
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 507

BigFUN: A Performance Study of
Big Data Management System Functionality

Pouria Pirzadeh
University of California Irvine

Irvine, USA
Email: pouria@uci.edu

Michael J. Carey
University of California, Irvine

Irvine, USA
Email: mjcarey@ics.uci.edu

Till Westmann
Couchbase §

Mountain View, USA
Email: till@couchbase.com

Abstract—In this paper, we report on an evaluation of four
representative Big Data management systems (BDMSs): Mon-
goDB, Hive, AsterixDB, and a commercial parallel shared-
nothing relational database system. In terms of features, all offer
to store and manage large volumes of data, and all provide some
degree of query processing capabilities on top of such data.
Our evaluation is based on a micro-benchmark that utilizes a
synthetic application that has a social network flavor. We analyze
the performance results and discuss the lessons learned from this
effort. We hope that this study will inspire future domain-centric
evaluations of BDMSs with a focus on their features.

I. INTRODUCTION

The IT world is excited about the Big Data ”buzz”. Im-
mense volumes of data are generated continuously in different
domains and there is clear merit in analyzing and processing
this data. New emerging platforms for this purpose can be
largely categorized into two groups: interactive request-serving
systems (NoSQL), mainly serving OLTP types of workloads
with simple operations, and Big Data analytics systems, which
process scan-oriented OLAP types of workloads. The variety
of Big Data systems makes it difficult for end users to pick
the most appropriate system for a specific use case. In this
situation, benchmarking Big Data systems can help provide
more insight by offering a better understanding of the systems
and also obtaining a set of guidelines to make the correct
decision in picking a system for a specific application. The
performance evaluation of Big Data systems is thus a challeng-
ing, but essential, need in today’s Big Data world. While well-
established, comprehensive benchmarks exist to evaluate and
compare traditional database systems, benchmarking efforts in
the Big Data community have not yet achieved maturity. Some
of the performance reports and white papers only show ’hand-
picked’ results for scenarios where a system is behaving just
as desired. In addition, there are still ongoing debates about
what the correct set of performance metrics is for a Big Data
system. These issues make the evaluation and comparison of
these systems complicated.

There are a few major Big Data benchmarking exercises
that have gotten serious attention from the community. These
efforts have mostly kept their focus on a well-defined, but
narrow, domain of systems or use cases. Examples are YCSB

§Work done while at Oracle Labs.

[1] for OLTP-like and the reported study in [2] for OLAP-
like use-cases. Additionally, the types of operations that these
efforts have included do not cover the full set of functionality
that a complete Big Data system should offer.

In this paper, our aim is to contribute to the Big Data
performance study area from a slightly different angle. We
study and compare Big Data systems based on their available
features. We use a micro-benchmark, BigFUN (for Big Data
FUNctionality), that utilizes a simple synthetic application
with a social network flavor to study and evaluate systems
with respect to the set of features they support along with
the level of performance that they offer for those features.
The BigFUN micro-benchmark focuses on the data types,
data models, and operations that we believe a complete,
mature BDMS should support. We report and discuss initial
results measured on four Big Data systems: MongoDB [3],
Apache Hive [4], a commercial parallel database system, and
AsterixDB [5]. Our goal here is not to determine whether
one Big Data management system (BDMS) is superior to the
others. Rather, we are interested in exploring the trade-offs
between the performance of a system for different operations
versus the richness of the set of features it provides.

We should emphasize that this paper is a first step towards
the goal of studying Big Data systems feature-wise. While
we did our best in designing BigFUN and using it to evaluate
a set of representative platforms, we do not claim that this
work is comprehensive. We hope our work can show the
merit of the direction it has taken in Big Data benchmarking,
and we expect future work to expand on this effort.

II. RELATED WORK

The history of benchmarking data management technologies
goes back to the 1980s, when the first generation of relational
DBMSs appeared. The Wisconsin benchmark [6] and the
Debit-Credit benchmark [7] are among the first works in
this area. Because of their major influences on data man-
agement systems, the Transaction Processing Performance
Council (TPC) came into existence and developed a series
of benchmarks such as TPC-C and TPC-H. A number of
benchmarks emerged from the research community. Examples
include: OO1 [8], OO7 [9], BUCKY [10], and XMark [11].

508

With the emergence of Big Data, work on Big Data
benchmarks has begun to appear. This work can roughly be
divided into two main groups. The first addresses the problem
of evaluating Big Data serving technologies from a broad
perspective. BigBench [12] describes an end-to-end Big Data
benchmark proposal. A recent overview paper [13] discusses
potential pitfalls and unmet needs in Big Data benchmarking.

The second category of work on Big Data benchmarking
mainly proposes a new Big Data benchmark and presents the
results obtained by running it. For Big Data analytics, [2]
was the first work to compare Hadoop against Vertica and a
row-organized parallel RDBMS (the same DBMS examined
here) using a workload consisting of different selections,
aggregations, and a join. On the NoSQL front, YCSB [1] (from
Yahoo!) presented a multi-tier benchmark that uses mixed
workloads of short read and write requests against a number
of key-value stores and sharded MySQL. Other works, such
as [14] and [15], have extended this effort further. Recently
[16] looked at both OLAP and OLTP workloads using existing
benchmarks. Other examples of works include LinkBench
[17], GridMix [18], PigMix [19], and BG [20].

While the Big Data community has identified the merit,
major obstacles and challenges in evaluating Big Data systems,
there is still a long way (and potential opportunities) to go to
create practical benchmarks that can be widely adopted and
used by users and the industry.

III. SYSTEMS OVERVIEW

In this section, we provide a brief overview of the systems
that we use in our evaluation here. We picked them because
most have been used extensively for different use cases.
Moreover, their rich set of features makes them reasonable
candidates for our performance study.

System-X: System-X is a commercial, parallel, shared-
nothing, relational DBMS. It defines its schemas using the re-
lational data model, partitions data horizontally, and manages
storage using native RDBMS storage technology. It supports
different types of indices. A client can submit queries through
the system’s supported APIs, such as standard JDBC drivers.
System-X has a mature cost-based query optimizer to convert
an input SQL query into an optimized query plan that is then
executed in parallel on the cluster. System-X represents the
traditional way of managing Big Data.

Apache Hive: Hive [4] is a data warehouse that provides
a SQL-like interface (HiveQL) on top of Hadoop. It supports
various file formats for its tables that have significant per-
formance differences, e.g., sequence files, RCFile, ORC, and
Parquet. A client submits a query through APIs such as Hive
CLI or HiveServer2. A query is compiled into an optimized
execution plan of map and reduce jobs. These are executed
by the Hadoop framework, and the results can be stored in
HDFS or delivered back to the user. Hive represents the class
of batch-oriented Big Data analytics platforms.

MongoDB: MongoDB [3] is a NoSQL document database
that stores its data in schema-less collections using BSON. It
supports automated sharding and load balancing to distribute

data on cluster. MongoDB also supports various types of in-
dices and operations. In MongoDB, aggregations can be done
through an aggregation framework as well as MongoDB’s
mapReduce command. Clients directly connect to MongoDB
processes to submit requests. Queries run against a single
collection, and there is no support for joins. Users need to
change their data model (using embedded documents) or per-
form client-side joins for that purpose. MongoDB represents
the current class of NoSQL document stores.

AsterixDB: AsterixDB [5] is a new open source Big Data
management system for storing and processing semi-structured
data. It has its own declarative query language (AQL) and
data model (ADM). ADM is a ”super-set” of JSON, with
additional data types compared to JSON. AsterixDB supports
its own native storage (hash-partitioned LSM B+ Trees) along
with external storage (currently HDFS). It has support for
different types of indices such as B+ Trees, spatial indices, and
text indices. A built-in data feed service for continuous data
ingestion is another of its features. As the execution engine,
AsterixDB uses Hyracks, a data-parallel runtime platform for
shared-nothing clusters. Clients use an HTTP-based API to
submit queries. A query is compiled and optimized by a rule-
based optimizer and executed as a Hyracks job whose results
are delivered back to the client. AsterixDB represents a new
generation of Big Data management platforms.

IV. DATA AND WORKLOAD DESCRIPTION

A mature Big Data system must manage huge volumes of
data coming from multiple sources with different schemas,
along with high rates of incoming new data and updates. The
design of the BigFUN micro-benchmark aims at reflecting
these expectations in its data and workload. We followed the
idea of the Wisconsin benchmark [6] and designed a generic
synthetic database populated with randomly generated flexible
records that can be scaled accurately. We designed the BigFUN
schema to cover a wide range of basic and rich data types. The
workload consists of various simple and complex operations
to study the level of support and performance for a range of
different features and functionality in a given system. In this
section, we introduce the database in BigFUN along with the
operations in its workload.

A. Database
The BigFUN schema includes simple, complex, and nested

data types along with unique and non-unique attributes that can
serve different indexing and querying purposes. In BigFUN,
we are interested in identifying the supported data types in a
system, including richer data types such as temporal or spatial,
and explore the level of support for secondary indices on them.
We also want to check if a system can store heterogeneous
records and records with nesting or if it requires all records
in a dataset to have the same schema and be normalized.
Data Types: We store information about two imaginary social
networks in our database: Gleambook and Chirp. We use five
data types, two of which are nested in others (Figure 1):
1) GleambookUserType: Captures information about the

509

�����	��������������
���������#"��
��������������	��
�������������	��
������"���
�����������
�������"�����������#"�����
�����������������������������
��

�����	���������������#�
���������"�������#"� ��
��������"�������#"�������
����"��������"�������#"���
��������"��
�������������
������"�������������
����������������	�
��

�����������������
�������� �����������	��
�������"������������
�����"������������
��

����������������
���
����"�����������	��
�������������	��
��������"
���������! ��
����������"
���������! ��
�������������	��
����������"
���������! �
��

�������������������
��
�����������#"��
���������
�������������
��������"��
�������������
������"�������������
���������"����
�����������	�����
���������"�����������	�
��

Fig. 1. Nested BigFUN schema

Gleambook network users. With basic information such as the
id and name, each user’s record contains a list of Employ-
mentType records showing the employment history and a set
of friend ids for the ids of other users connected to this user.
2) GleambookMessageType: Contains information about a
message in the Gleambook network. The message text is
stored in the message attribute and author id is a (foreign
key) attribute that shows the sender of a message using his id.
3) ChirpMessageType: Captures information about a chirp
message in the Chirp network. It includes user as a nested
attribute of type ChirpUserType to store information about
the sender. Referred topics is an unordered list of keywords
storing the hash tags of a message.

The attributes in Figure 1 are a super-set of the attributes
that a given instance of each type may have. Optional attributes
are denoted by ’?’, such as end date in EmploymentType. In a
system that supports semi-structured data, optional attributes
can simply be left out of records that they do not exist in.
If a system only supports structured data, where all attributes
appear in each record, missing attributes are set as ’NULL’.
Datasets: The number of datasets in an implementation of
BigFUN depends on whether records can be stored with nest-
ing or need to be normalized. Using a rich data model, the Big-
FUN records can be stored in three datasets: GleambookUsers,
GleambookMessages and ChirpMessages, with each dataset
storing records of one of the top-level data types in Figure
1. But if a system only supports flat records, the schema
needs to be normalized. One way of doing that is using six
datasets (Figure 2). While the GleambookMessages dataset
remains intact, the employment and friend ids attributes in
GleambookUsers records and referred topics in ChirpMes-
sages records are stored in separate datasets, and the id of
the GleambookUsers and chirpid of ChirpMessages are used
as the parent key in these child datasets.
Secondary Indices: The BigFUN micro-benchmark uses sec-
ondary indices in a system when justified and the system under
test has support for them. This includes B-Trees and spatial
and text indices. More details are provided later in section V.
Data Generation: We created a data generator for BigFUN
that uses a scalable approach to generate synthetic data based
on a given scale factor. The scale is interpreted as the total size
of data (in bytes) across all datasets to characterize one specific

���������
�����'���%������%�����%�����&�����(�

�����"������'���%�������#����%������&����%����&�����(�

����������'���%�������&���(�

������������������'��������&��%�������&��%���&��������&��%�
��&������%�����&���%���������(�

��������������'�������%�������&������%�����&���%��������&��!�%�
� � � �������&����%�����%��������&����%���������&����%�

� � ������%������ ���&�����(�

��������	�����'������%���������&�����(�

���������
���� '���%������%�����%�����&�����(

�����"����� '���%�������#����%������&����%����&�����(

��������� '���%�������&���(

��

������������� '�������% ������&������% ����&���%��������&��!�%�
� �����&����%�����% �������&����%���������&����%�

� � �����%������ ���&�����(

��������	���� '������%���������&�����(�

&

Fig. 2. Normalized BigFUN schema

load. The generator has a number of adjustable parameters
and policies to control various properties of the synthetic
data. For temporal and spatial attributes, it selects the values
from defined intervals and regions. It generates synthetic, yet
“meaningful”, messages using a set of message templates and
a dictionary of keywords with different expected popularity.
It also injects some noise, in the form of misspellings, as
potential human errors in editing messages. More details about
the data generator can be found in [21].

B. Workload
The BigFUN micro-benchmark’s workload consists of the

operations shown in Figure 3. The first six groups contain
read-only queries, categorized based on the functionality and
features that each explores. The last group contains data mod-
ification operations. Table I lists these queries and operations.

Our read-only queries try to meet these goals:
Clarity: One should be able to associate each query with a
user request that could arise in a real Big Data application.
For example, the “unique record retrieval” query (Q1) can be
mapped to fetching the profile of a user in a social network.
Simplicity: Each query should be an independent operation that
evaluates a well-defined and reasonably small set of features.
For example, the “global aggregation” query (Q6) measures
the performance of aggregating the results of applying a built-
in function on selected records.
Coherence: A relationship exists between groups of queries,
such that comparing results among them reveals more insight
about the performance of a system. For example, Q6 performs
a simple aggregation, while Q7 and Q8 each add an extra step
on top of that.

We discuss each group of operations in more detail below:
G1. Single Dataset - Simple: The first group of operations
consists of three queries (Q1 to Q3) which retrieve full records
in the GleambookUsers dataset using predicates (with varying
selectivities) on the primary key (id) or a non-unique temporal
attribute (user since). If the schema is normalized, a system
needs to access more than one dataset to fetch all the attributes
of the retrieved records and combine them together.
G2. Single Dataset - Complex: This group of operations
considers quantification and aggregation. The quantification
queries (Q4, Q5) use end date in the employment attribute

510

QId Name Description
Q1 Unique record retrieval Retrieve an existing user using his or her user id.
Q2 Record id range scan Retrieve the users whose user ids fall in a given range.
Q3 Temporal range scan Retrieve the users who joined the network in a given time interval.
Q4 Existential quantification Find basic and employment information about users who joined the network in a given time

interval and are currently employed.
Q5 Universal quantification Find basic and employment information about users who joined the network in a given time

interval and are currently not employed.
Q6 Global aggregation Find the average length of chirp messages sent within a given time interval.
Q7 Grouping & aggregation For chirp messages sent within a given time interval find the average length per sender.
Q8 Top-K Find the top ten users who sent the longest chirp messages (on average) in a given time interval.
Q9 Spatial selection Find the sender names and texts for chirp messages sent from a given circular area.
Q10 Text containment search Find the texts and send-times for the ten most recent chirp messages containing a given word.
Q11 Text similarity search Find the texts and send-times for the ten most recent chirp messages that contain a word similar

(based on edit distance) to a given word.
Q12 Select equi-join Find the users’ names and message texts for all messages sent in a given time interval by users

who joined the network in a specified time interval.
Q13 Select left-outer equi-join For users who joined the network in a given time interval, find their name and the set of

messages that they sent in a specified time interval.
Q14 Select join with grouping

& aggregation
For users who joined the network in a given time interval, find their ids and the total number
of messages each sent in a specified time interval.

Q15 Select join with Top-K For users who joined the network in a given time interval, find their ids and the number of
messages each sent in a specified time interval; report the top ten users with the most messages.

Q16 Spatial join For each chirp message sent within a given time interval, find the ten nearest chirp messages.
U1 (Batch) Insert Given the information for a set of new users, add the information to the database.
U2 (Batch) Delete Given a set of existing user ids, remove the information for each user from the database.

TABLE I
BIGFUN OPERATIONS DESCRIPTION

����!��
���� �����

�������� ��� �
�����

�������� ��� �
������#

�������� ��� �
��"�����

	!� �$�� ��� �
����

	!� �$�� ��� �
��������

	!� �$�� ��� �
��"�����

����!� ������
���

�!�� �/��� ��� ������� ��� �� �����
���� ���

��# �
�����

�& �' �(�) �* �+ �, �- �. �&% �&& �&' �&(�&) �&* �&+

���� ��

�& �'

Fig. 3. BigFUN operations

of GleambookUsers. The aggregation queries (Q6, Q7, Q8)
access the ChirpMessages dataset and aggregate over the
results of the ‘string-length’ function. Q6 simply calculates this
aggregate value for a subset of messages, Q7 adds grouping
on top, and Q8 extends it with ranking and limit.
G3. Single Dataset - Advanced: This group evaluates fetching
ChirpMessages’ records using spatial or textual similarity
predicates. Q9 uses sender location to select messages sent
from a given region whose boundaries are varied to create dif-
ferent versions of the query. Q10 and Q11 consider messages’
contents. Q10 uses an exact string matching predicate, while
Q11 uses edit distance as the similarity metric. The popularity
of the search keyword changes in different query versions.
G4. Multi-Dataset - Join: This group considers joining
GleambookUsers and GleambookMessages records. Q12 is a

regular equi-join, and Q13 involves a left-outer join.
G5. Multi-Dataset - Combined: This group of queries (Q14
and Q15) measures the performance of a system for combi-
nations of joins and aggregations. They use GleambookUsers
and GleambookMessages to join, group, and rank a selected
set of users based on their numbers of sent messages.
G6. Multi-dataset - Advanced: The last group of read-
only queries considers a spatial join on the ChirpMessages
dataset which returns the top-10 “near by” messages, ranked
by sending time, for a set of Chirp messages. A “near by”
message for a given message is one sent from a specified
neighborhood (with varying boundaries in different query
versions) around the sending location of the original message.
Updates: This group contains two data modification opera-
tions (U1 and U2) to study a system’s behavior when dealing
with data additions (insert) or removals (delete). A single insert
(or delete) operation adds (or removes) a GleambookUser
record and all its attribute values to (or from) the database.
In the normalized schema case, a single operation turns into
multiple corresponding operations on several datasets. As real
applications do inserts and deletes both individually and in
batches, BigFUN includes both singleton and bulk operations,
with varying sizes.

V. EXPERIMENTS

This section presents a set of results obtained by running
BigFUN on the systems in Section 3. We detail the setup and
present the read-only and update results separately.

511

Asterix
Schema

Asterix
KeyOnly System-X Hive Mongodb

9 Parts 169 285 292 18 276
18 Parts 338 571 587 36 553
27 Parts 508 856 881 53 833
Updates 162 279 272 - 278

TABLE II
TOTAL DATABASE SIZE (IN GB)

A. Setup
We used a 10-node IBM x3650 cluster with a Gigabit Eth-

ernet switch. Each node had one Intel Xeon E5520 2.26GHz
CPU (4 cores), 12 GB of RAM, and four 300GB, 10K RPM
hard disks, running 64-bit CentOS 6.6. On each machine three
disks were used as data partitions to store persistent storage
files. The fourth disk stored the transaction and systems’ logs.
Client: The BigFUN client driver ran on a separate machine
with 16 GB of RAM and 4 CPU cores connected to the same
Ethernet switch. We used a single-user, closed-system model
for our tests. As the performance metric, we measured the
average end-to-end response time per operation (on a warmed
up system cache) from the client’s perspective.
System-X: For System-X, we used a version dated approxi-
mately 2013. Each node in the cluster served 3 database parti-
tions. Data was partitioned using the system’s hash partitioning
scheme. We used the vendor’s JDBC driver for the tests.
Hive: We used Apache Hive 0.13 with tables stored in the
Optimized Row Columnar (ORC) file format. We configured
4 map and 4 reduce slots per node. Three disks per machine
were used by HDFS to store data (with a replication factor of
1) and the fourth stored Hadoop logs.
MongoDB: We used MongoDB version 2.6.3. Our client used
Java driver version 2.12.4. Collections were sharded using
hashed keys. Each machine hosted three shards on separate
disks. The fourth disk on each node stored the journal files.
AsterixDB: We used version 0.8.7 and its HTTP API. We used
internal datasets, hash partitioned by primary key. One node
controller with 6 GB of memory, 1 GB of bufferpool, and three
data partitions ran on each machine. We measured AsterixDB’s
performance for two data type definition approaches for each
data type: AsterixSchema, where we pre-declared all possible
attributes, and AsterixKeyOnly, where we only defined the
minimal set of attributes (required for indexing). These two
variations lie on the end-points of the semi-structured data
type definition spectrum in AsterixDB.

B. Read-Only Workload Results
Our read-only experiments focused on each system’s scale-

up using three scales with 9, 18 and 27 partitions on 3, 6 and
9 machines respectively. For the 9-partition scale, 90 million
GleambookUsers, almost 450 million GleambookMessages,
and more than 220 million ChirpMessages were generated.
These cardinalities scaled up proportionally for the other
two scales. We used the nested schema in Figure 1 for
AsterixDB and MongoDB. For System-X and Hive, we used

Dataset Attribute AsterixDB MongoDB
GleambookUsers user since BTree BTree
GleambookMessages author id BTree BTree
ChirpMessages send time BTree BTree
ChirpMessages sender location RTree 2d-IX
ChirpMessages message text inverted-IX text-IX

TABLE III
NESTED SCHEMA - SECONDARY INDEX STRUCTURES

Table Column System-X
GleambookUsers id BTree (PIX, Clustered)
GleambookUsers user since BTree
GleambookMessages message id BTree (PIX)
GleambookMessages author id BTree (clustered)
ChirpMessages chirpid BTree (PIX, Clustered)
ChirpMessages send time BTree
Employments id BTree (clustered)
FriendIds id BTree (clustered)
ReferredTopics chirpid BTree (clustered)

TABLE IV
NORMALIZED SCHEMA - INDEX STRUCTURES

the normalized schema of Figure 2. Table II shows the total
database size per system after loading. In each scale, the data
size was at least five times the total available memory to
make sure IO requests were not simply served by the OS
cache. AsterixSchema and AsterixKeyOnly differed in size as
the result of the extra information stored per record in the
latter case. In Hive, the ORC file format’s built-in compression
reduced the total size of the stored tables significantly.
Auxiliary index structures: Table III lists the secondary
indices created in AsterixDB and MongoDB for their nested
schemas, while Table IV lists the indices used for the normal-
ized schema in System-X (including table clustering). As an
example, GleambookMessages were clustered on author id, as
queries tend to access them via this attribute to fetch all the
messages for a given user. We gathered statistics in System-X
to gain the information needed for good query plans. We did
not use indices in Hive, as its optimizer does not automatically
consider them; Hive users must manually reformulate queries
so that indices can be used.

Lack of support for joins in MongoDB forced us to do this
operation on the client side. Our client program performed an
index nested loop join using the primary and secondary indices
on the collections involved in the query.
Performance results: Table V shows the read-only queries’
results. Each row shows the average response time (in seconds)
for one query across all systems for all three scales. A cell
with a ’-’ shows that we could not run a query against a
system because the functionality or features tested by the query
were not directly supported by that system. A cell with ’NS’
means that the query failed to produce reliable results for that
case. Each query may have several versions whose results are
reported in separate rows. For most queries we have 3 versions:
small (S), medium (M) and large (L), defined based on the
selectivity of a query’s filter and its semantics. In the base

512

9-partitions 18-partitions 27-partitions
A

st
er

ix
Sc

he
m

a

A
st

er
ix

K
ey

O
nl

y

Sy
st

em
-X

H
iv

e

M
on

go
D

B

A
st

er
ix

Sc
he

m
a

A
st

er
ix

K
ey

O
nl

y

Sy
st

em
-X

H
iv

e

M
on

go
D

B

A
st

er
ix

Sc
he

m
a

A
st

er
ix

K
ey

O
nl

y

Sy
st

em
-X

H
iv

e

M
on

go
D

B

Q1 0.045 0.047 0.06 55.24 0.017 0.046 0.048 0.064 55.71 0.019 0.048 0.053 0.07 55.95 0.023
Q2-S 0.089 0.096 0.102 72.67 0.029 0.104 0.125 0.108 73.61 0.042 0.126 0.135 0.113 74.1 0.054
Q2-M 0.35 0.387 0.354 76.92 1.124 0.378 0.403 0.363 78.11 1.24 0.433 0.474 0.377 78.13 1.354
Q2-L 6.027 6.066 15.36 251.9 107.2 15.37 15.68 16.34 250.5 130.2 24.92 25.31 17.36 255.1 152.6
Q3-S 0.278 0.279 0.576 815.9 0.113 0.299 0.322 0.657 856 0.127 0.3 0.369 0.762 898.1 0.135
Q3-M 6.439 6.647 39.86 824.7 32.82 6.784 7.223 40.51 861 70.32 7.067 7.532 41.43 903.5 106.2
Q3-L 29.24 43.32 279.4 947.1 NS 32.04 47.48 294.1 1031 NS 43.58 63.81 312.8 1314 NS
Q4-S 0.28 0.307 0.335 526.6 0.133 0.316 0.336 0.34 545.3 0.138 0.319 0.359 0.345 570.5 0.141
Q4-M 6.503 6.603 15.66 533 49.07 6.715 6.881 15.87 554.2 117 6.732 7.491 16.27 575.9 183.3
Q4-L 31.56 44.31 76.85 583.8 NS 37.89 54.01 78.01 635.2 NS 57.81 80.72 80.13 686.9 NS
Q5-S 0.109 0.206 0.319 598.4 0.132 0.214 0.242 0.328 637.1 0.136 0.236 0.248 0.336 666.8 0.141
Q5-M 6.061 6.229 20.16 607.4 47.69 6.234 6.606 19.77 641 109.5 6.279 6.756 20.95 676.6 171.9
Q5-L 29.4 43.31 193.5 631.6 NS 33.52 51.92 194.6 648 NS 48.51 71.49 194.6 684.3 NS
Q6-S 0.246 0.247 0.126 51.29 0.174 0.25 0.268 0.135 50.91 0.19 0.271 0.281 0.148 52.07 0.208
Q6-M 6.769 6.806 4.581 51.82 9.057 6.78 6.865 4.776 52.37 10.13 6.872 6.886 4.924 52.94 11
Q6-L 76.51 112.5 90.98 53.86 NS 89.44 113.9 91.4 54.81 NS 93.99 116.5 93.32 56.02 NS
Q6-F 91.66 192.4 68.04 57.86 NS 92.59 200.3 70.12 58.8 NS 96.91 201 71.65 59.95 NS
Q7-S 0.468 0.475 0.133 54.55 0.199 0.553 0.612 0.136 55.81 0.204 0.712 0.740 0.136 56.41 0.212
Q7-M 6.975 7.022 4.739 57.49 9.987 7.082 7.304 4.901 58.11 10.61 7.411 7.687 4.925 59.92 11.3
Q7-L 96.11 200.6 89.43 66.1 NS 96.94 200.6 92.35 73.22 NS 100.1 200.7 94.69 80.54 NS
Q8-S 0.513 0.586 0.139 69.73 0.201 0.836 0.938 0.143 72.45 0.211 1.067 1.27 0.146 75.18 0.219
Q8-M 7.049 7.366 5.065 71.34 10.6 7.219 7.715 5.158 74.11 11.42 7.695 8.657 5.244 77.94 11.9
Q8-L 102.6 200.6 90.3 77.46 NS 147.63 200.7 93.11 78.98 NS 173.1 201 95.28 80.68 NS
Q8-F 200.8 323.8 135.9 151.1 NS 222.2 349.2 155.9 173.9 NS 236.1 386.8 176.9 196.3 NS
Q9-S 4.96 18.85 - - 1.1 6.072 23.07 - - 1.42 6.085 23.55 - - 1.748
Q9-M 11.64 24.65 - - 46.9 11.77 33.9 - - 103.8 12.4 36.61 - - 160.9
Q9-L 97.77 183.8 - - NS 102.9 193.3 - - NS 111.6 200.9 - - NS
Q10-S 94.54 174 - - 990.7 95.82 175.7 - - 1233 96.7 200.8 - - 1481
Q10-M 100.2 190.4 - - 1297 101.5 196 - - 1393 103 198.3 - - 1492
Q11-S 97.61 200.4 - - - 98.61 200.6 - - - 102 200.8 - - -
Q12-S 133.7 176.5 114 237.5 - 137.9 178.2 116.7 267.9 - 138.3 187.6 118.9 300 -
Q12-M 142.3 182.7 118.1 239.1 - 144.6 184.5 120 270.8 - 145.5 193.9 123.9 301.6 -
Q12-L 164.1 200.3 145 240.1 - 171.2 220.3 148.2 270.9 - 176.2 234 151.1 302 -
Q12-S-IX 1.078 1.091 1.219 - 1.149 1.703 1.823 1.918 - 2.769 2.289 2.524 2.552 - 4.396
Q12-M-IX 35.16 49.98 58.81 - 455.8 48.35 69.24 62.42 - 533.1 49.25 71.9 66.1 - 612.3
Q12-L-IX 120.9 192.1 142.4 - NS 149.8 229.2 145.2 - NS 155.7 241.3 146.9 - NS
Q13-S 135.1 177.8 114.3 630.7 - 139 178.8 118.1 720.7 - 139.3 187.7 120.4 811.9 -
Q13-M 143.3 186.4 119.1 641.5 - 147.7 187.3 122.7 726.9 - 148.2 195.1 125.8 814.1 -
Q13-L 167.9 216.6 150.2 644.5 - 172.8 224.3 150.8 740.6 - 178.9 237.9 151.6 837.1 -
Q13-S-Ix * * 1.356 - 1.425 * * 2.015 - 3.059 * * 2.673 - 4.677
Q13-M-Ix * * 59.21 - 465.7 * * 62.72 - 545.3 * * 66.23 - 623.9
Q13-L-Ix * * 145.9 - NS * * 146.7 - NS * * 148.8 - NS
Q14-S 140 184.6 114.2 293.5 - 144.5 188.7 117.1 296.9 - 144.8 189.5 118.9 299.7 -
Q14-M 148.5 193.8 119.2 296.6 - 153.2 197.4 120.5 298.8 - 154.5 199.7 122.6 302.1 -
Q14-L 166.6 213.4 151.3 297.5 - 169.3 222.6 152 301.1 - 173.3 235.1 151.5 304.5 -
Q14-S-Ix 1.142 1.174 1.423 - - 1.714 1.834 2.051 - - 2.293 2.709 2.677 - -
Q14-M-Ix 37.51 52.61 59.16 - - 50.42 71.48 62.81 - - 51.51 72.14 66.48 - -
Q14-L-Ix 121.1 193.6 142.8 - - 152.7 235.4 145.9 - - 157 243.7 147.4 - -
Q15-S 140 184.8 114.5 313.7 - 144.6 189.8 117.1 315.7 - 144.9 189.8 119.2 319.2 -
Q15-M 148.8 193.9 120 315.3 - 153.3 198.2 123.2 319.7 - 154.7 200.9 125.5 323.1 -
Q15-L 169.5 216.1 151.3 316.7 - 170.6 224.6 151.4 320 - 174 235.3 151.7 323.3 -
Q15-S-Ix 1.25 1.479 1.467 - - 1.81 1.941 2.161 - - 2.475 2.757 2.842 - -
Q15-M-Ix 38.01 53.39 59.73 - - 51.91 73.87 62.97 - - 53.3 74.32 67.57 - -
Q15-L-Ix 121.8 195.6 143.6 - - 152.8 238.7 145.3 - - 157.2 244 148.8 - -
Q16-S 1789 1876 - - 21.89 1911 2014 - - 57.41 2147 2236 - - 90.19
Q16-M 1912 1996 - - 68.41 2053 2207 - - 148.1 2165 2482 - - 230.7
Q16-L 4062 4315 - - NS 4662 4789 - - NS 4972 5052 - - NS

TABLE V
READ-ONLY QUERIES - AVERAGE RESPONSE TIME (IN SEC)

513

scale (9 partitions), the small filter selects an expected number
of 100 records, while the medium and large versions select
10,000 and 1 million records respectively. These selectivites
grow proportionally as the database scales up. Text search
queries use keywords with varying popularities. The small and
medium text filters use a keyword that occurs in at most 5%
and 20% of the records.

In Table V, two of the aggregation queries, Q6 and Q8,
also have a fourth version, denoted by F (standing for ’full’),
in which the query runs over all records in the dataset.

Queries involving joins (Q12 to Q15) have two variations
depending on the existence of an index on author id. An ’ix’
suffix in Table V denotes the indexed variation. The optimizer
in System-X picks an indexed technique when it is expected
to outperform other techniques. In AsterixDB, the user can
add a hint to the query to change the default hybrid hash join
technique to an indexed join. Currently, indexed join is only
available for inner joins; For left-outer joins (cells with a ’*’
in Table V), a hybrid hash join is always used. For MongoDB
we performed a client-side indexed nested loop join.

The results in Table V indicate that lack of automatic sec-
ondary index usage in Hive forced it to fully scan the involved
dataset(s) in all the queries. This worsened its performance
specifically for small queries. To be fair, Hive is designed for
batch jobs over large datasets, not for short queries.

The ”scatter-gather” nature of the queries made MongoDB’s
performance degrade when going from small to medium
queries. For most of the large queries, we failed to obtain
reliable results from MongoDB. We hit memory issues in
running aggregation queries and observed time-outs for server-
side cursors. MongoDB’s Immortal cursors did not solve this
issue, and they idled for long periods of time without returning
results. MongoDB is known to behave well mostly for short
queries that access one (or a few) shard(s).

C. Data Modification Workload Results
The data modification experiments were run against the

GleambookUsers dataset (with an index on user since) on 9
partitions. We tested batch sizes of 1 and 20 to see the impact
of grouping insert or delete operations. Because of the nested
schemas in AsterixDB and MongoDB, only one dataset and
index needed to be updated per operation. System-X needed
to update three tables and their indices due to normalization.
We did not include Hive in these experiments as the life cycle
of its data is maintained outside the system. Table II shows
the initially loaded data size per system prior to the tests.

AsterixDB uses LSM-trees; updates modify the ‘in memory’
component of an index and they are appended to the trans-
action log for durability. We set the ‘in memory’ component
budget to be 256MB per node in AsterixDB. In System-X, we
increased the number and size of the transaction log files to
improve performance. In MongoDB, we used the ’journaled’
write concern to provide the same durability level as the other
systems. We decreased the journaling commit interval to 2ms
to make sure that our update client was not limited by the
group commit policy.

Batch
Size

Asterix
Schema

Asterix
KeyOnly System-X Mongodb

U1 1 73.75 73.97 46.34 13.85
U1 20 6.20 6.23 30.15 7.9
U2 1 73.96 79.3 49.01 19.93
U2 20 4.73 4.89 33.79 14.2
Feeds - 0.029 0.031 - -

TABLE VI
DATA MODIFICATION OPERATIONS - AVERAGE RESPONSE TIME (IN MS)

We realized that these results will be meaningful only if
the systems have warmed up enough. What is measured in
the early part of an update workload is mostly the cost of in-
memory updates. The warm-up phase must be long enough to
fill the buffer cache with dirty pages prior to measurement.

Table VI shows the average response time (in ms) for ’one’
data modification operation per system. For the batch size of
20, the average response time per batch is divided by the batch
size. Grouping updates improved performance, as a portion
of the overhead was amortized over multiple operations in a
group. AsterixDB benefited the most from batching due to
its current overhead for compiling and generating jobs per
request. System-X did not benefit as much since it updated
multiple structures; we also used JDBC prepared statements
in System-X to reduce the overhead by letting the database
run statements without having to compile them first.

Support for continuous data ingestion is a feature in As-
terixDB that enables it to process fast streams of incoming
data efficiently via a long running job. Table VI includes
the performance of data feeds for the same insert workload,
and the average insert time per record is several orders of
magnitude faster than the U1 operation numbers.

VI. DISCUSSION

In this section, we summarize key lessons from this effort:
L1. Flexible schemas and their impact on performance:
Many NoSQL systems support flexible schemas by storing
heterogeneous records. They store enough information per
record for later processing. This impacts queries that access a
large number of records (such as Q6-L/F, Q7-L, Q8-L/F in our
workload). Some systems, like MongoDB, choose maximum
flexibility by being completely schema-less, while some like
AsterixDB let users make a trade-off between flexibility and
performance through data type definition. In our experiments,
using the optional AsterixSchema data type definition allowed
AsterixDB to achieve comparable performance to System-X.
L2. Pros and cons of normalized schemas: Normalization
breaks a complex record into several parts and stores each
in a separate dataset. Operations that include retrieving (or
inserting) a large number of full records can suffer from
a normalized schema as they access (and modify) several
datasets and indices. Q3-L and U1 (with a batch size of 20)
are examples where the performance of System-X was worse
than the systems with nested schemas. However, queries that
find all required attributes in one of the normalized tables can

514

benefit from normalization by not fetching unwanted data. Q6-
F and Q7-L are examples where System-X skipped reading
the referred topics values per ChirpMessage record, unlike
AsterixDB which had to read and discard this redundant data.
L3. Optimized storage format and its performance gain:
The total size of the stored data impacts performance in queries
with large scans. With the ORC format’s reduced size and
scan optimizations, Hive performed better than other systems
in some queries with large scans such as Q6-F and Q7-L,
where an aggregation was calculated on all the records.
L4. Advanced and mature query optimization: The query
optimizer in a system plays a key role in exploiting index
structures or run-time operators in a performant manner. For
example, Q9-M in Table V shows that for spatial selections
AsterixDB outperformed MongoDB using its spatial index.
However, MongoDB showed much better performance for
Q16-M (a spatial join using the same indices) by pushing down
the limit clause into sorting and skipping unnecessary docu-
ments. AsterixDB failed to apply this optimization, although it
had all the mechanisms for it. Another example is picking the
indexed nested loop join versus hybrid hash join. System-X
does that automatically, while AsterixDB requires a hint for
this purpose. The mature, cost-based optimizer and advanced
evaluation techniques in System-X enabled it to show stable
performance in scaling up. At least for now this is an expected
advantage for RDBMSs as compared to NoSQL solutions [16].
L5. MongoDB performance issues: MongoDB showed rea-
sonable performance for short queries, but its performance
dropped significantly for larger ones such as Q3, Q4, Q6,
and Q7. The increased number of index lookups dropped the
performance of the client-side join in larger versions of joins
as well. (This performance could potentially be improved by
techniques such as batching lookups.) As a NoSQL store,
MongoDB targets a popular, but relatively narrow, set of use
cases for performant processing.
L6. Job generation path and its overhead: The update
results in Table VI show that the overall query path in Aster-
ixDB currently add significant overhead for small operations.
In our update tests, AsterixDB went from the slowest system
to the fastest one with batching, as its job generation overhead
was amortized over several operations. There are a number of
known techniques such as parameterized queries, query plan
caching, and simplified plan serialization, that AsterixDB still
needs to add. Unlike AsterixDB, System-X (because of its
mature optimizations) and MongoDB (because of its narrower
operation scope) have built-in means to avoid this overhead.
L7. Performance changes when running updates: A sys-
tem’s performance can drop over time while running updates,
especially in ‘update in-place’ systems such as MongoDB and
System-X. This is due to increased page evictions in the buffer
cache which increase the average response time in a system
that has been serving requests for a while.
L8. “One size fits a bunch”: The overall performance of
AsterixDB shows it does not sacrifice core performance by
delivering a wide range of functionality. If not the fastest,
in most cases AsterixDB offered comparable performance to

the fastest system. This supports its “one size fits a bunch”
conjecture (which argues for a solid system with a rich set of
features to serve different use cases rather than using multiple
narrower systems), and it shows that it is apparently possible
to build such a system.

VII. CONCLUSION

In this paper, we have reported on an evaluation of four
representative Big Data systems using a micro-benchmark
called BigFUN. We described the schema and operations in
BigFUN and reported scaleup results for read-only workloads
as well as the update performance of the systems. This
work has attempted to look at Big Data benchmarking by
evaluating supported features and their base performance in
Big Data systems. We believe this direction in benchmarking is
important, as we expect that Big Data systems will eventually
converge on a set of features and operations to process both
OLAP and OLTP workloads efficiently. Interesting future work
could be expanding the set of systems, considering various
distributions for data and query predicates, and adding multi-
client tests that focus on the overall throughput of a system.

VIII. ACKNOWLEDGMENTS

This work was supported by a UC Discovery grant, NSF
IIS award 0910989, and CNS awards 1305430 and 1059436.
We would also like to thank certain people affiliated with the
System-X vendor for their valuable help on this work.

REFERENCES

[1] B. Cooper et al., “Benchmarking Cloud Serving Systems with YCSB,”
in SoCC, 2010.

[2] A. Pavlo et al., “A Comparison of Approaches to Large-Scale Data
Analysis,” in SIGMOD, 2009.

[3] “MongoDB,” http://www.mongodb.org/.
[4] “Apache Hive,” http://hive.apache.org/.
[5] S. Alsubaiee et al., “AsterixDB: A Scalable, Open Source BDMS,”

PVLDB, 2014.
[6] D. J. DeWitt, “The Wisconsin Benchmark: Past, Present, and Future,”

in The Benchmark Handbook, 1991.
[7] O. Serlin, “The History of DebitCredit and the TPC.”
[8] R. Cattell and J. Skeen, “Object Operations Benchmark,” ACM Trans.

Database Syst., vol. 17, no. 1, 1992.
[9] M. Carey et al., “The OO7 Benchmark,” in SIGMOD, 1993.

[10] M. J. Carey et al., “The BUCKY Object-Relational Benchmark,” in
SIGMOD, 1997.

[11] A. Schmidt et al., “XMark: A Benchmark for XML Data Management,”
in VLDB, 2002.

[12] A. Ghazal et al., “BigBench: Towards an Industry Standard Benchmark
for Big Data Analytics,” in SIGMOD, 2013.

[13] M. J. Carey, “BDMS Performance Evaluation: Practices, Pitfalls, and
Possibilities,” in TPCTC, 2012.

[14] S. Patil et al., “YCSB++: Benchmarking and Performance Debugging
Advanced Features in Scalable Table Stores,” in SoCC, 2011.

[15] T. Rabl et al., “Solving Big Data Challenges for Enterprise Application
Performance Management,” PVLDB, 2012.

[16] A. Floratou et al., “Can the Elephants Handle the NoSQL Onslaught?”
PVLDB, 2012.

[17] T. Armstrong et al., “Linkbench: A Database Benchmark Based on the
Facebook Social Graph,” in SIGMOD, 2013.

[18] “GridMix,” https://hadoop.apache.org/docs/r1.2.1/gridmix.html.
[19] “PigMix,” https://cwiki.apache.org/confluence/display/PIG/PigMix.
[20] S. Barahmand and S. Ghandeharizadeh, “BG: A Benchmark to Evaluate

Interactive Social Networking Actions,” in CIDR, 2013.
[21] P. Pirzadeh et al., “BigFUN: A Performance Study of Big Data Man-

agement System Functionality (extended version),” http://www.ics.uci.
edu/∼pouria/bigfun/BigFUN extended.pdf, 2015.

