
Large-scale Complex Analytics on Semi-structured
Datasets using AsterixDB and Spark

Wail Y. Alkowaileet #1, Sattam Alsubaiee #1, Michael J. Carey +∗2, Till Westmann ∗3, Yingyi Bu ∗3

#Center for Complex Engineering Systems at KACST and MIT
+University of California, Irvine

∗Couchbase
1{walkowaileet, ssubaiee}@kacst.edu.sa, 2mjcarey@ics.uci.edu,

3{till,yingyi}@couchbase.com

ABSTRACT
Large quantities of raw data are being generated by many different
sources in different formats. Private and public sectors alike ac-
claim the valuable information and insights that can be mined from
such data to better understand the dynamics of everyday life, such
as traffic, worldwide logistics, and social behavior. For this reason,
storing, managing, and analyzing “Big Data” at scale is getting a
tremendous amount of attention, both in academia and industry.
In this paper, we demonstrate the power of a parallel connection
that we have built between Apache Spark and Apache AsterixDB
(Incubating) to enable complex analytics such as machine learn-
ing and graph analysis on data drawn from large semi-structured
data collections. The integration of these two systems allows re-
searchers and data scientists to leverage AsterixDB capabilities,
including fast ingestion and indexing of semi-structured data and
efficient answering of geo-spatial and fuzzy text queries. Complex
data analytics can then be performed on the resulting AsterixDB
query output in order to obtain additional insights by leveraging
the power of Spark’s machine learning and graph libraries.

1. INTRODUCTION
In the last decade, the MapReduce programming model led to

a breakthrough in terms of the wide scale adoption of distributed
computing. By transparently providing automatic parallelization,
load balancing, and fault tolerance, Hadoop (which is the open-
source implementation of MapReduce) has allowed developers to
focus on writing map() and reduce() functions without worry-
ing about the complexity of distributed processing. However, due
to its rigid policies of materializing intermediates results (for fault-
tolerance purposes) and always shuffle-sorting those results, Hadoop
was found to be inefficient for running machine learning algorithms
and interactive analytics, both which require repeated reads over
the same data [4] [3] [7].

In response to this limitation, Spark [6] was introduced. By
caching its intermediate results in main memory, Spark can out-
perform Hadoop by orders of magnitude when running iterative

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

algorithms such as Logistic Regression. In addition to its perfor-
mance advantages, Spark provides developers with more complex
operators such as filter and join. These factors have resulted in the
recent wide adoption of Spark, causing it to become the new de
facto standard for big data processing. One limitation of Spark,
however, is that it does not provide a storage engine with advanced
indexing capabilities; it only scans data from HDFS. To address
this issue, Spark has been connected with other systems that do
offer indexing capabilities, such as Cassandra, HBase, MongoDB,
and ElasticSearch. Each of these systems has its own character-
istics and features that make it suitable for a particular workload.
This paper describes how we have connected the AsterixDB [1] Big
Data Management System (BDMS) with Spark.

AsterixDB has leveraged ideas drawn from parallel databases,
semi-structured data stores, and first-generation big data platforms
to create a new breed of Big Data Management System (BDMS). It
can store, index, and query multiple datasets, with structures rang-
ing from rigidly-typed relational datasets to flexible and complex
datasets whose objects are heterogeneous and self-described. As-
terixDB differs from other NoSQL datastores by having a powerful
query language that supports full, multi-collection queries as op-
posed to just simple, single-collection selections and aggregates. A
direct connection between Spark and AsterixDB can thus provide
additional input-forming and filtering power. Given such a connec-
tion, Spark developers and data scientists will be able to leverage
AsterixDB’s powerful query language and advanced indexing ca-
pabilities to efficiently explore their big semi-structured data.

In this paper, we demonstrate the parallel connection of these two
big data systems, AsterixDB and Spark, using a new AsterixDB-
Spark connector (called “the connector” hereafter). The connec-
tor allows users to run queries against AsterixDB datasets to effi-
ciently fetch and process only the subset of data that they need and
then to process the resulting output in Spark. The connector lever-
ages the parallelism and coexistence of both systems by enabling
Spark to read the results of AsterixDB queries in parallel, and it ex-
ploits data-locality when possible. Such parallel inter-system con-
nectivity is crucial in the world of big data. We also introduce
an AsterixDB Schema Inferencer, one that is capable of inferring
the schema of homogeneous or heterogeneous semi-structured data
that results from an AsterixDB query.

The rest of the paper is structured as follows: Section 2 pro-
vides an overview of the user models and internal components of
both Spark and AsterixDB. Section 3 discusses the details of our
AsterixDB-Spark parallel connection, covering the whole path from
AsterixDB query submission to running complex analytics on Spark.
Finally, Section 4 describes the demonstration scenarios that will be
shown to illustrate the combined capabilities of the two systems.

1585

2. BACKGROUND
In this section, we briefly review the user model and internal

components of Spark and AsterixDB.

2.1 Apache Spark
Spark uses an abstraction called Resilient Distributed Dataset

(RDD) [7] for performing parallel in-memory computations on par-
titioned data collections with efficient fault-tolerance. There are
two types of operations that can be performed on RDDs. The first
is called a transformation, which is an operation that generates a
new RDD from an existing RDD to reflect the desired data trans-
formation. The second is called an action, which is an operation
that generates a computed value from an existing RDD. Transfor-
mations (such as filter, map, join, union, etc.) can be chained to
form a Directed Acyclic Graph (DAG) that represents a Spark Job.
RDD transformations are executed lazily (i.e. no computation oc-
curs) until there is some action operation (such as count, reduce,
etc.) that starts the computation and returns the result.

Spark applications can be written in any of four programming
languages: Scala, Java, Python and R. Additionally, Spark pro-
vides a programming shell where the user can interactively write a
Spark application. Moreover, the Spark community has incremen-
tally added many higher-level libraries on top of Spark Core (i.e.,
Spark RDDs) to execute SQL queries against Spark’s DataFrames
(which are RDDs with schemas), to run machine learning algo-
rithms, and to perform graph analysis. Figure 1 shows how easy it
is to write a scalable word count task in Spark using its transforma-
tions and actions; Figure 2 shows an alternative way to accomplish
the same word-count task using SparkSQL.

val lines = sc.textFile("file.txt")
val words = lines.flatMap(line => line.split(" "))
val wordCount = words.map(word => (word,1))

.reduceByKey(_ + _).collect()
wordCount.foreach(println)

Figure 1: A Spark word-count program using RDD transformations
and actions.

val lines = sc.textFile("file.txt")
val words = lines.flatMap(line => line.split(" "))
case class Word(word: String)
val dataFrame = words.map(w => Word(w)).toDF
dataFrame.registerTempTable("wordsTable")
sqlContext.sql("""

SELECT word, count(*) FROM wordsTable GROUP BY word
""").show()

Figure 2: A Spark word-count program using SparkSQL aggregate
query on a DataFrame.

2.2 Apache AsterixDB
AsterixDB is a parallel big data management system that is ca-

pable of efficiently ingesting, storing, indexing, and querying large
semi-structured datasets. It can manage relational-like datasets as
well as complex and flexible ones. The AsterixDB Data Model
(ADM) extends JSON to include a larger set of data types, such as
datetime and polygon, that can be specified using the Aster-
ixDB Data Definition Language (DDL). Figure 3 shows an example
of three ADM types called TwitterUserType, TweetType
and StateType, that can be used to model Twitter data and US
States data, respectively. The example shows the ADM support for
optional fields (location), nested types (user), collection types

(hashtags) and various spatial types (location and shape).
By specifying some or all the schema up front, a user can permit the
ingestion of instances that must follow a certain structure without
sacrificing the flexibility of allowing additional fields that are not
described a priori. Queries for AsterixDB are written in AQL (As-
terixDB Query Language). AQL is a declarative query language
that draws ideas from XQuery, mainly its FLWOR expression and
its composability, adapting it to query ADM datasets. Figure 4
shows a query that searches for tweets that contain certain key-
words in a specific period of time. To determine the sender location,
a spatial join is performed between TweetDataset and StateDataset
using the spatial-intersect function.

AsterixDB accepts an AQL query through its HTTP-based API
and returns the result either synchronously or asynchronously (where
a handle to the result is returned and the user can inquire about the
result status and retrieve the result using the handle). When a user
submits an AQL query, AsterixDB compiles and optimizes it into
a Hyracks job [3] for parallel execution. The role of Hyracks is to
serve AsterixDB as its parallel runtime engine. AsterixDB utilizes
partitioned LSM-Based [2] primary and secondary indexes (B+-
Tree, R-Tree, and text indexes) to answer queries efficiently and
produces partitioned results in parallel. All partitioned results are
then collected and returned to the user through the HTTP API.

create type TwitterUserType {
screen-name: string ,
lang: string ,
friends_count: int32 ,
statuses_count: int32 ,
name: string ,
followers_count: int32

};

create type TweetType {
tweetid: int64 ,
user: TwitterUserType,
location: point? ,
time: datetime ,
hashtags: {{ string }} ,
message: string ,
userid: int32

};
create type StateType {
name: string ,
code: string ,
shape: polygon

};
Figure 3: Modeling Twitter and US states data in ADM.

for $state in dataset StateDataset
for $tweet in dataset TweetDataset
l e t $keywords := ["NFL", "superbowl","semi final"]
l e t $location := $tweet.location
l e t $shape := $state.shape
l e t $message := $tweet.message
l e t $stateCode := $state.code
where spatial-intersect($location, $shape)
and (some $word in $keywords

sat i s f i e s contains($message, $word))
and $tweet.time >

datetime("2015-05-02T00:00:00Z")
and $tweet.time <

datetime("2015-12-02T00:00:00Z")
return {"state-code":$stateCode, "message": $message}

Figure 4: An example of AQL query that involves spatial-join and
textual search.

3. COMBINED SYSTEM OVERVIEW
The connector is a library that can be loaded into a Spark applica-

tion (or shell) to allow AsterixDB and Spark to interact seamlessly
as one combined system. It enables Spark users to leverage As-
terixDB’s data model and indexing capabilities to efficiently fetch
only the subset of data that they need and then process it in Spark.

1586

This is achieved by connecting the large, sharded query-result par-
titions from AsterixDB to Spark, as opposed to linking the two par-
allel systems through a thin (serial) pipe.

Consider the example configuration presented in Figure 5, which
shows a cluster running both AsterixDB (Asterix Node Controller)
and Spark (Spark Worker) instances. To keep this example sim-
ple, both AsterixDB and Spark instances coexist on every node in
the cluster; however, our connector does not require the two sys-
tems to coexist on the same nodes. In the example shown, each
node has three disks that are used to store AsterixDB datasets and
each has three configured Spark Executors that execute Spark jobs.
The Asterix Cluster Controller and Spark Driver are orchestrating,
managing, and monitoring the execution of all of the AsterixDB
(Hyracks) and Spark jobs on the cluster, respectively.

A typical coupled-system interaction will involve three consecu-
tive steps: submission of an AQL query from Spark to AsterixDB,
execution of the query in AsterixDB to produce the result partitions
(with inferred schemas), and loading of the result partitions into
Spark for analytics. In the following, we discuss each step in de-
tail by using the sample Spark application shown in Figure 6. This
application, which is written in Scala, performs sentiment analysis
on a Twitter dataset that is stored in AsterixDB. Specifically, the
analysis targets tweets about the Super Bowl posted within three
days of the game. To do so, the application submits the AQL query
shown in Figure 4 to efficiently fetch only those tweets that match
the search criteria and to load it to Spark as a DataFrame collec-
tion. The application then utilizes Spark’s machine learning library
to count the number of positive tweets for each US state using a
trained Naïve Bayes model.

AQL

A
sterix A

PI C
lien

t

DataFrame

Asterix Cluster Controller

Result Location Provider

Result Schema Provider

AQL

Result Locations

Result Schema

(AsterixDB-Spark Connector)

Asterix Node Controller

Result Writer

Schema Inferencer

Hyracks Job

Spark Worker

Result Partition M
anager

Result Reader

Cache M
anager

SparkSQL

User

Node 1 Node m Node n

Network

Result

Subm
it H

yracks Job

Register Result Info

Node m

SparkSQ
L Physical Plan

AsterixRDD

Result

Locations

Schema

Spark Executer

Asterix Client Asterix Client Asterix Client

Spark Executer

Result Info.

Existing Module

Added Module

Spark Executer

Spark Driver

Figure 5: AsterixDB-Spark Connector detailed architecture.

val aqlQuery = /* AQL Query from Figure 4 */
val tweets = sqlContext.aql(aqlQuery)
val NBPipeline = Pipeline.load("/path/NBModel")
NBPipeline.transform(tweets).select("state-code, label")

.filter("label = 1")

.groupBy("state-code").agg(count("label"))

.show()

Figure 6: A Spark application that submits a query to AsterixDB
to fetch tweets that discuss the Super Bowl game and then perform
sentiment analysis on them using a trained Naïve Bayes model.

3.1 Query Submission
Within a Spark application or a Spark shell, the user can submit

AsterixDB AQL queries using the connector, as shown in Figure 6.
The connector internally uses AsterixDB’s HTTP API to submit
the query to the Asterix Cluster Controller (CC) and specifies the
required output result format as JSON1. Similar to any AQL query
that is submitted to AsterixDB, the CC then compiles and optimizes
the query to produce a Hyracks job and submits it to all registered
Asterix Node Controllers (NCs) for execution.

3.2 Query Execution and Schema Inference
Once the Hyracks job is submitted, each NC will execute the

compiled query and materialize the result as binary JSON parti-
tions. The number of partitions generated in each NC will match
the number of I/O devices (storage disks) configured in Hyracks.
For example, in Figure 5, there are three I/O devices per node.
Hence, the expected number of result partitions in each node is
three. (The mapping between Hyracks result partitions and Spark
partitions is explained in Section 3.3.)

Usually, when Spark loads a JSON file to create a DataFrame,
the schema of the records in the file must be available. There
are two options to obtain the schema: either the user provides it
manually, which can be tedious especially when dealing with semi-
structured datasets, or Spark infers the schema automatically by
scanning the whole file, which can obviously be a costly operation.
Some other Spark connectors (e.g., the MongoDB connector [8])
infer a schema by sampling records. However, sampling does not
guarantee the correctness of the resulting schema when the data is
semi-structured, which can cause subsequent Spark queries on the
data to fail. To address this issue, we introduced a new Schema
Inferencer module in AsterixDB that constructs the schema of the
result partitions on the fly while materializing the result without an
additional pass. The inferencer infers the types from the data as
appropriate. For instance, the type of the field name in Figure 7
is inferred as String. In addition, the schema inferencer marks
every field that does not appear in all records (e.g., the salary
field appears only in the first record) as an optional field.

Some records in an AsterixDB dataset may contain fields with
the same name but with different data types. For instance, the two
JSON records shown in Figure 7 could coexist in a single Aster-
ixDB dataset. As can be seen, the dependents field in the first
record is an array of JSON objects representing the dependents’
names. However, in the second record, the dependents field is
an array of integers corresponding to the IDs of the dependents.
We refer to fields with such a data type disparity as heterogeneous
fields. In the case of Spark, heterogeneous fields are always inferred
as String. To comply with Spark, our schema inferencer resolves
heterogeneous fields as String. However, the schema inferencer

1AsterixDB supports other output formats such as CSV and ADM.

1587

{
"id": 1,
"name": "Alice",
"dependents":[

{"name": "Bob"} ,
{"name": "Carol"}],

"salary":68000
}

{
"id": 2,
"name": "Dane",
"dependents": [5, 23]

}

Figure 7: Two JSON documents with heterogeneous and homoge-
neous fields.

provides the developers with a generic interface that can be imple-
mented to decide how to resolve data type disparities. For example,
another implementation of this interface could resolve heteroge-
neous fields as the union of the conflicting field types.

3.3 Result Reading and Processing
When a user triggers the execution of the Spark job (e.g., by call-

ing the show() function in the last line of Figure 6, which is an
action that prints the results in a tabular format), the connector asks
the CC for the result locations and the inferred schema. This in-
formation is used by Spark to construct the required DataFrame as
follows: The SparkSQL optimizer generates an optimized physi-
cal plan and submits it as a Spark job to all Spark workers in the
cluster. To exploit data locality, the locations of the AsterixDB re-
sult partitions are utilized by Spark to assign the job to those Spark
workers that are co-located with the query result partitions. If there
is an assigned Spark worker that does not coexist with a result par-
tition, then the Asterix Client (shown in Figure 5) reads the result
remotely from the other node. Within each Spark worker, multi-
ple Spark Executors read the result partitions, deserialize the bi-
nary JSON results, and collectively construct an AsterixRDD. The
connector then constructs a DataFrame by applying the inferred
schema on the resulting AsterixRDD without needing an additional
pass over the data. Since the number of Spark executors may ex-
ceed the number of result partitions, a one-to-one mapping could
lead to some Spark executors being idle. To avoid this, the connec-
tor utilizes the RDD’s repartition mechanism to let multiple
executors read from the same partition (i.e., two or more Spark ex-
ecutors can read from the same result partition).

Returning to the example of Figure 6, the Naïve Bayes Model
NBPipeline takes the DataFrame tweets, the result of the AQL
query, as an input and classifies each tweet as positive (labeled by
1) or negative (labeled by -1). Finally, the tweets for each state are
filtered for positive sentiment and a count of these positive tweets
is printed.

4. DEMONSTRATION SCENARIO
In the demonstration, we will show several scenarios using two

real datasets: a Twitter dataset and a publications dataset. Dur-
ing the demonstration, we will interact with AsterixDB and Spark
through the connector and visualize the results using Apache Zep-
pelin notebooks [9]. Figure 8 shows a sample screen shot from
the demonstration interface. In each scenario, the audience will be
given a walk-through tour that interacts with both systems using the
connector. Additionally, we will show the output of the AsterixDB
schema inferencer. We will also show how the inferencer can be
used to generate schemas for semi-structured datasets in order to
produce the required Scala case class for the new experimen-
tal Spark Datasets2.

The details of the two AsterixDB/Spark platform interoperation
scenarios are as follows:
2https://spark.apache.org/docs/latest/sql-programming-
guide.html#datasets

Figure 8: A sample visualization of the interface that will be pre-
sented in the demonstration.

Spatiotemporal Sentiment Analysis: In this scenario, we will
show how to utilize both AsterixDB and Spark to detect the sen-
timent of tweets. In particular, the goal is to understand the im-
pression about a topic in each US state during a certain time win-
dow. We will accomplish this using AsterixDB’s capabilities to
efficiently retrieve tweets based on their location, time, and textual
content. Afterwards, we will use Spark to iteratively go over each
state’s tweets and run the trained sentiment analysis model. Finally,
we aggregate the result and visualize it on a heat map.
Scholar Field Prediction: Many scholars publish in many disci-
plines during their career. For example, a computer scientist might
start her career in theoretical computer science and later shift to
computer systems. In this scenario, we will show a way of predict-
ing the next field that a scholar might publish in using the methodol-
ogy explained in [5]. To do so, we will use AsterixDB to construct
the field relation graph by creating an edge between any two fields
if there is an author who published in both of them. From the field
network, we will use Spark to identify the statistical significance
between fields which then can be used as a model for prediction.

5. REFERENCES
[1] S. Alsubaiee et al. AsterixDB: A scalable, open source

BDMS. Proc. VLDB Endow., 7(14), 2014.
[2] S. Alsubaiee et al. Storage management in AsterixDB. Proc.

VLDB Endow., 7(10), 2014.
[3] V. Borkar et al. Hyracks: A flexible and extensible foundation

for data-intensive computing. ICDE, 2011.
[4] Y. Bu et al. HaLoop: efficient iterative data processing on

large clusters. Proc. VLDB Endow., 3(1-2), 2010.
[5] M. R. Guevara et al. The research space: using the career

paths of scholars to predict the evolution of the research
output of individuals, institutions, and nations. 2016.
arXiv:1602.08409 [cs.DL].

[6] M. Zaharia et al. Spark: Cluster computing with working sets.
In Proc. HotCloud, 2010.

[7] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. NSDI, 2012.

[8] MongoDB-Spark Connector: White Paper.
https://www.mongodb.com/collateral/apache-spark-and-
mongodb-turning-analytics-into-real-time-action.

[9] Apache Zeppelin. https://zeppelin.incubator.apache.org/.

1588

	Introduction
	Background
	Apache Spark
	Apache AsterixDB

	Combined System Overview
	Query Submission
	Query Execution and Schema Inference
	Result Reading and Processing

	Demonstration Scenario
	References

