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ABSTRACT OF THE DISSERTATION

Towards Analytics-Optimized Document Stores

By

Wail Y. Alkowaileet

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Professor Michael J. Carey, Chair

In the last two decades, relational databases for analytics have been specialized to address

the needs of analytical workloads. For instance, analytical workloads often focus on a few

attributes (or columns) instead of the whole tuple. Thus, many analytical databases have

opted to store the data in a columnar layout to reduce the I/O cost. Additionally, relational

databases for analytics have shifted from interpreter structures for query processing to com-

piling queries into executable programs that can achieve the performance of hand-written

specialized programs.

Document store database systems have gained traction for storing and querying large vol-

umes of semi-structured data without requiring the users to pre-define a schema. This

flexibility allows users to change the structure of incoming records without worrying about

taking the system offline or hindering the performance of currently running queries. Despite

their popularity, document stores have lacked the advances made for analytics-specialized

relational databases for handling analytical workloads. In fact, the redundant information in

the records (“embedded schemas”) stored in document stores can introduce an unnecessary

storage overhead that can render document stores even less performant than non-analytics-

specialized relational databases.

Despite the performance gap between relational and document databases, many users have

xiii



no choice but to use the slower yet flexible document stores. In this dissertation, we aim

to optimize document stores and show that users can enjoy a similar performance of the

analytics-specialized relational databases without sacrificing the flexibility of the document

model. Specifically, this dissertation makes the following main contributions:

We first address the lack of schemas and the storage overhead in document stores by

proposing the tuple compactor, a framework for inferring and extracting the schemas of

self-describing semi-structured records. Our tuple compactor exploits the events of Log-

structured Merge tree (LSM) storage, namely the flush operation, to infer and extract the

schema during data ingestion. We experimentally demonstrate the efficiency of our tuple

compactor on real, large datasets.

Second, we use the inferred schema and introduce two layouts for storing nested semi-

structured data in columnar formats. We also propose several extensions to the Dremel

format, a popular columnar format for nested data, to comply with document stores’ flexi-

ble data model. Our experiments show significant performance gains, improving the query

execution time by orders of magnitude while minimally impacting ingestion performance.

Third, we present our code generation framework, which can handle the document data

model’s polymorphic nature and improve query execution performance in Apache Aster-

ixDB. We analytically and empirically show that the CPU overhead of an interpreter-style

execution engine can be a bottleneck even in disk-based databases like AsterixDB. However,

our code generation framework can remedy the CPU overhead and significantly improve the

performance of analytical queries. We also propose several improvements to AsterixDB’s

aggregation framework to optimize group-by queries, a crucial class of queries in analytical

workloads.
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Chapter 1

Introduction

Specialized Database Management Systems (DBMSs) for analytics have been around since

the 1970s; Teradata [27] is an example of an analytical DBMS founded in 1979 [? ]. How-

ever, the market for analytical DBMSs flourished in the 2000s due to the internet boom.

Nowadays, analytical DBMSs are highly specialized to address the challenges of analyzing

the ever-growing size of data. For example, systems such as Vertica [29, 89] and MonetDB

[21, 94] store relational tables as columns instead of rows to accelerate analytical workloads,

which tend to focus on querying a few attributes instead of the whole tuples. Another

architectural shift in analytical DBMSs is the query execution model. For instance, in Mon-

etDB\X100 [94], the authors proposed a query execution model (moving from the iterator

model [69]) that is cache-friendly, which consequently reduces the overhead of accessing

memory when executing CPU-intensive analytical queries. The advancement in query pro-

cessing took another step to further reduce the CPU overhead by translating queries into

code that can be compiled and executed to obtain the desired results [12, 65, 77, 83]. This

code generation and query compilation approach can improve query execution performance

and bring it closer to the performance of hand-written specialized programs.
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Self-describing semi-structured data formats like JSON have become the de-facto format for

storing and sharing information as developers are moving away from the rigidity of schemas

in the relational model. As a result, document store systems have emerged as popular solu-

tions for storing, indexing, and querying self-describing semi-structured data. In document

stores, users do not need to define a schema or transform the data before ingesting it – mak-

ing document stores more attractive for schema-flexible (or even schemaless) applications.

However, document stores relinquished the advancements made for improving the perfor-

mance of analytical workloads in the relational model by forgoing the rigidity of schemas.

The lack of schema, for instance, makes it impossible to store nested semi-structured in a

columnar-oriented fashion as the attributes (or fields) are unknown. Additionally, adopt-

ing the code generation and compilation model mentioned earlier would be challenging as

values’ types are only known at runtime and not compile time. For those reasons, major

document stores such as MongoDB [22] and Couchbase Server [17] (at the time of writing

this dissertation) do not support storing the data in a columnar format nor employ the code

generation and compilation execution model – rendering them less performant for analytical

workloads compared to relational DBMSs.

In this dissertation, we aim to bridge the performance gap between document stores and

relational databases for handling analytical workloads without affecting the flexibility pro-

vided by the former. In particular, we study three problems and provide an efficient solution

for each one in the context of Apache AsterixDB [3] based on the following topics:

Schema Inference and Tuple Compaction. Due to the lack of a centralized schema, each

record stored in a document store embeds additional (schema) information that describes

its structure and the stored values’ types. By storing the “schema” within each record,

records can have different structures and even types for a single field (e.g., storing birth

dates as integers or strings). The cost of such an approach can be high since records often

share the same schema; hence, storing such information in each record is redundant and can
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unnecessarily inflate the storage footprint. Extracting the schema information from each

record and storing it in a “centralized” manner can alleviate this storage overhead. In the

first part of this dissertation, we introduce the tuple compactor, a framework that infers and

compacts the schema for document stores’ semi-structured records during data ingestion.

The tuple compactor appeared in VLDB’20 [36].

Columnar Formats for Document Stores. Since the scheme can be inferred efficiently,

one possible extension to the previous topic is to store documents as columns – a step

further to bring document stores closer to matching the performance of analytical relational

databases. In this topic, we explore different approaches for storing data in columnar formats

without compromising the flexibility of the document model. We also study the viability of

secondary indexes for querying data stored in a columnar format, where secondary indexes

have at times been deemed unnecessary for columnar databases. The proposed techniques

for storing semi-structured data in a columnar format will appear in VLDB’22 [37]

Code Generation and Compilation. Storing the data in a columnar format can reduce

the I/O cost significantly for analytical workloads. With the current advancement in stor-

age technologies, disks have become faster – shifting the cost to the CPU, which became

apparent, especially for complex analytical workloads. Relational DBMS developers have

addressed this issue by translating queries into compilable and executable code. However,

document stores still employ interpreter-like execution engines, where values (or records) are

passed from one operator to another for processing. As in dynamically-typed programming

languages, a major challenge for shifting to a code generation and compilation model is the

polymorphic nature of document stores, where values’ types are only known at runtime. In

the last part of this dissertation, we propose a solution for translating AsterixDB’s SQL++

queries into code written using an internal language that can be compiled and executed

efficiently. The generated code, which runs using Oracle’s Truffle Framework [93], can adapt

dynamically to type changes at runtime using Truffle’s Just-in-Time (JIT) compiler. We also
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propose several improvements to AsterixDB’s aggregation framework to further improve the

performance of analytical workloads.

The rest of this dissertation is organized as follows. Chapter 2 discusses the differences

between the various physical storage formats and query execution models, and gives back-

ground information on Apache AsterixDB’s internals. Chapter 3 discusses related work on

inferring schemas, storing data in columnar formats, and translating queries into compilable

and executable code. Chapter 4 presents a novel approach for inferring the schema and

using the inferred schema to compact ingested records. Chapter 5 proposes one approach

for storing schemaless semi-structured data in columnar formats. Chapter 6 describes the

design and implementation of our code generation framework in Apache AsterixDB. Finally,

Chapter 7 concludes this dissertation and discusses future research directions.
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Chapter 2

Background

2.1 Storage Formats

In any data management system, the storage subsystem determines how the data is stored

and retrieved. Different data management systems store the data differently to accelerate the

data ingestion and retrieval process for specific workloads. For instance, database systems

targeted for analytical workloads focus on processing a large volume of data while minimizing

query execution time. Thus, a suitable physical storage format that reduces the overall I/O

and CPU costs is crucial for analytical databases. In this section, we summarize the traits

of the two major physical storage formats: row and columnar formats.

2.1.1 Row Format

In row-store data management systems, the records are stored contiguously on disk (or in

memory for in-memory databases) as rows; hence the name “row-store”. Figure 2.1 shows

the Employee table whose records are stored as contiguous rows on disk. In document stores
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ID Age Name
0 25 Ann
1 19 Bob
2 35 Dan
3 21 Sam

0 Ann 25 1 Bob 19

2 Dan 34 3 Sam 21

Figure 2.1: The Employee table stored in a row format

such as AsterixDB, records could also be stored in a row-like format, where each row is a

document (e.g., a JSON document). Handling inserts, deletes, and updates efficiently are

crucial for operational workloads. Since the records (or tuples) are the operational units (for

insert, delete, and update operations) in database systems, storing the data as rows makes

it naturally easier to manipulate. For instance, inserting a new record can be achieved

by simply appending the record (as-is) to a file. Thus, operational databases often store

data as rows to maximize the performance of processing a large number of record-oriented

transactions.

2.1.2 Columnar Format

ID Age Name
1 25 Ann
2 19 Bob
3 35 Dan
4 21 Sam

0 1 2 3

Ann Bob Dan Sam

25 19 35 21

Figure 2.2: The Employee table stored in a columnar format

Handling operational workloads was initially the main objective for database systems. Thus,
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storing data as rows is still the default format in legacy systems. However, using database

systems has gone beyond handling operational workloads to analyze the stored data to draw

valuable insights. In contrast to operational workloads, analytical workloads are heavy on

running ad-hoc queries against a large volume of data. Furthermore, analytical queries tend

to focus only on a few attributes (or columns) relevant to specific questions or insights.

Therefore, column-store data management systems have emerged to address those needs. As

opposed to rows, column-store systems store the records as contiguous columns on disk (or

in memory). Figure 2.2 shows the columnar storage layout for the same table in Figure 2.1.

To illustrate the benefits of storing the data as columns for analytical workloads, let us take

the following simple analytical query:

SELECT AVG(age) FROM Employee

The query computes the average age of all employees in the Employee table. When stored

as rows, the system reads each record and extracts the age value to compute the required

aggregate. However, when the data is stored as columns, the system reads only the age’s

column and skips all irrelevant columns. Consequently, the I/O cost for such a query becomes

significantly lower in column-store systems compared to row-store systems.

Additionally, storing the values of each column separately and contiguously allows for en-

coding the data to reduce the I/O cost further. Let us take an example where we want to

encode the ID’s values (Figure 2.2): 1, 2, 3, and 4. The values are first encoded using the

delta-encoding, which produces the numerical sequence [1, 1, 1, 1], where the first value of

the sequence is the first unencoded value (i.e., ID = 1), and the rest of the values repre-

sent the differences (deltas) between the original values. The resulting sequence can then

be passed to a Run-length encoder, which encodes the sequence’s values as a pair of two

integers < 1, 4 > – indicating that the value “1” is repeated four times. As a result, using

the two encoding schemes, it takes two integers to store the ID’s four integer values – a 50%
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reduction.

However, storing the data as columns comes with a cost. In contrast to row-stores, column-

stores systems must shred newly inserted records into columns before persisting them to

disk (an additional cost). Consequently, the system must also ensure that the columns can

be reassembled (or restitched) back to their original form. Some mechanisms are used to

track which columns’ values belong to which record. For instance, a näıve approach would

be attaching a record identifier (RID) to each column’s value – requiring the system to store

the same RIDs for as many columns as a table has (e.g., three times for the table shown

in Figure 2.2). Another approach could exploit the position of each value (i.e., the order in

which the values are stored) to associate each value to its record. However, handling updates

using the latter approach would be more challenging, as a new column value may need more

space, which requires moving the new column’s value to a different position. With encoding,

handling updates would be even more challenging for both approaches.

2.2 Query Execution Models

Similar to the storage formats, different data management systems employ different models

for processing queries, and each model has its pros and cons. When a user submits a query,

the system translates the submitted query into a “physical” algebraic expression (also known

as the query plan), which the system evaluates to produce the query result. In this section,

we explain the workflow of different query execution models – namely, the iterator model,

the vectorized model, and the code generation and query compilation model. We also give

an overview of the advantages and disadvantages of each execution model.
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SELECT name, age

FROM Employee

WHERE age > 20

Figure 2.3: A query against the Employee table (Section 2.1)

2.2.1 Iterator Model

In the iterator model [69] (sometimes referred to as the Volcano model [60]), the evaluation of

a query plan starts by calling the next() function of the root algebraic operator of the query

plan. That, in turn, calls the next() function for the root’s child operator. The callings

of next() cascade to every operator in the query plan until it reaches the leaf operators.

The result of each calls to next() is a processed tuple and the resulting tuples from calling

next() on the root operator are the query result.

SCAN: Employee

PROJECT: name,age

SELECT: age > 20

<1,25,Ann>
<2,19,Bob>
<3,35,Dan>
<4,21,Sam>

RESULT 
next()

next()

next()4

3

2 <25,Ann>

<25,Ann>

<1,25,Ann>5

6

7

next()1 <25,Ann>8

Figure 2.4: The execution plan for the query in Figure 2.3

To illustrate, Figure 2.4 shows the query plan for the query in Figure 2.3 as well as the

sequence in which the function next() is called. Each call to next() cascades until the

next() of the leaf SCAN operator is called, which feteches the first tuple from disk and

passes it as an output of calling its next() function. Then, each operator processes the

received tuple and produces a new one as a result of calling its next() function as shown in

Figure 2.4.
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The workflow of the iterator model resembles the interpreter model in programming lan-

guages. As opposed to compilers, interpreters are easy to implement; however, interpreted

programming languages tend to be less performant than compiled ones. Similarly, the iter-

ator model is less performant than other query execution models for the reasons explained

in [77] and summarized in the following points:

• The many calls to the function next() in the iterator model can hinder the performance

(e.g., one million tuples and three operators equates to three million calls).

• Each call to next() is probably a virtual call that the compiler cannot inline and can

degrade the ability of the CPU’s branch predictor.

2.2.2 Vectorized Model

To address the issues of the iterator model, the vectorized model [81, 94] (also known as the

batch-at-a-time model) produces a batch of tuples (instead of a single tuple) for each call to

the function next(). This batching mechanism reduces the number of calling next(), as the

cost of each call is “distributed” among the produced tuples in the batch. However, in this

model, each operator materializes the processed tuples into some temporary memory buffer

to form a batch for the next operator. Some operators, such as the SELECT operator, do not

alter the form of the received tuples. One advantage of the iterator model over the vectorized

model is that the results of such operators are pipelined – avoiding the unnecessary cost of

the materialization.

2.2.3 Code Generation and Query Compilation Model

Akin to the performance of a compiled language vs. an interpreted language, a compiled

hand-written code outperforms both the iterator and the vectorized models [84, 94]. For
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instance, in [84], the authors compared the performance of the iterator model against “a

hand-written code written by a college freshman” when evaluating a simple aggregate query.

They found that the “college freshman” hand-written code was an order of magnitude faster

than the iterator model for the following reasons:

• The hand-written code eliminated the virtual function calls in the iterator model.

• The hand-written code placed the intermediate results in CPU registers (vs. in memory

in the iterator model).

• The hand-written code benefited from the compiler’s optimizations, such as unrolling

loops and exploiting SIMD instructions to process multiple values in a single CPU

instruction.

Several data systems [12, 65, 77, 83] translate algebraic operators into code, which can then be

compiled and executed efficiently. The translated code “fuses” the work of multiple operators

into a single function call. Thus, the generated code processes the data in situ instead of

passing the data from one operator to another. In Chapter 6, we describe our approach

(inspired by [77]) to translating the algebraic operators of a query into an executable code.

Despite the performance gains that systems can get from this model, one should consider

the compilation time, which can be significantly high – especially for latency-sensitive ap-

plications (i.e., operational workloads). Thus, the code generation model is often used to

reduce the execution times of complex analytical queries.

2.3 Apache AsterixDB

Apache AsterixDB is our system of choice for implementing the proposed techniques in this

dissertation. Apache AsterixDB is a parallel semi-structured Big Data Management System
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(BDMS), which runs on large, shared-nothing, commodity computing clusters. To prepare

the reader, we give a brief overview of AsterixDB [38, 51] and its query execution engine

Hyracks [49].

2.3.1 User Model

The AsterixDB Data Model (ADM) extends the JSON data model to include types such

as temporal and spatial types as well as data modeling constructs (e.g., bag or multiset).

Defining an ADM datatype (akin to a schema in an RDBMS) that describes at least the

primary key(s) is required to create a dataset (akin to a table in an RDBMS).

CREATETYPE DependentType

AS CLOSED {
name: string ,
age: int

};

CREATETYPE EmployeeType

ASOPEN {
id: int ,
name: string ,
dependents:{{DependentType}}?

};

CREATEDATASET Employee(EmployeeType) PRIMARYKEY id ;

Figure 2.5: Defining Employee type and dataset in ADM

There are two options when defining a datatype in AsterixDB: open and closed. Figure 2.5

shows an example of defining a dataset of employee information. In this example, we first

define DependentType, which declares two fields name and age of types string and int,

respectively. Then, we define EmployeeType, which declares id, name and dependents of

types int, string and a multiset of DependentType, respectively. The symbol “?” indicates

that a field is optional. Note that we defined the type EmployeeType as open, where data

instances of this type can have additional undeclared fields. On the other hand, we define

the DependentType as closed, where data instances can only have declared fields. In both

the open and closed datatypes, AsterixDB does not permit data instances that do not have

values for the specified non-optional fields. Finally, in this example, we create a dataset
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Employee of the type EmployeeType and specify its id field as the primary key.

SELECT VALUE nameGroup FROM Employee AS emp

GROUP BY emp . name GROUP AS nameGroup

Figure 2.6: An example of a SQL++ query

To query the data stored in AsterixDB, users can submit their queries written in SQL++ [52,

80], a SQL-inspired declarative query language for semi-structured data. Figure 2.6 shows

an example of a SQL++ aggregate query posed against the dataset declared in Figure 2.5.

Node Controller 0
Metadata Manager

Hyracks Dataflow Layer

Buffer Cache

LSM Tree Manager

Node Controller 1
Metadata Manager

Hyracks Dataflow Layer

Buffer Cache

LSM Tree Manager

Node Controller 2
Metadata Manager

Hyracks Dataflow Layer

Buffer Cache

LSM Tree Manager

High-speed Interconnect

Data Feeds
(From External

Sources)

SQL++ Queries
and Results

Data Publishing
(to External

Sources/Apps)

Cluster Controller

Algebricks
Query Optimizer and 

Rewriter

SQL++ Compiler

Job Manager

Partition 0 Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

Figure 2.7: An AsterixDB cluster configured with two partitions in each of the three NCs

2.3.2 Storage and Data Ingestion

In an AsterixDB cluster, each worker node (Node Controller, or NC for short) is controlled by

a Cluster Controller (CC) that manages the cluster’s topology and performs routine checks

on the NCs. Figure 2.7 shows an AsterixDB cluster of three NCs, each of which has two data
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partitions that hold data on two separate storage devices. Data partitions in the same NC

(e.g., Partition 0 and Partition 1 in NC0) share the same buffer cache and memory budget for

LSM in-memory components; however, each partition manages the data stored in its storage

device independently. In this example, NC0 also acts as a metadata node, which stores and

provides access to AsterixDB metadata such as the defined datatypes and datasets.

AsterixDB stores the records of its datasets, spread across the data partitions in all NCs,

as rows in primary LSM B+-tree indexes. During data ingestion, each new record is hash-

partitioned using the primary key(s) into one of the configured partitions (Partition 0 to

Partition 5 in Figure 2.7) and inserted into the dataset’s LSM in-memory component. As-

terixDB implements a no-steal/no-force buffer management policy with write-ahead-logging

(WAL) to ensure the durability and atomicity of ingested data. When the in-memory compo-

nent is full and cannot accommodate new records, the LSM Tree Manager (called the “tree

manager” hereafter) schedules a flush operation. Once the flush operation is triggered, the

tree manager writes the in-memory component’s records into a new LSM on-disk component

on the partition’s storage device, Figure 2.8a. On-disk components during their flush oper-

ation are considered INVALID components. Once it is completed, the tree manager marks

the flushed component as VALID by setting a validity bit in the component’s metadata

page. After this point, the tree manager can safely delete the logs for the flushed compo-

nent. During crash recovery, any disk component with an unset validity bit is considered

invalid and removed. The recovery manager can then replay the logs to restore the state of

the in-memory component before the crash.

Once flushed, LSM on-disk components are immutable, and hence, updates and deletes are

handled by inserting new entries. A delete operation adds an ”anti-matter” entry [39] to

indicate that a record with a specified key has been deleted. An upsert is an insert of a new

record with the same key, which replaces the older record. For example, in Figure 2.8a, we

delete the record with id = 0. Since the target record is stored in C0, we insert an ”anti-
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<0, “Kim”, age: 26>
<1, “John”, age: 22>

C0

Insert

{id: 0}
{id: 2, name: “Bob”, age: 21}

C1

< 0, - >
<2, “Bob”, age: 21>

Flush

Flushing on-disk Component
In-memory Component

Metadata Page

INVALID
(Flushing)

VALID
(Flushed)

Metadata Page

Anti-matter

On-disk Component

(a) Flushing component C1

VALID
(Flushed

<1, “John”, age: 22>

[C0, C1]
<2, “Bob”, age: 21>

INVALID
(Merging)

<0, “Kim”, age: 26>
<1, “John”, age: 22>

C0

C1

< 0, - >
<2, “Bob”, age: 21>

Merge
VALID

(Flushed)

Metadata Page

Metadata Page

Metadata Page

(b) Merging the two components C0 and C1 into a new component [C0, C1]

Figure 2.8: An example of LSM flush and merge operations

matter” entry to indicate that the record with id = 0 is deleted. As on-disk components

accumulate, the tree manager periodically merges them into larger components according

to a merge policy [39, 70] that determines when and what to merge. Deleted and updated

records are garbage-collected during the merge operation. In Figure 2.8b, after merging C0

and C1 into [C0, C1], we do not write the record with id = 0 since the record and the anti-

matter entry annihilate each other. As in the flush operation, on-disk components created

by a merge operation are considered INVALID until their operation is completed. After

completing the merge, older on-disk components (C0 and C1) can be safely deleted.

On-disk components in AsterixDB are identified by their component IDs, where flushed

components have monotonically increasing component IDs (e.g., C0 and C1) and merged

components have components IDs that represent the range of component IDs that were

merged (e.g., [C0, C1]). AsterixDB infers the recency ordering of components by inspecting

the component ID, which can be useful for maintenance [70]. In this work, we explain how
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to use this property later in Section 4.3.2.

Datasets’ records (of both open and closed types) in the LSM primary index are stored in a

binary-encoded physical ADM format [5]. Records of open types that have undeclared fields

are self-describing, i.e., the records contain additional information about the undeclared

fields such as their types and their names. For our example in Figure 2.8, AsterixDB stores

the information about the field age as it is not declared. For declared fields (id and name in

this example), their type and name information are stored separately in the metadata node

(NC0).

Scanner
(Partition 0)

Project SortGroupBy ResultWriter

Scanner
(Partition 1) Project SortGroupBy ResultWriter

Scanner
(Partition 5)

Project SortGroupBy ResultWriter

… … … …

Local-Exchange connector
Hash-Partition-Exchange connector

Figure 2.9: A compiled Hyracks job for the query in Figure 2.6

2.3.3 Runtime Engine and Query Execution

To run a query, the user submits an SQL++ query to the CC, which optimizes and compiles

it into a Hyracks job. Next, the CC distributes the compiled Hyracks job to the query

executors in all partitions where each executor runs the submitted job in parallel 1.

Hyracks jobs consist of operators and connectors, where data flows between operators over

connectors as a batch of records (similar to the vectorized execution model explained in

Section 2.2.2). Figure 2.9 depicts the compiled Hyracks job for the query in Figure 2.6. As

1The default number of query executors is equal to the number of data partitions in AsterixDB.
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shown in Figure 2.9, batches (or frames) of records can flow within an executor’s operators

through Local-Exchange connectors or they can be repartitioned or broadcast to other execu-

tors’ operators through non-local exchange connectors such as the Hash-Partition-Exchange

connector in this example.

Operators in a Hyracks job process the ADM records in a received frame using AsterixDB-

provided functions. For instance, a field access expression in a SQL++ query is trans-

lated into AsterixDB’s internal function getF ield(). AsterixDB’s compiler Algebricks [50]

may rewrite the translated function when necessary. As an example, the field access ex-

pression e.name in the query shown in Figure 2.6 is first translated into a function call

getF ield(emp, “name”) where the argument emp is a record and “name” is the name of

the requested field. Since name is a declared field, Algebricks can rewrite the field access

function to getF ield(emp, 1) where the second argument 1 corresponds to the field’s index

in the schema provided by the Metadata Node.
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Chapter 3

Related Work

In this section, we overview current work relevant to inferring schemas in schemaless DBMSs,

storing records in a columnar-oriented fashion, and using code generation and compilation

techniques to accelerate query execution for analytical workloads.

3.1 Schema Inferrence

Schema inference for self-describing, semi-structured data has appeared in early work for the

Object Exchange Model (OEM) and later for XML and JSON documents. For OEM (and

later for XML), [57] presented the concept of a dataguide, which is a summary structure

for schema-less semi-structured documents. A dataguide could be accompanied by values’

summaries and samples (annotations) about the data. In [91], Wang et al. presented an

efficient framework for extracting, managing, and querying a schema-view of JSON datasets.

Their work targeted data exploration, where showing a frequently appearing structure can

be good enough. In another work [54], the authors detailed an approach for automatically

inferring and generating a normalized (flat) schema for JSON-like datasets, which can be
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utilized in an RDBMS to store the data.

The schemas inferred in [57] and [91] were targeted for users to explore and build a gen-

eral understanding of the data. As we describe later in Chapter 4, we share some of the

mechanisms proposed in both works to infer the schema for schemaless semi-structured data.

However, our objective differs in that we use the inferred schemas to reduce the storage over-

head in document stores. Thus, inferring the exact schema efficiently under heavy inserts

and updates is crucial. Also, our work in Chapter 4 is orthogonal to [54]; we target document

stores without the need for changing the underlying data model of such systems.

3.2 Column Stores

Open-source and commercial column-store systems [1, 8, 16, 21, 29, 43] have gained more

popularity as data warehouse solutions due to their superior performance in handling ana-

lytical workloads. Furthermore, legacy systems such as Microsoft SQL Server have added

the capability to store tables as columns [67, 66], either as a primary or secondary index, to

improve the performance of analytical workloads. For nested data, Parquet [9], which is a

columnar file format, has become the de-facto format for big data systems such as Apache

Spark [12] and Apache [7] due to Parquet’s compactness. Those systems, however, still re-

quire the user to declare a schema a priori. Hence, the process of columnizing the data in

such systems cannot be adopted in document stores, where declaring a schema is either not

required or optional.

In [55], the authors have proposed Json Tiles, a columnar format for semi-structured records

integrated into Umbra [78], a disk-based column-store RDBMS. The proposed approach

infers the structure of the ingested records and materializes the common parts of the records’

values, including heterogeneous values, as JSON Tiles. Similarly, Sinew [90] utilizes an
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RDBMS (potentially a columnar one) to store the JSON data, where JSON scalar values

are either stored physically as columns (i.e., declared in the RDBMS schema) or virtually

as key-value pairs in a separate table. However, our work in Chapter 5 aims to support

columnar formats for existing document stores.

In Chapter 5, we detail our approach to storing schemaless semi-structured data in document

stores using the inferred schema from Chapter 4. Additionally, in the same chapter, we

compare our approach to other recent work on storing data in columnar formats in schemaless

document stores. We defer those discussions to the end of Chapter 5 as some of the discussion

points require background knowledge of previous work that Chapter 5 details.

3.3 Code Generation and Compilation for DBMSs

Instead of using an interpreter structure (either the iterator or the vectorized models), several

big data analytical systems [12, 65, 75, 77] have adopted the code generation and compilation

model due to its superior performance for processing complex queries. Those systems utilize

strongly-typed languages (e.g., Java, C++, or LLVM bitcode) to translate declarative queries

into imperative code – relying on pre-declared schemas to provide the values’ types.

For schemaless document stores, little work has focused on addressing the challenge of han-

dling their polymorphic nature for code generation and compilation. For instance, [76]

extends JSINQ [64], a JavaScript implementation of Language-integrated Query (LINQ), to

query documents stored in MongoDB. JSINQ is utilized to process objects resulting from

querying MongoDB, with the ability to push filter predicates down to MongoDB to reduce

the number of retrieved objects. However, the proposed approach does not target replac-

ing MongoDB’s execution mode with a code generation and compilation model as in the

aforementioned schema-ful systems. Instead, it targets bringing the popular LINQ model to
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application developers who use MongoDB as their database.

In Chapter 6, we propose a solution for adopting the code generation and compilation model

into schemaless document stores in a way that can adapt to type changes at runtime. There

we also review the recent work on querying in-memory objects and arrays in dynamically

typed languages, where value types are known only at runtime.
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Chapter 4

An LSM-based Tuple Compaction

Framework for Apache AsterixDB

4.1 Introduction

As described in Chapter 1, self-describing semi-structured data formats like JSON have

become the de facto format for storing and sharing information as developers are moving

away from the rigidity of schemas in the relational model. Consequently, NoSQL Database

Management Systems (DBMSs) have emerged as popular solutions for storing, indexing,

and querying self-describing semi-structured data. In document store systems such as Mon-

goDB [22] and Couchbase Server [17], users are not required to define a schema before loading

or ingesting their data since each data instance is self-describing (i.e., each record embeds

metadata that describes its structure and values). The flexibility of the self-describing data

model provided by NoSQL systems attracts applications where the schema can change in

the future by adding, removing, or even changing the type of one or more values without

taking the system offline or slowing down the running queries.
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The flexibility provided in document store systems over the rigidity of the schemas in Re-

lational Database Management Systems (RDBMSs) does not come without a cost. For

instance, storing a boolean value for a field named hasChildren, which takes roughly one

byte to store in an RDBMS, can take a NoSQL DBMS an order of magnitude more bytes to

store. Defining a schema prior to ingesting the data can alleviate the storage overhead, as

the schema is then stored in the system’s catalog and not in each record. However, defining a

schema defies the purpose of schema-less DBMSs, which allow adding, removing or changing

the types of the fields without manually altering the schema [38]. From a user perspective,

declaring a schema requires a thorough a priori understanding of the dataset’s fields and

their types.

In this chapter, we address the problem of the storage overhead in document stores by in-

troducing a framework that infers and compacts the schema information for semi-structured

data during the ingestion process. Our design utilizes the lifecycle events of Log-structured

Merge (LSM) tree [79] based storage engines, which are used in many prominent document

store systems [17, 22] including Apache AsterixDB [39]. In LSM-backed engines, records

are first accumulated in memory (LSM in-memory component) and then subsequently writ-

ten sequentially to disk (flush operation) in a single batch (LSM on-disk component). Our

framework takes the opportunity provided by LSM flush operations to extract and strip

the metadata from each record and construct a schema for each flushed LSM component.

We have implemented and empirically evaluated our framework to measure its impact on

the storage overhead, data ingestion rate and query performance in the context of Apache

AsterixDB. Our main contributions can be summarized as follows:

• We first introduce our implementation of page-level compression in AsterixDB. This

is a similar solution to those adopted by other NoSQL DBMSs to reduce the storage

overhead of self-describing records.

• We propose a mechanism that utilizes the LSM workflow to infer and compact the
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schema for NoSQL systems’ semi-structured records during flush operations. Moreover,

we detail the steps required for distributed query processing using the inferred schema.

• We introduce a non-recursive physical data layout that allows us to infer and compact

the schema efficiently for nested semi-structured data.

• We evaluate the feasibility of our design, prototyped using AsterixDB, to ingest and

query a variety of large semi-structured datasets.

The remainder of this chapter is structured as follows: Section 4.2 provides the details of our

implementation for page-level compression. Section 4.3 details the design and implementa-

tion of our tuple compaction framework in AsterixDB. Section 4.4 presents an experimental

evaluation of the proposed framework. Section 4.5 discusses related work on utilizing the

LSM lifecycle and on schema inference for semi-structured data. Finally, Section 4.6 presents

our conclusions for this work.

4.2 Page-level Compression

As shown in Figure 2.8 in Chapter 2.3, the information of the undeclared field age is stored

within each record. This could incur an unnecessary higher storage overhead if all or most

records of the Employee dataset have the same undeclared field, as records store redundant

information. MongoDB and the Data Service in Coucbase Server have introduced compres-

sion to reduce the impact of storing redundant information in self-describing records. In

AsterixDB, we can take a similar step by introducing page-level compression to compress

the leaf pages of the B+-tree of the primary index.

To minimize its software engineering impact, AsterixDB’s new page-level compression is

designed to operate at the buffer-cache level. On write, pages can be compressed and then

persisted to disk. On read, pages can be decompressed to their original configured fixed-size
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and stored in memory in AsterixDB’s buffer cache. Each such compressed page can be of

any arbitrary size. However, the AsterixDB storage engine was initially designed to work

with fixed-size data pages where the size is a configurable parameter. Larger data pages can

be stored as multiple fixed-size pages, but there is no mechanism to store smaller compressed

pages. Any proposed solution to support variable-size pages must not change the current

storage physical layout of AsterixDB.

Page0 Pagen-1

Look-Aside File

Data File

...
en-1

Page Size
Page Offset

Pagem-1
e0

Page0

. . .

Figure 4.1: Compressed file with its Look-Aside File (LAF)

To address this issue, we use Look-aside Files (LAFs) to store offset-length entry pairs for the

stored compressed data pages. When a page is compressed, we store both the page’s offset

and its length in the LAF before writing it to disk. Figure 4.1 shows a data file consisting

of n compressed pages and its corresponding LAF. The number of entries in the LAF equals

the number of pages in the data file, where each entry (e.g., e0) stores the size and the offset

of its corresponding compressed data page (e.g., Page0). LAF entries can occupy more than

one page, depending on the number of pages in the data file. Therefore, to access a data

page, we need first to read the LAF page that contains the required data page’s size and

offset and then use them to access the compressed data page. This may require AsterixDB

to perform an extra IO operation to read a data page. However, the number of LAF pages

is usually small due to the fact that the entry size is small (12-bytes in our implementation).

For instance, a 128KB LAF page can store up to 10,922 entries. Thus, LAF pages can

be easily cached and read multiple times. Our proposed approach to support compression

has helped multiple current AsterixDB users reduce the storage cost and improve the query

execution time while not impacting their previously loaded data.
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Figure 4.2: Summary of the findings in [82]

In addition to this “syntactic” approach based on compression, the next section introduces a

“semantic” approach to reducing the storage overhead by inferring and stripping the schema

out of self-describing records in AsterixDB. In Section 4.4, we evaluate both approaches

(syntactic and semantic) when they are applied separately and when they are combined and

show their impact on storage size, data ingestion rate, and query performance.

4.3 LSM-based Schema Inference and Tuple Compaction

The flexibility of schema-less NoSQL systems attracts applications where the schema can

change without declaring those changes. However, this flexibility is not free. In the context

of AsterixDB, Pirzadeh et al. [82] explored query execution performance when all the fields

are declared (closed type) and when they are left undeclared (open type). One conclusion

from their findings, summarized in Figure 4.2, is that queries with non-selective predicates

(using secondary indexes) and scan queries took twice as much time to execute against open

type records compared to closed type records due to their storage overhead.

CREATETYPE EmployeeType ASOPEN { id: int };
CREATEDATASET Employee(EmployeeType)
PRIMARYKEY id WITH {"tuple-compactor-enabled": true};

Figure 4.3: Enabling the tuple compactor for a dataset
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In this section, we present a tuple compactor framework (called the “tuple compactor” here-

after) that addresses the storage overhead of storing self-describing semi-structured records

in the context of AsterixDB. The tuple compactor automatically infers the schema of such

records and stores them in a compacted form without sacrificing the user experience of

schema-less document stores. Throughout this section, we run an example of ingesting

and querying data in the Employee dataset declared as shown in Figure 4.3. The Employee

dataset here is declared with a configuration parameter — {"tuple-compactor-enabled": true}

— which enables the tuple compactor.

We present our implementation of the tuple compactor by first showing the workflow of in-

ferring schema and compacting records during data ingestion and the implications of crash

recovery in Section 4.3.1. In Section 4.3.2, we show the structure of an inferred schema and a

way of maintaining it on update and delete operations. Then, in Section 4.3.3, we introduce

a physical format for self-describing records that is optimized for the tuple compactor oper-

ations (schema inference and record compaction). Finally, in Section 4.3.4, we address the

challenges of querying compacted records stored in distributed partitions of an AsterixDB

cluster.

4.3.1 Tuple Compactor Workflow

We first discuss the tuple compactor workflow during normal operation of data ingestion and

during crash recovery.
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Merge
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Figure 4.4: (a) Flushing the first component C0 (b) Flushing the second component C1 (c)
Merging the two components C0 and C1 into the new component [C0, C1]

Data Ingestion. When creating the Employee dataset (shown in Figure 4.3) in the As-

terixDB cluster illustrated in Figure 2.7, each partition in every NC starts with an empty

dataset and an empty schema. During data ingestion, newly incoming records are hash-

partitioned on the primary keys (id in our example) across all the configured partitions

(Partition 0 to Partition 5 in our example). Each partition inserts the received records into

the dataset’s in-memory component until it cannot hold any new record. Then, the tree

manager schedules a flush operation on the full in-memory component. During the flush
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operation, the tuple compactor, as shown in the example in Figure 4.4a, factors the schema

information out of each record and builds a traversable in-memory structure that holds the

schema (described in Section 4.3.2). At the same time, the flushed records are written into

the on-disk component C0 in a compacted form where their schema information (such as

field names) are stripped out and stored in the schema structure. After inserting the last

record into the on-disk component C0, the inferred schema S0 in our example describes two

fields name and age with their associated types denoted as FieldName : Type pairs. Note

that we do not store the schema information of any explicitly declared fields (field id in

this example) as they are stored in the Metadata Node (Section 2.3.2). At the end of the

flush operation, the component’s inferred in-memory schema is persisted in the component’s

Metadata Page before setting the component as V ALID. Once persisted, on-disk schemas

are immutable.

As more records are ingested by the system, new fields may appear or fields may change, and

the newly inferred schema has to incorporate the new changes. The newly inferred schema

will be a super-set (or union) of all the previously inferred schemas. To illustrate, during

the second flush of the in-memory component to the on-disk component C1 in Figure 4.4b,

the records of the new in-memory component, with id 2 and 3, have their age values as

missing and string, respectively. As a result, the tuple compactor changes the type of the

inferred age field in the in-memory schema from int to union(int, string), which describes

the records’ fields for both components C0 and C1. Finally, C1 persists the latest in-memory

schema S1 into its metadata page.

Given that the newest schema is always a super-set of the previous schemas, during a merge

operation, we only need to store the most recent schema of all the mergeable components as

it covers the fields of all the previously flushed components. For instance, Figure 4.4c shows

that the resulting on-disk component [C0, C1] of the merged components C0 and C1 needs

only to store the schema S1 as it is the most recent schema of {S0, S1}.

29



We chose to ignore compacting records of the in-memory component because (i) the in-

memory component size is relatively small compared to the total size of the on-disk com-

ponents, so any storage savings will be negligible, and (ii) maintaining the schema for in-

memory component, which permits concurrent modifications (inserts, deletes and updates),

would complicate the tuple compactor’s workflow and slow down the ingestion rate.

Crash Recovery. The tuple compactor inherits the LSM guarantees for crash recovery (see

Section 2.3.2). To illustrate, let us consider the case where a system crash occurs during the

second flush as shown in Figure 4.4b. When the system restarts, the recovery manager will

start by activating the dataset and then inspecting the validity of the on-disk components

by checking their validity bits. The recovery manager will discover that C1 is not valid and

remove it. As C0 is the “newest” valid flushed component, the recovery manager will read

and load its schema S0 into memory. Then, the recovery manager will replay the log records

to restore the state of the in-memory component before the crash. Finally, the recovery

manager will flush the restored in-memory component to disk as C1, during which time the

tuple compactor operates normally.

4.3.2 Schema Structure

Previously, we showed the flow of inferring the schema and compacting the tuples during

data ingestion. In this section, we focus on the inferred schema and present its structure.

We also address the issue of maintaining the schema in case of delete and update operations,

which may result in removing inferred fields or changing their types.
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{
"id": 1,
"name": "Ann",
"dependents":{{

{"name": "Bob", “age”: 6},
{"name": "Carol", “age” : 10} }},

"employment_date": date("2018-09-20"),
"branch_location": point(24.0, -56.12),
"working_shifts": [[8, 16], [9, 17], [10, 18], "on_call"]

}
... + 5 more {"id": int, "name": string} records …

(a)

2 4 5 6
Root

string date point

string int

Multiset

Union

Array

int

string

1

Array

1 3
Object

(1)

(2)

(2)(2)

(6) (1) (1) (1)

(4)

(1)(3)

(6)

FieldNameID

Counter

(b)

FieldNameID field name

1 name

2 dependents

3 age

4 employement_date

5 branch_location

6 working_shifts

(c)

Figure 4.5: (a) An ADM record (b) Inferred schema tree structure (c) Dictionary-encoded
field names

Schema Structure Components

Semi-structured records in document store systems are represented as a tree where the

inner nodes of the tree represent nested values (e.g., JSON objects or arrays) and the leaf

nodes represent scalar values (e.g., strings). ADM records in AsterixDB also are represented

similarly. Let us consider the example where the tuple compactor first receives the ADM

record shown in Figure 4.5a during a flush operation followed by five other records that have

the structure {"id": int, "name": string}. The tuple compactor traverses the six records and

constructs: (i) a tree-structure that summarizes the records structure, shown in Figure 4.5b,

and (ii) a dictionary that encodes the inferred field names strings into FieldNameIDs, as

shown in Figure 4.5c. The Counter in the schema tree-structure represents the number of
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occurrences of a value, which we further explain in Section 4.3.2.

The schema tree structure starts with the root object node which has the fields at the first

level of the record (name, dependents, employment date, branch location, and working shifts).

We do not store any information here about the dataset’s declared field id as explained

previously in Section 4.3.1. Each inner node (e.g., dependents) represents a nested value

(object, array, or multiset) and the leaf nodes (e.g., name) represent the scalar (or primitive)

values. Union nodes are for object fields or collection (array and multiset) items if their values

can be of different types. In this example, the tuple compactor infers the array item type of

the field working shifts as a union type of an array and a string.

The edges between the nodes in the schema tree structure represent the nested structure of

an ADM record. Each inner node of a nested value in the schema tree structure can have

one or more children depending on the type of the inner node. Children of object nodes

(e.g., fields of the Root object) are accessed by FieldNameIDs (shown as integers on the

edges of object nodes in Figure 4.5b) that reference the stored field names in the dictionary

shown in Figure 4.5c. Each field name (or FieldNameID in the schema tree structure) of an

object is unique, i.e., no two children of an object node share the same field name. However,

children of different object nodes can share the same field name. Therefore, storing field

names in a dictionary allows us to canonicalize repeated field names such as the field name

name, which has appeared twice in the ADM record shown in Figure 4.5a. A collection node

(e.g., dependents) have only one child, which represents the items’ type. An object field or

a collection item can be of heterogeneous value types, so, their types may be inferred as a

union of different value types. In a schema tree structure, the number of children a union

node can have depends on the number of supported value types in the system. For instance,

AsterixDB has 27 different value types [4]. Hence, a union node could have up to 27 children.
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Schema Structure Maintenance

In Section 4.3.1 we described the flow involved in inferring the schema of newly ingested

records, where we “add” more information to the schema structure. However, when deleting

or updating records, the schema structure might need to be changed by “removing” infor-

mation. For example, the record with id 3 shown in Figure 4.4 is the only record that has an

age field of type string. Therefore, deleting this record should result in changing the type

of the field age from union(int, string) to int as the dataset no longer has the field age as a

string. From this example, we see that on delete operations, we need to (i) know the number

of appearances of each value, and (ii) acquire the old schema of a deleted or updated record.

During the schema inference process, the tuple compactor counts the number of appearances

of each value and stores it in the schema tree structure’s nodes. In Figure 4.5b, each node

has a Counter value that represents the number of times the tuple compactor has seen this

node during the schema inference process. In the same figure, we can see that there are six

records that have the field name, including the record shown in Figure 4.5a. Also, we can

infer from the schema structure that all fields other than name belong to the record shown

in Figure 4.5a. Therefore, after deleting this record, the schema structure should only have

the field name as shown in Figure 4.6.

Root

string

1

(5)

FieldNameID field name Value

1 name

FieldNameID
Counter

Figure 4.6: After deleting the record shown in Figure 4.5a

On delete, AsterixDB performs a point lookup to get the old record from which the tuple

compactor extracts its schema (we call the schema of a deleted record the “anti-schema”).

Then, it constructs an anti-matter entry that includes the primary key of the deleted record
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and its anti-schema and then inserts it into the in-memory component. During the flush

operation, the tuple compactor processes the anti-schema by traversing it and decrementing

the Counters in the schema tree structure. When the counter’s value of a node in the schema

tree structure reaches zero, we know that there is no record that still has this value. Then,

the tuple compactor can safely delete the node from the schema structure. As shown in

Figure 4.6, after deleting the record in Figure 4.5a, the counter value corresponding to the

field name is decremented from 6 to 5, whereas the other nodes of the schema structure

(shown in Figure 4.5a) have been deleted as they were unique to the deleted record. After

processing the anti-schema, the tuple compactor discards it before writing the anti-matter

entry to disk. Upserts can be performed as deletes followed by inserts.

It is important to note that performing point lookups for maintenance purposes is not unique

to the schema structure. For instance, AsterixDB performs point lookups to maintain sec-

ondary indexes [39] and LSM filters [41]. Luo et al. [70, 71] showed that performing point

lookups for every upsert operation can degrade data ingestion performance. More specifi-

cally, checking for key existence for every upserted record is expensive, especially in cases

where the keys are mostly new. As a solution, a primary key index, which stores primary

keys only, can be used to check for key existence instead of using the larger primary index.

In the context of retrieving the anti-schema on upsert, one can first check if a key exists

by performing a point lookup using the primary key index. Only if the key exists, an addi-

tional point lookup is performed on the primary index to get the anti-schema of the upserted

record. If the key does not yet exist (new key), the record can be inserted as a new record.

In Section 4.4, we evaluate the data ingestion performance of our tuple compactor under

heavy updates using the suggested primary key index.
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4.3.3 Compacted Record Format

Since the tuple compactor operates during data ingestion, the process of inferring the schema

and compacting the records needs to be efficient and should not degrade the ingestion rate.

As the schema can change significantly over time, previously ingested records must not be

affected or require updates. Additionally, sparse records should not need to store additional

information about missing values such as null bitmaps in RDBMSs’ records. For exam-

ple, storing the record {"id": 5, "name": "Will"} with the schema shown in Figure 4.5b

should not include any information about other fields (e.g., dependents). Moreover, uncom-

pacted records (in-memory components) and compacted records (on-disk components) should

be evaluated and processed using the same evaluation functions to avoid any complexities

when generating a query plan. To address those issues, we introduce a compaction-friendly

physical record data format into AsterixDB, called the vector-based format.

Vector-based Physical Data Format

The main idea of the vector-based format is that it separates the metadata and values

of a self-describing record into vectors that allow us to manipulate the record’s metadata

efficiently during the schema inference and record compaction processes. To not be confused

with a columnar format, the vectors are stored within each record and the records are

stored contiguously in the primary index (Section 2.3.2). Figure 4.7 depicts the structure

of a record in the vector-based format. First comes the record’s header, which contains

information about the record such as its length. Next comes the values’ tags vector, which

enumerates the types of the stored primitive and nested values. Fixed-length primitive (or

scalar) values such as integers are stored in the fixed-length values vector. The next vector

is split into two sub-vectors, where the first stores lengths and the second stores the actual

values of variable-length values. Lastly, the field names sub-vectors (lengths and values)
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store field name information for all objects’ fields in the record.

Header … … … … … …

Length Number of 
Values

Lengths 
bit-widths Offsets

Values’ Tags Fixed-Length Values Variable-Length Values Field Names

Lengths Values Lengths Values

4-bytes 4-bytes 1-bytes 16-bytes

Figure 4.7: The structure of the vector-based format.

Figure 4.8 shows an example of a record in the vector-based format (we refer interested

readers to Appendix A.1 for an additional example). The record has four fields: id, name,

salaries, and age with the types integer, string, array of integers and integer, respectively.

Starting with the header, we see that the record’s total size is 73-bytes and there are nine

tags in the values’ type tags vector. Lengths for variable-length values and field names are

stored using the minimum amount of bytes. In our example, the maximum lengths of the

variable-length values and field names are 3 (Ann) and 8 (salaries), respectively. Thus, we

need at most 3-bits and 5-bits to store the length of each variable-length value or field name,

respectively. We only actually need 4-bits for name lengths; however, the extra bit is used

to distinguish inferred fields (e.g., name) from declared ones (e.g., id) as we explain next.

{ "id": 6, "name": "Ann", "salaries": [ 70000, 90000 ], "age": 26 }

object int string array int int 𝐨𝐛𝐣𝐞𝐜𝐭 int 𝐄𝐎𝐕

6 70000 90000 26
16-bytes

Values’ Type Tags (9-bytes)

3 Ann
1-byte* 3-bytes

0 4 8 3 name salaries age
4-bytes** 15-bytes

Fixed-length Values Field NamesVariable-length Values

73 9 3-bits* | 5-bits** 50 51 54 57
Length Tags Length Lengths bit-widths Offsets

Header (25-bytes)

Figure 4.8: An example record in the vector-based format

After the header, we store the values’ type tags. The values’ type tags encode the tree
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structure of the record in a Depth-First-Search order. In this example, the record starts

with an object type to indicate the root’s type. The first value of the root object is of type

integer, and it is stored in the first four bytes of the fixed-length values. Since an object

tag precedes the integer tag, this value is a child of that object (root) and, hence, the first

field name corresponds to it. Since the field id is a declared field, we only store its index

(as provided by the metadata node) in the lengths sub-vector. We distinguish index values

from length values by inspecting the first bit. If set, we know the length value is an index

value of a declared field. The next value in the example record is of type string, which is

the first variable-length value in the record. The string value is stored in the variable-length

values’ vector with its length. Similar to the previous integer value, this string value is also

a child of the root and its field name (name) is next in the field names’ vector. As the field

name is not declared, the record stores both the name of the field and its length. After the

string value, we have the array tag of the field salaries. As the array is a nested value, the

subsequent tags (integers in this example) indicate the array items’ types. The array items

do not correspond to any field name, and their integer values are stored in the fixed-length

values’ vector. After the last item of the array, we store a control tag object to indicate the

end of the array as the current nesting type and a return to the parent nesting type (object

type in this example). Hence, the subsequent integer value (age) is again a child of the root

object type. At the end of the value’s tags, we store a control tag EOV to mark the end of

the record.

As can be inferred from the previous example, the complexity of accessing a value in the

vector-based format is linear in the number of tags, which is inferior to the logarithmic

time provided by some traditional formats [5, 13]. We address this issue in more detail in

Section 4.3.4.
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Schema Inference and Tuple Compaction

Records in vector-based format separate values from metadata. The example shown in

Figure 4.8 illustrates how the fixed-length and variable-length values are separated from the

record’s nested structure (values’ types tags) and field names. When inferring the schema,

the tuple compactor needs only to scan the values’ type tags and the field names’ vectors to

build the schema structure.

Compacting vector-based records is a straightforward process. Figure 4.9 shows the com-

pacted structure of the record in Figure 4.8 along with its schema structure after the com-

paction process. The compaction process simply replaces the field names string values with

their corresponding FieldNameIDs after inferring the schema. It then sets the fourth offset

to the field names’ values sub-vector in the header (Figure 4.7) to zero to indicate that

field names were removed and stored in the schema structure. As shown in the example in

Figure 4.9, the record after the compaction needs just two bytes to store the field names’

information, where each FieldNameID takes three bits (one bit for distinguishing declared

fields and two for the IDs), as compared to the 19 (4+15) bytes in the uncompacted form in

Figure 4.8.

6 70000 90000 26
16-bytes

Fixed-length Values

3 Ann
1-byte 3-bytes

0 1 2 3
2-bytes

Field Names IDsVariable-length Values

FieldNameID field name
1 name
2 salaries
3 age

1 2 3

Root

string

int

array int

Figure 4.9: The record in Figure 4.8 after compaction
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4.3.4 Query Processing

In this section, we explain our approach of querying compacted records in the vector-based

format. We, first, show the challenges of having distributed schemas in different partitions

and propose a solution that addresses this issue. Next, we zoom in into each query executor

and show the optimizations needed to process compacted records.

Handling Heterogeneous Schemas

As a scalability requirement, the tuple compaction framework operates in each partition

without any coordination with other partitions. Therefore, the schema in each partition

can be different from other schemas in other partitions. When a query is submitted, each

distributed partition executes the same job. Having different schemas becomes an issue

when the requested query needs to repartition the data to perform a join or group-by. To

illustrate, suppose we have two partitions for the same dataset but with two different inferred

schemas, as shown in Figure 4.10. We see that the schemas in both partitions have the field

name of type string. However, the second field is age in partition 0 and salary in partition

1. After hash-partitioning the records by the name value, the resulting records are shuffled

between the two query executors and the last field can be either age or salary. Recall that

partitions can be in different machines within the AsterixDB cluster and have no access to

the schema information of other partitions. Consequently, query executors cannot readily

determine whether the last field corresponds to age or salary.

To solve the schema heterogeneity issue, we added functionality to broadcast the schema

information of each partition to all nodes in the cluster at the beginning of a query’s execu-

tion. Each node receives each partition’s schema information along with its partition ID and

serves the schemas to each executor in the same node. Then, we prepend each record result-

ing from the scan operator with the source partition ID. When an operator accesses a field,
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SELECT VALUE emp FROM Employee AS e GROUP BY e.name AS name GROUP AS emp

name: string,
age: int
Local Schema

Result

Hash-Partition
by: $e.name

Partition 0

Project: $e.name, $e

Group: by $e.name
Aggregate: listfy($e)

<P1, 2,“Ann”, 80000>]
[ <P0, 0,“Ann”,34>, 

<0, “Ann”, 34>
<1, “Bob”, 24>

$e:= scan

Partition 1

Project: $e.name, $e

Group: by $e.name
Aggregate: listfy($e)

[ <P0, 1,“Bob”, 24>,
<P1, 2,“Sam”, 70000 > ]

<1, “Ann”, 80000>
<2, “Sam”, 70000>

$e:= scan

name: string,
salary: int

Local Schema

Result
Prepended 
partition ID

Executor 0 Executor 1

S0 S1

S0 S1
Broadcasted

Schemas

S0 S1
Broadcasted

Schemas

Figure 4.10: Two partitions with two different schemas

the operator uses both the prepended partition ID of the record and the distributed schema

to perform the field access. Broadcasting the partitions’ schemas can be expensive, especially

in clusters with a large number of nodes. Therefore, we only broadcast the schemas when

the query plan contains a non-local exchange operator such as the hash-partition-exchange

in our example in Figure 4.10. When comparing the schema broadcasting mechanism to

handling self-describing records, a broadcasted schema represents a batch of records, whereas

the redundant schemas embedded in self-describing records are carried through the operators

on a record-by-record basis. Thus, transmitting the schema once per partition instead of once

per record is more efficient.

Processing Compacted Records

One notable difference between the vector-based format and the ADM physical format is

the time complexity of accessing a value (as discussed in Section 4.3.3). The AsterixDB

query optimizer can move field access expressions within the plan when doing so is advanta-
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geous. For instance, the query optimizer inlines field access expressions with WHERE clause

conjunct expressions as in the example:

emp.age > 25 AND emp.name = “Ann”

The inlined field access expression emp.name is evaluated only if the expression emp.age >

25 is true. However, in the vector-based format, each field access requires a linear scan

on the record’s vectors, which could be expensive. To minimize the cost of scanning the

record’s vectors, we added one rewrite rule to the AsterixDB query optimizer to consolidate

field access expressions into a single function expression. Therefore, the two field access

expressions in our example will be written as follows:

[$age, $name]← getV alues(emp, “age”, “name”)

The function getV alues() takes a record and path expressions as inputs and outputs the

requested values of the provided path expressions. The two output values are assigned to

two variables $age and $name and the final conjunct expression of our WHERE clause

example is transformed as:

$age > 25 AND $name = “Ann”

The function getV alues() is also used for accessing array items by providing the item’s index.

For example, the expression emp.dependents[0].name is translated as follows:

[$d name]← getV alues(emp, “dependents”, 0, “name”)

Additionally, we allow “wildcard” index to access nested values of all items of an array. For

instance, the output of the expression emp.dependents[∗].name is an array of all names’

values in the array of objects dependents.
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4.4 Experiments

In this section, we experimentally evaluate the implementation of our tuple compactor in As-

terixDB. In our experiments, we compare our compacted record approach with AsterixDB’s

current closed and open records in terms of (i) on-disk storage size after data ingestion, (ii)

data ingestion rate, and (iii) the performance of analytical queries.

We also conduct additional experiments to evaluate:

1. The performance accessing values in records in vector-based format (Section 4.3.3)

with and without the optimization techniques explained in Section 4.3.4.

2. The impact of our approach on query performance using secondary indexes.

3. The scalability of our framework using computing clusters with different number Ama-

zon EC2 instances.

Experiment Setup We conducted our initial experiments using a single machine with an

8-core (Intel i9-9900K) processor and 32GB of main memory. The machine is equipped

with two storage drive technologies SATA SSD and NVMe SSD, both of which have 1TB of

capacity. The SATA SSD drive can deliver up to 550 MB/s for sequential read and 520 MB/s

for sequential write, and the NVMe SSD drive can deliver up to 3400 MB/s for sequential

read and 2500 MB/s for sequential write. Section 4.4.5 details the setup for our additional

scale-out experiments.

We used AsterixDB v9.5.0 after extending it with our tuple compaction framework. We

configured AsterixDB with 15GB of total memory, where we allocated 10GB for the buffer

cache and 2GB for the in-memory component budget. The remaining 3GB is allocated as

temporary buffers for operations such as sort and join.

In Section 4.2, we introduced our implementation of the page-level compression in AsterixDB.
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Throughout our experiments, we also evaluate the impact of compression (using Snappy [26]

compression scheme) on the storage size, data ingestion rate, and query performance.

Schema Configuration. In our experiments, we evaluated the storage size, data ingestion

rate, and query performance when defining a dataset as (i) open, (ii) closed, and (iii)

inferred using our tuple compactor. For the open and inferred datasets, we only declare

the primary key field, whereas in closed datasets, we pre-declare all the fields. The records

of open and closed datasets are stored using the ADM physical format, whereas the inferred

datasets are using the new vector-based format. Note that the AsterixDB open case is similar

to what schema-less NoSQL systems, like MongoDB and Couchbase, do for storage.

4.4.1 Datasets

In our experiments, we used three datasets (summarized in Table 5.1) which have different

characteristics in terms of their record’s structure, size, and value types.

Using the first dataset, we want to evaluate ingesting and querying social network data.

We obtained a sample of tweets using the Twitter API [28]. Due to the daily limit of the

number of tweets that one can collect from the Twitter API, we replicated the collected

tweets ten times to have 200GB worth of tweets in total. Replicating the data would not

affect the experiment results as (i) the tuple compactor’s scope is the records’ metadata (not

the values) and (ii) the original data is larger than the compressible page size.

The second dataset we used is the Web of Science (WoS) [14] publication dataset1. The

WoS dataset encompasses meta information about scientific publications (such as authors,

fundings and abstracts) from 1980 to 2016 with a total dataset size of 253GB. We trans-

formed the dataset’s record format from its XML original structure to a JSON one using an

1We obtained the dataset from Thomson Reuters. Currently, Clarivate Analytics maintains it [15].
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existing XML-to-JSON converter [30]. The resulting JSON documents contain some fields

with heterogeneous types, specifically a union of object and array of objects. The reason

behind using such a converter is to mimic the challenges a data scientist can experience

when resorting to existing solutions. (Due to a lack of support for declared union types in

AsterixDB, we could only pre-declare the fields with homogeneous types in the closed schema

case.)

To evaluate more numeric Internet of Things (IoT)-like workloads, we generated a third

synthetic dataset that mimics data generated by sensors. Each record in the sensors’ dataset

contains captured readings and their timestamps along with other information that monitors

the health status of the sensor. The sensor data contains mostly numerical values and has a

larger field-name-size to value-size ratio. The total size of the raw Sensors data is 122GB.

Twitter WoS Sensors
Source Scaled Real-world Synthetic
Total Size 200GB 253GB 122GB
# of Records 77.6M 39.4M 25M
Record Size ∼2.7KB ∼6.2KB 5.1KB
# of Scalar val. (min, max, avg) 53, 208, 88 71, 193, 1430 248, 248, 248
Max. Depth 8 7 3
Dominant Type String String Double
Union Type? No Yes No

Table 4.1: Datasets summary

4.4.2 Storage Size

In this experiment, we evaluate the on-disk storage size after ingesting the Twitter, WoS

and Sensors datasets into AsterixDB using the three formats (open, closed and inferred) and

we compare it with MongoDB’s storage size. Our goal of comparing with MongoDB’s size is

simply to show that the compressed open case is comparable to what other NoSQL systems

take for storage using the same compression scheme (Snappy).
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Figure 4.11: On-disk sizes (GB)

We first evaluate the total on-disk sizes after ingesting the data into the open, closed and

inferred datasets. We begin with the Twitter dataset. Figure 4.11a shows its total on-

disk sizes. We see that the inferred and closed schema datasets have lower storage footprints

compared to the open schema dataset, as both avoid storing field names in each record. When

compression is enabled, both formats still have smaller size compared to the open format and

to MongoDB’s compressed collection size. The size of the inferred dataset is slightly smaller

than the closed schema dataset since the vector-based format does not store offsets for every

nested value (as opposed to the ADM physical format in the closed schema dataset).

For the WoS dataset, Figure 4.11b shows that the inferred dataset again has the lowest

storage overhead. Even after compression, the open dataset (and the compressed MongoDB

collection) had about the same size as the uncompressed inferred dataset. The reason is

that WoS dataset structure has more nested values compared with the Twitter dataset. The

vector-based format has less overhead for such data, as it does not store the 4-byte offsets

for each nested value.

The Sensors dataset contains only numerical values that describe the sensors’ status along

with their captured readings, so this dataset’s field name size to value size ratio is higher com-

pared to the previous datasets. Figure 4.11c shows that, in the uncompressed dataset, the
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closed and inferred datasets have about 2x and 4.3x less storage overhead, respectively, than

the open dataset. The additional savings for the inferred dataset results from eliminating

the offsets for readings objects, which contain reading values along with their timestamps

— {"temp": double, "ts": bigint}. Compression reduced the sizes of the open and closed

datasets by a factor of 6.2 and 3.8, respectively, as compared to their uncompressed coun-

terparts. For the inferred dataset, compression reduced its size only by a factor of 2.1. This

indicates that both the open and closed dataset records incurred higher storage overhead

from storing redundant offsets for nested fixed-length values (readings objects). As in the

Twitter and WoS datasets, the sizes of both the compressed open dataset in AsterixDB and

the compressed collection in MongoDB were comparable in the Sensors dataset.

To summarize our size findings, both the syntactic (page-level compression) and semantic

(tuple compactor) approaches alleviated the storage overhead as shown in Figure 4.11. The

syntactic approach was more effective than the semantic approach for the Twitter dataset

and the two were comparable for the WoS dataset. For the Sensors dataset, the semantic

approach (with our vector-based format) was more effective for the reasons explained earlier.

When combined, the approaches were able to reduce the overall storage sizes by 5x, 3.7x and

9.8x for the Twitter, WoS and Sensors datasets, respectively, compared to the open schema

case in AsterixDB.

4.4.3 Ingestion Performance

We evaluated the performance of continuous data ingestion for the different formats using

AsterixDB’s data feeds for the Twitter dataset. We first evaluate the insert-only ingestion

performance without updates. In the second experiment, we evaluate the ingestion perfor-

mance for an update-intensive workload, where previously ingested records are updated by

either adding or removing fields or changing the types of existing data values. The latter ex-
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Figure 4.12: Data ingestion time for the Twitter dataset — feed (Minutes).

periment measures the overhead caused by performing point lookups to get the anti-schemas

of previously ingested records. The Sensor dataset was also ingested through a data feed

and showed similar behavior to the Twitter dataset; we omit these results here.

Continuous data ingestion from a data feed is sensitive to LSM configurations such as the

merge policy and the memory budget. For instance, when cutting the memory budget

by half, the size of flushed components would become 50% smaller. AsterixDB’s default

”prefix-merge policy” [39] could then suffer from higher write-amplification by repeatedly

merging smaller on-disk components until their combined size reaches a certain threshold.

To eliminate those factors, we also evaluated the performance of bulk-loading, which builds

a single on-disk component for the loaded dataset. (We evaluated the performance of bulk-

loading into open, closed and inferred datasets using the WoS dataset.)

Data Feed (Insert-only). To evaluate the performance of continuous data ingestion,

we measured the time to ingest the Twitter dataset using a data-feed to emulate Twitter’s

firehose. We set the maximum mergeable component size to 1GB and the maximum tolerable

number of components to 5, after which the tree manager triggers a merge operation.
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Figure 4.12 shows the time needed to complete the data ingestion for the 200GB Twitter

dataset. Ingesting records into the inferred dataset took less time than ingesting into the

open and closed datasets. Two factors played a role in the data ingestion rate. First, we

observed that the record construction cost of the system’s current ADM physical format

was higher than the vector-based format by ∼40%. Due to its recursive nature, the ADM

physical format requires copying the values of the child to the parent from the leaf to the

root of the record, which means multiple memory copy operations for the same value. Closed

records took even more time to enforce the integrity constraints such as the presence and

types of none-nullable fields. The second factor was the IO cost of the flush operation. We

noticed that the inferred dataset’s flushed on-disk components are ∼50% and ∼25% smaller

than the open and closed datasets, respectively. This is due to the fact that compacted

records in the vector-based format were smaller in size than the closed and open records in

ADM format (see Figure 4.11a). Thus, the cost of writing larger LSM components of both

open and closed datasets was higher.

The ingestion rate for the SATA SSD and the NVMe SSD were comparable, as both were

actually bottlenecked by flushing transaction log records to the disk. Enabling compression

had a slight negative impact on the ingestion rate for each format due to the additional

CPU cost.

Data Feed (50% Updates) As explained in Section 4.3.2, updates require point lookups

to maintain the schema, which can negatively impact the data ingestion rate. We evalu-

ated the ingestion performance for update-intensive workload when the tuple compactor is

enabled. In this experiment, we randomly updated 50% of the previously ingested records

by either adding or removing fields or changing existing value types. The updates followed

a uniform distribution, where all records were updated equally. We created a primary key

index, as suggested in [70, 71], to reduce the cost of point lookups of non-existent (new)

keys. Figure 4.13 shows the ingestion time of the Twitter dataset, using the NVMe SSD
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Figure 4.13: Ingestion time for the Twitter dataset with 50% updates (Minutes)

drive, for the open, closed and inferred dataset with updates. The ingestion times for both

open and closed datasets were about the same as with no updates (Figure 4.12b). For the

inferred dataset, the ingestion time with updates took ∼27% and ∼23% more time for the

uncompressed and compressed datasets, respectively, compared to one with no updates (Fig-

ure 4.12b). The ingestion times of the inferred and open datasets were comparable and both

took less time than the closed dataset.
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Figure 4.14: Loading time for the WoS dataset — bulkload (Minutes)
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Bulk-load. As mentioned earlier, continuous data ingestion is sensitive to LSM configura-

tions such as the allocated memory budget for in-memory components. Additionally, the

sizes of flushed on-disk components are smaller for the inferred and closed datasets as they

have a smaller storage overhead than the open dataset (as we saw while ingesting the Twit-

ter dataset). Smaller on-disk components may trigger more merge operations to reach the

maximum mergeable component size. To eliminate those factors, we also evaluated the time

it takes AsterixDB to bulk-load the WoS dataset. When loading a dataset, AsterixDB sorts

the records and then builds a single on-disk component of the B+-tree in a bottom-up fash-

ion. The tuple compactor infers the schema and compacts the records during this process.

When loading finishes, the single on-disk component will have a single inferred schema for

the entire set of records.

Figure 4.14 shows the time needed to load the WoS dataset into open, closed, and in-

ferred datasets. As for continuous data ingestion, the lower per-record construction cost of

the vector-based format was the main contributor to the performance gain for the inferred

dataset. We observed that the cost of the sort was relatively the same for the three schema

datasets. However, the cost of building the B+-tree was higher for both the open and closed

schema datasets due to their higher storage overheads (Figure 4.11b).

As loading a dataset in AsterixDB does not involve maintaining transaction logs, the higher

throughput of the NVMe SSD was noticeable here compared to continuous data ingestion.

When compression is enabled, the SATA SSD slightly benefited from the lower IO cost;

however, the faster NVMe SSD was negatively impacted by the compression due to its

CPU cost.
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4.4.4 Query Performance

We next evaluated the impact of our work on query performance by running analytical queries

against the ingested Twitter, WoS, and Sensor datasets. The objective of our experiments

is to evaluate the IO cost of querying against open, closed, and inferred datasets. Each

executed query was repeated six times and we report the average execution time of the

last five.

We ran four queries (listed in Appendix A.2.1) against the Twitter dataset which retrieve:

Q1. The number of records in the dataset — COUNT(∗).

Q2. The top ten users whose tweets’ average length are the largest — GROUP BY/ORDER BY.

Q3. The top ten users who have the largest number of tweets that contain a popular hashtag

— EXISTS/GROUP BY ORDER BY.

Q4. All records of the dataset ordered by the tweets’ posting timestamps

— SELECT ∗/ORDER BY2.

Twitter Dataset

Figure 4.15 shows the execution time for the four queries in the three datasets (open, closed,

and inferred) when the data is on the SATA SSD drive and the NVMe SSD drive. On

the SATA SSD, the execution times of the four queries, with and without compression,

correlated with their on-disk sizes from Figure 4.11a. This correlation indicates that the

IO cost dominates the execution time. However, on the NVMe SSD drive, the CPU cost

becomes more evident, especially when page-level compression is enabled. For Q2 and Q4,

the ∼2X reduction in storage after compression reduced their execution times in the SATA

2In Q4, we report only the time for executing the query, excluding the time for actually retrieving the
final formatted query result.
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Figure 4.15: Query execution time for the Twitter dataset (Seconds)

case in all three datasets. However, the execution times for Q2 and Q4 in the closed and

inferred datasets did not improve as much after compression in the NVMe case, as the

CPU became the bottleneck here. Q3, which filters out all records that do not contain

the required hashtag, took less time to execute in the inferred dataset. This is due to the

way that nested values of records in the vector-based format are accessed. In the Twitter

dataset, hashtags are modeled as an array of objects; each object contains the hashtag text

and its position in the tweet’s text. We consolidate field access expressions for records in the

vector-based format (as discussed in Section 4.3.4), and the query optimizer was able to push

the consolidated field access through the unnest operation and extract only the hashtag text

instead of the hashtag objects. Consequently, Q3’s intermediate result size was smaller in the

52



inferred dataset compared to the other two datasets, and executing Q3 against the inferred

dataset was faster. This experiment shows that our schema inference and tuple compaction

approach can match (or even improve in some cases) the performance of querying datasets

with fully declared schemas — without a need for pre-declaration.

WoS Dataset

We also ran four queries (listed in Appendix A.2.2) against the WoS dataset:

Q1. The number of records in the dataset — COUNT(∗).

Q2. The top ten scientific fields with the highest number of publications

— GROUP BY/ORDER BY.

Q3. The top ten countries that co-published the most with US-based institutes

— UNNEST/EXISTS/GROUP BY/ORDER BY

Q4. The top ten pairs of countries with the largest number of co-published articles

— UNNEST/GROUP BY/ORDER BY

As Figure 4.16 illustrates, the execution times for Q1 and Q2 are correlated with the storage

sizes of the three datasets (Figure 4.11b). For Q3 and Q4, the execution times were substan-

tially higher in the open and closed datasets as compared to the inferred dataset. Similar

to Q3 in the Twitter dataset, field access expression consolidation and pushdown were ben-

eficial. Even after enabling compression, the open and closed schema execution times for

Q3 and Q4 remained about the same despite the storage savings. (We will evaluate that

behavior in more detail in Section 4.4.4).

Sensors Dataset

We again ran four queries (listed in Appendix A.2.3):

53



uncompressed compressed0

20

40

60

80

Open Closed Inferred

Q1 Q2 Q3 Q40

400

800

1200

1600

66
6.

2

68
5.

2 98
9.

6

10
09

.2

43
8.

4

48
0.

7 73
3.

2

72
1.

1

31
6.

6

32
4.

4

31
5.

2

31
7.

6

(a) SATA SSD — Uncompressed

Q1 Q2 Q3 Q40

400

800

1200

1600

23
8.

4

25
8.

1

91
9

92
9.

5

15
6.

9

18
1

68
1

66
4.

1

14
9

15
8.

5

16
7.

4

17
4.

1

(b) SATA SSD — Compressed

Q1 Q2 Q3 Q40

400

800

1200

1600

19
3.

6

22
1.

2

96
8

98
9.

4

11
9.

6

15
5.

2

68
6.

8

70
1.

9

90
.2

11
2.

9

17
7.

8

18
3.

4

(c) NVMe SSD — Uncompressed

Q1 Q2 Q3 Q40

400

800

1200

1600

84
.2

11
7.

5

91
9.

9

92
9.

2

52 82
.5

65
2.

6

65
9.

2

50 85
.5 16

3.
4

16
9

(d) NVMe SSD — Compressed

Figure 4.16: Query execution time for the WoS dataset (Seconds)

Q1. The number of records in the dataset — COUNT(∗).

Q2. The minimum and maximum reading values that were ever recorded across all sensors

— UNNEST/GROUP BY.

Q3. The IDs of the top ten sensors that have recorded the highest average reading value

— UNNEST/GROUP BY/ORDER BY

Q4. Similar to Q4, but look for the recorded readings in a given day

— WHERE/UNNEST/GROUP BY/ORDER BY

The execution times are shown in Figure 4.17. The execution times for Q1 on both un-

compressed and compressed datasets correlate with the storage sizes of the datasets from
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Figure 4.17: Query execution time for the Sensors dataset (Seconds)

Figure 4.11c. Q2 and Q3 exhibit the effect of consolidating and pushing down field value

accesses of vector-based format, where both queries took significantly less time to execute

in the inferred dataset. However, pushing the field access down is not always advantageous.

When compression is enabled, the execution time of Q4 for the inferred dataset using NVMe

SSD was the slowest. This is because the consolidated field accesses (of sensor ID, reading

and reporting timestamp) are evaluated before filtering using a highly selective predicate

(0.001%). In the open and closed datasets, delaying the evaluation of field accesses until

after the filter for Q4 was beneficial. However, the execution times for the inferred dataset

was comparable to the open case.
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Impact of the Vector-based Optimizations

Breakdown of the storage savings. As we showed in our experiments, the time it takes

for ingesting and querying records in the vector-based format (inferred) was smaller even

when the schema is fully declared for the ADM format (closed). This is due to fact that

the vector-baed format encodes nested values more efficiently using only the type tags (as

in Section 4.3.3). To measure the impact of the newly proposed format, we reevaluate the

storage size of the vector-based without inferring the schema or compacting the records (i.e.,

a schema-less version using the vector-based format), which we refer to as SL-VB.

In Figure 4.18a, we see the total sizes of the four datasets open, closed, inferred, and SL-VB

after ingesting the Twitter dataset. We see that the SL-VB dataset is smaller than the open

dataset but slightly larger than the closed one. More specifically, about half of the storage

savings in the inferred dataset (compared to the open dataset) is from the more efficient en-

coding of nested values in the vector-based format, and the other half is from compacting the

record. For the Sensors dataset, Figure 4.18b shows a similar pattern; however, the SL-VB

Sensors dataset is smaller than the closed dataset for the reasons explained in Section 4.4.2.

Closed Inferred SL-VBOpen
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Figure 4.18: Impact of the vector-based format on storage

Linear-time field access. Accessing values in the vector-based format is sensitive to the

position of the requested value. For instance, accessing a value that appears first in a record
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is faster than accessing a value that resides at the end. To measure the impact of linear

access in the vector-based format, we ran four queries against the Twitter dataset (using the

NVMe SSD drive) where each counts the number of appearances of a value. The positions

(or indexes) of those values in the vector-based format are 1, 34, 68, and 136 for Q1, Q2, Q3

and Q4, respectively, where position 1 means the first value in the record and the position

136 is the last. Figure 4.19a shows the time needed to execute the queries. In the inferred

datasets, the position of the requested value affected the query times, where Q1 was the

fastest and Q4 was the slowest. For the open and closed datasets, the execution times for

all queries were about the same. However, all four queries took less time to execute in the

inferred cases, due to the storage savings. When all the data fits in-memory, the CPU cost

becomes more apparent as shown in Figure 4.19b. In the case of a single core, the vector-

based format was the slowest to execute Q3 and Q4. When using all 8-cores, the execution

time for all queries were about the same for the three datasets.

Field-access consolidation and pushdown. Also in our experiments, we showed that our

optimizations of consolidating and pushing down field access expressions can tremendously

improve query execution time. To isolate the factors that contributed to the performance

gains, we reevaluated the execution times for Q2-Q4 of the Sensors dataset with and without

these optimizations.

The execution times of the queries are shown in Figure 4.20. We refer to Inferred (un-op) as

querying the inferred dataset without our optimization of consolidating and pushing down

field access expressions. When we disable our optimizations, the linear-time field accesses of

the vector-based format are performed as many times as there are field access expressions

in the query. For instance, Q3 has three field access expressions to get the (i) sensor ID,

(ii) readings array, and (iii) reporting timestamp. Each field access requires scanning the

record’s vectors, which is expensive. Additionally, the size of the intermediate results of

Q2 and Q3 were then larger (array of objects vs. array of doubles). As a result, Q2 and
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Figure 4.19: Impact of the vector-based format on storage

Q3 took twice as much time to finish for Inferred (un-op). Q2 is still faster to execute in

the Inferred (un-op) case than in the closed case whereas Q3 took slightly more time to

execute. Finally, disabling our optimizations improved the execution time for Q4 on the

NVMe SSD, as delaying the evaluation of field accesses can be beneficial for queries with

highly selective predicates.

Vector-based format vs. others. Other formats, such as Apache Avro [6], Apache

Thrift [31], and Google Protocol Buffers [32], also exploit schemas to store semi-structured

data more efficiently. In fact, providing a schema is not optional for writing records in such
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formats — as opposed to the vector-based format, where the schema is optional. Nonetheless,

we compared the vector-based format to Apache Avro, Apache Thrift using both Binary

Protocol (BP) and Compact Protocol (CP), and Protocol Buffers to evaluate 1) the storage

size and 2) the time needed to construct the records in each format using 52MB of the Twitter

dataset. Table 4.2 summarizes the result of our experiment. We see that the storage sizes

of the different formats were mostly comparable. In terms of the time needed to construct

the records, Apache Thrift (for both protocols) took the least construction time followed by

the vector-based format. Apache Avro and Protocol Buffers took 1.9x and 2.9x more time

to construct the records compared to the vector-based format, respectively.

Space (MB) Time (msec)

Avro 27.49 954.90

Thrift (BP) 34.30 341.05

Thrift (CP) 25.87 370.93

ProtoBuf 27.16 1409.13

Vector-based 29.49 485.48

Table 4.2: Writing 52MB of Tweets in different formats
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Figure 4.21: Query with secondary index (NVMe)

Secondary Index Query Performance

Pirzadeh et al. [82] previously showed that predeclaring the schema in AsterixDB did not

improve (notably) the performance of range-queries with highly selective predicates in the

presence of a secondary index. In this experiment, we evaluated the impact of having a

secondary index using the Twitter dataset.

We modified the scaled Twitter dataset by generating monotonically increasing values for

the attribute timestamp to mimic the time at which users post their tweets. We created

a secondary index on this generated timestamp attribute and ran multiple range-queries

with different selectivities. For each query selectivity, we executed queries with different

range predicates to warm up the system’s cache and report the average stable execution
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time. Figures 4.21a and 4.21b show the execution times for queries, with both low and

high selectivity predicates, using the NVMe SSD, for uncompressed datasets. The execution

times for all queries correlated with the storage sizes (Figure 4.11a), where the closed and

inferred datasets have lower storage overhead compared to the open dataset. The execution

times for compressed datasets (Figures 4.21c and 4.21d) showed similar relative behavior.

4.4.5 Scale-out Experiment

Finally, to evaluate the scalability our approach, we conducted a scale-out experiment using

a cluster of Amazon EC2 instances of type c5d.2xlarge (each with 16GB of memory and 8

virtual cores). We evaluate the ingestion and query performance of the Twitter dataset using

clusters with 4, 8, 16 and 32 nodes. We configure each node with 10GB of total memory, with

6GB for the buffer cache and 1GB for the in-memory component budget. The remaining

3GB is allocated for working buffers. We used the instance ephemeral storage to store the

ingested data. Due to the lack of storage space in a c5d.2xlarge instance (200GB), we only

evaluate the performance on compressed datasets.

Figure 4.22a shows the total on-disk size after ingesting the Twitter data into the open,

closed and inferred datasets. The raw sizes of the ingested data were 400, 800, 1600 and

3200 GB for the 4, 8, 16 and 32 node clusters, respectively. Figure 4.22b shows the time

taken to ingest the Twitter data into the three datasets. As expected, we observe the same

trends seen for the single node cluster (see Figure 4.11a and Figure 4.12), where the inferred

dataset has the lowest storage overhead with the highest data ingestion rate.

To evaluate query performance, we ran the same four Twitter queries as in Section 4.4.4.

Figure 4.23 shows the execution times for the queries against the open, closed and inferred

datasets. All four queries scaled linearly, as expected, and all four queries were faster in the

inferred dataset. Since the data is shuffled in Q2 and Q3 to perform the parallel aggregation,
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each partition broadcasts its schema to the other nodes in the cluster (Section 4.3.4) at the

start of a query. However, the performance of the queries was essentially unaffected and was

still faster to execute in the inferred dataset.

4.5 Related Work

In Chapter 3, we have comprehensively discussed the recent research on reducing the storage

overhead in document stores. Here we mainly focus on recent work related to our proposed

tuple compactor framework.
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Creating secondary indexes is related to declaring attributes in schemaless document

stores. Azure DocumentDB [87] and MongoDB support indexing all fields at once without

declaring the indexed fields explicitly. E.g., MongoDB allows users to create an index on all

fields using a wildcard index. Doing so requires the system to “infer” the fields. Despite the

similarities, our objective is different. In our work, we infer the schema to reduce storage

overhead by compacting records in the primary index.

Semantically compacting self-describing, semi-structured records using schemas appears

in popular big data systems such as Apache Spark [12] and Apache Drill [7]. For instance,

Apache Drill uses schemas of JSON datasets (provided by the user or inferred by scanning the

data) to transform records into a compacted in-memory columnar format (Apache Arrow [2]).

File formats such as Apache Avro, Apache Thrift, and Google Protocol Buffers use the

provided schema to store nested data in a compacted form. However, the schema is required

for those formats, whereas it is optional for the vector-based format. Apache Parquet [9] (or

Google Dremel [74]) uses the provided schema to store nested data in a columnar format to

achieve higher compressibility. An earlier effort to semantically compact and compress XML

data is presented in [42, 68]. Our work is different in targeting more “row”-oriented document

stores with LSM-based storage engines. Also, we support data values with heterogeneous

types, in contrast to Spark and Parquet.

Exploiting LSM lifecycle events to piggyback other operations to improve the query

execution time is not new by itself and has been proposed in several contexts [33, 41, 89].

LSM-backed operations can be categorized as either non-transformative operations, such

as computing information about the ingested data, or transformative operations, e.g., in

which the records are transformed into a read-optimized format. An example of a non-

transformative operation is [41], which shows how to utilize the LSM lifecycle operations to

compute range-filters that can accelerate time-correlated queries by skipping on-disk compo-

nents that do not satisfy the filter predicate. [33] proposes a lightweight statistics collection
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framework that utilizes LSM lifecycle events to compute statistical summaries of ingested

data that the query optimizer can use for cardinality estimation. An example of a trans-

formative operation is [89], which utilizes LSM-like operations to transform records in the

writeable-store into a read-optimized format for the readable-store. Our work utilizes the

LSM lifecycle operations to do both (i) non-transformative operations to infer the schema

and (ii) transformative operations to compact the records.

4.6 Conclusion

In this chapter, after first introducing a syntactic compression scheme, we introduced a tu-

ple compaction framework that addresses the overhead of storing self-describing records in

LSM-based document stores. The semantic framework utilizes the flush operations of LSM-

based engines to infer the schema and compact the ingested records without sacrificing the

flexibility of schema-less document store systems. We also addressed the complexities of

adopting such a framework in a distributed setting, where multiple nodes run independently

without requiring synchronization. We further introduced the vector-based record format,

a compaction-friendly format for semi-structured data. Experiments showed that our tu-

ple compactor is able to reduce the storage overhead significantly and improve the query

performance of AsterixDB. Moreover, it achieves this without impacting data ingestion per-

formance. In fact, we saw that the tuple compactor and vector-based record format can

improve the performance of insert-heavy workloads. When combined with our page-level

compression, we were able to reduce the total storage size by up to 9.8x and improve query

performance by the same factor.
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Chapter 5

Columnar Formats for Schemaless

LSM-based Document Stores

5.1 Introduction

In recent years, as described in Chapter 1, columnar storage systems have been widely

adopted in data warehouses for analytical workloads, where typical queries access only a

few fields of each tuple. By storing columns contiguously as opposed to rows, column store

systems only need to read the columns involved in a query and the I/O cost becomes sig-

nificantly smaller compared to reading whole tuples [89, 74]. As a result, open source and

commercial relational column-store systems such as MonetDB [21, 94] (and the commercial

version Actian Vector [1]), and C-Store [89] (commercialized as Vertica [29]) have gained

more popularity as data warehouse solutions.

For nested data, Dremel [74] and its open source implementation Apache Parquet [9] offer

a way to store homogeneous JSON-like data in a columnar format. Apache Parquet has

become the de facto file format for popular big data systems such as Apache Spark and
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even for “smaller” data processing libraries like Python’s Pandas. However, storing data in

a column-oriented fashion for document store systems such as MongoDB [22], Couchbase

Server [17] or, Apache AsterixDB [3, 38, 51] is more challenging, because:

1. Declaring a schema before loading or ingesting data is not required in document store

systems. Thus, the number of columns and their types are determined upon data

arrival.

2. Document store systems do not prohibit a field from having two or more different

types, which adds another layer of complexity.

Even though columnar systems are orders of magnitude more performant, many users have

no choice but to use the slower yet flexible document stores.

In this chapter, we show that users with analytical workloads can enjoy the performance gains

from storing the data in a columnar format without sacrificing the flexibility of document

stores. We achieved this by, first, proposing several extensions to the Dremel format to

address its limitations to comply with document stores’ flexible data model, which permits

values with heterogeneous types and schema changes. Many prominent document stores,

such as MongoDB and Couchbase Server, adopt Log-Structured Merge (LSM) trees [79] in

their storage engines for their superior write performance. LSM lifecycle events (mainly the

flush operations) allow transforming the ingested records upon writing them to disk. Thus,

we use the techniques proposed in Chapter 4 to exploit the LSM flush operation to infer the

schema and write the records (initially in row format) as columns using our extensions to

the Dremel format.

We present two new models in our work here for storing columns in an LSM B+-tree index.

In the first model, we store columns using a Partitioned Attributes Across (PAX)-like [35]

format, where each column occupies a contiguous region (called a minipage) within a B+-
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tree’s leaf page. We refer to this model as the AsterixDB PAX model or APAX for short.

In the second model, we stretch the PAX minipages to become megapages, where a column

could occupy multiple pages. We refer to this model as the AsterixDB Mega-Attributes

Across (AMAX). Despite their names, Despite their names, these layouts are agnostic of the

columns’ structure and see each column as a series of bytes; hence they should only require

a few modifications to be adopted by other LSM-based document stores.

To show their benefits, we have implemented both the APAX and AMAX layouts to store

document data in a columnar format in Apache AsterixDB. This has enabled us to conduct

an extensive evaluation of the APAX and AMAX formats and present their tradeoffs in terms

of (1) ingestion performance, (2) query performance, and (3) memory and CPU consumption

for different datasets.

The remainder of this chapter is structured as follows: Section 5.2 details our extensions

to the Dremel format. Section 5.3 presents the structure of both the APAX and AMAX

layouts and discusses the challenges of reading and writing records in both. Section 5.4

presents our evaluation of the propsed columnar formats. Section 5.5 surveys related work.

Finally, Section 5.6 concludes the chapter.

5.2 A Flexible Columnar Format for Nested

Semi-structured Data

Inferring the schema and compacting schemaless semi-structured records, using Chapter

4’s tuple compactor framework, reduces their overall storage overhead and consequently

improves query execution time. However, the compacted records are still in a row-major

format, which is less than ideal for analytical workloads as compared to columnar formats.

The Dremel format [74] allows for storing nested records in a columnar fashion, where atomic
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values of different records are stored contiguously in chunks. However, the Dremel (or

Parquet) format still requires a fixed schema that describes all fields to be declared a priori,

and all field values must conform to the declared fixed schema. One of the main reasons

that document stores do not support storing data in a columnar format is the flexibility of

their data model. In this section, we first present our extensions to the Dremel format and

highlight the structural differences between the original and the extended Dremel formats.

Next, we show how our extended Dremel format adapts to schema changes, such as adding

new values and changing their types.

5.2.1 Extended Dremel Format

To better explain our extensions to the Dremel format, we first highlight the structural

differences between the original Dremel and our extended Dremel formats. Initially, we

assume that the schema is known a priori for both formats. Later in Section 5.2.2, we detail

how our extensions to the Dremel format allow for schema changes. For better illustration,

Figure 5.1a shows an example of three JSON records about video gamers along with the

structure of their declared schema. The schema’s inner nodes represent the nested values

(objects and arrays), whereas the leaf nodes represent the atomic values such as integers and

strings. The circles (e.g., 2 ) under the leaf nodes corresponds to column IDs, which link

the schema to the column values in Figure 5.1b for the Dremel format and in Figure 5.1c for

the extended format. The schema describes the JSON records’ structure, where the root has

three fields id, name, and games with the types integer, object, and array, respectively. The

name object consists of first and last name pairs, both of which are of type string. Next

is the array of objects games, which stores information about the gamers’ owned games,

namely the games’ titles and the different versions of a game the gamers own for different

consoles. Every value (nested or atomic) in our example is optional except for the record’s

key id. The optionality of all non-key values is synonymous with the schemaless document

68



{"id": 0,
"name": {"first": "John", "last": "Smith"},
"games": [{"title": "NBA","consoles": ["PC"]}]}
{"id": 1,
"games": [{"consoles": ["PC", "PS4"]}, 

{"title": ”NFL", "consoles": ["PS4"]}]} 
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Figure 5.1: (a) Raw JSON records and their schema (b) Dremel columnar representation (c)
Extended Dremel representation

store model, which is the scope of this paper. We encourage interested readers to refer to

[74, 53] for more details on the representation of non-optional values.
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The tables in Figure 5.1b and Figure 5.1c depict the columnar-striped representation of

the records’ atomic values from Figure 5.1a in both formats. For Dremel, each table con-

sists of three columns: R, D, and Value, where R and D denote the Repetition-Level

and Definition-Level of each Value as presented in [74]. The Definition-levels determine

whether a value is present or NULL, whereas the Repetition levels determine the start

and end of a repeated value (or array). The pairs (R:x, D:y), shown at the bottom of each

table in Figure 5.1b, indicate the maximum value for the repetition and definition levels

for each atomic value. For our extended Dremel format, we also use the definition level

to determine the level at which the NULL value occurred. For repeated values, we use

Array-Delimiter-Level (AD) to mark the end of a repeated value.

Non-repeated Values: To explain, let us take column 2 , which corresponds to name.first

as shown in Figure 5.1a. In Dremel, the column has a maximum repetition level of 0

indicating a non-repeated value (or not an array element), whereas the maximum definition

level 2 is the level of the leaf node in the schema’s tree (root (0) → name (1) → first (2)).

In the first record in Figure 5.1b, the definition level for the value name.first is 2, which

indicates that the path root → name → first is present and the gamer’s first name is

”John”. For the second and third records, the definition levels for 2 are 0, indicating that

only root (which is at level 0) is present in both records but not the object name nor the

atomic value first. Note that the value ‘NULL’ is indiciated by the definition level and

not stored as a value – the shown ‘NULL’ values in Figure 5.1 are for illustration. For

the extended Dremel format, we do not use repetition levels but use array delimiter levels

instead. Since the column 2 corresponds to a non-repeated value, there is no maximum

AD as shown in Figure 5.1c. Otherwise, the definition levels in the extended Dremel format

for the same column in the three records are similar to the original Dremel format. Another

difference between the original Dremel format and our extended format appears in column

1 . In Dremel, the maximum definition level for the field id is 0 – shown in Figure 5.1b –

as it is a non-optional field. However, in our extension, the maximum definition level (for
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the same column 1 shown in Figure 5.1c) is 1 even though the field id is also not optional.

As discussed later in Section 5.2.3, the id field is the primary key for the games dataset.

Therefore, the definition levels for the primary keys are used to indicate ‘anti-matter’ tuples.

Repeated Values: For repeated values (array elements) such as column 4 in our example,

the repetition levels in Dremel determine the array starts and ends for each record. Note

that for the repeated values for column 4 , the maximum repetition and definition levels are

1 and 3, respectively. The first record has only one value (0, 3, ”NBA”), where the triplet

(r, d, v) denotes its repetition level (r), definition level (d), and value (v), respectively. The

repetition level 0 indicates that the value ”NBA” is the record’s first 4 repeated value, and

the definition level 3 indicates that the value is present. The following value (0, 2, NULL)

corresponds to the second record, as the repetition level 0 indicates that the current value

is, again, the first 4 repeated value. However, the definition level 2 here indicates that

the value is NULL, as it is less than the column’s maximum definition level 3. Again, the

‘NULL’ value is not stored as a value but indicated by the definition level. The following

value (1, 3, ”NFL”) is the second element of the same array, which is indicated by repetition

level 1. Whenever a value’s repetition level is greater than zero, we know that the value is

another array element other than the first element. The last value (0, 0, NULL) indicates

that the array games itself is NULL in the last record.

In Figure 5.1b, the values of column 5 belong to the two nested arrays games and consoles

in Figure 5.1a. Therefore, the maximum repetition level for column 5 is 2. Like in column

4 , the value (0, 4, ”PC”) corresponds to the first record, as indicated by the repetition

level 0. The definition level 4 here means that the value is present and the value is ”PC”.

The following value (0, 4, ”PC”) is the first 5 value for the second record, as indicated by

its repetition level 0. The next value (2, 4, ”PS4”) has a repetition level 2, the maximum

repetition level for the column 5 , which means it is the second value of the array consoles.

The following value’s (1, 4, ”PS4”) repetition level 1 means it still corresponds to the same
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record; however, the value marks the beginning of the record’s second consoles’ array, which

has a single element ”PS4”. As in 4 , the last value (0, 0, NULL) again indicates that games

itself is NULL in the last record.

In our example, we noticed that (i) the repetition levels of the column 4 is a subset of the

column 5 ’s repetition levels (redundancy), as both share the same array ancestor games.

The entire repetition levels of the column 4 [0, 0, 1, 0] appear in the same order as the

column 5 ’s repetition levels [0, 0, 2, 1, 0]. Also, we observed that (ii) all values with

repetition levels greater than 0 must have definition levels greater or equal to the array’s

level. Recall that a value with a repetition level greater than 0 indicates another array

element (i.e., not first). When the repetition level is greater than 0, it implies that an array

exists and that its length is greater than one. Also recall that when the definition level

is smaller than an array’s level, it means that the array itself is NULL. As a consequence,

having a repetition level greater than 0 and a definition level smaller than the array’s level

would be contradictory. It would mean the array exists and that its length is greater than

one, but that the array itself is NULL. Given that, the number of bits used by Dremel for

both the definition and repetition levels is more than what is needed to represent repeated

values.

For these reasons, we will adopt a different approach for representing repeated values without

repetition levels. Recall (ii), which says that the definition level of a non-first repeated value

cannot be smaller than the array’s definition level — thus, we can use such definition level

values as delimiters instead of repetition levels. Figure 5.1c shows how repeated values are

represented in the extended Dremel format. In our example, the definition levels of the values

of columns 4 and 5 are subsets of the original Dremel definition levels. The additional

definition levels act as array delimiters. To illustrate, column 4 ’s maximum array delimiter

level (AD) is 0. Thus, in the first two records, where the array games is not NULL, their

repeated values are delimited by the definition level 0. The value that follows a delimiter
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indicates the start of the next array, and the value itself is the array’s first value — except

for the last repeated value, where the definition level 0 indicates the array games is NULL

in the last record. Note that the last value’s definition level of 0 cannot be a delimiter since

it is the first value after the preceding delimiter.

In the case of nested arrays, as in the column 5 , the maximum AD is 1, which indicates

that the two delimiter values 0 and 1 are for the outer (games) and inner (consoles) arrays,

respectively. The first value in column 5 is present, as indicated by the definition level 3,

and its value is ”PC”. The following value is a delimiter of the outer array games, indicated

by the definition level 0. We omit the definition level 1, the delimiter for the inner array

consoles, since the delimiter 0 also encompasses the inner delimiter 1. The next two values

are the first and second array elements of the second record’s array consoles. The following

delimiter of 1 here indicates the end of the first consoles array [”PS4”, ”PC”], and the next

value marks the start of the second consoles array [”PS4”] in the same record. The next

delimiter 0 indicates the end of the repeated values in the second record. Like in column 4

, the following definition level of 0 implies that the games array is NULL in the last record.

5.2.2 Schema Changes

For LSM-based document stores, one could use the approach proposed in Chapter 4 to obtain

the schema and use it to columnize the values. However, a major challenge for supporting

columnar formats in document stores is handling their potentially heterogeneous values. For

example, the two records {"id": 1, "age": 25} and {"id": 2, "age": "old"} are valid records

and both could be stored in a document store. Similarly, document stores allow storing an

array that consists of heterogeneous values, such as the array [0, "1", {"seq": 2}]. Limiting

the support for storing data in a columnar format to datasets with homogeneous values is

maybe enough for many cases, as evidently shown by the popularity of Parquet. However,

73



including support for datasets with heterogeneous values is a desired feature for certain use

cases, especially when the users have no control over how the data is structured, like when

ingesting data from web APIs [56, 88]. In this section, we address the two main challenges:

(i) handling schema changes and (ii) handling data with heterogeneous types.

In Chapter 4, we introduced union types in our inferred schemas to represent values with

heterogeneous types. Figure 5.2 depicts an example of two variant records with their inferred

schema. The inferred schema shows that the records have different types for the same value.

The first is the field name, which could be a string or an object. Thus, we infer name’s type

as a union of string and object. The second union type corresponds to the games array’s

elements, where each element could be of type string or array of strings. In the schema,

we observe that union nodes resemble a special case of object nodes, where the keys of a

union nodes’ children are their types. For example, the union node of the field name, in the

schema shown in Figure 5.2, has two children, where the key “string” corresponds to the left

child, and the key “object” corresponds to the right child.

{
"name": "John",
"games": [

"NBA", 
["FIFA", "PES"], 
"NFL”

]}

{
"name": {

"first": "Ann",
"last": "Brown"

}
"games": ["NFL", 

"NBA”]
}

Union

Array

Array

string

string

Union

first lastObjectstring

stringstring

Rootname games

2 3

1

5

4

Figure 5.2: Example of heterogeneous values and their schema

Based on this observation, we can columnize unions’ atomic values by treating them as object

values with one modification. Observe that an actual value can only be of a single type in

any given record, and, hence, only a single value can be present, so the other atomic values

associated with the union should be NULLs. To better illustrate, consider an example where

the records are inserted one after another, and the schema changes accordingly. Columnizing
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2 NBA

1 NULL

2 NFL

0 --

2 NFL

2 NBA

D Value

1 NULL

3 FIFA

3 PES

1 --

1 NULL

0 --

1 NULL

1 NULL

D Value

0 NULL

2 Brown

D Value

0 NULL

2 Ann

D Value

1 John

0 NULL

5 (D: 3, AD: 1)

1 (D: 1) 2 (D: 2)

3 (D: 2)

4 (D: 2, AD: 0)

Figure 5.3: Columnar representation of the records in Figure 5.2

the records’ values can be performed while inferring the schema in a single pass, as in the

compaction process in Chapter 4. After inserting the first record of Figure 5.2, we infer that

field name is of type string, and thus we write the string value ”John” with definition level

1 as shown in column 1 in Figure 5.3. In the following record, the field name is an object

consisting of first and last fields. Therefore, we change the field name’s type from string

to a union type of string and object as was shown in Figure 5.2. Since the second record is

the first to introduce the field name as an object, we can write NULLs in the newly inferred

columns 2 and 3 for all previous records. Then, we write the values ”Ann” and ”Brown”,

with definition levels 2 in 2 and 3 , respectively. Recall that only a single value can be

present in a union type; therefore, we write a NULL in column 1 . After injecting the union

node in the path root → union → string, we do not change the definition level of column

1 from 1 to 2 for two reasons. First, union nodes are logical guides and do not appear

physically in the actual records. Therefore, we can ignore the union node as being part of a

path when setting the definition levels even for the two newly inferred columns 2 and 3 .

The second reason is more technical — changing the definition levels for all previous records

is not practical, as we might need to apply the change to millions of records, were it even

possible due to the immutable nature of LSM.
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When accessing a value of a union type, we need to see which value is present (not NULL)

by checking the values of the union type one by one. If none of the values of the union

type is present, we can conclude that the requested value is NULL. In the example shown

in Figure 5.2 and Figure 5.3, accessing name goes as follows: First, we inspect column 1 ,

which corresponds to the string child of the union. If we get a NULL from 1 , we need to

proceed to the following type, an object with two fields, first 2 and last 3 . In this case,

we need to inspect one of the values’ definition levels, say column 2 . If the definition level

is 0, we can conclude that the value name is NULL, as the string and the object values of

the union are both NULLs. However, if the definition level is 1, we know that the parent

object is present, but the first string value is NULL. Thus, the result of accessing the field

name is an object in this case. Inspecting all the values of a union type is not needed when

the requested path is a child of a nested type. For instance, when a user requests the value

name.last, processing column 3 is sufficient to determine whether the value is present or

not. Thus, the results of accessing the value name.last are NULL in the first record and

”Brown” in the second record.

The types of repeated values (array elements) can alternate between two or more types, as

in the array games in Figure 5.2. In the first record, the elements’ types of the array games

are either a string or an array of strings. Similar to the value name, when accessing the

value games, we need to inspect both columns 4 and 5 to determine which element of

the two types is present. When accessing the value games, we see that the first value’s

definition level in column 4 is 2, which is the maximum definition level of the column for

the string value ”NBA”. In column 5 , however, the definition level is 1, which indicates

that the inner array of the union type is NULL. Thus, we know that the first element of the

array games corresponds to the string alternative of the union type. The following definition

level 1 in column 4 indicates that the second element is NULL, whereas it is 3 in column

5 , which is the maximum definition level of the column. Hence, the second element of the

array is of type array of strings. The two values with definition levels 3 and the following
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delimiter with definition level 1 correspond to the two elements ["FIFA", "PES"] of the first

record. Following the delimiter, the definition level 1 in column 5 indicates that the third

element of the outer array is NULL. However, the definition level 2 in column 4 for the value

”NFL” indicates that the third value of the outer array is a string. The delimiter 0 in both

columns 4 and 5 indicate the games’s end of values for the first record. The final result

of accessing the value games in the first record, therefore, is ["NBA", ["FIFA", "PES"], "NFL"],

which preserves the original value of the record shown in Figure 5.2. In the second record,

we can see that the array consists of two elements, both of type string. Hence, the two

NULL values in column 5 indicate that neither of the two elements is of the array of strings

alternative of the games’s union type.

5.2.3 LSM Anti-matter

In Section 2.3, we explained the process of deleting records in an LSM-based storage engine

using anti-matter entries. Anti-matter entries are special records that contain the key of

the deleted record. To support deletes, we need to represent anti-matter tuples using the

proposed columnar representation. Figure 5.4 shows the columnar representation of the

component C1 from Figure 2.8a in Section 2.3. The definition level for the primary key id

does not indicate whether the value is NULL or present; instead, it indicates whether the

primary key value corresponds to a record or to anti-matter. When the definition level of a

primary key value is 0, it represents an anti-matter entry, which indicates that a record with

the same primary key is deleted (Section 2.3). When the definition level is 1, we know that

it is a non-anti-matter record. Figure 5.4 also shows that the anti-matter has an entry for

the column id but none of the others.
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1 21

D Value

1 “Bob”

name age

D Value

0 0

1 2

id
< 0, - >

<2, “Bob”,  21>
Anti-matter

C1

Root

Figure 5.4: Representing anti-matter tuples

5.2.4 Record Assembly

When accessing a nested value such as the nested value name in Figure 5.1b in our ap-

proach, all of its atomic values (i.e., first and last) are stitched together to form an object

(e.g., {"first": "John", "last": "Smith"}) using the same record assembly automaton used

in [74]. Also, we use the same Dremel algorithm to assemble repeated values (arrays). How-

ever, a difference is that we use delimiters to transition the state when constructing the

arrays instead of the repetition levels as in Dremel.

5.3 Columnar Formats in LSM Indexes

A major feature of representing records’ values as contiguous columns, as in our extended

Dremel format, is that it allows us to encode and possibly compress the values of each column

according to its type to reduce the overall storage footprint. The immutability of LSM-based

storage engines makes them especially good candidates for storing encoded values as in-place

updates are not permitted. In this work, we propose two layouts for storing the columns

in LSM-based document stores: (i) AsterixDB Partitioned Attributes Across (APAX) and

(ii) AsterixDB Mega Attributes Across (AMAX). We have implemented and evaluated both

layouts in Apaches AsterixDB, hence the names. In the following sections, we first briefly

explain the supported techniques used to encode the column values. Then, we detail the
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structures of both the APAX and AMAX layouts. Next, we describe the lifecycle of reading

and writing the columns, and finally, we cover challenges related to answering queries with

secondary indexes.

5.3.1 Encoding

Apache Parquet offers a rich set of encoding algorithms [11] for different value types, including

bit-packing, run-length encoding, delta encoding, and delta strings. In this work, we use all

of Parquet’s encoding algorithms except for dictionary encoding, which requires additional

pages to store the dictionary entries. (We leave potential support for dictionary encoding

for future work.)

5.3.2 APAX Layout

Ailamaki et al. proposed Partition Attributes Across (PAX) [35], a cache-friendly page

layout as compared to the commonly used row-major layout (or N-ary Storage Model, a.k.a.,

slotted pages). PAX pages store each attribute’s values contiguously in minipages. APAX

minipages can be reached by relative pointers stored in the pages’ header. Within a PAX

page, fixed-length and variable-length values are stored in F-minipages and V-minipages,

respectively. Along with the values, F-minipages contain a bit vector to indicate whether a

value is present or NULL. The V-minipage stores values similar to the F-minipage values;

however, instead of the presence bits, the V-minipage uses values’ offsets to determine the

lengths of each variable-length value. NULL offsets (e.g., offset zero) indicate NULL values

on the V-minipage.

Our APAX layout is a modified version of the PAX layout, as shown in Figure 5.5, where

fixed-length and variable-length values are encoded and stored in homogeneous mini-pages
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Figure 5.5: APAX page layout

(i.e., no F-minipages and V-minipages). Thus, APAX is agnostic of its minipages’ contents,

and it is up to the minipages’ readers and decoders to interpret the minipages’ content,

where the inferred schema determines the minipages’ appropriate readers and decoders.

Figure 5.5 shows the organization of an APAX page. The reader will read the first four

bytes to determine the size of the encoded definition level. Then, it will pass both the

encoded definition levels and the encoded values to the appropriate decoders. The resulting

decoded definition levels and values are then processed, as explained earlier in Section 5.2.

As in PAX, we can reach each minipage via pointers stored in the APAX page header. Since

APAX pages reside as leaf pages in a B+-Tree, we store the minimum and the maximum keys

(primary keys) within the APAX page header. By doing so, we can access their minimum and

maximum keys directly when performing B+-tree operations (e.g., search) without the need

to decode the primary keys. The header also stores the number of minipages (or columns)

and the number of records stored in the APAX page.

5.3.3 AMAX Layout

The PAX and APAX layouts store different columns within a page, and hence in this layout,

one needs to read entire pages, regardless of which columns are needed to answer a query.

In AMAX, we instead stretch LSM B+-tree leaf nodes to become mega leaf nodes, where
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each one can occupy more than one physical data page. Figure 5.6 illustrates the structure

of the AMAX pages in a B+-tree, where a mega leaf node consists of multiple (6 in this

case) physical pages. Each mega leaf node in the AMAX layout starts with Page 0, which

consists of three segments. The first segment stores the page header, which contains meta-

information such as the number of columns and the relative pointers to each megapage.

The second segment stores fixed-length prefixes of the minimum and maximum values for

each column. Each minimum and maximum prefix pair occupy 16 bytes (8-bytes each), and

they are used to filter out entire AMAX pages that do not satisfy a query predicate (e.g.,

age > 20). Lastly, in the third segment, most of the space in Page 0 is used to store the

encoded primary key(s) values.

Each megapage of the AMAX layout corresponds to a single column with the same structure

as an APAX column as shown in Figure 5.6. The megapages are ordered by their size, from

largest to smallest. In other words, a mega leaf stores the largest megapage’s physical pages

contiguously first on disk, followed by the physical pages of the second-largest megapage,

and so on. This ordering of megapages allows for better utilization of the empty space of

the physical pages. For example, after writing Megapage 1, the physical Page 3 in Figure

5.6 is mostly empty, and thus, we allow Megapage 2 to share the same physical Page 3 with

Megapage 1. After writing Megapage 2, note that Page 4 is not full. A tuning parameter

(called the empty − page − tolerance) allows the AMAX page writer to tolerate a certain

percentage of a physical page to be empty if the next column to be written does not fit in

the given empty space. Tolerating smaller empty spaces can help to minimize the number

of pages to be read from when retrieving a column’s values. As in an APAX’s minipage, the

content of an AMAX’s megapage is encoded, and specific readers and decoders (determined

by the schema) are used for interpreting their content.
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5.3.4 Writing

As in the Tuple Compactor Framework (Chapter 4), we exploit LSM-lifecycle events to infer

the schema and split the records in row-major format into columns. During data ingestion,

we first insert records into the in-memory LSM component in our vector-based format. Once

it is full, the records of the in-memory component are flushed into a new on-disk component,

during which time we infer the schema of the flushed records and also split their values

into columns – storing the columns as APAX or AMAX pages. Finally, the inferred schema

(e.g., Figure 5.1a) is persisted into the flushed component’s metadata page as in the tuple

compactor (Chapter 4).

Storing columns in APAX or AMAX layouts has different implications in terms of CPU and

memory usage. In the following, we show and discuss our approach for writing the columns’

values as APAX and AMAX pages.

82



Writing APAX Pages

Determining the sizes of our APAX minipages is even more challenging than determining

PAX minipages’ sizes, as we incrementally encode each column’s values. To address this

issue, we first write the columns’ values into temporary buffers, where each temporary buffer

is dedicated to a single column. Once the temporary buffers have a page’s-worth of values,

we copy and align their contents as APAX minipages and write the resulting APAX page

into the disk. We reuse the same temporary buffers to construct the following APAX pages

for the remaining records of the flushed in-memory component.

Writing AMAX Pages:

As opposed to APAX minipages, AMAX columns can occupy one or more physical pages

(megapages), while the smaller columns may share a single physical page. Initially, we do

not know which columns might span into multiple physical pages, so we write the values of

each column into a fixed-size temporary buffer first. Once the buffer is full, we confiscate (or

acquire) a page from the system’s buffer cache, which then replaces the temporary buffer for

writing the columns’ values. Instead of allocating a memory budget for writing columns, we

use the system’s shared buffer cache as a temporary buffer provider. (Allocating a dedicated

memory budget for writing columns might be wasteful, especially for cases where writes

are not continuous, e.g., when loading a dataset once.) As the column size increases, we

confiscate more pages from the buffer cache to accommodate the written values of that

column, and those physical pages form a megapage. Once done, we write the megapages to

disk.

Page 0 of the AMAX could also, in theory, grow to occupy multiple physical pages. However,

we do not permit that, as the number of keys could then grow into hundreds of thousands.

Consequently, point-lookups would perform poorly, as we need to decode and search for the
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required key; this could negatively impact both the ingestion rate and the performance of

queries with secondary indexes, as we discuss later in Section 5.3.7. Therefore, we limit

the number of records stored in an AMAX page to 15K by default. This specific limit was

determined empirically, where we found that a limit of 15K was not too large to affect point-

lookups operations yet not too small to impact scan-only workloads negatively. However,

one can tune this parameter per their workload needs. For example, increasing the limit

for scan-only workloads, where no secondary indexes are declared, would improve query

execution time. Tuning the limit parameter in AMAX is synonymous with tuning Parquet’s

row-group and data page sizes [10] – for example, a smaller data page size is more suitable

for single row lookups.

5.3.5 Reading AMAX Pages

When a user submits a query, the compiler optimizes the query and generates a runtime

job that will access the appropriate collections (or datasets in AsterixDB’s terminology) and

project the required attributes from the resulting records. The generated job is then dis-

tributed to all partitions for parallel execution. Before execution, each partition consults the

inferred schema to determine the columns needed (i.e., APAX minipages or AMAX mega-

pages) for executing the query. Moreover, in AMAX, only the physical pages that correspond

to the columns needed by the query are read. For each requested column, an iterator goes

over the columns’ values. If a query contains a filtering predicate (e.g., WHERE age > 20), the

prefixes in AMAX are also used to skip reading the entirety of the requested columns of a

mega leaf page that would not satisfy the query predicate.

When reading from an LSM index, the system reads one tuple at a time from each component,

and tuples with the same keys (e.g., anti-matters and actual tuples) are reconciled. Thus,

deleted and upserted records are ignored and will not appear in the final result of the query.
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When reading APAX or AMAX pages, we need to (i) perform the same reconciliation process

as in the row-major layout. Also, we need to (ii) process the in-memory component’s records,

which are still in a row-major layout. To address those two requirements, we implement an

abstracted view of a “tuple”, whether in row-major or column-major format, resulting from

reading an LSM component.

Reconciling tuples in a row-major layout is performed simply by ignoring the current (deleted

or upserted) tuple and going to the next one using the tuple’s offset stored on the slotted

page. Doing the same in the AMAX format means advancing the relevant columns’ iterators

by one step. Doing so eagerly would be inefficient, as (i) we would need to touch multiple

regions of the memory, resulting in many cache misses, and (ii) we would need to decode

the values each time we advance a column iterator, which could be a wasted effort as we

illustrate next. Let us consider the following query:

SELECT name , s a l a r y FROM Employee WHERE age > 30

Suppose that we have three records with primary keys 1, 2, and 5 stored in an on-disk

component in a columnar layout, whether APAX or AMAX. Also, suppose that the in-

memory component has three records with the same primary keys, i.e., 1, 2, and 5. In

this example, the records of the in-memory component will override the records of the on-

disk component. If we advanced every column’s iterator eagerly (namely the name, age, and

salary columns’ iterators) in order to get the next tuple, the decoding of the columns’ values

would be a wasted effort. For that reason, we only decode the primary key values during the

reconciliation process, and we count the number of ignored records. Once actually accessed,

we advance each column’s iterator by the number of ignored records at once, ensuring that

the process of advancing the iterator is performed in batches per column. As a consequence,

none of the AMAX columns would be decoded in our example as none were accessed.
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5.3.6 Impact of LSM Merge Operations

From time to time, an LSM merge operation is scheduled to compact the on-disk components.

In both the AMAX and APAX layouts, we need to read the columns’ values from different

components and write them again into a newly created merged component. The order in

which the columns’ values are written is determined by the records’ keys from each compo-

nent, and the column values that correspond to the smallest keys are written first. Similar to

the issue discussed in Section 5.3.5, eagerly reading the columns’ values in each component

would result in touching different regions in memory, which would not be cache-friendly. To

remedy this issue, we employ what we call a vertical merge. In the vertical merge, we first

merge the primary keys resulting from the different components, and we record the sequence

of the components’ IDs in memory. Then, we merge the values of each column one-at-a-time

from the different components based on the order of the recorded component ID sequence

from merging the keys. This vertical merge of the columns ensures that only one column is

merged at a time. Thus, the number of memory regions that we need to read from is equal

to the number of merging components instead of the number of columns times the number

of components. This approach also allows us to only read one megapage at a time from each

component instead of all megapages (which could otherwise pressure the buffer cache).

Another issue when merging columns is the CPU cost of decoding and encoding the columns’

values, especially for datasets with large numbers of columns. In our initial experiments, this

CPU cost became more apparent during concurrent merges, peaking at 800% on an 8-core

machine, which could render the system unusable for users who want to query their data

while LSM operations are occurring. The potential resource saturation resulting from con-

current merges in LSM-based storage engines is well-known [34], and limiting the number of

concurrent merges can remedy this issue. In AsterixDB, the number of configured partitions

determines the number of CPU threads that serve a query. Therefore, we limit the number

of concurrent merges to half the number of partitions by default to free some cores to serve
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users’ queries. Limiting the number of concurrent merges may stall writes and negatively

impact the ingestion rate [72], but writing the records in a columnar format can reduce the

overall storage footprint, which means less I/O. We believe an extensive evaluation, as in

[72], should be conducted to measure those tradeoffs; however, it is beyond the scope of this

work, so we leave it for future work.

5.3.7 Point Lookups and Secondary Indexes

In LSM-based key-value stores, one can blindly insert new records into the in-memory com-

ponent without checking if a record with the same key exists (to ensure the uniqueness of

the primary keys), as records with identical keys are reconciled at the query time. However,

that mechanism only applies to a primary index and not to its associated secondary indexes.

For a secondary index, in addition to adding the new entry, we also need to clean out the

old entry (if any). Thus, a point lookup is needed to fetch the old value from the primary

index to clean the old values by adding appropriate anti-matter entries in each secondary

index. Consequently, during data ingestion with secondary indexes, point lookups must be

performed for each newly inserted record to check if a record with an identical key exists. If

so, its old values are retrieved to maintain secondary indexes’ correctness.

Performing point lookups against datasets stored in APAX or AMAX layouts is more ex-

pensive than in their row-major counterparts, as we need to decode primary keys and search

for the requested value in both layouts. To alleviate the cost of point lookups for datasets

in both the APAX and AMAX layouts, we use a ”primary key index”, an additional sec-

ondary index that stores only primary keys, to first see if a record with an identical key

exists [70, 71]. If the primary key index does not yield any keys, we can skip accessing the

primary index, as the newly inserted key does not correspond to an older record.

When answering queries (e.g., range queries), the appropriate secondary index is first searched,
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yielding the primary keys of records that satisfy the query predicate. Then, the resulting

primary keys are sorted in ascending order. Finally, point lookups are performed using the

sorted primary keys to retrieve the records that satisfy the query predicate. Luo et al.’s gen-

eralized approach [70] exploits the ordered keys to perform these point lookups in batches

while preserving the state of the LSM cursor to reduce the cost of subsequent point lookups.

This approach allows us to read the columns’ values in a single pass by accessing the values

of the first record with the smallest key followed by the record with the second smallest key,

etc., without the need to start over each time.

5.4 Experiments

In this section, we evaluate an implementation of the techniques proposed here in Apache

AsterixDB. In our experiments, we first evaluate on-disk storage size after data ingestion to

measure the potential storage savings from storing data as columns — giving the different

characteristics of different datasets. Second, we measure the data ingestion rate to evaluate

the cost of inferring the schema and columnizing the records. Additionally, we evaluate the

ingestion performance for an update-intensive workload to measure the impact of maintaining

secondary indexes. Finally, we evaluate and analyze the impact of our proposed techniques

on analytical query performance, which is the main objective to improve in this work. We

evaluate the performance for storing and querying records in different layouts, namely: (i)

AsterixDB’s schemaless record format (Open), (ii) the Vector-Based (VB) format proposed

in Chapter 4, (iii) APAX, and (iv) AMAX. Again, Open and VB are both row-major formats,

whereas APAX and AMAX are columnar formats.

Experiment Setup We conducted our experiments using a single machine with an 8-core

(Intel i9-9900K) processor and 32GB of main memory. The machine is equipped with a

1TB NVMe SSD storage device (Samsung 970 EVO) capable of delivering up to 3400 MB/s
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for sequential reads and 2500 MB/s for sequential writes. We used AsterixDB v9.6.0 to

implement and evaluate our proposed techniques. Unless otherwise noted, we configured

AsterixDB with a single node and eight partitions (Section 2.3). The eight partitions share

16GB of total allocated memory, and from this, we allocated 10GB for the system’s buffer

cache and 2GB for the in-memory component budget. The remaining 4GB is allocated

for use as temporary buffers for query operations such as sorting and grouping as well as

transforming records into APAX or AMAX layout during data ingestion. Additionally, we

used 128KB for the on-disk data page size and 64KB for in-memory pages. Throughout our

experiments, we used AsterixDB’s page-level compression with the Snappy [26] compression

scheme to reduce the storage footprint for all formats.

5.4.1 Datasets

In our evaluation, we used five different datasets (real, scaled, and synthetic) that differ in

terms of their records’ structures, sizes, and value types. Table 5.1 lists and summarizes

the characteristics of the five datasets. In Table 5.1, # of Columns refers to the number of

inferred columns for records in APAX or AMAX layouts.

The cell dataset (provided by a telecom company) contains information about the cellphone

activities of anonymized users, such as the call duration and the cell tower used in the

call. The cell dataset is the only dataset we used that does not contain nested values (i.e.,

its data is in first-normal form or 1NF), and its scalar values’ types are a mix of strings,

doubles, and integers. The sensors dataset contains primarily numerical values that describe

the sensors’ connectivity and battery statuses along with their daily captured readings. In

contrast, the wos dataset, as well as tweet 1 and tweet 2, consist mostly of string values.

The wos dataset, an acronym for Web of Science [14], encompasses meta-information about

published scientific articles (such as authors, abstracts, and funding) from 1980 to 2014. The
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original dataset is in XML and we converted it to JSON using an XML-to-JSON converter

[30]. After the conversion, the resulting JSON documents contain some fields (resulting from

XML elements) with heterogeneous types, specifically a union of an object and an array of

objects. Thus, we used the wos dataset to evaluate our extensions to the Dremel format

to store heterogeneous values in columnar layouts. Lastly, we obtained the tweet 1 and

tweet 2 datasets using the Twitter API [28], where we collected the tweets in tweet 1 from

September 2020 to January 2021. The tweet 2 dataset is a sample of tweets (∼ 20GB) that

we collected back in 2016, predating Twitter’s increasing the character limit from 140 to 280.

We replicated the tweet 1 dataset to have around 200GB worth of tweets in total. Note that

the records of tweet 1 and tweet 2 differ in terms of their sizes and the numbers of columns

that they have, as shown in Table 5.1.

We used the tweet 2 dataset for evaluating the impact of declaring secondary indexes for an

update-intensive workload as we detail later in Section 5.3.7. Additionally, we evaluated the

impact of answering queries using the created secondary indexes. We created two indexes

in this experiment. The first index is on the tweet timestamp values, a set of synthetic

and monotonically-increasing values that mimics the times when users posted their tweets.

We also created a primary key index to reduce the cost of point lookups, as discussed in

Section 5.3.7. We chose tweet 2 for this experiment since it has a moderate number of

columns, which directly impacts the ingestion performance, as we discuss later in Section

5.4.3.

cell sensors tweet 1 wos tweet 2

Type Real Synthetic Real Real Scaled

Size (GB) 172 212 210 277 200

# of Records 1.43B 40M 17M 48M 77.2M

Avg. Record Size 141B 3.8KB 5.3KB 6.2KB 2.7KB

# of Columns 7 16 933 296 275

Dominant Type Mix Integer String String String

Table 5.1: Datasets summary
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5.4.2 Storage Size

In this experiment, we first evaluated the on-disk storage size after ingesting the five datasets:

cell, sensors, tweet 1, wos, and tweet 2. Figure 5.7 shows the total on-disk size after

ingesting the five datasets using the four layouts: Open, V B, APAX, and AMAX. For

the tweet 2 dataset, the presented total size includes the sizes for storing the two declared

secondary indexes (namely the timestamp index and the primary key index).

In the cell dataset, which is the only dataset in 1NF, Figure 5.7 shows that the records in

the two row-major layouts Open and V B took roughly the same space; the V B layout took

slightly less space (∼ 17% smaller) due to compaction [36]. Similarly, the records in both of

the columnar layouts, APAX and AMAX, took about the same space; however, compared

to the records in the Open format, the sizes are 45% and 50% smaller for the APAX and

AMAX layouts, respectively. The storage overhead reductions in the APAX and AMAX

layouts are due to (i) storing no additional information (e.g., field names) with the values,

compared to Open, and (ii) the values being encoded, which is not possible in the row-major

layouts.
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Figure 5.7: Storage size
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The impact of encoding in both the APAX and AMAX layouts becomes apparent for

storing the sensors dataset, where the values’ are primarily numeric. Figure 5.7 shows that

the sensors records in the Open and V B layouts took 7.2X and 4.8X more space compared

to the records in the APAX layout, respectively, and 8.5X and 5.6X more space compared

to the records in the AMAX layout, respectively. This clearly shows that the encoding of

numerical values in the same domain is superior to page-level compression alone, making the

columnar layout more suitable for numerical data.

In contrast to the sensors dataset, the Twitter dataset tweet 1 contains more textual values

than numerical ones and the encoding becomes less effective. Storing this data in a columnar

layout did not show a significant improvement, as shown in Figure 5.7, compared to the

records in a row-major layout. In fact, the records in the APAX layout took 35% more

space than the records in the V B layout. The reason behind the high storage overhead in

APAX is the excessive number of columns of the tweet 1 dataset, as shown in Table 5.1, so

each minipage stores a small number of values compared to the cell and sensors datasets.

Thus, in some instances, the encoding imposes a negative impact, as the encoded values

store additional information for decoding, and this information occupies more space than

the encoding saves. However, the AMAX layout is not as sensitive to the number of columns,

as a column can span multiple pages, and hence, the number of values is sufficient for the

encoding to be effective. The storage saving from the AMAX layout is negligible compared

to the V B layout, as encoding large textual values is relatively less effective compared to

numerical values.

Storing the wos dataset using the four layouts shows a similar trend, shown in Figure 5.7,

as in the tweet 1 dataset, even though the number of columns in the wos dataset is not as

excessive, as shown in Table 5.1. However, the average size of a record in the wos dataset

is larger than the average record size in the tweet1 dataset. The reason is that some of the

values in the wos dataset are relatively larger than the tweet 1 values. For example, the
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abstract text of a publication could consist of multiple paragraphs — exceeding the number

of characters of a tweet. Hence, the larger values of the wos dataset limited the number of

values we could store in an APAX page, which again reduced the effectiveness of encoding.

The wos records took more space in the Open layout than other layouts due to the Open

layout’s recursive structure (as detailed in [36]), where deeply nested values require 4-byte

relative pointers for each nesting level. Additionally, the Open layout records embed the

field names for each value, which takes more space than the other layouts.

For the last dataset, tweet 2, the total storage size includes the sizes of the two declared

indexes. Secondary indexes are agnostic of the records’ layout in the primary index and

their sizes are the same for all four layouts. Hence, the differences between the sizes for

the different layouts, shown in Figure 5.7, correspond to the layouts’ characteristics. For

instance, the sizes of the records in the V B, APAX, and AMAX layouts are comparable,

with AMAX being slightly smaller. However, the Open layout took more space due to the

reasons explained earlier.
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5.4.3 Ingestion Performance

We next evaluated the ingestion performance for the three different layouts using AsterixDB’s

data feeds. We first evaluated the insert-only ingestion performance of the cell, sensors,

tweet 1, and wos datasets without updates. In the second experiment, we evaluated the

ingestion performance of an update-intensive workload with secondary indexes using the

tweet 2 dataset. The latter experiment focuses on measuring the impact of the point lookups

that are needed to maintain the correctness of the secondary indexes for upserts and deletes;

hence, this experiment stress-tests APAX and AMAX formats for handling update-intensive

workloads.

We configured AsterixDB to use a tiering merge policy with a size ratio of 1.2 throughout

the experiments. This policy merges a sequence of components when the total size of the

younger components is 1.2 times larger than that of the oldest component in the sequence.

To measure the ingestion rate accurately, we used the fair merge scheduler as recommended

in [72], where the components are merged on a first-come, first-served basis. We set the

maximum tolerable number of components to 5, after which a merge operation is triggered.

We limited the number of concurrent merges to reduce CPU and memory consumption

(Section 5.3.6) while merging APAX and AMAX components. Additionally, we limited the

number of primary keys in AMAX’s Page 0 to 15K (default value) for the reasons discussed

in Section 5.3.4.

Insert-only

The cell dataset is the smallest in terms of the average record size and the dataset’s overall

size, as shown in Table 5.1. However, it also has the most records. In AsterixDB’s original

configuration (i.e., a single NC with eight partitions), the ingestion rate of the cell dataset

was the slowest among the datasets — it took more than 8000 seconds to ingest the dataset
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under the four layouts. The main reason is that the eight partitions share the same resources,

including the transaction log buffer where each partition writes entries to commit their

transactions. With the cell dataset’s high record cardinality, writing to the transaction log

buffer became a bottleneck. To alleviate the contention on the transaction log buffer, we

reconfigured AsterixDB to have four virtual nodes 1, each with two partitions. We divided

the memory budget equally among the four nodes. Using this configuration, Figure 5.8

shows the time it took to ingest the cell dataset using the four layouts. We see that the

ingestion rate is about the same for the four layouts, as writing to the transaction log buffer

is still a major bottleneck. However, the ingestion rate using the new configuration improved

significantly — from more than 8000 seconds to the vicinity of 3000 seconds.

In the sensors dataset, in contrast to the cell dataset, the ingestion rate varied among

the different layouts as shown in Figure 5.8. Ingesting Open records took more time than

records in the other layouts due to the record construction cost of the Open layout [36]. The

recursive nature of the Open layout requires copying the child’s values to the parent from the

leaf to the root of the record, which means multiple memory copy operations for the same

value. In contrast, constructing records in the V B layout is more efficient, as the values

are written only once [36]. Thus, ingesting records in the V B layout took 50% less time in

comparison. Recall that the records of the in-memory components are in the V B format

for APAX and AMAX (as discussed in Section 5.3.4), and during the flush operation, the

records are transformed into a columnar layout. Thus, the lower construction cost of the V B

records contributed to the higher ingestion rate of both the APAX and AMAX layouts. We

also observed that the cost of transforming the records into a column-major layout during

the flush operation and the impact of decoding and encoding the values during the merge

operation were negligible.

For the tweet 1 and wos datasets, the cost of transforming the records into columns became

1Usually, only a single node is configured per computing node.
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more apparent due to the higher number of columns in those two datasets. Figure 5.8 shows

that the ingestion time for tweet 1 using the APAX layout was the longest. As explained

earlier in Section 5.4.2, a higher number of columns can negatively affect the number of values

that we can store in APAX pages, and thus, more pages are required to store the ingested

records. Also, recall that the columns’ values are first written into temporary buffers and

then copied to form an APAX page (Section 5.3.4). Consequently, we need to iterate over

the temporary column buffers (933 in total as shown in Table 5.1) to construct each APAX

page. The cost of constructing a large number of APAX pages took most of the time to

ingest the tweet 1 dataset. We did not observe a similar behavior when constructing the

AMAX pages; most of the time here was spent performing LSM merges, as we need to fetch

all columns for each merge operation. The ingestion performance using the AMAX layout

was similar to the row-major layout (Open) and only 25% slower than the V B layout.

The wos dataset is less extreme in terms of the number of columns compared to the tweet 1

dataset; however, its data contains large textual values (e.g., abstracts). As in the sensors

dataset, the lower per-record construction cost of the V B layout was the main contributor

to the performance gains (shown in Figure 5.8) for the APAX and AMAX layouts. Addi-

tionally, the records in the Open layout took more space to store, which means that the I/O

cost of the LSM flush and merge operations was higher compared to the other layouts. The

ingestion performance of the APAX and AMAX layouts was comparable and slightly slower

than the V B layout, as the cost of transforming the ingested records into a column-major

layout during the flush operation and decoding and encoding the values during the merge

operation was higher for the wos dataset compared to the sensors dataset.

Update-intensive

We evaluated the ingestion performance for insert-only workloads using different datasets,

and we saw that the ingestion rate using columnar layouts, in general, was faster or compara-
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ble to the row-major layout Open. We now discuss the performance for an update-intensive

workload with secondary indexes using the dataset tweet 2. In this experiment, we ran-

domly updated 50% of the previously ingested records either by upserting or deleting them.

The updates followed a uniform distribution where all records are updated equally. Prior to

starting the data ingestion, we created two indexes: one on the primary keys, which we call

a primary key index, to minimize the cost of point lookups of non-existent (new) keys. The

second index is on the timestamp values. Figure 5.8 shows tweet 2 the ingestion time for

the four different layouts. The ingestion times for records in the APAX and AMAX were

∼ 24% and ∼ 35% slower than the Open layout, respectively. Updating a record requires

accessing the primary index to fetch the old timestamp value to delete it from the timestamp

secondary index before inserting the updated value. Recall that the cost of searching for a

value in a columnar layout is linear (v.s. logarithmic in a row-major layout), and the values

need to be decoded before performing the search. Thus, with 50% of the records being up-

dated, the cost of updating old timestamp values for the columnar layouts became higher

than for the row-major layouts. Even though we only need to read the pages corresponding

to the timestamp in the AMAX layout (i.e., less I/O cost), its update cost was higher than

the APAX layout. This was due to decoding large numbers of timestamp values stored in

AMAX megapages (a CPU cost) for each update. We will soon (Section 5.4.4) discuss the

benefit of secondary indexes when answering queries; however, the cost of maintaining the

correctness of secondary indexes is high for columnar layouts. Thus, one should consider

how often the index would be utilized.

5.4.4 Query Performance

Next, we evaluated the performance of executing different analytical queries against the

ingested datasets. We first evaluated scan queries (i.e., without secondary indexes) with the

code generation technique against the cell, sensors, tweet 1, and wos datasets. Appendix B

lists the queries and Table 5.2 summarizes the queries used for each dataset. Q1, which
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* Q1 The number of records

ce
ll Q2 The top 10 callers with the longest call durations

Q3 The number of calls with durations ≥ 600 seconds

se
n
so
rs Q2 The maximum reading ever recorded

Q3 The IDs of the top 10 sensors with maximum readings
Q4 Similar to Q3, but for readings in a given a day

tw
ee
t

1 Q2 The top 10 users who posted the longest tweets
Q3 The top 10 users with the highest number of tweets that

contain a popular hashtag

w
os

Q2 The top 10 scientific fields with the highest number
of publications

Q3 The top ten countries that co-published the most
with US-based institutes

Q4 The top ten pairs of countries with the largest
number of co-published articles

Table 5.2: A summary of the queries used in the evaluation

counts the number of records – SELECT COUNT(∗) – is executed against all four datasets to

measure the I/O cost of scanning records in the different layouts. We executed each query six

times and reported the average execution time for the last five. In the next experiment, we

evaluated the performance of different queries against the tweet 2 dataset using the created

secondary indexes on the AMAX layout with and without indexes.

For the scan-based experiment, we used an early version of our code generation framework,

which we describe in detail in Chapter 6. Additionally, in Chapter 6, we present the benefit

of the code generation framework over AsterixDB’s original query execution model.

Scan-based Queries:

Figure 5.9 shows the execution time for the three queries (summarized in Table 5.2) exe-

cuted against the cell dataset using the four different layouts. The execution times for Q1

against different layouts correlated with their storage sizes shown in Figure 5.7, except for

the AMAX layout, where Q1 took the least time to execute — about 88% faster than the
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Figure 5.9: Query execution times of the cell dataset (Seconds)

Open and V B layouts. As Q1 only counts the number of records, we only need to count the

number of primary keys on Page 0 of the AMAX layout — thereby minimizing the I/O cost.

This is also true for Q1 against the other datasets, as discussed in the following sections.

In contrast to Q1, Q2 requires grouping, aggregating, and sorting to compute the query’s

results, and hence, it takes more time to execute. For the AMAX layout, in addition to the

primary keys on Page 0, Q2 accesses two more columns (the caller ID and the call duration

columns), which means that more pages were accessed to execute Q2. Despite the additional

costs, the execution times for Q2 showed a similar trend as in Q1. Querying the APAX and

AMAX formats were 38% and 70% faster than the Open layout, and 40% and 72% than

the V B layout, respectively. The slowdown of querying V B is due to how the fields’ values

are linearly accessed, as detailed in [36]. Q3 also shows a similar trend as Q1, where the I/O

costs of the two columnar layouts were the smallest.
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Figure 5.10: Query execution times of the sensors dataset (Seconds)

Querying the sensors dataset shows similar trends as in the cell dataset, where the queries’

execution times (Figure 5.10) correlated with the formats’ storage sizes (Figure 5.7). Exe-

cuting Q1 against the AMAX layout took 0.65 seconds, and it took 5.1 seconds for APAX.

As in the cell dataset, Q1 only read Page 0 of AMAX, and hence, it was the fastest. For

Q2 – Q4 (summarized in Table 5.2), the execution times for the APAX and AMAX records

were comparable, as they took 7.7GB and 6.5GB to store the data, respectively, which is

less than the 10GB of memory allocated for the system’s buffer cache. Thus, AsterixDB was

able to cache the APAX and AMAX records in memory and eliminate the I/O cost. For

the two row-major layouts, it was faster to execute the queries against V B than Open, as

V B took less space.
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Figure 5.11: Query execution times of the tweets 1 dataset (Seconds)

For tweet 1’s queries (Table 5.2), we observed an order of magnitude improvement in the

query performance using the AMAX layout vs. the other layouts. V B and AMAX used

comparable space to store the tweet 1 data; however, reading only the columns involved in

the queries for the AMAX layout improved their execution times significantly. For example,

Q1 took only 0.6 seconds to execute against the AMAX format compared to 48.4, 26.1, and

38.8 seconds for Open, V B, and APAX, respectively. For Q2, AMAX took 3.1 seconds to

execute vs. 48.5, 39.9, and 40.3 seconds for Open, V B, and APAX, respectively. Storing and

querying the tweet 1 dataset using APAX showed less improvement than for the sensors

dataset. Excluding the AMAX layout, the V B layout, in comparison, was more suitable

for storing and querying a text-heavy Twitter dataset, as its records took less space to store

and less time to query.
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Figure 5.12: Query execution times of the wos dataset

The wos dataset is the last one used to evaluate scan-based queries. As mentioned earlier

in Section 5.4.1, the wos dataset contains several values with heterogeneous types. We used

this dataset to evaluate the impact of querying over heterogeneous types for the columnar

layouts. Specifically, Q3 and Q4 (Table 5.2) access the authors’ affiliated countries, which

is stored as either an array, for articles with multiple co-authors, or as an object, for single-

authored articles. Figure 5.12 shows the execution times for Q1 - Q4, where AMAX was

the fastest to query. Q1 took only 0.83 seconds to execute, compared to 103.1, 62.5, and

64.4 seconds for Open, V B, and APAX, respectively. For Q2 - Q4, AMAX improved their

execution times by at least 64% compared to the other layouts. The queries’ execution

times against APAX were slightly shorter than the V B layout. Thus, both the APAX and

AMAX layouts can efficiently handle values with heterogeneous types, and the impact of

mixed types on query performance was negligible.
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Figure 5.13: Query with secondary index

Index-based Queries

We used the tweet 2 dataset to evaluate the impact of secondary indexes on query perfor-

mance for the four different layouts. We used a created timestamp secondary index to run

range-queries with different selectivities that count the number of records. For each query

selectivity, we executed queries with different range predicates to measure their actual I/O

cost and report the average execution time. Figure 5.13 shows the execution times for both

low and high selectivity predicates. For queries with low selectivity predicates, their execu-

tion times using the four different layouts were comparable, as shown in Figure 5.13a), and

all queries took less than a second to finish. However, the execution times for queries that

are 0.1% selective were correlated with storage sizes (Figure 5.7). Figure 5.13b shows the

execution times for queries with high selectivity predicates both with and without utilizing

the timestamp index. The secondary index accelerated the execution of queries with high

selectivity predicates, except for the AMAX layout. We observed that the scan-based query

in the AMAX layout (AMAX Scan) was faster to execute than its index-based queries.
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Figure 5.14: Impact of accessing different number of columns: (a) for scan-based, and (b) -
(d) for index-based queries

# of Columns Scan
Index (Selectivity %)

0.001% 0.01% 0.1% 1.0%
1 2.080 0.021 0.066 0.405 3.487
2 7.083 0.026 0.067 0.424 3.711
3 7.940 0.028 0.068 0.436 3.487
4 11.477 0.029 0.074 0.442 3.487
5 14.133 0.033 0.079 0.456 3.917
6 20.005 0.035 0.085 0.503 4.120
7 20.815 0.038 0.089 0.508 4.301
8 21.987 0.041 0.092 0.538 4.420
9 24.422 0.047 0.093 0.551 4.600
10 25.710 0.047 0.097 0.553 4.636

Table 5.3: Scan-based vs. Index-based queries’ execution times
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The previous experiment does not depict a full picture, as counting the number of records

only accesses Page 0 of AMAX and skips the rest of the pages. The benefit of using secondary

indexes for such queries becomes more apparent when a query accesses more columns. Figure

5.14 shows the impact of running queries that read different number of columns in the APAX

and AMAX formats. Each query counts the appearances of different columns’ values (i.e.,

non-NULL values) and varies the number of columns accessed from 1 to 10. The columns

were picked at random and varied in terms of their types and sizes. Figure 5.14a shows the

execution times for scan-based queries that access different number of columns. As expected,

accessing more columns in the AMAX format negatively impacts query performance, while

the performance was relatively stable in the APAX. For example, reading ten different

columns was 9.5X slower than reading a single column for the AMAX layout, whereas the

impact was less noticeable in APAX. Despite the slowdown, querying records in the AMAX

layout was still faster than APAX. The time variance in accessing different columns shown

in Figure 5.14a is due to the time needed for reading and decoding values with different sizes.

For example, the rate of change for reading from five to six columns was higher than for six

to seven columns, as the sixth column contained required values, while the seventh column’s

values were mostly NULLs. That was for the scan-based queries. Figures 5.14b – 5.14d

show the execution times of index-based queries with different selectivities (0.001% – 1.0%).

The execution times for all queries were comparable for both layouts, despite the number

of columns each query reads. Compared to the scan-based queries, the index-based queries

took less time to execute and were less sensitive w.r.t the number of columns – Table 5.3

shows the execution times for the scan-based vs. index-based queries in the AMAX format.

Thus, as for row-major layout, secondary indexes can accelerate queries against records in

a columnar layout and can help to minimize the impact of reading multiple columns for

AMAX-like layouts.
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5.5 Related Work

In Chapter 3, we have generally discussed the recent research on storing data in columnar

formats. Here we mainly focus on recent work more directly related to columnar formats

with dynamic schemas and LSM-based column stores.

Columnar layouts with dynamic schema: Storing schemaless semi-structured data in a

columnar layout has gained more interest lately, and several approaches have been proposed

to address the issues imposed by schema changes. Delta Lake [43], a storage layer for cloud

object stores, addresses the challenges of updating and deleting records stored in Parquet

files. Delta Lake recently added support for schema evolution; however, it still lacks support

for storing heterogeneous values, as per Parquet’s limitation. Alsubaiee et al. proposed

a patented technique [40] that exploits Parquet’s file organization to store datasets with

heterogeneous values. The main idea of their approach is congregating records with the

same value types within a group. In this work, we proposed an extension to Dremel to

natively support union types, storing values with different types as different columns.

For LSM-based document stores, Rockset [25] supports storing values of semi-structured

records in a columnar format, with the values of a column being stored in RocksDB [24]

(Rockset’s storage engine) using a shared key prefix. Thus, a column’s values from different

records are stored contiguously on disk. When accessing a column, Rockset only reads the

required values from disk, which minimizes the I/O cost. However, this approach does not

support encoding the column’s values (e.g., via run-length encoding).

LSM-based column stores: Most column-store databases employ a similar mechanism to

LSM-based storage engines, where newly inserted records are batched in memory and then

flushed to disk, during which time the flushed records are encoded and compressed. For

example, Vertica [89] and Microsoft SQL Server’s column store [67, 66] employ an LSM-like

mechanism, while column-store systems such as Apache Kudu [8] and ClickHouse [16] are
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LSM-based. This work is no exception, as we share similar objectives. Again, however, our

focus is on nested and schemaless data.

5.6 Conclusion

In this chapter, we presented several techniques to store and query data in a columnar

format for schemaless, LSM-based document stores. We first proposed several extensions

to the Dremel format to make storing arrays’ values more concise and to accommodate

heterogeneous data values. Next, we introduced APAX and AMAX, two columnar layouts for

organizing and storing records in LSM-based document stores. Furthermore, we highlighted

the challenges involved reading and writing records in the APAX and AMAX layouts and

proposed solutions to overcome those challenges. Experiments showed that the AMAX layout

significantly reduced the overall storage overhead compared to the row-major formats, while

the APAX format had mixed results depending on the number of columns in the dataset.

The impact of transforming records into columns during data ingestion varied according to

the structure of the ingested records. It was seen that the AMAX layout’s ingestion rate

was relatively stable compared to APAX and was faster compared to AsterixDB’s current

schemaless format.

To the best of our knowledge, most column store databases, except Vector [1], do not sup-

port secondary indexes, as scan-based queries are often considered good enough for data

warehouse workloads. In this work, we also evaluated the impact of secondary indexes on

the data ingestion and query performance of columnar formats and showed that the inges-

tion rate might be negatively impacted; however, the impact of reading multiple columns in

AMAX was reduced when answering queries with secondary indexes.
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Chapter 6

A Code Generation Framework for

Apache AsterixDB

6.1 Introduction

The goal of continuing to reduce the I/O cost in disk-based databases is objectively justified

(and is a focus of this dissertation). However, with the ever-growing advancements in storage

technologies, the CPU cost for query processing becomes even more apparent, especially for

analytical workloads. The dominant factor determining the CPU cost is the query execution

model. As described earlier in Chapter 1, modern DBMSs have moved away from using the

traditional iterator model [69, 60] (also known as Volcano-style processing) to use other exe-

cution models (such as the batch model [81] and the materialization model [73]) to minimize

the CPU overhead.

To reduce CPU and networking costs, Apache AsterixDB employs the batch execution model

– explained in Chapter 2 – instead of the iterator model. However, in our early evaluation in

Chapter 5, we observed an interesting phenomenon in certain types of datasets and analytical
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Figure 6.1: Storage size and query execution times for the sensors dataset

workloads. We used an IoT-like dataset (called the sensors dataset) to evaluate the benefit

of storing such data in columnar formats – namely, in the APAX and AMAX formats from

Chapter 5. We first observed that both the APAX and AMAX formats reduced the overall

storage size by at least 7x compared to AsterixDB’s original format [5] (referred to as Open),

as shown in Figure 6.1a. Despite the storage savings of the APAX and AMAX formats,

however, the query execution times for Q1 and Q2, shown in Figure 6.1b, varied drastically.

Q1, which counts the number of tuples, took 5 seconds in the APAX format and 0.6 seconds

in the AMAX format. However, Q2, which computes the maximum recorded temperature,

took at least 27X more time to execute than Q1 in the APAX and AMAX formats. After

profiling, we found that the CPU cost of AsterixDB’s query execution engine eclipsed the

I/O savings when querying the sensors dataset in the APAX and AMAX formats.

Several factors contributed to the high CPU cost, which we address in detail in this chapter.

Some of those factors are well-known in the relational model [77, 94], such as the material-

ization cost in the batch model. In [77], Neumann discussed those CPU costs and proposed

a solution that fuses the work of multiple operators and replaces them with a single function

call by generating and compiling a code segment that performs the work of the fused oper-

109



ators. For instance, operators such as SCAN , SELECT , and PROJECT are fused and

replaced with generated code, eliminating the fused operators’ materialization costs. Thus,

code generation and query compilation have become major contributors to the performance

gains of many data systems [7, 75, 84].

In relational databases, the schema provides the columns’ types, which simplifies generating

a code for expressions like X + Y since the types of both X and Y are known at compile-

time (e.g., adding two integers). However, in document stores, the types of X and Y are

only known at runtime, and they may change from one tuple to another – making the

code generation process trickier. Luckily, the issue of handling dynamically-typed values

at runtime has been addressed in work on popular dynamically-typed languages such as

Python. For example, PyPy [23] and ZipPy [92] both provide a Just-in-Time (JIT) compiler

for Python, which outperforms Python’s original interpreter by orders of magnitude in some

cases [85]. Inspired by those results, we have selected the Oracle Truffle framework (called

Truffle hereafter) [93], a framework for implementing dynamically typed languages (e.g.,

Python), to implement an internal language that we will use for our proposed code generation

framework.

In this chapter, we first discuss the CPU costs imposed by the batch model. Then, we shed

light on the possibility of using query compilation techniques for document stores – where

the value types are unknown until runtime – as a solution to address the batch model’s CPU

cost. Next, we revisit the current aggregation framework in Apache AsterixDB and propose

several optimizations to further improve the performance of aggregate queries. Finally, we

evaluate our proposed techniques in the context of Apache AsterixDB.
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6.2 Background

In this section, we first review the batch query execution model and show the CPU costs

associated with this model. Next, to prepare the reader, we give an overview of the Truffle

framework, which we utilize to implement an internal dynamically-typed language for our

proposed code generation framework.

6.2.1 Apache AsterixDB’s Query Execution Model

SELECT name, salary FROM Employee WHERE salary > 80000

SCAN: Employee

PROJECT:   name,salary

SELECT: salary > 80000

RESULT: name,salary

<0, ”John”, 79000, 21>
<1, ”Kim”, 91000, 27>…

<0, “John”, 79000, 21>
<1, ”Kim”, 91000, 27>

<”John”, 79000>
<”Kim”, 91000>

<”Kim”, 91000>

Operators’ Buffers
Materialize

Materialize

Materialize

Query

Physical Operators

<id, name, salary, age>

Figure 6.2: Running a query using the batch execution model

Section 2.2 gave an overview of the vectorized query execution model. Here, we provide more

details of AsterixDB’s vectorized execution model.

In AsterixDB, each operator receives a batch of records, then processes it and materializes

the results from the processed batch to the next operator. Figure 6.2 illustrates an example

of a batch of records being processed by different operators when executing a query. The

chain of operators starts with the SCAN operator, which fetches the records stored in the
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Employee collection. The SCAN operator produces a batch of records (two records in this

case) and materializes it to the PROJECT’s operator buffer. The PROJECT operator then

produces another batch that contains only the name and salary fields and projects out the

other fields. The resulting batch of the PROJECT operator is then materialized to the SELECT’s

operator buffer, which filters out records that do not satisfy the condition salary > 80, 000.

The resulting batch from the SELECT operator is then delivered to the user as a part of the

final query result.

SELECT MAX(r.temp) FROM Sensors s, s.readings r

Query

Physical Operators

SCAN: Sensors

PROJECT:   readings

UNNEST: readings à r

PROJECT:   r.temp

{rid:0, sid: 0, readings: [{ts: 1, temp: 1.1}, …]}

…
Operators’ Buffers

Materialize

Materialize

Materialize

{rid:1, sid: 1, readings: [{ts: 1, temp: 2.1}, …]}

{readings: [{ts: 1, temp: 1.1}, …]}

{readings: [{ts: 1, temp: 2.1}, …]}

{readings: [{ts: 1, temp: 1.1}, …], r: {ts: 1, temp: 1.1}}

{readings: [{ts: 1, temp: 1.1}, …], r: {ts: 2, temp: 0.9}}

RESULT:   MAX(temp) {temp: 1.1}
{temp: 0.9}

Materialize

{rid:0, sid: 0, readings: [{ts: 1, temp: 1.1}, …]}
{rid:1, sid: 1, readings: [{ts: 1, temp: 2.1}, …]}

Figure 6.3: Running Q2 from Figure 6.1b using the batch execution model

The materialization cost between the operators in the batch execution model grows as the

number of operators grows. In the document model, additional CPU-intensive operators are

needed to navigate the nested structure of the stored documents. To illustrate, let us consider

the earlier sensors example. Figure 6.3 shows both Q2 and its physical operators. When

executing the query, the SCAN operator first fetches the records of the sensors collection

and produces a batch for the PROJECT operator. The PROJECT operator then produces a

batch that contains only the readings array. Then, the UNNEST operator flattens and “joins”

every element of the array readings in the tuple with the tuple itself. In Figure 6.3, the
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first resulting batch from the UNNEST operator contains only the values from the first record

(colored as red) – assuming for illustration that each operator’s buffer fits only two records.

The resulting batch from the UNNEST is then materialized to another PROJECT operator,

which only projects the temp values. Finally, the resulting values are aggregated to compute

the final maximum recorded temperature.

Looking at the execution times shown in Figure 6.1b, it turns out that the UNNEST operator

is one of the significant contributors to the high CPU in Q2. More specifically, in the sensors

dataset, each readings array consists of 144 {ts: .., temp: ..} pairs. As a result, the total

number of tuples resulting from the UNNEST operator is 144X larger than its input cardinality.

In Figure 6.1b, executing Q2 was significantly slower than executing Q1, whether the data

was stored as rows or columns. However, querying records stored in a row format has

an advantage over querying records stored in columnar formats in Apache AsterixDB, as

its query execution engine was originally designed to operate on records in a row format.

When the data is stored in a columnar format, then, the columns have to be reassembled

back as rows, which incurs an additional CPU overhead — making querying records in

a columnar format sometimes slower than records in a row format. One could consider

changing AsterixDB’s query execution engine to operate on columnar values natively as a

solution, where the final result is reassembled (and usually consists of a few values) at the last

operator instead of doing it eagerly at the SCAN operator. However, changing AsterixDB’s

query execution engine to support columnar formats natively would be a laborious task and

might not yield better performance. Additionally, such a change would not address the cost

of the UNNEST operator nor address the materialization cost of the batch execution model.
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1 distribute result [$$45]
2 -- DISTRIBUTE_RESULT

3 exchange

4 -- ONE_TO_ONE_EXCHANGE

5 aggregate [$$45] <- [agg-global-sql-max($$48)]
6 -- AGGREGATE

7 exchange

8 -- RANDOM_MERGE_EXCHANGE

9 aggregate [$$48] <- [agg-local-sql-max($$41)]
10 -- AGGREGATE

11 project ([$$41])
12 -- STREAM_PROJECT

13 assign [$$41] <- [$$r.getField("temp")]
14 -- ASSIGN

15 project ([$$r])
16 -- STREAM_PROJECT

17 unnest $$r <- scan-collection($$46)
18 -- UNNEST

19 project ([$$46])
20 -- STREAM_PROJECT

21 assign [$$46] <- [$$s.getField("readings")]
22 -- ASSIGN

23 project ([$$s])
24 -- STREAM_PROJECT

25 exchange

26 -- ONE_TO_ONE_EXCHANGE

27 data-scan []<-[$$44, $$s] <- IoT.Sensors: {readings:[{temp:any}]}

28 -- DATASOURCE_SCAN

Figure 6.4: The optimized query plan of Q2 from Figure 6.3

6.2.2 Apache AsterixDB Query Optimizer

When a user submits a query for execution, AsterixDB first translates the submitted query

into a logical query plan consisting of operators and connectors. The logical query plan is

then optimized by applying several rewrite rules such as optimized field access and projec-

tion pushdown. Figure 6.4 shows the optimized query plan for Q2 shown in Figure 6.3.

Clearly, the actual query plan consists of more operators than what Figure 6.3 showed. For

instance, the ASSIGN operator (line 21) is used to access objects’ fields as in the expres-

sion $$s.getField("readings"). However, the flows are similar in both versions – i.e., the

simplified version in Figure 6.3 and the complete version in Figure 6.4.

Figure 6.4 also shows the use of two types of connectors (or exchange operators), namely

ONE TO ONE EXCHANGE (line 26) and a RANDOM MERGE EXCHANGE (line 8). Connectors are re-

sponsible for forwarding the records from one operator to another operator, either within

a single partition (i.e., ONE TO ONE EXCHANGE) or between partitions through the network
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(e.g., RANDOM MERGE EXCHANGE) for parallel execution in AsterixDB. The query plan in Fig-

ure 6.4 shows that the two aggregate operators (in line 9 and line 5) are connected by a

RANDOM MERGE EXCHANGE (line 8). The first aggregate in the plan computes the local maxi-

mum temperature (temp field from line 13) in each partition in a parallel fashion. Then the

local maximums from all partitions are forwarded to a single partition (picked at random;

hence the use of the connector RANDOM MERGE EXCHANGE) to compute the global maximum

temperature in the second aggregate operator.

In addition to producing an optimized query plan, AsterixDB’s query optimizer also com-

putes “the requested schema”. The query plan in Figure 6.4 shows the requested schema

{readings:[{temp:any}]} (line 27) from the Sensors’ collection. This computed schema is

crucial when querying data stored in a columnar format for two reasons. First, the computed

schema is used to determine which columns to read from the disk. Second, it provides the fi-

nal expected structure of the records when reassembling the columns back into a row-oriented

form.

6.2.3 Truffle

Truffle is a framework for implementing dynamically typed languages, such as Python,

JavaScript, and R, in order to run more efficiently (using a Java Virtual Machine or JVM)

as compared to their original interpreters. To implement a new language using Truffle, one

needs to write a language parser, which produces an Abstract Syntax Trees (AST). Each

node of the AST describes a language operation, such as a numerical expression (e.g., arith-

metic addition) or a control flow statement (e.g., an if statement). Additionally, the language

implementer needs to specify the expected behavior for each expression given its inputs. For

example, Figure 6.5 shows the implementation of AddNode of a language’s AST nodes. The

AddNode operation can either add two integers (addInteger) or two doubles (addDoubles).
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public abstract class AddNode extends BinaryNode {

@Specialization

protected int addInteger(int left, int right) {

return left + right;

}

@Specialization

protected double addDouble(double left, double right) {

return left + right;

}

}

Figure 6.5: Implementing the numerical add operation in Truffle

The two Java annotations @Specialization point Truffle to the two semantics of adding

two values – whether integers or doubles.

+ +

Integer IntegerN/AN/A

Specialization Compilation
+

IntegerInteger

(a) Initial specialization

+

IntegerInteger

Fallback
+

Integer Integer

+

Double Double

Re-specialization +

DoubleDouble

Compilation

(b) Re-specialization on type change

Figure 6.6: Truffle steps for specialization and re-specialization from [93]

On execution, Truffle accepts the constructed AST and starts evaluating the provided AST

in an interpreted mode, during which Truffle rewrites the nodes by observing the input

types of each node. For example, if the AddNode in Figure 6.5 executes addInteger for a few

iterations, then, Truffle “specializes” the AST as if the two inputs are always integers. Next,

Truffle compiles the generated specialized AST into a Java bytecode, where the generated

bytecode is optimized further to machine code. In the case of type changes, Truffle falls

back to the interpreter mode (i.e., going back to the first specialized AST). Truffle then
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“re-specializes” the AST and recompiles it to a bytecode. Figure 6.6 illustrates the steps of

the initial specialization and the re-specialization during an observed type change.

The Truffle optimizer does those specialization, re-specialization, and compilation steps au-

tomatically. Therefore, language implementers can focus on the semantics of their languages,

while it is up to Truffle to optimize their executions. For this reason, we chose to use the

Truffle framework in this work to implement an internal language for Apache AsterixDB’s

query code generation framework.

6.3 AsterixDB Internal Language (AIL)

function sumNum(arg, length) {

total = 0;

i = 0;

while(i < length) {

if(arg[i] > 100) {

total = total + arg[i];

}

i = i + 1;

}

return total;

}

Figure 6.7: An example of a program written in AsterixDB Internal Language (AIL)

In this section, we first show some of the features and semantics of AsterixDB Internal

Language (AIL)1 – a Truffle language used in our code generation framework. As in any

programming language, AIL provides control flow statements (such as if-statement and while-

statement) and expressions (such as arithmetic addition and multiplication). Figure 6.7

shows a function that sums all the values of the array arg that are greater than 100.

Since AIL is intended to replace SQL++ operators and expressions, AIL’s semantics match

AsterixDB’s SQL++ semantics [4, 52], which are different in certain cases from usual pro-

1AIL is a fork from SL https://github.com/graalvm/simplelanguage
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gramming languages. For example, in Figure 6.7, in the expression arg[i] > 100, the

arg[i] value’s type could be either an integer, a double, a string, object, array, or even

NULL. For the two numerical types, integer and double, the expression would return true

if the integer or the double values are greater than 100, and false otherwise – as in most

programming languages. However, in AsterixDB SQL++ specification, comparing two in-

comparable types yields a NULL value and an issued warning – telling the user is comparing

two incomparable types. Thus, in our example, if the type of arg[i] is a string, the re-

sult of the comparison arg[i] > 100 should be NULL in AIL. However, since the expression

arg[i] > 100 is the condition of the if-statement, then the resulting NULL has to be evalu-

ated as a boolean value, whether true or false. Since the NULL (resulting from comparing

two incomparable types) is not a boolean value, in the WHERE-clause, it can be seen as

non-true. In this setting, it can be seen physically as equivalent to false. Thus, in this case,

AIL converts all non-boolean values of the if-statement’s condition to false.

public abstract class AILGreaterThanNode extends AILBinaryNode {

@Specialization

protected boolean greaterThan(long left, long right) {

return left > right;

}

//Comparing long and string (incompatible)

@Specialization

protected Object greaterThan(long left, AILStringRuntime right) {

//Return NULL: incompatible

return AILNullRuntime.INSTANCE;

}

//Other specializations...

}

Figure 6.8: A snippet from AILGreaterThanNode implementation

Figures 6.8, 6.9, and 6.10 show snippets from AILGreaterThanNode, AILToBooleanNode,

and AILIfNode implementations in AIL, respectively. In AILGreaterThanNode, the incom-

patible comparison between an integer and a string returns NULL. AILToBooleanNode eval-

uates all boolean expressions as booleans and non-boolean expressions as false. Finally, in

AILIfNode, the condition node is wrapped with the AILToBooleanNode, ensuring that the

condition expression is always converted to a proper boolean value.
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public abstract class AILToBooleanNode extends AILExpressionNode {

@Specialization

protected boolean fromBoolean(boolean value) {

return value;

}

@Specialization(limit = "LIMIT")

public static boolean fromGeneric(Object value,

@CachedLibrary("value") InteropLibrary interop) {

if (interop.isBoolean(value)) {

//value is boolean --> return the boolean value

return interop.asBoolean(value);

}

//Non-booleans return false

return false;

}

}

Figure 6.9: A snippet from AILToBooleanNode implementation

public final class AILIfNode extends AILStatementNode {

//Members...

//Constructor

public AILIfNode(AILExpressionNode conditionNode,

AILStatementNode thenPartNode, AILStatementNode elsePartNode) {

//Wrap the condition expression with AILToBooleanNode

this.conditionNode = AILToBooleanNodeGen.create(conditionNode);

this.thenPartNode = thenPartNode;

this.elsePartNode = elsePartNode;

}

//...

}

Figure 6.10: A snippet from AILIfNode implementation

As in the snippets above, other AIL expressions similarly follow AsterixDB’s semantics (e.g.,

adding an integer and a string yields a NULL and a warning). However, in some cases,

different implementations of an expression are needed. Let’s take the following SQL++

query to illustrate:

SELECT SUM(salary) FROM Employee

In this query, some of the salary values could be NULLs or even non-numerics (e.g., strings).

The aggregate function SUM() in AsterixDB ignores non-numeric values and computes the

sum for all numeric values. For this case, AIL provides a different version of the ‘+’ opera-

tor called the AggregateAdd (using the symbol ‘++’), which ignores non-numeric operands,

including NULL values. For example, the result of 1 ++ NULL is 1 instead of being NULL (per

SQL’s “interesting” semantics) as it would be in the scalar add operator in the expression
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1 + NULL (also per SQL’s semantics).

In addition to matching the SQL++ semantics, AIL provides helper data structures such

as Lists and Maps. Those helper data structures can also re-specialize in case of type

changes. We adopted the same approach used in Graal Python2 for implementing such data

structures. Those data structures can be helpful when translating operators such as the

GROUP-BY operator, as we discuss later in Section 6.5.

6.4 Code Generation

In Section 6.2.1, we detailed the workflow of the batch query execution model as well as

pointing out the CPU costs associated with such a model. In this section, we first show

the workflow of our proposed code generation framework – inspired by [77] – in Apache

AsterixDB. Next, we analyze the potential reduction of CPU costs by adopting the proposed

framework as compared to using Apache AsterixDB’s original execution engine.

6.4.1 Code Generation Workflow

Before showing how the proposed solution in [77] can be used to address the CPU costs of

the batch execution model, let us first show Q2’s (from Figure 6.4) query plan after enabling

code generation. Figure 6.11 shows the generated code attached to the DATASOURCE SCAN

operator. In the new query plan, the generated code replaces all operators between

RANDOM MERGE EXCHANGE and DATASOURCE SCAN from the query plan shown in Figure 6.4.

First, let us go through the generated code and show what it actually does. The code begins

with the function Sensors0Func’s (named after the collection’s name), which takes three

2E.g., Graal Python List: https://github.com/oracle/graalpython/tree/master/graalpython/

com.oracle.graal.python/src/com/oracle/graal/python/builtins/objects/list
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distribute result [$$45]
-- DISTRIBUTE_RESULT

exchange

-- ONE_TO_ONE_EXCHANGE

aggregate [$$45] <- [agg-global-sql-max($$48)]
-- AGGREGATE

exchange

-- RANDOM_MERGE_EXCHANGE

data-scan [$$48]<-[$$44, $$s] <- IoT.Sensors code >>

01| //reader0: {readings:[{temp:any}]}

02| function Sensors0Func (cursor, resultWriter, reader0) {

03| var0 = NULL;

04| while (cursor.next()) {

05| reader0.next();

06| while (!reader0.isEndOfArray()) {

07| var1 = reader0.getValue();

08| var0 = var0 _max_ var1;

09| reader0.next();

10| }

11| }

12| append(resultWriter, var0);

13| flush(resultWriter);

14| }

-- DATASOURCE_SCAN

Figure 6.11: The query plan of Q2 from Figure 6.4 after enabling code generation

parameters: cursor, resultWriter, and reader0. The first parameter cursor is a tuple

cursor over the Sensors’ collection tuples. The second parameter resultWriter is the final

result writer, which pushes the processed tuples’ values resulting from executing the gener-

ated code to the global AGGREGATE operator through the connector RANDOM MERGE EXCHANGE.

The last parameter, reader0, is a value accessor for the Sensors collection’s tuples. Readers

in the AIL language are agnostic of the storage format (i.e., row or columnar formats). For

this query, reader0 corresponds to the temperature values (the field temp in the readings

array of objects) – the only requested values in Q2 as per the requested schema shown in

Figure 6.4. As in line 01 in Figure 6.11, our code generator always adds comments that show

the mapping of each reader and its corresponding schema, which describes the requested

value. This mapping allows us to understand and debug the correctness of the generated

code.

The function body begins by declaring the variable var0, initialized with the value NULL.

At the end of the function’s execution, var0 will be holding the maximum recorded tem-

perature, as expected from Q2. Next, the code loops through the Sensors’ tuples by
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calling cursor.next(). Then, reader0 is advanced to prepare the first value by calling

reader0.next(). Since the readings field is an array, the code iterates over reader0’s

value by first calling reader0.next() (line 09) inside the while-loop body. To ensure that

the loop (in line 06) stops, the loop condition checks if the end of the array is reached. At

the beginning of the loop body (line 07), var1 is declared with the initial value produced

from calling reader0.getValue(), which retrieves the temperature value (or the value of

field temp). As the loop iterates over the array items, the maximum recorded temperature

is computed and stored in var0 (line 08). Finally, in lines 12 and 13, the value of var0 is

appended and flushed. Each partition in AsterixDB’s cluster (Section 2.3) executes the gen-

erated code, which computes the maximum local value, in parallel. Computing the maximum

temperature then goes as it did in the original plan – as was detailed in Section 6.2.2.

01| //reader0: {readings:[{temp:any}]}
02| function Sensors0Func (cursor, resultWriter, reader0) {
03|    var0 = NULL;
04|    while (cursor.next()) {
05|       reader0.next();
06|       while (!reader0.isEndOfArray()) {
07|          var1 = reader0.getValue();
08|          var0 = var0 _max_ var1;
09|          reader0.next();
10|       }
11|    }
12|    append(resultWriter, var0);
13|    flush(resultWriter);
14| }

data-scan: IoT.Sensors: {readings:[{temp:any}]} 
-- DATASOURCE_SCAN 

01| //reader0: {readings:[{temp:any}]}
02| function Sensors0Func (cursor, resultWriter, reader0) {
03|    var0 = NULL;
04|    while (cursor.next()) {
05|       reader0.next();
06|       while (!reader0.isEndOfArray()) {
07|          var1 = reader0.getValue();
08|          var0 = var0 _max_ var1;
09|          reader0.next();
10|       }
11|    }
12|    append(resultWriter, var0);
13|    flush(resultWriter);
14| }

unnest $$r <- scan-collection($$46) 
-- UNNEST 

01| //reader0: {readings:[{temp:any}]}
02| function Sensors0Func (cursor, resultWriter, reader0) {
03|    var0 = NULL;
04|    while (cursor.next()) {
05|       reader0.next();
06|       while (!reader0.isEndOfArray()) {
07|          var1 = reader0.getValue();
08|          var0 = var0 _max_ var1;
09|          reader0.next();
10|       }
11|    }
12|    append(resultWriter, var0);
13|    flush(resultWriter);
14| }

aggregate [$$48] <- [agg-local-sql-max($$41)]
-- AGGREGATE 

Figure 6.12: Code generation steps for the three operators DATASOURCE SCAN, UNNEST, and
AGGREGATE from the query plan in Figure 6.4

Now, let us present the process of generating this code from the original query plan and see

which operator contributes which part of the code. The generated code, shown in Figure 6.11,

is produced by applying a rule that traverses the optimized plan, during which each operator

contributes part of the generated code [77].

The code generation process starts when the code generation rewrite rule reaches the

DATASOURCE SCAN – the leaf of the query plan. Figure 6.12 shows contributed parts of the

code by the three leading operators, DATASOURCE SCAN, UNNEST, and AGGREGATE, from the

original query plan in Figure 6.4. First, DATASOURCE SCAN contributes the function’s header
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and the while-loop in line 04 – iterating over the collection’s tuples. Next, the UNNEST op-

erator contributes the calls reader0.next() in lines 05 and 09, as well as the while-loop

in line 06. The logic here is to advance reader0 first (line 05) and ensure that reader0

corresponds to a non-empty array (line 06). Again, the cursor advances the reader at the

end of the loop body (line 09) to iterate over the array’s items. This iteration over the array

resembles the logical operation performed by the UNNEST to get the array’s items. Finally,

the AGGREGATE operator contributed code first declares the variable var0 at the beginning

of the function’s body (line 03) and outside the cursor iteration loop (line 04) – ensuring

that the final aggregate result is computed for every tuple and every element in the array

readings of the Sensors collection. Since the AGGREGATE is the last operator, where the

code generation stops, the value of the variable var0 is appended and flushed as the local

aggregate value (the local maximum temperature in this case) and the final result when

executing this function.

The code generation framework is limited and currently does not support whole-stage code

generation as in [77]. Thus, the framework currently stops when it encounters a non-local

connector such as the RANDOM MERGE EXCHANGE connector in Figure 6.12. We plan to expand

our code generation framework to overcome this limitation in the future in order to support

code generation for later (upstream) operators as well.

6.4.2 Cost Analysis

In Section 6.2.1, we described the costs associated with the batch execution model, which

could be categorized into three points: (i) the materialization cost between operators, (ii)

the cost of operators such as the UNNEST operator in document stores, and (iii) the cost

of eagerly reassembling columns back as records in columnar formats. The costs (i) and

(ii) affect all query execution performance, whether the data is stored as rows or columns,
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whereas (iii) is an additional cost that only affects columnar formats.

To illustrate how the proposed code generation technique addresses those costs, let us com-

pare the two query plans in Figures 6.4 and 6.11. First, we see that the generated code in

Figure 6.11 replaces the work of eight operators from the original plan shown in Figure 6.4

(line 9 – line 24). By eliminating those operators, the code generation technique eliminates

the materialization costs of the replaced operators – addressing cost (i). Additionally, the

generated code fuses the work of the UNNEST (line 17) and AGGREGATE (line 9) operators of the

original query plan. By fusing the work of two operators, the generated code directly com-

putes the aggregated value (the local maximum temperature) – eliminating the unnecessary

“join” of the UNNEST operator (Section 6.2.1), which addresses cost (ii). Finally, the reader

reader0 in Figure 6.11 only accesses the values of the field temp, which are of the scalar

type double (Figure 6.3). Consequently, the generated code avoids the cost of reassembling

the array readings for columnar formats, which addresses (iii).
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Figure 6.13: Interpreted vs. Generated Code: Q2 execution times (Seconds)

To empirically evaluate the practicality of reducing those costs, we re-executed query Q2

(Figure 6.3) after enabling the code generation. Figure 6.13 shows the execution times for
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Q2 with and without the code generation for the three storage formats Open, APAX, and

AMAX. The proposed code generation framework improved Q2’s execution performance

by ∼2.8X, ∼7.7X, and ∼11.5X for the Open, APAX, and AMAX, respectively. Those

improvements in query execution performance confirm the impact of the three CPU costs (i)

and (ii) for all three formats and (iii) for the columnar formats APAX and AMAX. The

final results of our empirical evaluation of the proposed code generation framework will be

presented later in Section 6.6.

6.5 Optimizing GROUP-BY Queries

SELECT sid, MAX(r.temp) max_temp

FROM Sensors s, s.readings r

GROUP BY s.sensor_id sid

ORDER BY max_temp DESC

LIMIT 10

Figure 6.14: Retrieving the top ten sensors that recorded the maximum temperature

Computing aggregates over a large volume of data is an integral part of analytical work-

loads. In previous sections, we discussed the approach used in AsterixDB for computing

global aggregates (as in Q2 shown in Figure 6.1b). Besides global aggregates, computing

aggregates per group (GROUP-BY queries) is also crucial for analytical workloads. Figure 6.14

shows an example of a query that finds the top ten sensors that recorded the ten maxi-

mum temperatures. Optimizing such GROUP-BY queries has been a focus in previous work

[44, 46, 48, 58]. In this section, we propose several improvements (inspired by [46, 48, 58]) to

Apache AsterixDB’s aggregation framework in the context of our code generation framework.
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6.5.1 Improving Parallel GROUP-BY I/O

In parallel databases, such as Apache AsterixDB, computing aggregates are done in two

phases. In the first phase, each partition computes the aggregation locally. Then, in the

second phase, the locally computed aggregate(s) are either merged by a single partition to

compute a global aggregate (as explained in Section 6.2.2) or shuffled between the partitions

to compute the final aggregate result for each group in GROUP-BY queries. To illustrate the

process of processing GROUP-BY queries in AsterixDB, let us examine parts of the query

plan (Figure 6.15) for the query shown in Figure 6.14. Notice that the two SORT GROUP BY

operators (lines 17 and 8) correspond to the local and global aggregate operators, respectively.

Additionally, AsterixDB’s query optimizer picked the sort-based GROUP-BY algorithm (its

default algorithm) instead of the alternative hash-based algorithm, which can be enabled by

providing a hint3.

When the query in Figure 6.14 is executed, each partition starts by scanning their corre-

sponding Sensors records (line 38), unnesting the reading values (line 27), and projecting

sensor id and the temp value pairs (line 20). The projected sensor id and temp value pairs

are then pushed as inputs to the SORT GROUP BY operator, where sensor id is the grouping

key and the temp value is the input for the aggregate function MAX(). The received value

pairs are then sorted by the grouping key (sensor id in this query). Performing an external

sort might be required if the total size of the produced value pairs (in bytes) exceeds the

SORT GROUP BY memory budget. The sorted groups are then merged by computing their ag-

gregate value (the maximum temperature in our query, as shown in line 12 in Figure 6.15).

The final result of the local SORT GROUP BY operator (line 11) are the distinct groups with

their aggregate values (i.e., the maximum temperature for each sensor id in each parti-

tion) – which concluds the first phase. Since the data is partitioned by the records’ primary

keys when ingested, each partition may have a local maximum for the same sensor id.

3Query Hints: https://nightlies.apache.org/asterixdb/sqlpp/manual.html#Query_hints
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1 ...

2 group by ([$$sid := $$70]) decor ([]) {

3 aggregate [$$66] <- [agg_global_sql_max($$69)]
4 -- AGGREGATE

5 nested tuple source

6 -- NESTED_TUPLE_SOURCE

7 }

8 -- SORT_GROUP_BY[$$70] <-- GLOBAL

9 exchange

10 -- HASH_PARTITION_EXCHANGE [$$70]
11 group by ([$$70 := $$64]) decor ([]) {

12 aggregate [$$69] <- [agg_local_sql_max($$60)]
13 -- AGGREGATE

14 nested tuple source

15 -- NESTED_TUPLE_SOURCE

16 }

17 -- SORT_GROUP_BY[$$64] <-- LOCAL

18 exchange

19 -- ONE_TO_ONE_EXCHANGE

20 project ([$$60, $$64])
21 -- STREAM_PROJECT

22 assign [$$60] <- [$$r.getField("temp")]
23 -- ASSIGN

24 project ([$$64, $$r])
25 -- STREAM_PROJECT

26 unnest $$r <- scan-collection($$67)
27 -- UNNEST

28 project ([$$64, $$67])
29 -- STREAM_PROJECT

30 assign [$$64, $$67] <- [$$s.getField("sensor_id"), $$s.getField("readings")]
31 -- ASSIGN

32 project ([$$s])
33 -- STREAM_PROJECT

34 exchange

35 -- ONE_TO_ONE_EXCHANGE

36 data-scan [$$65, $$s]<-[$$65, $$s] <- IoT.Sensors

37 project-dataset ({sensor_id:any,readings:[{temp:any}]})

38 -- DATASOURCE_SCAN

Figure 6.15: The optimized query plan for the query shown in Figure 6.14

Therefore, after computing the local maximums, the computed aggregates are then hash-

partitioned (line 10) by the sensor id to compute the final aggregate values with the same

grouping key by a single partition – ensuring that the global maximum is computed in one

place for each group. Similar to the first phase, the second SORT GROUP BY (line 8) computes

each group’s global aggregate value (the global maximum temperature in our query) – thus

concluding the second and last phase of computing the GROUP-BY aggregate values.

The current approach to processing GROUP-BY queries in AsterixDB can be improved in

several ways. First, we observed that using the sort-based algorithm may lead to unnecessary

spilling to the disk. For example, when the number of distinct groups is small, using the hash-

based algorithm with a sufficient memory budget would never spill to disk since the hash-
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based algorithm only keeps the distinct groups in memory by performing early aggregation.

However, the hash-based algorithm could suffer significantly if the number of distinct groups

is too large to fit in memory – the sort-based algorithm would be superior in this case.

As mentioned in [48], a mixed approach can be utilized to benefit from the best of the two

algorithms. In the mixed approach, the hash-based algorithm is used until the hash-table can

no longer fit more groups; then, the accumulated hash-table entries are sorted and written

to disk as a sorted run. After the last spill, the sorted runs are merged, as in the sort-based

algorithm, to compute the final aggregate result for each group. If the entire set of groups

fits in the given memory budget, the early aggregation of the hash-based algorithm will not

spill to the disk. If spilling to disk is needed, then the sorted runs at least will not contain

any duplicate groups – making the spilled runs relatively smaller than the pure sort-based

algorithm’s runs would be.

Secondly, we observe that, in the local GROUP-BY, it is not actually necessary to compute

the final local aggregate values for the entire set of records in each partition. Instead, the

local GROUP-BY operator can ship partially computed aggregates to the final destination (the

global aggregators) instead of spilling to disk, as the global aggregator would likely spill to

disk as well. Doing this can alleviate pressure on the nodes’ disks (a potentially pressured

resource) since records are spilled once (at the global aggregator) instead of the two disk

spillings in the original approach.

6.5.2 Optimizing GROUP-BY Queries with UNNEST

The query shown in Figure 6.14 computes the maximum temperature for each sensor. The

grouping key sensor id is a single scalar value, whereas the temperature values are repeated

values produced by the UNNEST operator, as shown earlier in Figure 6.3. Hence, each record

contains a single sensor id value and 144 temperature values. One possible way to process
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1 //reader0: {readings:[{temp:any}]}

2 //reader1: {sensor_id:any}

3 function Sensors0Func (cursor, resultWriter, reader0, reader1) {

4 var0 = newAggregator("MAX", 134217728, resultWriter);

5 while (cursor.next()) {

6 reader0.next();

7 reader1.next();

8 while (!reader0.isEndOfArray()) {

9 aggregate(var0, reader1.getValue(), reader0.getValue());

10 reader0.next();

11 }

12 }

13 append(resultWriter, var0);

14 flush(resultWriter);

15 }

Figure 6.16: Generated code for the query shown in Figure 6.14

this query in AIL is shown in Figure 6.16. The AIL code starts with two comments (lines

1 and 2) that describe the values produced by reader0 and reader1, respectively, followed

by the function header. In line 4, the AIL code allocates a new aggregator, which is a

hash-based aggregator. The first argument of the function newAggregator() is the desired

aggregate function, which is MAX(). The next parameter is the memory budget in bytes,

which is 128MB. The last parameter is the resultWriter, which the aggregator uses to

write the partial aggregate result to the global aggregator once the hash table’s memory

is full (as explained in the previous section). The rest of the code is similar to previously

explained AIL-generated code, except for line 9. In line 9, we see the function aggregate(),

which takes three parameters: (1) var0, which corresponds to the aggregator declared in line

4, (2) the value of reader1, which is the sensor id, and (3) the value of reader0, which

the temperature value. Here, the aggregate() function adds and computes the maximum

temperature value for the grouping key (sensor id) using the hash-based aggregator of

var0. Finally, in lines 13 and 14, the stored aggregate values in var0 are flushed to the

global aggregator to compute the global aggregates.

The generated AIL code in Figure 6.16 could incur unnecessary overhead since the function

aggregate() will compute the same hash code for sensor id and may write to the hash
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1 //reader0: {readings:[{temp:any}]}

2 //reader1: {sensor_id:any}

3 function Sensors0Func (cursor, resultWriter, reader0, reader1) {

4 var0 = newAggregator("MAX", 134217728, resultWriter);

5 while (cursor.next()) {

6 var1 = NULL;

7 reader0.next();

8 reader1.next();

9 while (!reader0.isEndOfArray()) {

10 var1 = var1 _max_ reader0.getValue();

11 reader0.next();

12 }

13 aggregate(var0, reader1.getValue(), var1);

14 }

15 append(resultWriter, var3);

16 flush(resultWriter);

17 }

Figure 6.17: An optimized version of the generated code in Figure 6.16

table repeatedly. More specifically, in this query, the same hash code will be computed 144

times (the size of the array readings) and may write a new maximum value in each call to

aggregate(). Since the grouping key sensor id is the same for the 144 temperature values

in a record, an alternative approach (shown in Figure 6.17) eliminates these unnecessary

repetitive operations. In this approach, in the loop body (lines 10 and 11), the maximum

temperature is first computed and stored in var1. Then, in line 13, the key sensor id and

the computed maximum value are added once to the hash-based aggregator in var0. Thus,

the aforementioned operations are performed once for each record instead of the 144 times

in Figure 6.16.

SELECT ts, MAX(r.temp) max_temp

FROM Sensors s, s.readings r

GROUP BY r.ts ts

ORDER BY max_temp DESC

LIMIT 10

Figure 6.18: Retrieve the top ten timestamps with the maximum temperatures ever recorded

However, note that this optimization step is only possible if the grouping key did not originate

from the UNNEST operator (e.g., as us true fo sensor id). To illustrate, let us examine the

query shown in Figure 6.18, which retrieves the top ten timestamps with the maximum
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temperatures ever recorded. In this query, both the grouping key ts and the value temp

originate from the unnested array readings. Therefore, each temperature value corresponds

to a different timestamp. Consequently, each key-value pair must be added to the hash-based

aggregator as shown in the generated AIL code in Figure 6.19.

1 //reader0: {readings:[{temp:any}]}

2 //reader1: {readings:[{ts:any}]}

3 function Sensors0Func (cursor, resultWriter, reader0, reader1) {

4 var0 = newAggregator("MAX", 134217728, resultWriter);

5 while (cursor.next()) {

6 reader0.next();

7 reader1.next();

8 while (!reader0.isEndOfArray()) {

9 aggregate(var0, reader1.getValue(), reader0.getValue());

10 reader0.next();

11 reader1.next();

12 }

13 }

14 append(resultWriter, var0);

15 flush(resultWriter);

16 }

Figure 6.19: Generated code for the query shown in Figure 6.18

6.5.3 Optimizing Top-K Queries with MIN() and MAX()

Most database systems process all GROUP-BY aggregate queries similarly even though different

aggregate functions may have different traits. More specifically, top-K GROUP-BY queries,

with the aggregate functions MIN() and MAX(), are unique and can be optimized differently

as compared to other aggregate functions (e.g., COUNT()).

SELECT sid, COUNT(*) cnt

FROM Sensors s, s.readings r

GROUP BY s.sensor_id sid

ORDER BY cnt DESC

LIMIT 10

(a)

SELECT sid, MAX(r.temp) max_temp

FROM Sensors s, s.readings r

GROUP BY s.sensor_id sid

ORDER BY max_temp DESC

LIMIT 10

(b)

Figure 6.20: Comparing two queries: one with COUNT() and another with MAX()
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To show their uniqueness, let us compare the two GROUP-BY queries shown in Figure 6.20.

The query in Figure 6.20a counts the top ten sensors with the highest number of recorded

readings, while the query in Figure 6.20b computes the top ten sensors with the maximum

recorded temperatures. Both queries have the same grouping key sensor id, and thus, both

have the same number of distinct groups. In the first query, the system first computes the

count for each group by incrementally “accumulating” the number of occurrences of readings

for each sensor. In contrast, the maximum temperature is computed for a given grouping key

in the second query by replacing the older maximum if the older maximum is a smaller num-

ber. Thus, the second query does not require any “accumulation” to compute the maximum

value. Since the query only cares about the top ten sensors with the maximum temperature,

it is enough to always keep only the top ten sensors with the highest temperature in memory

without spilling to disk.

Algorithm 1 An algorithm to compute the maximum top-k aggregate values

1 procedure AddMaxTopK (map, key, value, k) {

2 //Scenario1

3 if(map.contains(key)) {

4 olderValue = map.get(key);

5 if(value > olderValue) {

6 map.put(key, value);

7 if(map.getMinimumKey() == key) {

8 map.findAndSetNewMinimum();

9 }

10 }

11 }

12 //Scenario2

13 else if(map.size() < k) {

14 map.put(key, value);

15 if(map.size() == 1 || map.getMinimumValue() > value) {

16 map.setMinimum(key, value);

17 }

18 }

19 //Scenario3

20 else if(map.getMinimumValue() < value) {

21 map.removeMinimum();

22 map.put(key, value);

23 map.findAndSetNewMinimum();

24 }

25 }

To illustrate, Algorithm 1 shows a procedure that adds a new key-value pair to compute the
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top-k maximum values. The procedure takes (1) map: a hash-map with additional procedures

as we will see next, (2) key: the grouping key, (3) value: the value to be aggregated, and

(4) k: an integer, which specifies the K of the top-k query. The procedure handles three

scenarios: (i) Scenario1 (lines 3-11), (ii) Scenario2 (lines 13-18), and (iii) Scenario3

(lines 20-24). In the first scenario, the grouping key already exists in map. In this case,

the procedure replaces the older value (the value in map) if the older value is smaller than

the new provided value (lines 4 and 5). If the older value is replaced, the procedure checks

if the key corresponds to the minimum value stored in map (line 6). Since the older value

was replaced, it may no longer be the minimum value stored in map, and hence, a search

is performed to find the new minimum value (line 8). In the second scenario, map does not

store the provided key; hence, the procedure checks whether the map contains the required

number of values (i.e., k) in line 13. If not, then the new key-value pair is added to map

(line 14). Lines 15-17 ensure that the key with the minimum value is recorded. In the last

scenario, map already contains the required k values. However, the procedure checks whether

the newly provided value is greater than the minimum value stored in map (line 20). If that

is the case, the key and its corresponding previous minimum value are replaced by the newly

provided pair, and a search is performed to find the new key with the minimum value (line

23). If none of the three scenarios’ conditions are satisfied, that means the provided value is

smaller than all k values stored in map, and the provided pair is ignored.

6.6 Experimental Evaluation

In this section, we evaluate and analyze the proposed code generation framework in Apache

AsterixDB. At first, we conducted an experiment – similar to the one detailed in Section 5.4.4

from Chapter 5 – to compare the proposed code generation framework against AsterxiDB’s

original execution engine. The experiments in the previous chapter already only showed
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execution times based on using the proposed code generation framework, which we detailed

in this chapter. We used the code generation in the previous chapter as well because the

CPU overhead of AsterixDB’s original execution model obscured the impact of reducing the

I/O costs when querying data in columnar formats, as we will show and explain later in this

section. Furthermore, here we add additional queries with different aggregate functions to

evaluate the techniques proposed in Section 6.5.

In a previous study [61], Apache AsterixDB was evaluated using the IRIS-HEP bench-

mark [18, 62], a benchmark that measures the suitability of systems for handling High-Energy

Physics (HEP) data and analysis. That study showed that Apache AsterixDB was not prac-

tical for handling such workloads due to its inefficient interpreter-based execution engine.

Therefore, we use the IRIS-HEP benchmark here to evaluate and measure the effectiveness

of our proposed code generation framework for handling HEP workloads.

In a second experiment, we evaluate AsterixDB’s current aggregation framework as well

as the proposed improvements detailed in Section 6.5. In this experiment, we ran several

GROUP-BY queries, where the number of distinct grouping keys varies in the different queries.

Additionally, we varied the size of the dedicated memory budget allocated for the GROUP-BY

operator. The objective here is to evaluate the behavior of the different approaches, namely

(1) the sort-based approach, (2) the hash-based approach, and (3) the suggested mixed

approach.

Experiment Setup We conducted our experiments using a single machine with an 8-core

(Intel i9-9900K) processor and 32GB of main memory. The machine is equipped with a 1TB

NVMe SSD storage device (Samsung 970 EVO) capable of delivering up to 3400 MB/s for

sequential reads and 2500 MB/s for sequential writes. We configured AsterixDB (v9.8.0)

with a single node and eight partitions (Section 2.3). The eight partitions share 16GB of

total allocated memory, and from this, we allocated 10GB for the system’s buffer cache

and 2GB for its in-memory component budget. The remaining 4GB is allocated for use as
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temporary buffers for query operations such as sorting and grouping. The other 16GB of

memory is kept for the operating system and for the automation tool we use to conduct the

evaluation.

Since the main focus of this experiment is measuring the CPU cost/overhead, we used the

columnar storage format AMAX and AsterixDB’s page-level compression to minimize the

overall I/O cost throughout our experiments.

Datasets In our evaluation, we used four different datasets that differ in terms of their

records’ structures, sizes, and value types. Table 6.1 lists and summarizes the traits of the

four datasets. The first three datasets (namely cell, sensors, and tweets) are the same

datasets used in evaluating the columnar formats APAX and AMAX proposed in Chapter

5. (The details of the three datasets were presented previously in Section 5.4.1.)

For the fourth dataset, the iris hep dataset, each record (or tuple) represents an event

recorded by the sensors of a particle collider. The structure of each record is a JSON

document consisting of scalar values, object values, and several arrays of objects. The

nested scalar values consist mainly of double values and some boolean and integer values.
cell sensors tweets iris hep [62]

Type Real Synthetic Real Real

Size (GB) 172 212 210 158

# of Records 1.43B 40M 17M 53.4M

Dominant Type Mix Integer String Double

Table 6.1: Datasets summary

6.7 Evaluation Summary

We first compare AsterixDB’s original query execution engine (referred to as Interpreted)

against our proposed code generation framework (referred to as Generated Code) using
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ce
ll

Q1 The number of records
Q2a The top 10 callers with the longest call durations
Q2b The top 10 callers with the highest number of activities
Q3 The number of calls with durations ≥ 600 seconds

se
n
so
rs

Q1 The number of records
Q2 The maximum reading ever recorded
Q3a The IDs of the top 10 sensors with maximum readings
Q3b The IDs of the top 10 sensors that have the maximum number of readings
Q4a Similar to Q3, but for readings in a given day
Q4b Similar to Q4, but for readings in a given day

tw
ee
ts

Q1 The number of records
Q2a The top 10 users who posted the longest tweets
Q2b The top 10 users who posted the largest number of tweets
Q3 The top 10 users with the highest number of tweets that contain

a popular hashtag

ir
is
h
ep

[6
2]

Q1 Plot the ET
miss of all events

Q2 Plot the pT of all jets
Q3 Plot the pT of jets with |η| < 1
Q4 Plot the ET

miss of events that have at least two jets with pT > 40 GeV
Q5 Plot theET

miss of events that have an opposite-charge muon pair with
an invariant mass between 60 and 120 GeV

Table 6.2: Summary of the queries used in the evaluation

the four datasets cell, sensors, tweets, and iris hep. We re-executed the same queries

summarized in Section 5.4.4 and listed in Appendix B. We also included similar GROUP-BY

queries (with the suffix b) but with different aggregate functions to evaluate the proposed

techniques in Section 6.5. The SQL++ queries for the iris hep dataset are listed in [18].

Table 6.2 summarizes the objectives of all queries for all four datasets. In our experiments,

we ran each query five times and reported the average time for the last four.
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6.7.1 cell Dataset
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Figure 6.21: Query execution times for the cell dataset

In the cell dataset, all four queries took significantly less time to execute using our proposed

code generation framework (Generated Code) than AsterixDB’s original execution engine

(Interpreted), as shown in Figure 6.21. For instance, with our proposed code generation

framework (Generated Code), Q1 – a simple SELECT COUNT(∗) query – took 8.6 seconds to

execute compared to 56.9 seconds using AsterixDB’s query execution engine (Interpreted).

The 6.6X difference between the two approaches when executing Q1 is attributed to the

number of records in the cell dataset, which is relatively high – 1.4 billion compared to the

tens of millions in other datasets (Table 6.1). In the Interpreted mode, the number of

memory copy operations used to construct frames that could be passed to the next operator

was the main contributor to the higher execution time. In contrast, the Generated Code

mode has eliminated the memory copy overhead by fusing the work of multiple operators

into a single operator. The execution times for the other queries exhibited a similar trend.

The Generated Code mode was ∼14.61X, ∼8.75X, and ∼6.4X faster to execute Q2a, Q2b,

and Q3 compared to the Interpreted mode, respectively.
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Note that Q2a and Q2b are similar (both are Top-K queries), and the only difference is the

aggregate function – MAX(duration) in Q2a and COUNT(*) in Q2b. In the Interpreted

mode, Q2b took less time to execute than Q2a, as Q2a incurred an additional I/O cost by

reading the duration column to compute the maximum call’s duration, whereas Q2b only

reads the caller id’s column. In contrast, in the Generated Code mode, Q2a took less time

to execute since computing Top-K queries with the aggregate function Max() does not need

to spill to disk, as opposed to computing Top-K queries with the COUNT() aggregate function

(Section 6.5.3). Hence, the I/O cost of reading the duration column was negligible compared

to the spilling I/O cost for the GROUP-BY operator.

6.7.2 sensors Dataset
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Figure 6.22: Query execution times for the sensors dataset

For the sensors dataset, Figure 6.22 (log-scale) shows that the Generated Code mode was

at least an order of magnitude faster than the Interpreted mode except for Q1, where the

Generated Code mode was only 2.66X faster. The main reasons for this gap between the two

execution modes in query execution performance are the cost of the UNNEST operator and the
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cost of assembling the columns back as records. In Section 6.4.2, we analyzed the associated

costs in Interpreted mode for executing Q2 in details. The execution of the other queries

in the Interpreted mode also incurred the same costs. For Q3a and Q3b, the difference

between the two modes is even more significant (∼67X in Q2a and ∼79X in Q2b) because

AsterixDB uses the sort-based algorithm by default. In contrast, the Generated Code mode

employs a mixed approach (as detailed in Section 6.5.1), which enjoys the benefits of both

the sort-based and hash-based algorithms. In AsterixDB, the user can provide a hint to use

the hash-based algorithm. Later in Section 6.7.5, we will show the result of comparing the

mixed approach against AsterixDB’s different algorithms with different memory budgets.

6.7.3 tweets Dataset

Q1 Q2a Q2b Q30

10

20

30

40

Ti
m

e 
(s

ec
)

1.
4

28

26
.2

7.
2

0.
6 3.

1

10
.1

1.
9

Interpreted Generated Code

Figure 6.23: Query execution times for the tweets dataset

Figure 6.23 shows the execution times in both execution modes: Interpreted and

Generated Code. For all queries, the Generated Code mode was faster; however, the dif-

ferences were less significant than for the queries of the sensors dataset. For example, Q2a,

which exhibited the highest contrast between the two modes, took 28 seconds to execute

139



in the Interpreted mode and 3.1 seconds in the Generated Code mode – the latter mode

was ∼8.9X faster. When profiled, we found that disk spilling in AsterixDB’s default sort-

based algorithm for computing GROUP-BY queries was a major overhead in Q2a and Q2b

in the Interpreted mode. Q3 needs to unnest the hashtags field; however, posted tweets

that contain hashtags are relatively rare (i.e., the hashtags field in most records are NULLs).

Thus, the CPU cost of unnesting the hashtags field was negligible as compared to unnesting

the readings field in the sensors dataset.

6.7.4 iris hep Dataset

Ti
m
eo
ut

Figure 6.24: Query execution times for the iris hep dataset

The iris hep dataset is the last one that we used in our evaluation. Figure 6.24 shows the

execution times for Q1-Q7. All queries except for Q6a took less than six seconds to execute

using the Generated Code mode. For Q6a, the query took more than 100 seconds to finish

in the Generated Code mode. The Interpreted mode failed to execute Q6a in a reasonable

time, and we canceled the execution after waiting more than 30 minutes. In [61], Q6a was
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the slowest query to execute in all the systems that the authors evaluated. Similarly, Q6a

was also the slowest to execute in our evaluation of the iris hep queries.

The iris hep query performance differences between the two execution modes range between

∼16X and ∼29X. Similar to the sensors dataset’s queries, iris hep’s queries are heavy on

unnesting arrays – potentially an inefficient operation as discussed earlier in Section 6.4.2. In

contrast to the sensors queries, the iris hep queries are more complex and contain nested

calls to SQL++ UDFs4. In multiple cases, AsterixDB’s compiler failed to fold constant

values or to eliminate common expressions – thus increasing the number of function calls

that evaluate those expressions and consequently hindering query performance. The code

generation framework does not resolve those issues at the translation phase, as it simply maps

the operation and expressions of the generated plans by AsterixDB’s compiler. However,

when Truffle compiles the generated code, it performs all of those optimizations in addition

to other (and more complex) optimizations such as inlining function calls and unrolling loops.

Therefore, AIL (a Truffle-based language) benefits from Truffle’s optimizations. As a result,

the optimizations missed by AsterixDB’s compiler did not impact the performance of the

Generated Code mode.

The IRIS-HEP benchmark consists of eight queries in all. The last query (Q8) contains

a subquery that UNIONs two nested subqueries, a plan structure that the proposed code

generation framework does not support currently and consequently it bailed out. In our

work to date, the code generation framework is a proof-of-concept and does not yet cover

all of AsterixDB’s operators (e.g., its UNION, DISTINCT, and WINDOW operators). We plan to

expand our proof-of-concept to include such operators in the future.
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SELECT gkey, COUNT(*) cnt

FROM Tweets

GROUP BY <"GROUP-KEY"> AS gkey

ORDER BY cnt DESC

LIMIT 10

Figure 6.25: The query template used to evaluate GROUP-BY queries

6.7.5 GROUP-BY Query Evaluation

In Section 6.5, we proposed several improvements that could be adopted in AsterixDB’s

aggregation framework. In this section, we detail evaluation results of for proposed improve-

ments (using our proposed code generation framework) and compare them to the current im-

plementation of AsterixDB’s aggregation framework. In this experiment, we ran three queries

with the basic structure shown in Figure 6.25 against the tweets dataset. We varied the

grouping key (<"GROUP-KEY">) to use either of three fields: lang, user.followers count,

and user.name. Table 6.3 summarizes the salient characteristics of the three fields.

Query Grouping Key # of Distinct Groups Type

Q1 lang 66 String

Q2 user.followers count 192,120 Integer

Q3 user.name 4,553,812 String

Table 6.3: Grouping keys characteristics

As was mentioned earlier, AsterixDB uses the sort-based approach by default to process

GROUP-BY queries. However, a user can provide a hint to direct it to use the hash-based

approach instead. Since both approaches can arguably be sensitive to the size of the memory

allocated for the GROUP-BY operator, we set the memory size to 8MB for the first run, and

then we changed it to 256MB for a second run.

4IRIS-HEP’s SQL++ UDF functions: https://github.com/RumbleDB/iris-hep-benchmark-sqlpp/

blob/1fd70b10b72691ac7a9d53ccc90fb0f8f37e5e08/queries/common/functions.sqlpp
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Figure 6.26: Query execution times for the GROUP-BY queries using different memory budgets

Figures 6.26a and 6.26b show the time that it took to run the three queries (see Figure

6.25 and Table 6.26) using the Interpreted mode for both the sort-based (Interpreted

(SORT)) and the hash-based (Interpreted (HASH)) approaches. For the Generated Code

mode, we used the proposed improvements from Section 6.5.

We first compare the performance of both the Interpreted (SORT) and

Interpreted (HASH) approaches. Notice that allocating more memory for the Interpreted

(SORT) approach slightly (negatively) impacted the execution performance for the three

queries. For instance, Q1 took 8.5 seconds to execute with 8MB of memory and 11.1 seconds

with 256MB of memory. On closer inspection, we first noticed that the generated sorted

runs for the three queries were merged in a single pass. I.e., the sorted runs were written

once and read once from the disk, even when using only 8MB of memory. Asymptotically,

the CPU cost of performing external sorting is the same despite using 8MB or 256MB of

memory, as the I/O costs were the same for both budgets in our case (i.e., writing and

reading once). However, when profiled, we saw that, with the larger memory budget of

256MB, the CPU cost for the in-memory sorting was higher. The first reason for higher

CPU cost is that more memory means a larger number of tuples; hence, the CPU needs

to perform more work to prepare those tuples for sorting (e.g., constructing an array of
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pointers to the tuples). However, the main reason was that more memory means more

compare – where each requires two indirect memory accesses (pointer → tuple) – and swap

operations. Adding normalized keys [47, 59, 63] to the pointers’ array can minimize or

even eliminate the cost of indirect memory accesses when comparing two tuples. However,

AsterixDB’s in-memory sorter uses normalized keys only for values with declared types, and

in our experiments, we only declare the types of primary keys.

For the Interpreted (HASH) approach, Q1 and Q2 took about the same time to execute.

However, Q3, which has more than 4 million distinct groups, showed a significant perfor-

mance gap. With 8MB of memory, Q3 took 24.7 seconds vs. 9.2 seconds with 256MB of

memory. In comparison to the Interpreted (SORT) approach, the Interpreted (HASH)

approach is more sensitive to the memory size and the number of distinct groups in the

grouping key – a well-understood behavior of the hash-based approach.

For the Generated Code mode, all three queries took less time to execute when compared

to the Interpreted mode using the two approaches. Since the three queries are reasonably

simple, most of the performance gains are attributed to the mixed approach, which bene-

fits from both the hash-based approach’s early aggregation and the sort-based approach’s

robustness. With only 8MB of memory, the Generated Code mode (with the proposed im-

provements) outperformed the two approaches used in the Interpreted mode even with

256MB of memory – except for Q3, where the Interpreted (HASH) with the larger memory

budget approach was slightly faster than the lower budget Generated Code approach.

6.8 Related Work

In Chapter 3, we discussed recent research on code generation and related query compila-

tion. Here we mainly focus on recent work on code generation and query compilation for
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polymorphic data processing systems.

For RDBMSs, a plethora of work (summarized in Section 3) focuses on code generation

and query compilation. Some of that work went beyond generating efficient code for query

processing. For instance, in [77], Neumann proposed a technique that utilizes LLVM to

ensure that values stay in CPU registers as much as possible and that, in turn, minimizes

trips to memory and even to the CPU cache.

To the best of our knowledge, none of the prominent schemaless databases use code gen-

eration and compilation for query processing, as work on code generation and compilation

for schemaless databases are still in its infancy. Data processing engines like Spark use

code generation techniques when querying structured nested data (e.g., Parquet). However,

such systems require the schema to be known a priori and should not contain heterogeneous

fields. Thus, most such systems utilize strongly-typed languages for code generation, which

is sufficient for schema-ful systems.

For schemaless systems like MongoDB and Apache AsterixDB, utilizing a strongly-typed

language would require adding additional checks to ensure the types of each processed value,

which would mean more branches in the generated code. The Truffle framework addresses

this issue for dynamically-typed languages such as Python and JavaScript. Recent work [86]

has proposed using the Truffle framework for code generation and query compilation to run

Language-integrated Query (LINQ) queries over a dynamically-typed collection in JavaScript

or R, and that work showed that the performance of their approach was comparable to hand-

written code. In this work, we have also used the Truffle framework to generate code for

parts of a query plan, in this case for SQL++ in Apache AsterixDB.

The code generation and compilation model imposes additional challenges when measuring

the performance of different operations or debugging their correctness. Thus, in [45], the

authors proposed a new vectorized execution engine called Photon, which replaces parts of
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Spark’s older code generation execution engine. The authors showed that Photon outper-

forms the older engine as Photon’s operators were implemented using the native language

C++. As a result of using a native language, Photon developers skipped the JVM limi-

tations and gained explicit control over memory and access to SIMD intrinsics. However,

the limitations imposed by the JVM are orthogonal to the execution model, as the code

generation model could also benefit from gaining control over memory and access to SIMD

intrinsics. Moreover, the JVM developers’ community is aware of those limitations and pro-

posed several additions to Java 17 to give Java developers more control over memory [19] and

access to vectorized computation [20]. Those additions could allow us to improve our code

generation framework further in the future without compromising the portability of Java.

6.9 Conclusion

In this chapter, we have presented an approach to code generation and compilation for

schemaless document stores using the Truffle framework’s JIT compilation capability to pro-

cess values with heterogeneous types. Additionally, we proposed several enhancements that

can be adopted in Apache AsterixDB to improve the performance of GROUP-BY queries. In

our evaluation, those enhancements, along with the proposed code generation framework,

showed very significant improvements over the current AsterixDB execution engine – improv-

ing its aggregate query execution performance by orders of magnitude for some workloads.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, we have presented several techniques to optimize document stores for

handling analytical workloads without sacrificing the flexibility of the document data model.

In Chapter 4, we presented a novel approach for inferring and extracting documents’ embed-

ded schemas during data ingestion to minimize the storage overhead of storing JSON-like

documents. We first described the workflow of the proposed tuple compactor, which exploits

the LSM-lifecycle events to infer the schema and compact the records efficiently. Then, we

presented the vector-based format, a compaction-friendly physical record format, to mini-

mize the impact of inferring schemas and compacting records on ingestion performance. Our

experiments have shown that the proposed tuple compactor can reduce the storage overhead

and improve both the query and ingestion performance of Apache AsterixDB. Combined

with our page-level compression, we further reduced the overall storage size and improved

the system’s query performance.
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In Chapter 5, we proposed an additional application for the inferred schema mechanism,

where we used it to columnize nested semi-structured data in columnar formats. We first

presented our extensions to Dremel to (1) handle schema changes and (2) allow heterogeneous

values. Then, we introduced APAX and AMAX, two columnar layouts for storing columns in

LSM B+-trees, and analyzed both layouts’ advantages and disadvantages. We also proposed

an efficient approach for deleting and upserting previously inserted records. Furthermore,

we showed the challenges involved in reading and writing records in the APAX and AMAX

layouts and proposed solutions to overcome those challenges. We evaluated the two proposed

columnar layouts and showed that querying data stored in the AMAX format was orders of

magnitude faster than in AsterixDB’s original and the vector-based row formats. The APAX

format was faster than both row formats only for datasets that contain a moderate number

of columns. In another aspect, our experiments have shown that secondary indexes can

accelerate querying data stored in columnar formats, especially when accessing more than a

few columns; however, the cost of maintaining the entries of secondary indexes is high.

In Chapter 6, we showed that reducing the I/O costs alone (e.g., by using columnar formats)

is only partially sufficient for improving the performance of analytical workloads. Addition-

ally, we described and evaluated (analytically and empirically) the overheads associated with

AsterixDB’s batch-at-a-time query execution model for analytical workloads. As a result, we

introduced our code generation framework to remedy those overheads by translating queries

into executable programs to process queries more efficiently. By utilizing Truffle, a code

generation framework can re-specialize its code at runtime in case of type changes – ad-

dressing the challenge of handling polymorphic types in document stores. We also described

and evaluated several techniques to optimize GROUP-BY queries, a crucial class of queries in

analytical workloads. Our experiments have shown that the combined techniques proposed

in this chapter can improve query execution performance for document analysis by orders of

magnitude – showing that the CPU cost can be a bottleneck, even for disk-based databases

such as Apache AsterixDB.
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7.2 Future Work

In Chapter 5, we introduced a new parameter into AsterixDB. The new parameter determines

the number of records that can be stored in a single mega leaf node in the AMAX format.

We saw that increasing the number of records, for instance, can be beneficial for scan-

heavy workloads. However, the resulting pressure on the buffer cache can be high as more

temporary buffers are needed to construct the mega leaf nodes, especially if the number of

columns of ingested records is high. Having such a static limit that can be tuned manually

is less than ideal, however, as it becomes the user’s responsibility to configure the limit

parameter. A more adaptive approach that considers the number of columns, their sizes,

and the current state of the buffer cache would be more user-friendly and may improve both

the query and ingestion performance.

Cloud-based object storage solutions are becoming cheaper and more reliable. As a result,

many cloud-based analytical databases are adopting the shared-disk architecture instead

of the shared-nothing architecture, which is the most common architecture for on-premises

parallel databases. With the immutability and the batching nature of LSM, combined with

the efficiency of the AMAX format, a shared-disk version of AsterixDB would make a viable

candidate for a cloud-based document store. The immutability and the batching of LSM

could amortize the monetary cost of updates (or upserts) by bundling them into a single

write. At the same time, the columnar AMAX format could reduce the monetary cost

of data transfer in cloud-based storage solutions by reading only the relevant columns of

a query.

In Chapter 6, we described a mechanism for translating queries into executable programs.

However, the proposed code generation framework is a prototype and still lacks the support

for translating some of AsterixDB’s operators, such as its UNION, DISTINCT and WINDOW

operators. We plan to extend our prototype in the future to include such operators. Another
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extension for the code generation framework could exploit the interoperability of the Truffle

languages to allow users to write and more efficiently run User-defined Functions (UDFs)

in their favorite languages. For example, today an AsterixDB user can write a UDF using

Python, one of the languages supported to run in Truffle, and call it in SQL++. Since one of

the languages that Truffle supports is Python, its generated AIL language could then call the

declared UDF and produce the desired result. The interoperability between Truffle languages

could avoid today’s way of marshaling and unmarshalling the values between two different

languages (as both would run in the same JVM) – reducing the cost of UDF calls. Another

interesting aspect of the interoperability between Truffle’s programming languages and AIL

is that AsterixDB’s code generation framework could handle users’ UDFs in a “white-box”

manner. For example, any field access in those UDFs could be pushed down to the SCAN

operator. Such optimization cannot be performed in AsterixDB’s today’s Python UDFs.
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Appendix A

Chapter 4 Supplementary Material

A.1 Vector-based Format: Additional Example

In Section 4.3.3, we showed an example of a record in the vector-based format. However, the

example may not clearly illustrate the structure of a record with complex nested values. In

this section, we walk through another example of how to interpret a record in a vector-based

format with more nested values.

{
"id": 1,
"name": "Ann",
"dependents":{{

{"name": "Bob", “age”: 6},
{"name": "Carol", “age” : 10} ,
”Not_Available" }},

"employment_date": date("2018-09-20"),
"branch_location": point(24.0, -56.12),

}

Figure A.1: JSON document with more nested values
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Values’ Type Tags

object int string multiset object string int 𝐦𝐮𝐥𝐭𝐢𝐬𝐞𝐭 object string int 𝐦𝐮𝐥𝐭𝐢𝐬𝐞𝐭 string 𝐨𝐛𝐣𝐞𝐜𝐭 date point 𝐄𝐎𝐕

(a) Type tag vector

Fixed-length Values

1 6 10 26 date("2018-09-20") point(24.0, -56.12)

(b) Fixed-length values’ vector

3 3 5 13 “Ann” "Bob" Carol" ”Not_Available"
Variable-length Values

Lengths Values

(c) Variable-length values’ vector

2 4 10 4 3 4 3 15 15 id name dependents name age name age employment_date branch_location
Field Names

Lengths Values

(d) Field names’ vector

Figure A.2: A record in a vector-based format (another example)

Figure A.2 shows the structure of the JSON document, shown in Figure A.1, in the vector-

based format. Starting with the header (not show), we determine the four vectors, namely

(i) the type tag vector (Figure A.2a), (ii) the fixed-lengths values’ vector (Figure A.2b),

(iii) the variable-length values’ vector (Figure A.2c), and finally (v) the field names’ vector

(Figure A.2d).

After processing the header, we start by reading the first tag (object), which determine the

root type. As explained in Section 4.3.3, the tags of nested values (i.e., object, array, and

multi) and control tags (i.e., object, array, multiset, and EOV ) are neither fixed or variable

length values. We continue to the next tag which is (int). Since int is a fixed-length value,

we know it is stored in the first four bytes (assuming int is a 4-byte int). Also, because it

is preceded by the nested tag (object), we know it is a field of this object, and thus its field

name corresponds to the first field name id in the field names’ vector. Next, we see the tag

(string). As it is the first variable-length value, the length (i.e., 3) and the value "Ann" in

the variable-length vector belong to this string value.

Followed by the string, we get the tag (multiset), which is a nested value and a child of the

root object type. Therefore, the third field name (length: 10, value: dependents) corresponds
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to the multiset value. We see in Figure A.1 that the the field dependents is a multiset of

three elements of types: (object), (object) and (string). Thus, the following tag (object)

corresponds to the first element of the multiset. As it is a child of a multiset, our object

value does not have a field name. The next two tags are of type (string) and (int), which

correspond to the field names name and age , respectively, as they are children of the

preceded (object) tag. The following tag (multiset) marks the end of the current nesting

type (i.e., object) and we are back to the nesting type (i.e., mutliset). The following tag

(object) marks the beginning of the second element of the mutliset (See Figure A.1) and we

process it as we did for the first element. After the second control tag (multiset), we get

the tag (string), which is the type of the third and the last element of our multiset. The

following control tag (object) tells it is the end of the multiset and we are going back to the

root object type.

The next two tags (date) and (point) are the last two children of the root object type and

they have the last two field names employment date and branch location, respectively.

Finally, the control tag (EOV ) marks the end of the record.

A.2 Queries

We provide the queries we ran in our experiments against the Twitter, WoS, and Sensors

datasets.

A.2.1 Twitter Dataset’s Queries

Q1:

SELECT VALUE count(∗)

FROM Tweets
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Q2:

SELECT VALUE uname , a

FROM Tweets t

GROUP BY t . users . name AS uname

WITH a AS avg(length(t . text))

ORDER BY a DESC

LIMIT 10

Q3:

SELECT uname , count(∗) as c

FROM Tweets t

WHERE (

SOME ht IN t . entities . hashtags

SATISFIES lowercase(ht . text) = "jobs"

)

GROUP BY user . name as uname

ORDER BY c DESC

LIMIT 10

Q4:

SELECT ∗

FROM Tweets

ORDER BY timestamp_ms
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A.2.2 WoS Dataset’s Queries

Q1:

SELECT VALUE count(∗)

FROM Publications as t

Q2:

SELECT v , count(∗) as cnt

FROM Publications as t ,

t . static_data . fullrecord_metadata

. category_info . subjects . subject

AS subject

WHERE subject . ascatype = "extended"

GROUP BY subject . ‘ value ‘ as v

ORDER BY cnt DESC

Q3:

SELECT country , count(∗) as cnt

FROM (

SELECT value distinct_countries

FROM Publications as t

LET address = t . static_data

. fullrecord_metadata

. addresses . address_name ,

countries = (

SELECT DISTINCT VALUE

a . address_spec . country

FROM address as a

)

WHERE is_array(address)
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AND array_count(countries) > 1

AND array_contains(countries , "USA")

) as collaborators

UNNEST collaborators as country

WHERE country != "USA"

GROUP BY country

ORDER BY cnt DESC

LIMIT 10

Q4:

SELECT pair , count(∗) as cnt

FROM (

SELECT value country_pairs

FROM Publications as t

LET address = t . static_data

. fullrecord_metadata

. addresses . address_name ,

countries = (

SELECT DISTINCT VALUE

a . address_spec . country

FROM address as a

ORDER by a . address_spec . country

) ,

country_pairs = (

SELECT VALUE [countries[x] , countries[y]]

FROM range(0 , array_count(countries) - 1) as x ,

range(x + 1 , array_count(countries) - 1) as y

)

WHERE is_array(address)
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AND array_count(countries) > 1

) as country_pairs

UNNEST country_pairs as pair

GROUP BY pair

ORDER BY cnt DESC

LIMIT 10

A.2.3 Sensors Dataset’s Queries

Q1:

SELECT count(∗)

FROM Sensors s

Q2:

SELECT max(r . temp) , min(r . temp)

FROM Sensors s , s . readings r

Q3:

SELECT sid , avg_temp

FROM Sensors s , s . readings as r

GROUP BY s . sensor_id as sid

WITH avg_temp as AVG(r . temp)

ORDER BY t DESC

LIMIT 10

Q4:

SELECT sid , avg_temp

FROM Sensors s , s . readings as r

WHERE s . report_time > 1556496000000
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AND s . report_time < 1556496000000

+ 24 ∗ 60 ∗ 60 ∗ 1000

GROUP BY s . sensor_id as sid

WITH avg_temp as AVG(r . temp)

ORDER BY avg_temp DESC

LIMIT 10
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Appendix B

Chapter 5 Queries

We provide the queries we ran in our experiments in Chapter 5 against the cell, tweets 1,

sensors, and wos datasets.

B.1 cell Queries

Q1:

SELECT VALUE COUNT(∗)

FROM Cell

Q2:

SELECT caller , MAX(c . duration) as m

FROM Cell c

GROUP BY c . caller AS caller

ORDER BY a DESC

LIMIT 10
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Q3:

SELECT VALUE COUNT(∗)

FROM Cell c

WHERE c . duration >= 600

B.2 tweets 1 Queries

Q1:

SELECT VALUE COUNT(∗)

FROM Tweets

Q2:

SELECT VALUE uname , a

FROM Tweets t

GROUP BY t . users . name AS uname

WITH a AS MAX(length(t . text))

ORDER BY a DESC

LIMIT 10

Q3

SELECT uname , COUNT(∗) as c

FROM Tweets t

WHERE (

SOME ht IN t . entities . hashtags

SATISFIES LOWERCASE(ht . text) = "jobs"

)

GROUP BY user . name as uname

ORDER BY c DESC

LIMIT 10
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B.3 sensors Queries

Q1:

SELECT VALUE COUNT(∗)

FROM Sensors s , s . readings r

Q2:

SELECT MAX(r . temp) , MIN(r . temp)

FROM Sensors s , s . readings r

Q3:

SELECT sid , max_temp

FROM Sensors s , s . readings as r

GROUP BY s . sensor_id as sid

WITH max_temp as MAX(r . temp)

ORDER BY t DESC

LIMIT 10

Q4:

SELECT sid , max_temp

FROM Sensors s , s . readings as r

WHERE s . report_time > 1556496000000

AND s . report_time < 1556496000000

+ 24 ∗ 60 ∗ 60 ∗ 1000

GROUP BY s . sensor_id as sid

WITH max_temp as MAX(r . temp)

ORDER BY max_temp DESC

LIMIT 10
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B.4 wos Queries

Q1:

SELECT VALUE COUNT(∗)

FROM Publications as t

Q2:

SELECT v , COUNT(∗) as cnt

FROM Publications as t ,

t . static_data . fullrecord_metadata

. category_info . subjects . subject

AS subject

WHERE subject . ascatype = "extended"

GROUP BY subject . ‘ value ‘ as v

ORDER BY cnt DESC

Q3:

SELECT country , COUNT(∗) as cnt

FROM (

SELECT value countries

FROM Publications as t

LET address = t . static_data

. fullrecord_metadata

. addresses . address_name ,

countries = ARRAY_DISTINCT(

address[∗] . address_spec . country

)

WHERE IS_ARRAY(address)

AND ARRAY_COUNT(countries) > 1

AND ARRAY_CONTAINS(countries , "USA")
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) as collaborators

UNNEST collaborators as country

WHERE country != "USA"

GROUP BY country

ORDER BY cnt DESC

LIMIT 10

Q4:

SELECT pair , COUNT(∗) as cnt

FROM (

SELECT value ARRAY_PAIRS(countries)

FROM Publications as t

LET address = t . static_data

. fullrecord_metadata

. addresses . address_name ,

countries = ARRAY_DISTINCT(

address[∗] . address_spec . country

)

WHERE IS_ARRAY(address)

AND ARRAY_COUNT(countries) > 1

) as country_pairs

UNNEST country_pairs as pair

GROUP BY pair

ORDER BY cnt DESC

LIMIT 10
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