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ABSTRACT OF THE THESIS

On Indexing Multi-Valued Fields in AsterixDB
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Secondary indexes in database systems are traditionally built under the assumption that one

data record maps to one indexed value. Nowadays single data records often hold collections

of values that users want to access efficiently in an ad-hoc manner. Database users are thus

torn between changing their data model to support such indexes or living with subpar query

execution time. Multi-valued indexes aim to give users the best of both worlds: (i) to keep

a more natural data model of records with collections of values, and (ii) to reap the benefits

of a secondary index.

This thesis details the steps taken to realize multi-valued indexes in AsterixDB, a big data

management system with a structured query language operating over a collection of docu-

ments. A non-ambiguous, clean, and concise syntax is first developed for specifying such

indexes. Data flows for bulk-loading a collection of records and maintaining an index cor-

rectly with respect to concurrency are then illustrated. Query plans to take advantage of

multi-valued indexes for use in joins involving arrays / multisets, predicates with existential

quantification, and predicates with universal quantification (the latter of which is not sup-

ported by any other system to date) are discussed next. We finally conclude with experiments

demonstrating the efficacy of these indexes.
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Chapter 1

Introduction

Indexing, the concept of organizing data for more efficient search, is a technique older than

computing itself. In the field of database systems, secondary indexing refers to the practice of

duplicating data from some primary data source for the specific purpose of efficient retrieval.

A single data record can assume many different forms, presented in the following (non-

exhaustive) list: (i) as a row in a table, (ii) as a object from a class, (iii) as a key-value

pair, (iv) as a node in a graph, or (v) as a self-describing document. The representation in

item (v) has grown popular over the years, mainly due to the flexibility of not committing

to a data description for all of the records in one’s database. Consequently this is the data

model utilized by the system that this research has been performed on, AsterixDB, a NoSQL-

style big data management system boasting a structured query language (SQL++) over a

collection of documents.

Secondary indexes come in many different flavors with a rich history of research. We will

start our discussion with secondary indexes in a traditional relational database management

system. In traditional relational systems (utilizing the representation in item (i) from the

previous paragraph), a data record has a single value per field (column). A secondary index
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on a single field for a collection of records is known as a single-field atomic index, while

a secondary index on multiple fields is known as a composite atomic index. Now suppose

that we relax the constraint on our relational system to allow for multiple values per field

(such as an array or set) for a single record. If we create a secondary index on such a multi-

valued field, we refer to this as a multi-valued index. A multi-valued index is distinct from

a composite atomic index, as the number of values associated with the multi-valued field is

not known a priori.

Given a collection of records to index, this thesis focuses on supporting secondary indexes

for multiple values per-record. There exist many different ways to utilize a secondary in-

dex for use in accelerating queries, but this research focuses on using secondary indexes in

cooperation with the primary data source. This research does not discuss how to utilize

multi-valued secondary indexes to act as the sole data source for a select few queries. The

main contributions of this thesis are two-fold: (i) an analysis of various syntax for specifying

indexes on multiple values within a single record, and (ii) novel data flows that utilize said

indexes for ad-hoc queries in a structured query language for documents.

The remainder of this thesis is structured as follows: Chapter 2 discusses related work around

indexing with multiple endpoints. Chapter 3 provides background into what AsterixDB is

and the lifecycle of a query. Chapter 4 describes the syntax for specifying a multi-valued

index and the types of queries that a user can expect to be accelerated using said indexes.

Chapter 5 details various data flows to realize multi-valued indexing. Chapter 6 evaluates

the performance of such indexes. Chapter 7 concludes this thesis and details potential future

work with respect to multi-valued indexing.
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Chapter 2

Related Work

The advent of nesting in data models for databases beyond the flat relational era has brought

with it a set of challenges with respect to associative access. Related work can be grouped into

two general areas: (a) indexing in object-oriented databases, and (b) multi-valued indexing in

modern document databases (document stores, key-value stores with document extensions,

and relational stores with document extensions).

2.1 Indexing in Object-Oriented Databases

Work in this area dates back approximately 30 years. We discuss the object data model

first. Here, objects and their member objects are each first class citizens. This contrasts

with the relational model, where the attributes of a tuple must always be tied to a tuple

itself. In terms of indexing, object-oriented databases must address the problem of what

exactly one should index when objects can reside in objects. To motivate the object indexing

problem, Figure 2.1 details the following: A Vehicle contains two strings (Model and Color)

and one object (Manufacturer). A Moped inherits from the Vehicle object, and thus has

3



Figure 2.1: Class-attribute hierarchy for a vehicle-manufacturer example.

the same attributes. A Manufacturer contains two strings (Name and Headquarters) and

one list of objects (Divisions). A Division object contains three strings: Name, Function,

and Location.

Suppose we want to index vehicles by the names of their vehicle manufacturers. Using

the class-attribute hierarchy detailed in Figure 2.1, we specifically want to index the Name

attribute inside the Manufacturer object of a Vehicle object. Bertino and Kim studied

three approaches to nested indexes in object databases [4]: (i) nested indexes (which map

the Name attribute to the Vehicle objects), (ii) path indexes (which map the same Name

attribute to both Manufacturer and Vehicle objects), and (iii) multi-indexes (which first

map the Name attribute to the Manufacturer objects, then map the Manufacturer objects

to the Vehicle objects). Under a relational lens, multi-indexes (item (iii)) can be viewed

as pair-wise join indexes, which have been studied by Valduriez [29]. Bertino and Foscoli

address the problem of incorporating the notion of inheritance (e.g. Moped, a child class of

Vehicle) with indexing nested objects [3]. Note that in Figure 2.1, the class Moped and

Vehicle are essentially treated as two completely separate classes. Kemper and Moerkotte

detail an approach based on indexing objects that are nested in sets and lists [16]. As

an example, suppose we now want to index all Name fields associated with all Division

objects within the Divisions list of a Manufacturer object. This is multi-valued indexing

4



with an object-oriented twist, and support for such indexes can be found in many of the

object databases of this era [11, 20, 21, 17]. Goczyla proposed an extension to set indexing

in object databases that not only handles set membership, but the more general cases of

superset, subset, and set equality [13].

2.2 Multi-Valued Indexing in Document Databases

Next we address the document model. While not as radical as the object data model, the

document model differs from the relational model in that the attributes of a document are

not flat (i.e. the inclusion of composite and multi-valued attributes) and that the documents

themselves are self-describing (lending itself to weaker type assumptions). Take the XML

document, where an element is composed of many sub-elements and there exists no way to

determine if a sub-element will be atomic or multi-valued. The XML extension for DB2

addresses the atomic vs. multi-valued problem with respect to indexing by treating every

element as a potential multi-valued attribute [24]. The JSON document, in contrast to

the XML document, does allow one to specify if a field is multi-valued or not (making

the atomic vs. multi-valued problem a non-issue). Modern JSON document stores such as

Couchbase [10], MongoDB [22], and Oracle’s NoSQL database [25] have support for multi-

valued indexing, but all had somewhat different design goals than the multi-valued indexing

approach studied here. Couchbase’s array indexes are made with the intent to cover certain

queries (i.e., to only use the index to satisfy a query), while AsterixDB’s multi-valued indexes

were designed to handle a larger set of queries at the cost of no longer being covering.

Couchbase does also offer non-covering multi-valued “Flex Indexes” [12], made with the

intent to handle a larger set of queries that can be answered using an inverted index. In

contrast, multi-valued indexes in AsterixDB were designed to support queries that can be

5



answered using a B+ tree. Finally, MongoDB and Oracle’s index specification syntax leave

undesired ambiguity for the user (as we will discuss later).

The document model is not restricted to just document databases. This model is also avail-

able in several key-value stores and modern relational systems. ArangoDB and CockroachDB

offer array indexes, but only to satisfy membership queries (i.e. no range predicates) on non-

nested arrays [7, 19]. Relational databases with document extensions like MySQL [9] and

PostgreSQL [27] also support a limited form of multi-valued indexing, but again only sup-

port membership queries. Multi-valued indexes in AsterixDB on the other hand support a

much larger set of queries, such as joins with a value inside a multi-valued field, existential

quantification, and universal quantification (the latter of which is not supported by any of

the systems researched here to date).
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Chapter 3

Overview of AsterixDB

AsterixDB is a big data management system (BDMS) designed to be a highly scalable

platform for information storage, search, and analytics [2]. To scale outward it follows a

shared-nothing architecture, where each node independently accesses storage and memory.

The general system architecture for AsterixDB is given in Figure 3.1. To describe AsterixDB,

we detail the lifecycle of a general request (e.g. an insertion, update, query, etc. . . ) below.

1. All requests first arrive at the client interface on the cluster controller. This cluster

controller component not only serves as an entry point for all user requests, but also

coordinates all work amongst the individual AsterixDB nodes.

2. The request is then given to the SQL++ compiler. Here our request is translated into a

logical plan and subsequently given to a rule-based optimizer to produce an optimized

logical plan [5].

3. To determine the different access paths, the SQL++ compiler must also be able to

access various metadata about the data that AsterixDB is managing. This includes

what datasets and indexes are available. The Metadata Manager relays this infor-
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Figure 3.1: Overview of the AsterixDB system.

mation between the node containing the aforementioned metadata and the SQL++

compiler.

4. The logical plan produced by the SQL++ compiler is then given to the Job Execu-

tion component, which will translate the plan into a job that can be executed across

all nodes in the cluster [6]. Datasets in AsterixDB are partitioned across the clus-

ter on their primary key into primary indexes, where the data records reside, with

all secondary indexes being local to each node. With this partitioning in mind, the

appropriate jobs are submitted to each node’s Hyracks Dataflow component.

5. With each node now having its own job, it executes the job and interacts with its disk

through the Dataset Storage and LSM Tree Manager components [1]. All datasets and

indexes in AsterixDB use LSM (log-structured merge) trees for their native storage.

6. Once a job finishes with the Job Execution components, its status and any query results

are relayed back to the client.
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The work in this thesis primarily focuses on the SQL++ Compiler and Job Execution com-

ponents of the cluster controller and the Hyracks Dataflow component of a node controller.
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Chapter 4

Indexing User Experience

Ideally, a user should only have to interact with an index once: when the user creates

the index. By issuing applicable queries, the user should then experience a faster response

time. Hence this chapter is divided into three sections: (i) a example database to guide the

following discussion, (ii) how a user should specify the creation of a multi-valued index, and

(iii) what types of user queries can be accelerated through the use of a multi-valued index.

4.1 Inventory Management Example

To illustrate many of the topics mentioned in this chapter and the next, an inventory man-

agement example (dubbed ShopALot) is presented. There are four datasets associated with

this example: (i) Users, who place (ii) Orders from (iii) Stores that sell (iv) Products.

10



4.1.1 Users Dataset

The Users dataset represents customers of a shopping service who want to place orders.

A user is uniquely identified by their user_id, having an optional email field, having a

name composed of a first and last part, and having 0 or more phones (each phone being

composed of a kind and a number).

CREATE TYPE UsersType AS {

user_id: string ,

email: string?,

name: {

first: string ,

last: string

},

phones: [{

kind: string ,

number: string

}]

};

Listing 4.1: Type definition for the Users dataset.

4.1.2 Orders Dataset

The Orders dataset represents orders placed by users to some store. An order is uniquely

identified by an order_id and has a one-to-many relationship with Users and Stores (rep-

resented as user_id and store_id). Each order has a list of line items, with each line item

being uniquely identified by its item_id (with respect to the containing order itself), a qty,

a selling_price, a one-to-many relationship with Products (represented as product_id),

and an array tags.

CREATE TYPE OrdersType AS {

order_id: string ,

user_id: string ,

11



store_id: string ,

items: [{

item_id: string ,

qty: integer ,

selling_price: float ,

product_id: string ,

tags: [string]

}]

};

Listing 4.2: Type definition for the Orders dataset.

4.1.3 Stores Dataset

The Stores dataset represents stores that sell products to users through orders. A store

is uniquely identified by a store_id and contains a name, an address (composed of a

street, city, state, and a zip_code), and a list of categories describing what the store

sells (categories).

CREATE TYPE StoresType AS {

store_id: string ,

name: string ,

address: {

street: string ,

city: string ,

state: string ,

zip_code: string

},

categories: [string]

};

Listing 4.3: Type definition for the Stores dataset.
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4.1.4 Products Dataset

The Products dataset represents products sold by stores. A product is uniquely identified

by a product_id and possesses a single category, name, and description.

CREATE TYPE ProductsType AS {

product_id: string ,

category: string ,

name: string ,

description: string

};

Listing 4.4: Type definition for the Products dataset.

4.2 Creating an Index

To set the scene, we first describe how indexes are currently created in AsterixDB. To create

an index, a user can use the (simplified) syntax specified below:

CREATE INDEX idxName ON DatasetName (

element1 , element2 , element3 , ...

);

Listing 4.5: General syntax for creating an index in AsterixDB.

In the example above, element1, element2, element3, etc. . . represent elements of the

dataset with name DatasetName that are contained in this index. An index element here

refers to either (i) a field, (ii) a sequence of fields, or (iii) an expression that generates one

or more fields. The following sections will describe and motivate the issues associated with

describing a multi-valued element in AsterixDB. We will then conclude with the new syntax

for multi-valued index specification.
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4.2.1 Index Specification Without Non-1NF Features

An AsterixDB CREATE INDEX statement is given below for a composite index on the category

and name fields of the Products dataset.

CREATE INDEX productsCatNameIdx ON Products (

category , name

);

Listing 4.6: Specification for a composite index on two fields.

The Products dataset is in first normal form (1NF), possessing no composite or multi-valued

attributes. Had Products existed in a relational system, the CREATE INDEX statement for

this dataset would be nearly identical. In Listing 4.6, index fields are indistinguishable

from the abstraction given at the start of this section: elements. To accommodate the

aforementioned non-1NF features requires us to go beyond just fields.

4.2.2 Index Specification With Nested Fields

Another AsterixDB CREATE INDEX statement is given for two index elements (the first and

last fields of the name object field) associated with the Users dataset.

CREATE INDEX usersNameIdx ON Users (

name.first , name.last

);

Listing 4.7: Specification for a composite index on two nested fields.

In contrast with the previous example (where only two fields exist), a total of three fields

are required to describe two index elements: first, last, and name. The coupling of name

and first, and name and last, are henceforth denoted as paths. More generally, a path is

an ordered sequence of fields. Using a “.” to denote that the field to the right of the dot is

found within the field to the left has found widespread use in systems that allow fields within
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fields. Continuing with the example above, the path “name.first” describes the first field

inside the name object.

4.2.3 Index Specification With Multi-Valued Fields

Paths allow us to cleanly describe nested fields, but complications arise when one field refers

to many values (ı.e. the concept of multi-valuedness). Listed below are several candidate

approaches to index specification for fields with multi-valuedness. Each will propose a solu-

tion and motivate an issue to be answered by the next candidate, culminating in the final

syntax for multi-valued elements in AsterixDB.

Candidate 1: Not Distinguishing Between Multi-Valued and Atomic Fields

The example described in Listing 4.7 applies to atomic fields only, but let us assume this

restriction was absent. The following hypothetical CREATE INDEX statement could then be

invoked to create an index on a field within an array. The specification below could describe

an index on the number field inside the array of phones objects for the Users dataset:

CREATE INDEX usersNumberIdx ON Users (

phones.number

);

Listing 4.8: Candidate 1 example specification for multi-valued elements.

If the type of the field phones is known a priori, it is easy to infer that the number field is

located not within an object, but within an array of objects. This however is too strong of

an assumption to make with document databases. Had the type for phones not been known

ahead of time, it would be impossible to tell if the path “phones.number” is associated with

one value per record or multiple values per record without first fetching a record.
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MongoDB adopts the approach of treating atomic and multi-valued fields as being the same

(with respect to index specification), deferring the interpretation of the index path to index-

maintenance time. To show some of the anomalies associated with this approach, suppose

that we have two documents:

{ "user_id": "A1", "phones": { "number": "123 -4567" } }

{ "user_id": "A2", "phones": [ { "number": "123 -4567" } ] }

Listing 4.9: Example documents for the Users dataset. The type for the phones field is not
strictly enforced.

Given the path “phones.number”, MongoDB would choose to store both entries in the

index. In the context of MongoDB’s query language (which allows the same ambiguities)

this syntax is permissible, but SQL++ is more precise with respect to the structure of

applicable results. If the MongoDB approach were taken for AsterixDB, an additional check

for the field’s structure would need to be applied to remove the index entries that do not

structurally match the query. As an example, suppose the usersNumberIdx index contains

all documents listed above. Now assume that the optimizer chooses to use this index as the

access path for the query below.

FROM Users U

UNNEST U.phones P

WHERE P.number = "123 -4567"

SELECT DISTINCT VALUE U.user_id;

Listing 4.10: SQL++ query for implicit existential quantification on an array field.

The correct answer to this query is ["A2"], but if the index does not store per-record

structure information for the query to utilize (or if the records themselves are not fetched

after the index lookup and a structural check is applied for each index entry), then the result

will incorrectly become ["A1", "A2"]. This situation is illustrated in Figure 4.1. Thus

candidate 1 illustrates the first design requirement for our new index specification syntax:

clearly distinguish between atomic and multi-valued fields.
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Figure 4.1: Overview of the structure information loss situation with candidate approach 1.

Candidate 2: Using an Operator for Multi-Valued Steps

Having described the issues associated with not discriminating between atomic fields and

multi-valued fields in paths, we now move to different ways to syntactically denote multi-

valued nodes in paths. Specifically we need to be able to express a way to represent ob-

jects within an array or set. Amazon’s PartiQL, another SQL-style query language for

semi-structured data, has a special operator for expressing all objects or values inside a

list: the wildcard ([*]) operator [26]. This wildcard operator in PartiQL is functionally

equivalent to the UNNEST operator in SQL++. Revisiting Listing 4.8, we could express the

usersNumberIdx index in a new wildcard-based candidate notation:

CREATE INDEX usersNumberIdx ON Users (

phones [*]. number

);

Listing 4.11: Candidate 2 example specification for multi-valued elements.
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{

"user_id": "B1",

"phones": [

{ "kind": "MOBILE", "number": "123 -456 -7890" },

{ "kind": "OFFICE", "number": "000 -123 -4567" }

]

}

Listing 4.12: Example document for the Users dataset.

The notation used above always stores number field values in a phones array, preventing the

issues associated with candidate 1. Oracle’s NoSQL database adopts this approach of using

a separate operator to denote multi-valued steps in their index specifications. This syntax

itself is not immune to problems though, suppose now we want to create a composite index

on the number and kind fields inside the array of phones objects for the Users dataset:

CREATE INDEX usersNumberKindIdx ON Users (

phones [*]. number ,

phones [*]. kind

);

Listing 4.13: Second candidate 2 example specification for multi-valued elements.

To specify a composite index for two fields in the same array for Listing 4.13, the wildcard

operator is listed twice for the same phones array (even though phones is only UNNESTed

once). Grammar-wise, the first index element phones[*].number is disjoint from the second

index element phones[*].kind. This means that a user is grammatically free to specify

different arrays / sets for each index element, leading to more complex specifications for

multi-valued indexes. MySQL interprets the specification of multiple arrays in their indexing

statement as a cross-product, citing the explosion of index entries as a reason to not support

such indexes [23]. Additionally, the use cases for a composite index on multiple multi-valued

fields are very narrow. Using the cross-product interpretation of such a specification, such

an index could only be used when the two multi-valued fields are given in a query that

itself performs a cross-product between two such fields. Given that all of the other systems
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researched in this thesis disallow the creation of indexes on more than one multi-valued field,

the design decision was made to not support such a feature as well.

Having eliminated the possibility of indexing fields across more than one multi-valued node,

candidate 2 leaves us with syntactically misleading specifications. Suppose the document

in Listing 4.12 exists in the Users dataset. Listing 4.13 could then be interpreted in two

ways:

1. The object holding the number and kind fields are to be extracted from the phones

array and indexed together (from the same source object). This results in two index

entries. (Note that in AsterixDB an index entry consists of all secondary index field

values followed by the document’s unique identifier, the primary key.)

(a) ("123-456-7890", "MOBILE", "B1")

(b) ("000-123-4567", "OFFICE", "B1")

2. The number field and the phones field are to be extracted separately, combined via a

cross product, and then indexed. This results in four index entries:

(a) ("123-456-7890", "MOBILE", "B1")

(b) ("123-456-7890", "OFFICE", "B1")

(c) ("000-123-4567", "OFFICE", "B1")

(d) ("000-123-4567", "MOBILE", "B1")

This issue of ambiguous notation for composite multi-valued indexes (for more than one

field within a multi-valued field) illustrates the second design requirement for our index

specification syntax: avoid syntactic repetition when specifying multi-valued fields.

Candidate 3: Index Specification using Queries

All the approaches described thus far deal with using special data-definition language (DDL)

notations for paths, begging the question: “Why not specify indexes using a subset of the
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query language itself?”. This is the approach adopted by Couchbase’s array indexes, and is

detailed in Listing 4.14.

CREATE INDEX usersNumberKindIdx ON Users (

DISTINCT ARRAY [p.number , p.kind]

FOR p IN phones END

);

Listing 4.14: Candidate 3 example specification for multi-valued elements.

While candidate 3 satisfies the first and second design requirements of our index specification

syntax, it is arguably too verbose for our needs (making the CREATE INDEX statement hard

to read). Couchbase’s array indexes were designed with the intent to also act as covering

indexes. Consequently, Couchbase allows users to specify whether or not all elements of the

array should be indexed (vs. just unique elements) and to quantify the array elements to be

indexed using an optional WHEN clause. Multi-valued indexes in AsterixDB are designed only

to accelerate many queries, not act as the sole access path for a select few queries. Having

been reminded of the design decision to not cover queries, candidate 3 illustrates the third

and fourth requirements for our index specification syntax: 3) constrain the specification

language for creating non-covering indexes and 4) make the specification easy to read and

understand.

4.2.4 Creating a Multi-Valued Index in AsterixDB

We now discuss the new index creation syntax for multi-valued indexes in AsterixDB. To

recap the previous sections, this syntax was designed with the following requirements in

mind:

1. Distinguish between atomic and multi-valued fields.

2. Avoid repetition when specifying the multi-valued field in composite indexes.

3. Constrain the specification language for creating non-covering indexes.
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4. Have an easy-to-read index specification.

To satisfy both requirements 3 and 4 while building upon candidate specification 3, the

index DDL used in AsterixDB only allows two additional operators: UNNEST and SELECT.

Revisiting the usersNumberKindIdx example, the DDL to create an index on two fields

within one multi-valued field is given in Listing 4.15.

CREATE INDEX usersNumberKindIdx ON Users (

UNNEST phones SELECT number , kind

);

Listing 4.15: Example specification for a multi-valued element in AsterixDB.

In addition to being concise, this syntax is also easy to debug. A user can transform the

previous index specification into a query that can be executed:

FROM Users U

UNNEST U.phones P

SELECT P.number , P.kind

Listing 4.16: Query that corresponds to the index specification in Listing 4.15.

Aside from the inclusion of the FROM clause, the only difference between the query in List-

ing 4.16 and the index specification in Listing 4.15 is Listing 4.16’s use of the variable P.

The more general form for a multi-valued index element specification is given in Figure 4.2a

with supporting syntax diagrams in Figure 4.2b and Figure 4.2c. A multi-valued index ele-

ment will always start with an UNNEST clause, where NestedField represents a path to some

multi-valued field. If there are many multi-valued elements to traverse to get to our defined

endpoint multi-valued element, then UNNEST is specified multiple times. If the endpoint

multi-valued element holds simple built-in types (such as integers, strings, floats, etc. . . ),

then the full index element specification ends there. Otherwise (if the index endpoint(s) are

located within objects), SELECT must be specified once, followed by all fields or paths to

the index endpoint(s). Last but not least, similar to how existing atomic indexes work in
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(a) Syntax diagram for MultivaluedIndexElement.

(b) Syntax diagram for IndexField. (c) Syntax diagram for NestedField.

Figure 4.2: Syntax diagrams for a multi-valued index element.

AsterixDB, a user can also specify the type associated with the to-be-indexed field if the

type itself is not specified in the dataset’s type definition.

We will now discuss more complex examples using the new index specification syntax.

Example 1: Indexing an Array with Type Specifications

To start, we extend Listing 4.15 to include type specifications for the endpoint fields. If

the dataset type for Users did not specify a type for the phones field or if the kind and

number field types were not specified in the phones object array, the following CREATE INDEX

statement would be used:

CREATE INDEX usersNumberKindIdx ON Users (

UNNEST phones SELECT number: string , kind: string

);

Listing 4.17: Example specification for a multi-valued element that includes explicit types.
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Example 2: Indexing an Array of Built-in Types

Now suppose that we want to create an index on the categories array inside the Stores

dataset. Unlike the previous examples, categories is an array of strings (in contrast to an

array of objects). To create this index on categories, a user would invoke the following

CREATE INDEX statement:

CREATE INDEX storeCatIdx ON Stores (

UNNEST categories

);

Listing 4.18: Example index specification for an array of strings.

Here the SELECT clause is absent because there are no fields within the categories array to

reference.

Example 3: Indexing an Atomic Field and an Array Field

Composite multi-valued indexes are not limited to index endpoints located within a multi-

valued field. By only changing how one specifies a singular index element (in contrast

to many elements), the inclusion of an atomic element outside of the multi-valued field

requires no changes to the overall CREATE INDEX syntax. The examples below illustrate how

a user would create an index on the Stores dataset for both the categories array and the

zip_code field of the address object field.

CREATE INDEX storeZipCatIdx ON Stores (

address.zip_code ,

UNNEST categories

);

Listing 4.19: Example composite index specification with an atomic element prefix and a
multi-valued element suffix.
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CREATE INDEX storeZipCatIdx ON Stores (

UNNEST categories ,

address.zip_code

);

Listing 4.20: Example composite index specification with a multi-valued element prefix and
a atomic element suffix.

It is important to note that, as of this writing, the two examples above are not currently

implemented in AsterixDB. Listing 4.19 and Listing 4.20 are instead meant to illustrate the

future user-level design of composite indexes with atomic and multi-valued elements.

Example 4: Indexing an Array Within an Array

In some cases, a field to be indexed is nested within more than one level of multi-valued

field. To demonstrate indexing a field within two array fields (the tags field within the

items object array of the Orders dataset), the example below is given:

CREATE INDEX ordersItemTagsIdx ON Orders (

UNNEST items UNNEST tags

);

Listing 4.21: Example index specification for an array within an array.

Again this specification can easily be debugged by transforming it into a query and adding

aliases:

FROM Orders O

UNNEST O.items I

UNNEST I.tags T

SELECT T

Listing 4.22: Query that corresponds to the index specification in Listing 4.21.
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4.3 Accelerating Queries

As previously mentioned, a multi-valued index is aimed to accelerate various forms of quan-

tification within some array or multiset. This section aims to describe specific example

queries that the optimizer will recognize as applicable for multi-valued index usage. For

details regarding how the optimizer recognizes applicability, refer to Section 5.5.

Currently there are three types of indexes in AsterixDB: (i) B+ tree indexes, (ii) R tree

indexes, and (iii) inverted (text) indexes. All work in this thesis has been performed by

extending B+ tree indexes to handle multi-valued fields. Consequently the predicates that

multi-valued indexes can accelerate are limited to the predicates that atomic B+ tree indexes

can accelerate (i.e. equality and range predicates). The following sections will use equality

and range predicates when describing an applicable query, but it is important to note that

R tree indexes could also be naturally extended to handle multi-valued fields of spatial data.

The separation between logical plans (the Algebricks layer) and physical plans (the Hyracks

layer) is what enables such an extension.

4.3.1 Explicit Unnesting Queries

Given that we create multi-valued indexes using UNNEST clauses, it follows that UNNEST

queries with an equality or range predicate on the index endpoints can utilize the index

itself. Suppose we want to find all orders that have an item of quantity 100:

FROM Orders O

UNNEST O.items I

WHERE I.qty = 100

SELECT DISTINCT O;

Listing 4.23: UNNEST query example.

The query in Listing 4.23 involves one UNNEST on the items object array, with an equality
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predicate on the qty field. This query can be accelerated using either of the indexes given

in Listing 4.24.

CREATE INDEX ordersItemQtyIdx ON Orders (

UNNEST items SELECT qty

);

// Prefix will be used.

CREATE INDEX ordersItemQtyPriceIdx ON Orders (

UNNEST items SELECT qty , selling_price

);

Listing 4.24: Indexes used to accelerate the queries in Listing 4.23, Listing 4.25, Listing 4.26,
and Listing 4.28.

The inclusion of the second index in Listing 4.24 demonstrates that the applicability of

multi-valued B+ tree indexes go beyond just queries that contain all fields in the index

itself. Similar to our existing atomic B+ tree indexes, if a multi-valued index contains a

subset of the fields in a query and all fields of the subset form the prefix of index itself, the

index is deemed applicable for said query.

4.3.2 Membership / Existential Quantification Queries

The query in Listing 4.23 describes one approach to quantifying a value within a multi-

valued field. While valid, a more natural way to express such a query is through an explicit

existential quantification expression:

FROM Orders O

WHERE SOME I IN O.items SATISFIES I = 100

SELECT O;

Listing 4.25: Explicit existential quantification query example.

The syntax for quantification is general enough to allow for a variety of equality and range

predicates. If we have a equality predicate though, we can simplify our query further by

transforming the quantification expression into a membership expression. To say that x is a
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member of some collection C is equivalent to saying that there exists some c ∈ C such that

c = x. The transformed query from existential quantification to membership is given below:

FROM Orders O

SELECT O

WHERE 100 IN O.items;

Listing 4.26: Membership (implicit existential quantification) query example.

Similar to Listing 4.23, both queries above can utilize any of the indexes given in Listing 4.24.

4.3.3 Universal Quantification Queries

The queries described up to this point have all dealt with existential quantification, though

this is not the only type of quantification offered in AsterixDB. Modifying the original intent

of the queries in Listing 4.23, Listing 4.25, and Listing 4.26, assume that we want instead

to find all orders that have all items with qty = 100. We transform the explicit existential

quantification query in Listing 4.25 to use the EVERY clause instead of the SOME clause:

FROM Orders O

WHERE EVERY I IN O.items SATISFIES I.qty = 100

SELECT O;

Listing 4.27: Not applicable universal quantification query example.

As the query in Listing 4.27 stands, it is not applicable for acceleration with any multi-

valued index. To be eligible for acceleration from the indexes in Listing 4.24, the universal

quantification query must additionally specify that the multi-valued field is not empty:

FROM Orders O

WHERE EVERY I IN O.items SATISFIES I.qty = 100 AND

LEN(O.items) > 0

SELECT O;

Listing 4.28: Applicable universal quantification query example.
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The non-emptiness requirement stems from the way that NULL and MISSING values are cur-

rently handled in AsterixDB with respect to atomic indexes. For a more in-depth explana-

tion, refer to Subsection 5.5.3.

4.3.4 Join Queries With Multi-Valued Fields in the Join Predicate

The last type of query that multi-valued indexes are meant to accelerate are queries with

multi-valued fields in join predicates. By having an applicable multi-valued index here, a

potentially much faster join algorithm (index nested loop join) becomes available for the

optimizer to choose. In the example below, we want to find all orders that contain products

with the letter "B" in their name:

FROM Products P

INNER JOIN (

FROM Orders O

UNNEST O.items I

SELECT O, I.product_id

) AS OI

ON OI.product_id /*+ indexnl */ = P.product_id

WHERE P.name LIKE "%B%"

SELECT DISTINCT OI.O;

Listing 4.29: Join query example 1.

We can also choose to rewrite Listing 4.29 with implicit JOIN and UNNEST clauses (resulting

in a less cluttered query):

FROM Products P,

Orders O,

O.items I

WHERE I.product_id /*+ indexnl */ = P.product_id AND

P.name LIKE "%B%"

SELECT DISTINCT O;

Listing 4.30: Join query example 2.

Both join queries in Listing 4.29 and Listing 4.30 can be accelerated with an index on the
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product_id field inside the items object array of the Orders dataset:

CREATE INDEX orderItemProductIdx ON Orders (

UNNEST items SELECT product_id

);

Listing 4.31: Applicable index for the queries in Listing 4.29 and Listing 4.30.
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Chapter 5

Indexing Implementation

The previous chapter discussed all of the information that a user must minimally know to use

multi-valued indexes in AsterixDB. This chapter aims to address all of the implementation

details and is divided into six sections: (i) how to represent an index in metadata, (ii) how

to physically represent an index entry, (iii) how to bulk load an index, (iv) how to maintain

an index, and (v) how to recognize index applicability and utilize indexes in queries.

5.1 Metadata Representation of an Index

As with most database systems, AsterixDB stores information about its indexes inside the

same unit of data collection that it manages. Such a technique enables the database itself to

elegantly persist and retrieve index metadata as it would any other data collection for use

at system runtime. In our case this unit is a DATASET, and this section aims to describe the

records that detail multi-valued indexes inside the Index metadata dataset.

Revisiting the examples from the previous chapter, we first take a look at the metadata for

the Listing 4.17 index on the number and kind fields within the phones object array of the
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Users dataset. Once the aforementioned CREATE INDEX statement is executed, the record

in Listing 5.1 is inserted into the Index dataset.

{

"DataverseName": "ShopALot",

"DatasetName": "Users",

"IndexName": " usersNumberKindIdx",

"IndexStructure": "ARRAY",

"SearchKeyElements": [

{ "UnnestList": [ [ "phones" ] ],

"ProjectList": [ [ "number" ], [ "kind" ] ] }

]

"SearchKeyType": [ [ "string", "string" ] ]

}

Listing 5.1: Metadata for a composite multi-valued index with type definitions.

There are three fields of interest here:

1. IndexStructure indicates the type of index that this record describes. The value of

"ARRAY" informs us that this is a multi-valued index.

2. SearchKeyElements is an array of objects describing the UNNEST and SELECT por-

tions of the index specification. UnnestList is a two-level array, with the outer level

containing paths to multi-valued fields and the inner level describing the fields of the

aforementioned paths. ProjectList is another two-level array, the outer describing

paths to the atomic endpoints and the inner describing fields of the aforementioned

paths.

3. SearchKeyType is a two-level array describing the types of each index element. This

field only exists if type definitions exist in the index specification. The outer level maps

items in the SearchKeyElements field to a collection of type specifications via their

position in the array. It is essential to keep the index element abstraction present to

fully support composite multi-valued indexes with atomic elements in the future (given

the specifications in Listing 4.19 and Listing 4.20). The inner level of SearchKeyType
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maps items in a ProjectList to type specifications via their position in the array. If

there is no ProjectList (i.e. no SELECT present in the specification), then the sole

item in an inner array maps to the last item in the UnnestList.

To motivate SearchKeyElements being an array of objects (as opposed to a sole object),

we revisit the composite atomic and multi-valued field index specification in Listing 4.19.

Listing 5.2 describes the Index metadata dataset record for such an index.

{

"DataverseName": "ShopALot",

"DatasetName": "Stores",

"IndexName": "storesZipCatIdx",

"IndexStructure": "ARRAY",

"SearchKeyElements": [

{ "ProjectList": [ [ "address", "zip_code" ] ] },

{ "UnnestList": [ [ "categories" ] ] }

]

}

Listing 5.2: Metadata for a composite index containing an atomic element and a multi-valued
element.

For such a composite index, there are now two objects in the SearchKeyElements array.

The first object describes the atomic field zip_code inside the address object, containing

no UNNEST clauses. The second object describes the multi-valued element, containing the

multi-valued field categories. Note the absence of the ProjectList field in the second

object, which corresponds to the absence of a SELECT clause in the index specification.

To motivate the two-level aspect of the UnnestList and ProjectList arrays, suppose that

the type definition DDL for Orders was modified to include an info field for each object in

the items array. The Orders type definition DDL in this scenario is given in Listing 5.3.

To create a composite index on the info and item.qty fields inside the items array, one

would use the index specification in Listing 5.4, yielding the Index metadata dataset record

in Listing 5.5.
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CREATE TYPE OrdersType AS {

order_id: string ,

user_id: string ,

items: [{

info: string ,

item: {

item_id: string ,

qty: integer ,

selling_price:

product_id: string ,

tags: [string]

}

}]

}

Listing 5.3: Type definition for a dataset for composite fields within multi-valued fields.

CREATE INDEX ordersLineInfoQtyIdx ON Orders (

UNNEST items SELECT info , item.qty

);

Listing 5.4: Example index specification for a multi-valued element with an atomic endpoint
located within an object.

{

"DataverseName": "ShopALot",

"DatasetName": "Orders",

"IndexName": "ordersLineInfoQtyIdx",

"IndexStructure": "ARRAY",

"SearchKeyElements": [

{ "UnnestList": [ [ "items" ] ],

"ProjectList": [ [ "info" ], [ "item", "qty" ] ] }

]

}

Listing 5.5: Metadata for a composite index containing a multi-valued element with an
atomic endpoint located within an object.

Note how the structure of ProjectList makes it clear what our atomic endpoints are: (i) the

info field and (ii) the qty field inside the item object.
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To create an index on the multi-valued field on the item.tags array inside the items object

array, the index specification in Listing 5.6 would yield the Index metadata dataset record

in Listing 5.7.

CREATE INDEX orderItemTagIdx ON Orders (

UNNEST items UNNEST item.tags

);

Listing 5.6: Example index specification with a multi-valued field within an object.

{

"DataverseName": "ShopALot",

"DatasetName": "Orders",

"IndexName": "orderItemTagIdx",

"IndexStructure": "ARRAY",

"SearchKeyElements": [

{ "UnnestList": [ [ "items" ], [ "item", "tags" ] ] }

]

}

Listing 5.7: Metadata for an index with a multi-valued field within an object.

Similarly, note how the structure of UnnestList makes it clear what our multi-valued fields

are: (i) the items array and (ii) the tags array inside the item object.

5.2 Representation of an Index Entry

Having just described the metadata representation of an index itself, we now describe how

an index entry is actually represented. This section will describe index entries for a multi-

valued index of type BTREE, but again it is important to stress that this work is general

enough to also be applied to RTREE indexes.

A leaf node in a B+ tree must minimally contain two items: (i) the field value(s) that the

tree is sorted on (i.e. the values of the sort key), and (ii) the payload (data record(s) or
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{

"store_id": "C1",

"name": "Velda’s Pantry",

"categories": [ "Produce", "Breakfast" ]

},

{

"store_id": "C2",

"name": "Sheetz Bakery",

"categories": [ "Bread & Bakery", "Deli" ]

},

{

"store_id": "C3",

"name": "Sheetz Bakery",

"categories": [ "Bread & Bakery", "Bread & Bakery", null ]

},

{

"store_id": "C4",

"categories": [ ]

}

Listing 5.8: Sample documents for the Stores dataset.

way(s) to get to the data record(s)). For AsterixDB, item (ii) is a singular unique field: the

primary key associated with the record being indexed. A total order on the B+ tree in the

presence of potentially duplicate secondary B+ tree key values is maintained by adding the

record’s primary key as a suffix to the sort key itself. To illustrate these points, suppose

that the documents in Listing 5.8 are to be inserted into the Stores dataset with an atomic

B+ tree index on the name field. The corresponding name index would contain the following

entries in the given order:

1. ("Sheetz Bakery", "C2")

2. ("Sheetz Bakery", "C3")

3. ("Velda’s Pantry", "C1")

In terms of string comparison, "Sheetz Bakery" is less than "Velda’s Pantry", hence the

"C1" entry comes after the other two entries. To handle duplicate key entries, we compare

the primary key fields among the duplicates ("C2" being less than "C3") and put "C2" before
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"C3". AsterixDB chooses not to store NULL or MISSING values in any of its indexes, therefore

there exists no entry for record "C4".

To make multi-valued indexes compatible with index types other than B+ trees, an index

entry in a multi-valued B+ tree index is really no different than an index entry in an atomic

B+ tree index. Multi-valued indexes instead work above the storage component in AsterixDB

(the Job Execution and SQL++ Compiler components from Figure 3.1). In the multi-

valued field of an index, the sort key is drawn from the atomic endpoints (as opposed to

the enclosing multi-valued field itself). Using the index on the categories string array of

the Stores dataset as an example, the atomic endpoints are the individual items of the

categories array (e.g. "Produce", "Breakfast", etc. . . ) and the categories array itself

is the enclosing multi-valued field.

The approach of using atomic endpoint(s) introduces two new issues: (i) how to handle

duplicate values within a multi-valued field, and (ii) how to handle empty multi-valued

fields. Starting with the issue in item (i), recall that a primary key appears at most once

in an atomic index. Such a statement is no longer true with multi-valued indexes, as a

primary key value can now be associated with multiple index entries. This non-uniqueness

leads to several issues when presented with duplicate values in the multi-valued field, the

most notable being concurrency (discussed in Subsection 5.4.1). Given that multi-valued

covering indexes are not in the scope of this thesis (due to the implementation challenges

described in Appendix B), the question arises: “Is it even necessary to store duplicates?”.

Every single query in Section 4.3 can be answered without the inclusion of duplicate values,

so the decision was made to simply not store duplicates in the first place to solve the issue in

item (i). The issue in item (ii) has two solutions: either store the index entry with a special

empty value for a multi-valued field or do not store the index entry at all. The former would

allow universal quantification queries without a non-emptiness clause to be accelerated by a

multi-valued index (see Subsection 5.5.3 for why), but it would require storage layer changes
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to accommodate the aforementioned special value. Such an issue draws parallels to how the

values MISSING and NULL are treated with respect to index entries. AsterixDB chooses not to

store such values in any index, so the decision was made to not include records with empty

multisets or arrays in multi-valued indexes.

Using the documents in Listing 5.8 and an index on the categories string array field for

the Stores dataset (specification in Listing 4.18), the corresponding index would contain

the following entries in the given order:

1. ("Bread & Bakery", "C2")

2. ("Bread & Bakery", "C3")

3. ("Breakfast", "C1")

4. ("Deli", "C2")

5. ("Produce", "C1")

All entries are first sorted by the individual items in "categories", and then by their primary

key field "store_id". To handle duplicates among the "categories" array items, the

primary key is used to impose a total order. There exists two items for "Bread & Bakery"

in the "C3" record, but only one is recorded in the index itself. Similar to atomic indexes,

the NULL value in the "C3" record’s categories array is not recorded in the index. Finally,

the "C4" entry is not stored in the index as the categories array itself is empty.

5.3 Bulk Loading an Index

There are two cases where bulk-loading is performed on an index: (i) when first building the

index (i.e. executing the CREATE INDEX statement), and (ii) when executing an explicit LOAD

command. All other cases fall under index maintenance (Section 5.4). This section aims to

describe the data flow to accomplish the task of bulk-loading a multi-valued index.
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(a) Example data flow for an atomic index. (b) Example data flow for a multi-valued index.

Figure 5.1: Example Hyracks jobs for bulk-loading indexes.

5.3.1 Create Index Statements

When a CREATE INDEX statement is issued from a SQL++ client, there are three main steps

taken: (i) The CREATE INDEX statement is parsed and the Index dataset metadata record is

constructed. (ii) The metadata record is inserted into the Index dataset. (iii) The existing

data from the dataset that the index is being created on is bulk-loaded into the index based

on the metadata from step (i). Using the existing operators provided by the Hyracks runtime

(through the Job Execution component of Figure 3.1), the goal of bulk-loading is to assemble

a DAG of operators that passes sorted index entries to a bulk-load operator that will handle

the actual B+ tree construction in parallel across each AsterixDB cluster node. Figure 5.1

describes two such DAGs for indexes on the Stores dataset. Figure 5.1a details the data

flow for bulk-loading the atomic index on the name field. We first SCAN the Stores dataset

for all records R. The output of this operator is then given to the ORDER operator above,

sorting all (R.name, R.store_id) pairs. Finally, the output of the ORDER operator is given
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to the LOAD operator where the B+ tree is constructed. All DAGs must end with an explicit

SINK operator node, which will consume the (R.name, R.store_id) pairs from the LOAD

operator.

Figure 5.1b describes a DAG for bulk-loading a multi-valued index on the categories field

of the Stores dataset. In contrast to Figure 5.1a, we now include an UNNEST on the multi-

valued field before the ORDER. This UNNEST produces the individual items of R.categories,

which are assigned the variable f . If the index specification called for more UNNEST clauses,

then additional UNNEST operators would be applied above. Now having the sort key f and

the primary key R.store_id, all (f , R.store_id) pairs are sorted by the ORDER operator.

A DISTINCT operator is applied immediately after the ORDER to remove duplicate entries

within the multi-valued fields. These pairs are then given to the LOAD operator and finally

consumed by the SINK operator.

5.3.2 Load Statements

A LOAD statement reads a file of records and inserts all of its records into the corresponding

dataset. In contrast to handling a single CREATE INDEX statement, one must be able to

accommodate all indexes on a dataset when a LOAD statement is issued. A second notable

difference is that the LOAD statement in AsterixDB operates at the Algebricks layer as op-

posed to the Hyracks layer, giving us access to a different set of operators. All future data

flows in this chapter work at the Algebricks layer, as this allows any plan detailed here to

be created and manipulated by the query optimizer.

Figure 5.2 describes the LOAD data flow for the Stores dataset with the two indexes from

the previous subsection (storesNameIdx and storesCatIdx). Records R are first read

from the load file and then passed to the next operator in the pipeline. All records are

then sorted by their primary key R.store_id before being given to the LOAD operator
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Figure 5.2: Example data flow (Algebricks job) for a bulk-load.

to populate the Stores dataset itself. To perform the bulk-loading of secondary indexes

in parallel, a REPLICATE operator is used after extracting the multi-valued starting points

(sort keys). The data flow for each branch after the REPLICATE is equivalent to the data

flow shown after the dataset SCAN operator in the previous subsection. The input to the

storesNameIdx REPLICATE branch is the (R.name, R.store_id) pair, which is ordered

and consequently given to its appropriate LOAD operator. The input to the storesCatIdx

branch is the (R.categories, R.store_id) pair, which goes through the UNNEST, ORDER,

and DISTINCT operators before reaching the LOAD operator for the storesCatIdx index.

Outputs from both LOAD operators are then consumed by the SINK. To accommodate more
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secondary indexes (atomic or multi-valued) the data flow would simply have another parallel

branch between the REPLICATE and SINK operators.

5.4 Maintaining an Index

INSERT, DELETE, and UPSERT (insert if the document does not exist, replace the document

if it does) are the three maintenance operations in AsterixDB. This section describes the

constraints and data flows associated with these operations.

5.4.1 Locking in AsterixDB

Before discussing the data flow associated with maintenance operations, we must first discuss

the transaction operational flow our that maintenance operations are constrained by. A

database transaction is a sequence of operations that is abstracted to a singular logical unit

of work. Transactions have four properties associated with them, described in the acronym

ACID :

1. Atomicity : All or no operations are performed.

2. Consistency : No integrity constraints are violated after completion.

3. Isolation: A concurrent execution of multiple transactions is equivalent to the result

of some serial sequence of the same transactions.

4. Durability : Effects of the operations are persisted after the transaction completes.

In AsterixDB transactions are (i) of record-level granularity, (ii) local to each cluster node,

and (iii) act across a dataset’s primary and secondary indexes. Suppose the following INSERT

statement were issued on the Users dataset in an AsterixDB instance with two cluster nodes

N1 and N2:
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INSERT INTO Users [

{ "user_id": "C1", "name": "John" },

{ "user_id": "C2", "name": "Mary" }

];

Listing 5.9: Example INSERT statement of two documents.

Regardless of which cluster nodes the records are directed to, there will always be two

transactions here: one for the "C1" record and another for the "C2" record. If the "C1"

record is directed to node N1 and the "C2" record is directed to node N2, one local transaction

would occur at N1 and another local transaction would occur at N2. If the "C1" INSERT were

to fail but the "C2" INSERT were to succeed, then no action would be taken by AsterixDB to

remove the "C2" record. Handling such a situation differently would require non-local (i.e.

distributed) transactions. If this scenario occurs, the user is left to handle the after-effects.

To realize the Isolation property of transactions, locks must be acquired for the resources that

the operations of a transaction requires. Note that locking is introduced in this section and

not the previous because bulk-loaded records cannot be accessed by other operations until the

bulk loading itself is finished, thus isolation is implicitly achieved. Operations in a transaction

can be broadly divided into two groups: (i) operations that read and (ii) operations that

write. Exactly what type of transactions can acquire locks and the duration locks can be

held for are typically varied in different systems to achieve better performance for different

types of workloads. In AsterixDB, record-level locks are acquired to handle write operations

(e.g. maintenance operations) on the primary index and they are held until the transaction

itself commits [18]. If the lock to some primary index entry is granted to such a transaction,

no other operations from other transactions can be performed on that primary index entry

until the former transaction commits.

In contrast to primary indexes, locks are not acquired for accessing secondary indexes. No

locking here means that a read operation on a secondary index is allowed to potentially
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read uncommitted data. To prevent inconsistencies between a data structure that requires

locks (a primary index) and a data structure that does not (a secondary index), index entries

retrieved from the secondary index are first validated by fetching their corresponding records

from the primary index before the entry itself is used by the rest of the transaction.

5.4.2 Insert Statements

The goal of an INSERT statement is to insert the given record(s) into the appropriate primary

index and all associated secondary indexes. Recall that to realize bulk-loading for multi-

valued indexes, a sequence of UNNEST operators were required to extract the atomic endpoint

values. Thus to execute all index maintenance operations, UNNEST operators must be added

to the existing data flow for atomic indexes.

Figure 5.3 describes the data flow for an INSERT statement on the Orders dataset with

three secondary indexes: (i) an atomic index on the user_id field, (ii) a multi-valued index

on the tags items inside the items object array, and (iii) a multi-valued index on the

qty field inside the items object array. Starting from the bottom source operator, the

primary key R.order_id is extracted from the input record(s) and is given to the primary

index INSERT operator along with the record itself. Primary index maintenance operations

are always performed before secondary index maintenance operations to obtain locks to

prevent inconsistencies that could stem from other transactions on the secondary indexes

themselves. Once the corresponding record is inserted into the primary index, we extract

the fields required for our secondary index insertions. First an INSERT into the atomic

orderUserIDIDx index, next an INSERT into the multi-valued orderItemTagIdx, followed

by an INSERT into the final multi-valued orderItemsQtyIdx, and finally the primary key

order_id is given the COMMIT operator to release the lock on the primary index.
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Figure 5.3: Example data flow for an INSERT statement.
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Attached to each multi-valued INSERT operator is a subplan, a separate DAG of operators

that accepts the input from its parent operator and returns some output to that same parent.

The results of this separate DAG are local to its enclosing INSERT operator. The same data

flow to extract the atomic endpoints is then applied with each subplan. The dotted lines

around the DISTINCT operator after the top-level UNNEST operator in each subplan indicate

that this operation is performed by the Hyracks Dataflow system component of each cluster

node. This DISTINCT will remove duplicate secondary key values before handing the values

off to the parent INSERT. Once all secondary key values are received by the parent, the

input record is forwarded to the next operator in the pipeline. The reason why multi-valued

INSERT DAGs cannot exist outside of a subplan is because of the output cardinality change

associated with UNNEST operator(s). To motivate the use of subplans here, let us briefly

explore an alternative means of performing an INSERT with two multi-valued indexes. This

alternative must satisfy the following properties:

1. The lock on the primary index must not be released until all secondary index entries

are inserted for that transaction. In terms of the data flow, this means that primary

keys cannot be allowed to reach the COMMIT operator prematurely.

2. All primary key values given to the transaction COMMIT operator must be unique.

3. The number of input records into the subgraph for handling the multi-valued index

operation must be equal to the number of output records out of said subgraph.

The alternative approach considered here is to use a single path to handle the entire INSERT

data flow. An example of the relevant portions of the alternative data flow is given in Fig-

ure 5.4. To satisfy all of the requirements above, an ORDER operator followed by a DISTINCT

operator is applied on the dataset’s primary key after each multi-valued index’s INSERT.

The inclusion of the ORDER operator satisfies the first requirement because ORDER is blocking.

This means that no records will be given to the next operator before all records below are

finished. For the final multi-valued index INSERT in the entire data flow, this means all
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Figure 5.4: Alternative partial data flow for an INSERT statement.

records must be given to the ORDER before any primary key reaches COMMIT. The DISTINCT

operator satisfies the second and third requirements as the cardinality increases from the

previous UNNEST operator(s) are reverted.

The big disadvantage of this potential alternative approach is the inclusion of the blocking

ORDER operator. For INSERTs with a large number of records, the locks on the primary index

entries for these records are held until all records are finished being processed. This contrasts

with the subplan approach, where after a single input record is processed, said record can

be handed off to the next operator (such as another index INSERT operator or the COMMIT).

Though the alternative ORDER + DISTINCT approach was originally used, the absence of a

blocking operator in the subplan approach is the main reason for the data flow now used

and presented in Figure 5.3.
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Figure 5.5: Data flow for the search phase of a DELETE statement.

5.4.3 Delete Statements

A DELETE operation has two phases: (i) a search phase (to find all qualifying records), and

(ii) a delete phase. The storage-level API call to delete an entry is nearly identical to the

API call to insert an entry. Hence the data flow for a DELETE operation is identical to the

data flow for an INSERT operation except for the inclusion of this search phase. This is

illustrated in the Figure 5.5, describing the data flow for the following DELETE statement:

DELETE FROM Orders

WHERE store_id = "A3D5F";

Listing 5.10: DELETE statement associated with Figure 5.5.

In Figure 5.5, only one new operator has been added for the search phase: a SELECT operator

to filter out all records that do not qualify for the delete itself. The rest of the data flow

remains the same as the INSERT data flow of Figure 5.3, replacing all INSERT operators with

DELETE operators.

5.4.4 Upsert Statements

An UPSERT on a dataset with atomic secondary indexes can be described in three steps:
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1. Given some incoming record Rnew with primary key k, search the primary index for an

existing record Rold using k.

2. Perform the UPSERT for the primary index. If Rold does not exist, then a storage-level

insert operation is performed for the incoming record Rnew into the primary index.

If Rold does exist, then a storage-level delete operation is performed to remove the

existing record Rold before performing an insert for the incoming record Rnew into the

primary index.

3. Perform the UPSERT for the secondary indexes. If Rold does not exist, then again a

storage-level insert operation is performed into the secondary indexes (if the indexed

field exists in the incoming record Rnew). If Rold does exist, then the actions to be

done are split depending on the contents of the existing record Rold and the incoming

record Rnew:

(a) If the indexed field exists in the existing record Rold but not in the incoming

record Rnew, then a delete operation is issued to the secondary index.

(b) If the indexed field exists in the incoming record Rnew but not in the existing

record Rold, then an insert operation is issued to the secondary index.

(c) If the indexed field exists in both records Rold and Rnew but differs in value, then

a delete operation for the existing record Rold followed by an insert operation for

the incoming record Rnew is issued to the secondary index.

(d) If the indexed field exists in both records Rold and Rnew but are both equal in

value, then no operation is performed.

In terms of the data flow required for UPSERT, there are now two record variables to deal

with: the existing record Rold and the record given in the UPSERT statement itself Rnew.

Integrating these for multi-valued indexes using the aforementioned subplan approach can

be found in the Figure 5.6 example. Here, the primary index maintenance operator (the

UPSERT operator for Orders) now has an output: the existing record Rold. The search for

this old record Rold such that the order_id in Rold is equal to the order_id in the new record
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Figure 5.6: Example data flow for an UPSERT statement.
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Rnew (i.e. the primary key values are equal) is not performed at the Algebricks layer, rather

this search is performed in the Hyracks Dataflow system component (within the primary

index UPSERT operator itself). The index fields user_id from Rold and user_id from Rnew

are given to the UPSERT operator for the atomic index orderUserIDIdx. The UPSERT logic

in Item 3 above is then performed.

We now move to the next operator in the sequence. Both records Rold and Rnew are given

to the UPSERT operator for the multi-valued index orderItemsTagIdx, which passes Rnew to

the left subplan to extract the new tags array values, f , and Rold to the right subplan to

extract the old tags array values, h. In contrast to the UPSERT logic applied in the atomic

index UPSERT operator itself, the multi-valued UPSERT operator performs an unconditional

delete of all the old index entries associated with the working Rold record followed by an

insert of all the new index entries associated with Rnew. The same multi-valued UPSERT

logic is applied for the next index ordersItemQtyIdx as well, extracting the sort key values

from Rold and Rnew using two subplans and performing the same unconditional delete and

insert. Once all secondary index UPSERT operations are finished, the primary key order_id

is given the COMMIT to finish the transaction for that specific record. Potential future work

with respect to handling UPSERTs could involve introducing a filter within the multi-valued

UPSERT operator itself to avoid needless work when multi-valued field values are unchanged.

5.5 Optimizing Queries

Given any Algebricks-level data flow (henceforth referred to as a query plan), the goal of

the query optimizer is to transform the query plan given a set of heuristics. The general

heuristic discussed here involves replacing full dataset scans with a more selective search of

the full dataset when applicable. This more selective search is enabled through the use of

a secondary index. This section discusses the how the applicability of a multi-valued index
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Figure 5.7: High-level view of an accelerated UNNEST query plan.

is recognized for some query plans and how said query plan is transformed to utilize the

applicable multi-valued index.

5.5.1 Explicit Unnesting Queries

We start our discussion about detailed query optimization with the explicit UNNEST query

from the previous chapter (Listing 4.23). Figure 5.7 details how we can utilize a secondary

index to accelerate this query at a high level. The job executed at each AsterixDB clus-

ter node entails (i) searching the secondary index for entries whose sort key satisfies the

I.qty = 100 predicate, (ii) using the primary key of these entries to search the primary

index for records, and (iii) giving these records to the remainder of the plan.

Delving into the details now, without such a multi-valued index, the plan on the left of Fig-

ure 5.8 would be chosen. A full data scan of Orders is performed, followed by an UNNEST

operator to extract the relevant fields, with records filtered using the SELECT operator, and

the results being passed through an ORDER operator and DISTINCT operator to satisfy the
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(a) Example explicit UNNEST query plan. (b) Example accelerated UNNEST query plan.

Figure 5.8: Example query plans to demonstrate UNNEST query acceleration.

DISTINCT clause in the query before giving the result back to the user. We note that the

explicit DISTINCT operator in AsterixDB currently requires a sorted input, so the ORDER

operator is necessary for this specific query.

The query plan in Figure 5.8a must scan through every single record in the Orders dataset,

perform an UNNEST on every single record, and evaluate the equality predicate f.qty = 100

for every item in the items object array. In contrast, the plan on the right (Figure 5.8b)

only scans entries from the ordersItemQtyIdx index whose sort key qty is equal to 100.

The result of this scan is the primary key associated with each index entry (order_id).
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Because a primary key may map to more than one index entry, we remove all duplicates

before the Orders primary index search to avoid performing unnecessary work. Once the

Orders primary index search is performed, the secondary index validation step is executed

with the UNNEST and SELECT operator. If a qualifying record changes from the time of the

initial B+ tree search on the ordersItemQtyIdx index to this SELECT operator, the record

will not be passed to the next operators in the pipeline. To satisfy the DISTINCT clause in

the query, all validated records are passed through ORDER and DISTINCT operators before

being sent back to the user. Examining the two query plans in Figure 5.8, the following

observation can be made: the DAG after the primary index SCAN operator of Figure 5.8a

is identical to the DAG after primary index SEARCH operator in Figure 5.8b. We can now

formulate a more specific goal for index acceleration: to replace the primary index scan with

a secondary index search followed by a primary index search.

Having detailed the plan differences between a full dataset scan query and a query that

utilizes a secondary index, the next question we can ask is: “How do we know when to

transform a primary index scan with a secondary index search + a primary index search?”

With atomic indexes, applicability is recognized by examining each conjunct in every SELECT

operator’s predicate. For atomic B+ tree indexes in particular, the following criteria must

be met:

1. Given some predicate in a SELECT operator for a query plan, there must exist some

conjunct C in the aforementioned predicate.

2. C must be a function in the set: { EQ, LT, LE, GT, GE }

3. One argument to the function C must be a path of fields from the source dataset that

can be matched to a path of fields and dataset in some Index metadata record.

For multi-valued B+ tree indexes, one more criterion is added: the sequence of UNNEST clauses

and associated paths in the index specification must match the sequence of UNNEST operators

in the to-be-optimized query plan. The argument to the function C in a SELECT operator’s
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Figure 5.9: Example existential quantification query plan.

predicate must then be a path specified in the SELECT clause of the index specification or

the output of the UNNEST operator if no SELECT clause exists. In Figure 5.8a, we recognize

that the UNNEST operator on the items object array matches an index specification with an

UNNEST on the same items array, and that the atomic endpoint of the aforementioned index

specification qty can be found in an applicable conjunct of the SELECT above it.

5.5.2 Membership / Existential Quantification Queries

Figure 5.9 describes a non-indexed query plan for the existential quantification queries in

the previous chapter (Listing 4.25 and Listing 4.26). After scanning the Orders dataset,

the items object array is given to the SUBPLAN operator. From here, the items array goes

through an UNNEST operator and a SELECT operator to satisfy the query predicate. If there

exist any records after the SELECT operator, a value of 1 is returned to the SUBPLAN operator

itself. If the SELECT operator filters out all records for the working items array instance,

then a value of 0 is returned instead. We now move away from the subplan DAG itself. At

this point (before the second SELECT operator but prior to the result distribution), a value
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of j = 1 or j = 0 is attached to each record R indicating whether that record has satisfied

the existential predicate or not. This boolean value and the record are given to the second

and final SELECT operator to return to the user qualifying records R where j = 1.

To reiterate, the goal of index acceleration is to replace the primary index scan (in this

case, the SCAN operator on Orders) with a secondary index search followed by a primary

index search. Unlike the previous subsection, the UNNEST clause and SELECT clause that we

need to recognize index applicability is located within a subplan. Thus, to recognize index

applicability for existential quantification queries, the following criteria is required: (i) if

there exists a SUBPLAN operator, check the subplan DAG itself for all the criteria mentioned

in the previous subsection, (ii) the last operator of the subplan DAG must return a single

value j = 1 if the previous SELECT does not filter out all of the source records and j = 0

otherwise, and (iii) there must exist a SELECT after the SUBPLAN operator to filter out records

where j = 0 (to prove that this subplan is used for quantification). If each criterion is met,

then the same query plan transformation shown at the bottom(s) of Figure 5.8 is performed.

5.5.3 Universal Quantification Queries

Figure 5.10 describes a query plan for the universal quantification query in the previous

chapter (Listing 4.28). After scanning the Orders dataset, the items object array is again

given to the SUBPLAN operator. Similar to the existential quantification query plan, the

items array goes through an UNNEST operator to extract the qty field. To evaluate universal

quantification for the predicate EQ(f, 100), the following logical translation is made:

{ ∀f ∈ r.items | f.qty = 100 } ≡ { 6 ∃f ∈ r.items | f.qty 6= 100 } (5.1)

The right quantification is performed with the last two operators in the subplan. The

predicate inside the quantification is negated for the SELECT operator (EQ → NE) and the
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Figure 5.10: Example universal quantification query plan.

logic to assign the boolean variable j now becomes j = 1 if the previous SELECT removes

all records and j = 0 otherwise. j then is given to the SUBPLAN operator, which is used to

filter out records R where j = 0. The non-emptiness predicate on the items object array is

applied on the last SELECT operator before giving the results back to the user.

To recognize applicability for universal quantification queries, the following criteria are re-

quired:

1. For all SUBPLAN subplans, check the subplan DAG itself for all criteria mentioned in

Subsection 5.5.1.

2. When checking a SUBPLAN operator’s subplan, additionally check for the inverse of the

applicable B+ tree index functions.

3. The last operator of the subplan DAG should return j = 0 if SELECT does not filter

out all of the source records, and j = 1 otherwise.

4. There must exist a SELECT after the SUBPLAN operator to filter out records where j = 0

(to prove that this subplan is used for quantification).

5. There must exist a non-emptiness conjunct on the multi-valued field being quantified.
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If the criteria above is met, the exact same query plan transformation from the previous

subsection is performed.

We can easily prove that such a query plan transformation is valid, starting with a universal

quantification on a multi-valued field F where |F | > 0:

U = { ∀f ∈ F | P (f) } (5.2)

Given the predicate P in the universal quantification above, the multi-valued index B+ tree

search returns the primary keys of all records that would satisfy the existential quantification:

E = { ∃f ∈ F | P (f) } (5.3)

All entries in U also exist in E, making U a subset of E itself. Such a statement could not

be made if |F | ≥ 0 instead of |F | > 0. By performing the query plan transformation to

replace the SCAN operator with a secondary index SEARCH and primary index SEARCH, we

return E to the rest of the query plan. We can take advantage of the existing secondary

index validation step to remove all entries e ∈ E that do not exist in U . Such an approach

returns the correct results back to the user and benefits from the use of the index.

5.5.4 Join Queries with Arrays in the Join Predicate

Figure 5.11 describes a non-indexed query plan for the join queries in the previous chapter

(Listing 4.29 and Listing 4.30). Two SCAN operators exist here: one for the outer join dataset

Products (producing R records) and one for the inner join dataset Orders (producing S

records). On the left branch (the outer dataset), all records R must satisfy the predicate

on R.name before the qualifying R.product_id values are given to the JOIN operator. On
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Figure 5.11: Example two-dataset join query plan.

the right branch (the inner dataset), the S.items array goes through an UNNEST operator

and the product_id field is given to the JOIN operator. To satisfy the DISTINCT clause, the

qualifying S records after the join are given to an ORDER operator and DISTINCT operator

before being given to the user.

Figure 5.12 describes the transformed query plan that utilizes a multi-valued index to perform

an index-nested loop join. For an outer dataset with records R and an inner dataset with

records S, with an index on the join field for the inner dataset, an index-nested loop join

performs an index search on the join field for each record R. The transformed query plan

starts with the SCAN operator and the SELECT operator on the Products dataset to retrieve

the probe recordsR to join. The join fieldR.product_id is then used to search the applicable

multi-valued index to return the primary key for any matching S records (S.order_id).

Duplicate S.order_id values are removed with the ORDER and DISTINCT operators before

being given to the primary index SEARCH to retrieve the records S. Secondary index validation

is performed by extracting the atomic endpoints and placing the join predicate in a SELECT
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Figure 5.12: Example index-nested loop join query plan.

operator. Finally to satisfy the query’s DISTINCT clause, the records that survived the

validation step are given to another set of ORDER and DISTINCT operators before being given

to the user.

Similar criteria from Subsection 5.5.1 are used to recognize index applicability:

1. Given some predicate in a JOIN operator for a query plan, there must exist some

conjunct C in the aforementioned predicate.
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2. C must be the EQ function.

3. The sequence of UNNEST clauses and associated paths in some index specification must

match the sequence of UNNEST operators in inner dataset’s join branch.

4. The argument to the function C must be a path specified in the SELECT clause of the

index specification or the output of the UNNEST operator if no SELECT clause exists.

Potential future work includes supporting join queries beyond explicit UNNEST clauses, such

as joins through existential quantification.
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Chapter 6

Evaluation

This chapter details two types of experiments. The first is an experiment to characterize the

maintenance overhead associated with the new AsterixDB implementation of multi-valued

indexes, and the second is to demonstrate the efficacy of multi-valued indexes for analytical

queries in AsterixDB.

6.1 Atomic vs. Single-Item Array Index Maintenance

Multi-valued indexes can massively accelerate select queries, but it is important to under-

stand the cost associated with maintaining such an index. For every maintenance operation

applied to a dataset’s primary index, the same type of maintenance must also be applied

to all secondary indexes on said dataset. In this section, we characterize such operations

for multi-valued indexes by comparing their execution times against AsterixDB’s existing

atomic B+ tree indexes.
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6.1.1 Experimental Setup

All experiment runs were performed on a single-node AsterixDB instance, executed on an

Intel Celeron J4125, 4 cores @ 2.7GHz CPU with 8GB of RAM and a single NGFF M.2

SSD. To normalize the cost associated with each storage layer write, multi-valued indexes

in this experiment are restricted to a single item. This experiment can also be thought of

as comparing the cost of performing INSERT, DELETE, and UPSERT operations for an atomic

element wrapped in an array. Three ShopALot datasets with only single-item arrays were

generated and used for comparison: the Users dataset, the Stores dataset, and the Orders

dataset. All datasets used were larger than memory (Users being 15GB @ 100 million

records, Stores being 20GB @ 90 million records, and Orders being 18GB @ 65 million

records), resulting in indexes that were larger than memory as well. One index was created

on the number field inside the phones object array of the Users dataset, with each phone

number being unique from one another. One index was created on the categories string

array of the Stores dataset, with each category randomly sampled from a list of 15 different

values. Two indexes were created on the Orders dataset, one on the qty field (the absolute

value of an integer normally distributed with mean 1 and deviation 10) inside the items

object array and another on the product_id field (a string randomly sampled from a list of

541 different values) inside the same items object array. For INSERT and UPSERT experiment

instances, 10,000 record chunks at a time were used until the dataset grew 0.5% in size. For

DELETE experiment instances, 10,000 record chunks were deleted at a time until the dataset

shrunk 0.5% in size. To accelerate the search phase of the DELETE operation, an atomic index

on a 10,000 record chunk identifier was created and used.
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Figure 6.1: Execution times across different datasets for INSERT statements.

6.1.2 Results

Figure 6.1 displays the average time to perform 10,000-record INSERT statements for the

three datasets mentioned previously. The dotted black line represents a lower bound on the

time to perform an INSERT statement, illustrating the time to compile the INSERT statement

itself. The opaque portions of the bar graph represent the time to perform the INSERT

statement on a non-indexed dataset (this time is similar for both datasets). There does

exist a slight slowdown for multi-valued indexes when compared to atomic indexes, most

emphasized in the dataset with two indexes (i.e. Orders). This small difference comes from

the inclusion of the extra operators to extract the secondary key values and the overhead of

using subplans.
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Figure 6.2: Execution times across different datasets for DELETE statements.

Figure 6.2 displays the average time to perform the 10,000-record DELETE statements for the

same three datasets. We note that the increase from statement execution time of milliseconds

with INSERT statements to seconds with DELETE is due to the required search phase. The

search phase for all DELETEs in this experiment involves (i) a secondary index search for

the records with the appropriate chunk identifier, (ii) a primary index search for the 10,000

records from the secondary index search, and (iii) the secondary index validation step. The

execution time difference between the atomic indexed dataset and the multi-valued indexed

dataset is not significant here, as the time to search for qualifying records outweighs the

time to perform the actual deletion. The large opaque bars for each plot corroborate this

observation. The cost of performing a record deletion for some index in AsterixDB consists
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of a write to an in-memory data structure that will “reconcile” this deletion in the future,

meaning that we do not directly touch the underlying index [1].
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Figure 6.3: Execution times across different datasets for UPSERT statements.

Figure 6.3 describes the average time to perform a 10,000-record UPSERT statement for our

three datasets. All records being UPSERTed consist of new indexed fields, meaning that both

an insertion and deletion will occur. Again, the cost of searching outweighs the time to

perform the insertion and deletion. UPSERT statements generally take longer to execute than

DELETE statements, due to the fact that the primary keys used to search the corresponding

dataset are not sorted beforehand. As noted in [14], sorting a collection of primary keys

before searching the primary index potentially turns many small read operations into fewer

and larger more efficient read operations. If the records to-be-fetched are located far from

each other, then DELETE will perform on-par with UPSERT. Such an observation explains the
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large deviation in DELETE times but not UPSERT times. The large difference in UPSERT times

between the indexed and non-indexed datasets (i.e. the opaque and solid bars) is due to an

optimization AsterixDB takes in the presence of no secondary indexes (the opaque bars).

If there are no secondary indexes on a dataset, the output from a primary index UPSERT

operator (i.e. the old record Rold) is no longer used in the rest of the plan. Consequently,

there is no need to fetch the old record from the primary index, massively accelerating this

UPSERT operation.

6.2 Queries with Multi-Valued Indexes

To demonstrate the effectiveness of multi-valued indexes in an analytical setup, this section

compares the execution time of a set of benchmark queries with and without a multi-valued

index.

6.2.1 Experimental Setup

All experimental runs were performed on a single-node AsterixDB instance, executed on an

Intel Celeron J4125, 4 cores @ 2.7GHz CPU with 8GB of RAM and a single NGFF M.2 SSD.

The benchmark used here is a modified version of the CH benchmark, which is a combination

of TPC-C and TPC-H for a HOAP (hybrid operational / analytical processing) workload [8].

CH originally assumes a flat relational data model, which does not utilize the richer features

that a document data model supports. Thus a more natural document-oriented collection of

datasets were utilized for this experiment (inspired by [28, 15]). In particular the OrderLine

entity, a weak entity attached to the Orders dataset, was translated as an array within inside

the Orders dataset itself (resembling the items field in the ShopALot Orders dataset). This

Orders dataset is described with the complete type definition in Listing 6.1.
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CREATE TYPE OrdersType AS {

o_id: int ,

o_d_id: int ,

o_w_id: int ,

o_c_id: int ,

o_entry_d: string ,

o_carrier_id: int ,

o_ol_cnt: int ,

o_all_local: int ,

o_orderline: [{

ol_i_id: int

ol_number: int ,

ol_supply_w_id: int ,

ol_delivery_d: string ,

ol_quantity: int ,

ol_amount: float ,

ol_dist_info: string

}]

};

Listing 6.1: Complete type specification for the CH Orders dataset.

The AsterixDB type definitions for each dataset in each experimental run retained their

original primary keys, but all other fields were omitted from their type definitions to more

realistically model the schemaless-ness of a typical NoSQL environment. A total of 200

CH warehouses were generated for this experiment, resulting in two datasets larger than

memory: Orders (at 11GB) and Stock (at 11GB). One multi-valued index was built on the

ol_delivery_d field inside the o_orderline object array of the Orders dataset.

6.2.2 Results

Queries in this section are split into two sets: (i) queries that do not involve a join with

the other larger-than-memory dataset Stock, and (ii) queries that involve a join with the

Stock dataset. All queries in each dataset can be found in Appendix A. Figure 6.4 details the

execution times of the former queries as a function of σ, the selectivity of the index-applicable
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predicate. σ is varied between 0% and 100%, with the lower σ values yielding few records

from the dataset that the index is on. Indexed queries achieve sub-second execution times

with σ = 0.01, while the same queries without an index at σ = 0.01 consistently run longer

than 3 minutes. As σ grows larger and larger though, the execution times for the indexed

queries grow faster than for non-indexed queries. Eventually the query plan integrating

multi-valued indexes is not the fastest data flow. A plan that utilizes a secondary index

search followed by a primary index search is vastly superior in execution times when the

applicable query predicate has a low selectivity [14]. At σ ' 20, the indexed execution

time becomes worse than a plan that does not utilize the secondary index, as the process

of searching the primary index for each qualifying secondary index entry becomes more and

more expensive. In the worst case (if every single secondary index entry were to qualify),

then a primary index search would have to be performed for each and every entry, which is

much slower than just performing a scan over the primary index.

Figure 6.5 tells a similar story with a different query set, the join set, though the difference

in execution times between their indexed and non-indexed queries is smaller. The reason for

the smaller difference is because each resulting record of Orders dataset is eventually joined

with all qualifying records of the large dataset Stock. This join leads to a higher floor than

the previous query set, though a small selectivity σ in conjunction with an applicable index

does result in faster join query execution times.

The main takeaway from this experiment is that multi-valued indexes can massively acceler-

ate queries, but care should be taken to avoid using indexes to satisfy predicates on non-small

σ values. Just as with atomic indexes, AsterixDB (at the time of writing) does not vary its

query plan based on different selectivity values. If an index can satisfy some predicate in a

SELECT operator, AsterixDB will currently greedily default to integrate that index into the

query plan regardless of σ unless a hint is provided to do otherwise.
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Figure 6.4: Indexed vs. not-indexed query execution times for query set 1.
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Figure 6.5: Indexed vs. not-indexed query execution times for query set 2.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis has described the various steps needed to realize multi-valued indexes in Aster-

ixDB. We started by describing the indexing user experience: (i) How multi-valued indexes

should be specified, justified by requirements we developed throughout each subsection, and

(ii) what queries should be accelerated by a multi-valued index. We then unraveled the

indexing implementation, detailing what a single multi-valued index entry represents and

demonstrating different data flows to maintain and utilize multi-valued indexes. We con-

cluded by characterizing the maintenance overhead associated with multi-valued indexes

and demonstrated the tremendous efficacy of multi-valued indexes for analytical benchmark

queries with low selectivity on the index.
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7.2 Potential Future Work

In this section, we will discuss four pieces of potential future work: (i) implementing com-

posite atomic + multi-valued indexes, (ii) revising the UPSERT logic for multi-valued indexes,

(iii) comparing multi-valued indexes in AsterixDB with other implementations of multi-

valued indexes in different systems, and (iv) realizing multi-valued R Tree indexes.

7.2.1 Composite Atomic + Multi-Valued Indexes

To remind the reader, recall one of the example index specifications given in Subsection 4.2.4:

CREATE INDEX storeZipCatIdx ON Stores (

address.zip_code ,

UNNEST categories

);

Listing 7.1: Example composite index specification with an atomic element prefix and a
multi-valued element suffix (same as Listing 4.19).

While composite atomic + multi-valued index construction and maintenance is currently

supported, utilizing such indexes to accelerate queries is not. Continuing from the index spec-

ification in Section 4.2.4, with a composite index on the zip_code field inside the address

object field and the categories string array of the Stores dataset, the following query

could then be optimized:

FROM Stores S

UNNEST S.categories C

WHERE S.address.zip_code = "92617" AND

C = "Produce"

SELECT DISTINCT S;

Listing 7.2: Example query that could benefit from the previous composite atomic multi-
valued index.

In contrast to the query plans presented in Section 5.5, the predicates that we need to search
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for to determine index applicability would be split across more than one SELECT operator. (In

AsterixDB, we currently only search for index applicability within a single SELECT operator.)

7.2.2 Revised Upsert Logic

Recall that in Subsection 5.4.4, the current approach to perform an UPSERT operation on a

multi-valued index is to unconditionally delete all entries from the multi-valued field of the

old record and insert all entries from the multi-valued field of the new record. If the indexed

multi-valued field from the record to-be-UPSERTed has not changed, then we will perform a

slew of unnecessary deletions and insertions. This extraneous work becomes more egregious

with larger arrays and multisets. Atomic indexes in AsterixDB, on the other hand, avoid

these extra storage layer invocations (delete and insert) if the value of the indexed field for

the old record is the same as the value of the indexed field for the new record. Replicating the

same UPSERT logic for multi-valued indexes presents the challenge of essentially comparing

two multi-valued fields using two distinct subplans.

7.2.3 AsterixDB vs. Other Systems

AsterixDB is not the only document database system to implement multi-valued indexing.

As described in Chapter 2, document database systems like MongoDB, Couchbase, and Or-

acle NoSQL each now offer their own flavor of multi-valued indexes. Couchbase in particular

offers two interesting multi-valued index types: (i) array indexes, which utilize B+ trees for

storage, and (ii) flex indexes, which utilize inverted indexes for storage. Modern relational

stores such as MySQL offer some multi-valued indexing on JSON arrays as well. It would

be interesting to compare the performance across these systems, given their different design

decisions, for the same analytical queries in Section 6.2.
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7.2.4 R Tree Indexes

As mentioned in Section 4.3, the work performed in this thesis is general enough to be ap-

plied to RTREE indexes as well. Given a document containing a collection of spatial data

(e.g. two-dimensional points), certain spatial queries could be accelerated by building upon

the foundation laid here. Suppose that some records in the Users dataset had an array of two-

dimensional points that indicate their preferred locations (denoted as preferred_locations).

Now assume that an application issues the query below to search for all users that have a

preferred location within some rectangular space.

WITH SearchRectangle AS CREATE_RECTANGLE (

CREATE_POINT (30.0, 70.0),

CREATE_POINT (40.0, 80.0)

)

FROM Users U

WHERE SOME P IN U.preferred_locations

SATISFIES SPATIAL_INTERSECT(P, SearchRectangle ))

SELECT U;

Listing 7.3: Example query that could benefit from a multi-valued R Tree index.

Supporting R Tree indexes would require effort to connect the existing R Tree index work

(the bulk-loading, the index maintenance, and the query optimization) to this multi-valued

index work within the SQL++ compiler and Job Execution components of AsterixDB.
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Appendix A

Benchmark Queries

This appendix describes the two query sets [8] used for the experiments in Section 6.2. To

modify the selectivity for each experiment, the dates "D1" and "D2" in each query below

were varied.

A.1 Query Set 1: Without Stock Join

A.1.1 CH Benchmark Query 1

Report the total amount and quantity of all shipped order-lines within a specific time period.

Additionally report the average amount and quantity, and the total count of all order-lines

ordered by the individual order-line number.

FROM Orders O, O.o_orderline OL

WHERE OL.ol_delivery_d BETWEEN "D1" AND "D2"

GROUP BY OL.ol_number

SELECT OL.ol_number ,

SUM(OL.ol_quantity) AS sum_qty ,

SUM(OL.ol_amount) AS sum_amount ,
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AVG(OL.ol_quantity) AS avg_qty ,

AVG(OL.ol_amount) AS avg_amount ,

COUNT (*) AS count_order

ORDER BY OL.ol_number;

A.1.2 CH Benchmark Query 6

List the total amount of archived revenue from order-lines that were delivered in a specific

period and a certain quantity.

FROM Orders O, O.o_orderline OL

WHERE OL.ol_delivery_d BETWEEN "D1" AND "D2" AND

OL.ol_quantity BETWEEN 1 AND 100000

SELECT SUM(OL.ol_amount) AS revenue;

A.1.3 CH Benchmark Query 12

Count the number of high and low priority orders, grouped by the number of order-lines in

each order.

FROM Orders O, O.o_orderline OL

WHERE O.o_entry_d <= OL.ol_delivery_d AND

OL.ol_delivery_d BETWEEN "D1" AND "D2"

GROUP BY O.o_ol_cnt

SELECT O.o_ol_cnt ,

SUM(CASE WHEN O.o_carrier_id = 1 OR

O.o_carrier_id = 2

THEN 1 ELSE 0 END) AS high_line_count ,

SUM(CASE WHEN O.o_carrier_id <> 1 OR

O.o_carrier_id <> 2

THEN 1 ELSE 0 END) AS low_line_count

ORDER BY O.o_ol_cnt;
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A.1.4 CH Benchmark Query 14

Get the percentage of the revenue in a period of time which has been realized from promo-

tional campaigns.

FROM Item I, Orders O, O.o_orderline OL

WHERE OL.ol_i_id = I.i_id AND

OL.ol_delivery_d BETWEEN "D1" AND "D2"

SELECT 100.00 * SUM(CASE WHEN I.i_data LIKE ’pr%’

THEN OL.ol_amount ELSE 0 END) /

(1 + SUM(OL.ol_amount )) AS promo_revenue

A.2 Query Set 2: With Stock Join

A.2.1 CH Benchmark Query 7

Show the bi-directional trade volume between two given nations sorted by their names and

the considered years.

FROM Supplier SU, Stock S, Orders O,

O.o_orderline OL, Customer C,

Nation N1, Nation N2

WHERE OL.ol_supply_w_id = S.s_w_id AND

OL.ol_i_id = S.s_i_id AND

((S.s_w_id * S.s_i_id) % 10000) = SU.su_suppkey AND

C.c_id = O.o_c_id AND

C.c_w_id = O.o_w_id AND

C.c_d_id = O.o_d_id AND

SU.su_nationkey = N1.n_nationkey AND

STRING_TO_CODEPOINT(SUBSTR(C.c_state , 1, 1))[0]

= N2.n_nationkey AND

( ( N1.n_name = ’Germany ’ AND

N2.n_name = ’Cambodia ’ ) OR

( N1.n_name = ’Cambodia ’ AND

N2.n_name = ’Germany ’ ) ) AND

OL.ol_delivery_d BETWEEN "D1" AND "D2"
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GROUP BY SU.su_nationkey ,

STRING_TO_CODEPOINT(SUBSTR(C.c_state , 1, 1))[0] ,

SUBSTR(O.o_entry_d , 0, 4)

SELECT SU.su_nationkey AS supp_nation ,

STRING_TO_CODEPOINT(SUBSTR(C.c_state , 1, 1))[0]

AS cust_nation ,

SUBSTR(O.o_entry_d , 0, 4) AS l_year ,

SUM(OL.ol_amount) AS revenue

ORDER BY SU.su_nationkey , cust_nation , l_year;

A.2.2 CH Benchmark Query 15

Find the top supplier or suppliers who contributed the most to the overall revenue for items

shipped during a given period of time.

WITH Revenue AS (

FROM Stock S, Orders O, O.o_orderline OL

WHERE OL.ol_i_id = S.s_i_id AND

OL.ol_supply_w_id = S.s_w_id AND

OL.ol_delivery_d BETWEEN "D1" AND "D2"

GROUP BY ((S.s_w_id * S.s_i_id) % 10000)

SELECT ((S.s_w_id * S.s_i_id) % 10000) AS supplier_no ,

SUM(OL.ol_amount) AS total_revenue

)

FROM Supplier SU, Revenue R

WHERE SU.su_suppkey = R.supplier_no AND

R.total_revenue = (

FROM Revenue

SELECT VALUE MAX(total_revenue)

)[0]

SELECT SU.su_suppkey ,

SU.su_name ,

SU.su_address ,

SU.su_phone ,

R.total_revenue

ORDER BY SU.su_suppkey;

80



A.2.3 CH Benchmark Query 20

Find suppliers in a nation having selected parts that may be candidates for a promotional

offer if the quantity of these items is more than 50% of the total quantity which has been

ordered since a certain date.

FROM Supplier SU, Nation N

WHERE SU.su_suppkey IN (

FROM Stock S, Orders O, O.o_orderline OL

WHERE S.s_i_id IN (

FROM Item I

WHERE I.i_data LIKE ’co%’

SELECT VALUE I.i_id

) AND

OL.ol_i_id = S.s_i_id AND

OL.ol_delivery_d BETWEEN "D1" AND "D2"

GROUP BY S.s_i_id , S.s_w_id , S.s_quantity

HAVING (100 * S.s_quantity) >

SUM(OL.ol_quantity)

SELECT VALUE ((S.s_w_id * S.s_i_id) % 10000)

) AND

SU.su_nationkey = N.n_nationkey AND

N.n_name = ’Germany ’

SELECT SU.su_name ,

SU.su_address

ORDER BY SU.su_name;
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Appendix B

Issues with Multi-Valued

Index-Only-Scan Queries

As mentioned in Section 5.2, covering queries, or index-only-scan queries, are not supported

for use with multi-valued indexes at the time of writing. This appendix explains the chal-

lenges that led to that decision.

Recall the discussion with respect to locking in Subsection 5.4.1: All entries retrieved from

a secondary index are validated by retrieving the referenced entry from the corresponding

primary index because no locks are placed on secondary indexes themselves. This validation

is demonstrated with the query plan snippets in Figure B.1 for the equality query in List-

ing B.1 on the Users dataset.

FROM Users U

WHERE U.name = "Adam"

SELECT *;

Listing B.1: Example query to illustrate index acceleration with the query plan in Figure B.1.

If there exists no index on the name field, then the query plan on the left Figure B.1a will be
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(a) Example query plan without secondary index. (b) Example query plan with secondary index.

Figure B.1: Partial example query plans to demonstrate secondary index validation.

executed: (i) A full dataset scan is performed on the Users dataset. (ii) A filter is performed

on each record that satisfies the equality predicate R.name = "Adam" for all records in R.

If there does exist an index on name field, then the query plan on the right will be executed:

(i) A B+ tree search is performed on the aforementioned index (userNameIdx) for all en-

tries with name equal to "Adam". This returns all qualifying index entries, with each entry

consisting of the sort key (name) and the primary key (user_id). (ii) The primary key field

(user_id) is used to perform another B+ tree search using the primary index to retrieve the

qualifying records R themselves. Note that for efficient navigation of the primary index [14],

all fetched primary keys undergo a sort operation before the primary keys themselves are

given to the search operator. (iii) The secondary index validation is performed with the final

operator presented in this plan, the SELECT operator. Index-only-scan plans in AsterixDB

work around the limitation of not locking secondary indexes by first checking if a primary

index lock could be successfully requested on a retrieved secondary index entry. If this lock

could be granted, then no other transactions are currently modifying the retrieved secondary

index entry. Consequently there is no need to validate this entry and a primary index search

can be skipped altogether. If this lock is not available, then validation is required and a
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primary index search for this specific entry is performed. This split sequence of operations is

reflected in Figure B.2. The lock decision is performed in the SPLIT operator, and searched

index entries are merged back together in the UNION operator.

AsterixDB index-only-scan plans are currently executed using record-level locks for each

index entry. Suppose that index entries were returned from a multi-valued index B+ tree

search. Primary key values can now map to more than one index entry, meaning that the

check to see if a primary index lock can be requested is now performed for each item in the

multi-valued field. Multiple checks means that entries with the same primary key can traverse

different branches of the SPLIT operator, resulting in the appareance of multi-valued fields

(i.e. value sets) that may have never existed. We can see this via the following hypothetical

scenario for a multi-valued index using the same index-only-scan plan for atomic indexes

in Figure B.2:

1. Suppose that we are working with a multi-valued index on the categories array of the

Stores dataset. Stores in this situation holds one record with the primary key value

"D1" and yields two index entries: (i) ("Bread", "D1"), and (ii) ("Deli", "D1")

2. A B+ tree search is performed on storesCatIdx and both index entries are retrieved.

3. Now suppose that a primary index lock can be successfully requested for the record

"D1", so the ("Bread", "D1") entry traverses the right branch of the index-only-scan

query plan and does not have to retrieve a record from the primary index.

4. Concurrently, a DELETE is called on the "D1" record itself. The primary index lock

request check will now fail for "D1", so the ("Deli", "D1") entry traverses the left

branch of the index-only-scan query plan. After the other transaction’s DELETE finishes,

a lock can be acquired on the left branch on the primary index to search for the "D1"

record. No such record is found, and no records are returned from this primary index

search.
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Figure B.2: Example hypothetical partial index-only-scan query plan for a multi-valued
index to demonstrate the locking issue.

5. The sole entry ("Bread", "D1") would now be incorrectly given to the rest of the

query plan. An invalid state is demonstrated here, as the only valid states with respect

to the "D1" record are either both entries ("Bread", "D1") and ("Deli", "D1") or

no entries at all. At no point in time in this scenario did a record with the primary

key "D1" exist with only one item in its categories array.

Though this locking issue is not the only problem with multi-valued index-only-scan query

plans (another issue is how to handle the UNION operation correctly), it is the largest issue

to be overcome to realize covering multi-valued indexes.
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