (LINQ), to
query documents stored in MongoDB. JSINQ is utilized to process objects resulting from
querying MongoDB, with the ability to push filter predicates down to MongoDB to reduce
the number of retrieved objects. However, the proposed approach does not target replac-
ing MongoDB’s execution mode with a code generation and compilation model as in the

aforementioned schema-ful systems. Instead, it targets bringing the popular LINQ model to
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application developers who use MongoDB as their database.

In Chapter 6, we propose a solution for adopting the code generation and compilation model
into schemaless document stores in a way that can adapt to type changes at runtime. There
we also review the recent work on querying in-memory objects and arrays in dynamically

typed languages, where value types are known only at runtime.
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Chapter 4

An LSM-based Tuple Compaction

Framework for Apache AsterixDB

4.1 Introduction

As described in Chapter 1, self-describing semi-structured data formats like JSON have
become the de facto format for storing and sharing information as developers are moving
away from the rigidity of schemas in the relational model. Consequently, NoSQL Database
Management Systems (DBMSs) have emerged as popular solutions for storing, indexing,
and querying self-describing semi-structured data. In document store systems such as Mon-
goDB [22] and Couchbase Server [17], users are not required to define a schema before loading
or ingesting their data since each data instance is self-describing (i.e., each record embeds
metadata that describes its structure and values). The flexibility of the self-describing data
model provided by NoSQL systems attracts applications where the schema can change in
the future by adding, removing, or even changing the type of one or more values without

taking the system offline or slowing down the running queries.
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The flexibility provided in document store systems over the rigidity of the schemas in Re-
lational Database Management Systems (RDBMSs) does not come without a cost. For
instance, storing a boolean value for a field named hasChildren, which takes roughly one
byte to store in an RDBMS, can take a NoSQL DBMS an order of magnitude more bytes to
store. Defining a schema prior to ingesting the data can alleviate the storage overhead, as
the schema is then stored in the system’s catalog and not in each record. However, defining a
schema defies the purpose of schema-less DBMSs, which allow adding, removing or changing
the types of the fields without manually altering the schema [38]. From a user perspective,
declaring a schema requires a thorough a priori understanding of the dataset’s fields and

their types.

In this chapter, we address the problem of the storage overhead in document stores by in-
troducing a framework that infers and compacts the schema information for semi-structured
data during the ingestion process. Our design utilizes the lifecycle events of Log-structured
Merge (LSM) tree [79] based storage engines, which are used in many prominent document
store systems [17, 22| including Apache AsterixDB [39]. In LSM-backed engines, records
are first accumulated in memory (LSM in-memory component) and then subsequently writ-
ten sequentially to disk (flush operation) in a single batch (LSM on-disk component). Our
framework takes the opportunity provided by LSM flush operations to extract and strip
the metadata from each record and construct a schema for each flushed LSM component.
We have implemented and empirically evaluated our framework to measure its impact on
the storage overhead, data ingestion rate and query performance in the context of Apache

AsterixDB. Our main contributions can be summarized as follows:

e We first introduce our implementation of page-level compression in AsterixDB. This
is a similar solution to those adopted by other NoSQL DBMSs to reduce the storage

overhead of self-describing records.

e We propose a mechanism that utilizes the LSM workflow to infer and compact the
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schema for NoSQL systems’ semi-structured records during flush operations. Moreover,

we detail the steps required for distributed query processing using the inferred schema.

e We introduce a non-recursive physical data layout that allows us to infer and compact

the schema efficiently for nested semi-structured data.

e We evaluate the feasibility of our design, prototyped using AsterixDB, to ingest and

query a variety of large semi-structured datasets.

The remainder of this chapter is structured as follows: Section 4.2 provides the details of our
implementation for page-level compression. Section 4.3 details the design and implementa-
tion of our tuple compaction framework in AsterixDB. Section 4.4 presents an experimental
evaluation of the proposed framework. Section 4.5 discusses related work on utilizing the
LSM lifecycle and on schema inference for semi-structured data. Finally, Section 4.6 presents

our conclusions for this work.

4.2 Page-level Compression

As shown in Figure 2.8 in Chapter 2.3, the information of the undeclared field age is stored
within each record. This could incur an unnecessary higher storage overhead if all or most
records of the Employee dataset have the same undeclared field, as records store redundant
information. MongoDB and the Data Service in Coucbase Server have introduced compres-
sion to reduce the impact of storing redundant information in self-describing records. In
AsterixDB, we can take a similar step by introducing page-level compression to compress

the leaf pages of the BT-tree of the primary index.

To minimize its software engineering impact, AsterixDB’s new page-level compression is
designed to operate at the buffer-cache level. On write, pages can be compressed and then

persisted to disk. On read, pages can be decompressed to their original configured fixed-size
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and stored in memory in AsterixDB’s buffer cache. Each such compressed page can be of
any arbitrary size. However, the AsterixDB storage engine was initially designed to work
with fixed-size data pages where the size is a configurable parameter. Larger data pages can
be stored as multiple fixed-size pages, but there is no mechanism to store smaller compressed
pages. Any proposed solution to support variable-size pages must not change the current

storage physical layout of AsterixDB.

________ Page, __Pagen
| €o : €1 : .
Look-Aside File! IR R R + [ I N st - > Page Size
| N IR - Page Offset

Data File Il -

Figure 4.1: Compressed file with its Look-Aside File (LAF)

To address this issue, we use Look-aside Files (LAFs) to store offset-length entry pairs for the
stored compressed data pages. When a page is compressed, we store both the page’s offset
and its length in the LAF before writing it to disk. Figure 4.1 shows a data file consisting
of n compressed pages and its corresponding LAF. The number of entries in the LAF equals
the number of pages in the data file, where each entry (e.g., ey) stores the size and the offset
of its corresponding compressed data page (e.g., Pageg). LAF entries can occupy more than
one page, depending on the number of pages in the data file. Therefore, to access a data
page, we need first to read the LAF page that contains the required data page’s size and
offset and then use them to access the compressed data page. This may require AsterixDB
to perform an extra IO operation to read a data page. However, the number of LAF pages
is usually small due to the fact that the entry size is small (12-bytes in our implementation).
For instance, a 128 KB LAF page can store up to 10,922 entries. Thus, LAF pages can
be easily cached and read multiple times. Our proposed approach to support compression
has helped multiple current AsterixDB users reduce the storage cost and improve the query

execution time while not impacting their previously loaded data.
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Figure 4.2: Summary of the findings in [82]

In addition to this “syntactic” approach based on compression, the next section introduces a
“semantic” approach to reducing the storage overhead by inferring and stripping the schema
out of self-describing records in AsterixDB. In Section 4.4, we evaluate both approaches
(syntactic and semantic) when they are applied separately and when they are combined and

show their impact on storage size, data ingestion rate, and query performance.

4.3 LSM-based Schema Inference and Tuple Compaction

The flexibility of schema-less NoSQL systems attracts applications where the schema can
change without declaring those changes. However, this flexibility is not free. In the context
of AsterixDB, Pirzadeh et al. [82] explored query execution performance when all the fields
are declared (closed type) and when they are left undeclared (open type). One conclusion
from their findings, summarized in Figure 4.2, is that queries with non-selective predicates
(using secondary indexes) and scan queries took twice as much time to execute against open
type records compared to closed type records due to their storage overhead.
CREATE TYPE EmployeeType AS OPEN { id: int };

CREATE DATASET Employee (EmployeeType)
PRIMARY KEY id WITH {"tuple-compactor-enabled": true};

Figure 4.3: Enabling the tuple compactor for a dataset
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In this section, we present a tuple compactor framework (called the “tuple compactor” here-
after) that addresses the storage overhead of storing self-describing semi-structured records
in the context of AsterixDB. The tuple compactor automatically infers the schema of such
records and stores them in a compacted form without sacrificing the user experience of
schema-less document stores. Throughout this section, we run an example of ingesting
and querying data in the Employee dataset declared as shown in Figure 4.3. The Employee
dataset here is declared with a configuration parameter — {"tuple-compactor-enabled": true}

— which enables the tuple compactor.

We present our implementation of the tuple compactor by first showing the workflow of in-
ferring schema and compacting records during data ingestion and the implications of crash
recovery in Section 4.3.1. In Section 4.3.2, we show the structure of an inferred schema and a
way of maintaining it on update and delete operations. Then, in Section 4.3.3, we introduce
a physical format for self-describing records that is optimized for the tuple compactor oper-
ations (schema inference and record compaction). Finally, in Section 4.3.4, we address the
challenges of querying compa