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1 Introduction

We are in the era of Big Data and cluster computing. Data sizes have been growing at an exponential rate. At
the same time, growth in computing power has been stagnating due to physical limits in processor technology.
The only cost effective way to keep up with the growing data trend has been to harness multiple commodity
computers in a shared-nothing configuration. Google, needing to manage extremely large amounts of web data,
developed the MapReduce [16] platform. The MapReduce system provides a simple way for developers to
express a data-oriented computation, by implementing two single-threaded functions (map and reduce), that
is then automatically parallelized to run on large clusters of commodity machines. Yahoo! soon created the
Hadoop [5] platform, based on the MapReduce specification, and made it available as open source software.
Hadoop has since become the de facto MapReduce implementation outside of Google.

Initially MapReduce (Hadoop) greatly empowered engineers to run parallel jobs on large clusters to crunch
virtually unlimited amounts of data while writing what appeared to be simple functions. However, over time
many developers found themselves writing similar, yet different, functions to implement new jobs. Having to
write MapReduce functions in an imperative language like Java proved to be time consuming and the prolifer-
ation of functions created a maintenance problem, prompting developers to explore the possibility of creating
declarative high-level languages to express computation. Sawzall [30] was created inside Google for processing
large corpora of text in parallel using MapReduce. Yahoo! developed the Pig [29] system along with its Pig
Latin [27] language to express data processing in a declarative language resembling the relational algebra [15].
Facebook created Hive [2], an implementation of a SQL-like language. IBM developed the Jaql [23] language
for processing large amounts of JSON data. Pig, Hive, and Jaql all compile queries in their respective languages
into MapReduce jobs to run on the Hadoop platform. Microsoft proposed SCOPE [13], a system to compile a se-
quence of SQL-like statements to run in parallel on their own Dryad [21] data-parallel platform. The Dremel [25]
system was created by Google for expressing analytical queries interactively in a subset of SQL using a custom
column-based runtime platform. At the University of California, Irvine, we developed the AQL language for
processing large amounts of semi-structured data, as part of the ASTERIX platform [9, 12, 7]. VXQuery [6] is
a project under incubation at the Apache Software Foundation that aims to run XQuery [4] queries over large
corpora of XML documents using a cluster of shared-nothing computers.

Declarative languages targeting various data-parallel platforms have seen dramatic growth in popularity in
the past few years. In 2010 Facebook told us that upwards of 95% of their Hadoop jobs were automatically
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generated by the Hive platform as a result of compiling HiveQL queries [32]. In around the same time frame
Yahoo! was seeing more than 65% of their Hadoop jobs being submitted through their Pig platform.

The current Big Data movement has unleashed a wave of efforts where researchers and practitioners are
creating new languages that better suit various target audiences without having to conform to established data
processing standards like SQL. The need to process non-relational data in the Big Data space has also contributed
to the invention of new languages. We conjecture that we will continue to witness the creation of new data
processing languages that target specific domains, just as we have seen a growth of domain-specific languages in
the Scala [26] world. This presents an important opportunity, as declarative languages for data processing share
a common set of requirements and properties which suggest a unified platform upon which future languages can
be built. Here we analyze four data processing languages (SQL, XQuery, HiveQL, and Pig Latin) with an aim to
compare and contrast language features in Section 2. In Section 3 we take a deeper look at the internals of two
open source systems that are popular for Big Data processing, Pig and Hive, to understand the commonalities
and differences of the two systems. Based on our observations, Section 4 enumerates requirements for a unified
platform and describes how one such platform, one that we are building (called Algebricks), is shaping up.
Finally, we conclude in Section 5.

2 Languages and Models for Data Processing

In this section, we look at four known declarative languages that have been used successfully for large-scale data
processing tasks, namely SQL, XQuery, HiveQL, and Pig Latin.

2.1 SQL: Structured Query Language

SQL emerged long ago as the de facto winner for processing relational data stored in relational database man-
agement systems. The relational model [15] that forms the basis of the logical model for data representation in
RDBMSs is based on set-theory, and the SQL language is based on first-order logic. Data stored in relational
databases is logically modeled as a collection of tables (relations) containing records (tuples) comprised of fields
(attributes). Every stored table has a well-defined schema that describes the names and data types of the fields
that are contained in the records contained in that table. Every record in a table must have all the fields men-
tioned in the schema (although fields are allowed to have unknown or missing values in the form of NULLs).
Another characteristic of the relational model is that fields of a record in a table must be of a scalar type; a
field value cannot itself be a table. In other words, the relational model allows for a strict two-level hierarchical
structure, where the outer level is a table and the inner level contains scalar fields. It is important to note that
while the logical model in RDBMSs is based on flat tables, an actual implementation is free to store the data
using any physical format as long as the logical information is captured completely. For example, relational
databases frequently store tables in the form of B+Trees using the unique value in a record (its primary key) as
the indexing key. Columnar storage [31] is another example of a different physical storage format, one where
tabular information is stored a column at a time. In a parallel database, where data is stored by partitioning the
data, more choices with respect to partitioning strategies are available to the implementation.

The SQL language is based on relational algebra, which in turn is based on first-order logic. A SQL query
describes what is expected in the result and does not specify how the result is to be computed, making the lan-
guage “declarative”. In contrast, most programming languages such as C, C++, or Java tend to be “imperative”;
the programs expressed in those languages actually describe the exact steps to be performed. Declarative lan-
guages leave the language implementation free to explore a range of choices with regards to how to actually
compute the final result. An implementation can choose the best way to evaluate a query based on the phys-
ical storage strategy used to store the tables participating in the query. This property of SQL (and declarative
languages, more generally) has made query optimization a flourishing area of research for the last few decades.
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2.2 XQuery

Although SQL and relational databases were widely successful for storing and managing enterprise data, the
rigid nature of most implementations with respect to schema management made way for XML as a way of
representing data that was more semi-structured. As XML started to become more popular for managing semi-
structured data, multiple languages were proposed. XML-QL [17] and Quilt [14] were initially proposed as
possible languages for querying XML data. Eventually XQuery [4] was developed, including concepts from
XML-QL and Quilt, and it was standardized by the W3C for querying XML data.

An abstract data model called the XQuery Data Model (XDM) [19] is the logical model used to describe the
semantics of the XQuery language. XDM is more general and subsumes XML for representing data. XQuery
allows data to be typed using the XML Schema standard [10], but does not require it, making XQuery well
suited for data whose types are not known upfront. The fundamental concept of representing data for processing
with XQuery is the “sequence of items”. Every query expression in XQuery operates on a sequence of items to
produce a sequence of items. The order of items within a sequence is important and the semantics of XQuery
specify the exact order of items that every expression must produce.

The FLWOR expression, along with Path Expressions, forms the core of the XQuery language. The FLWOR
construct (For-Let-Where-Orderby-Return) is similar to the Select block (Select-From-Where-Orderby) found
in SQL. Path Expressions in XQuery can be translated into FLWOR expressions using the Path Step Expression
as a primitive building block, as shown in [18]. Researchers have proposed various algebras based on relational
algebra and extensions to express XQuery semantics [22, 28], showing that slight extensions to relational algebra
are sufficient to capture the meaning of XQuery queries and to provide a basis for optimizing those queries.

2.3 HiveQL

Facebook created the Hive system to be able to process large amounts of data using the Hadoop platform. Hive
was created with the express goal of making large-data processing accessible to data analysts who were already
familiar with SQL. HiveQL has thus been developed to be a subset of SQL with some extensions to the supported
data model and query syntax.

On the data model front, Hive provides support for tables containing standard primitive data types like in
SQL. In addition, Hive adds support for nested data through Array, Map, and Struct data types. Fields in tables
can be declared to be of these types and can be used to nest data to arbitrary levels.

HiveQL supports most of the standard SQL syntax. HiveQL limits joins to only equality joins. Non-equality
joins or cross products are not directly supported by the syntax. Although non-equality joins can be simulated
through the use of a “1 = 1” join predicate and a Where clause to capture the non-equality predicate, such queries
are not optimized by the HiveQL optimizer. In order to access nested data in the form of Arrays, Structs, and Map
types, HiveQL provides functions to navigate values of these types. In addition to scalar values, HiveQL also
includes tuple-functions that can be used to explode nested data into tuples for performing standard relational
processing. The current release of HiveQL does not allow the construction of a Map-valued field by grouping
multiple records. However, third-party packages such as [3] can be used to add this functionality to Hive.

2.4 Pig Latin

PigLatin, the language exposed by the Pig system from Yahoo!, allows users to express queries in the form of
steps. Each step in PigLatin converts its input data (a collection of records) into an output collection of records.
At each step, the user can use Load, Filter, Group, Cogroup, ForEach, Join, Order, Distinct, Cross, Union, or
Split operators to transform data. Most of the resulting steps (except Cogroup and Split) can be directly mapped
to relational algebra operators. The Cogroup operation can be expressed as a Group operation followed by a
Join operation and hence can be expressed as a combination of relational algebra operators. The Split operation
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in PigLatin can be transformed into multiple Filter (Select) operations when translating PigLatin into relational
algebra operators.

Records in Pig can contain scalar valued fields or nested data in the form of tuples, bags and maps.

2.5 Wrap-up

Table 4 summarizes the similarities and differences between these four query processing languages.

Feature SQL XQuery HiveQL PigLatin
Declarative Yes Yes Yes Yes
Collection data model Bag Sequence Bag Bag
Instance data model Tuples of scalar values XQuery data model

item
Tuples of scalar and
complex values

Tuples of scalar and
complex values

Support for nested data No Yes Yes (Limited) Yes (Limited)

Table 4: Query language similarities and differences

3 Data Processing Systems: Pig and Hive

In this section we look at two popular Big Data query processing systems that were built independently, Pig and
Hive, with an eye for their system architectures and the steps followed in accepting user queries and translating
them into executable artifacts to produce results.

3.1 Apache Pig

The Apache Pig platform first parses the textual representation of a user query into a logical plan representing
the query. The logical plan is comprised of a DAG structure where nodes represent operators such as Load,
Filter, Group, etc. The resulting logical plan is transformed using rules to create an equivalent, more efficient
plan. Currently, the rules implemented in the Pig compiler perform the following rewritings (rules meant to
purely aid in the rewriting process by normalizing plans are not listed):

1. Push Filters to eliminate records early
2. Push “flatten” style operators that increase tuple cardinality to later in the plan
3. Merge multiple chained ForEach operators when possible
4. Optimize placement of Limit operators to reduce the number of tuples early
After the optimization process, Pig translates the final logical plan into a sequence of one or more MapRe-

duce jobs to be executed using the Hadoop MapReduce platform. More details regarding Pig’s optimizer can be
found in [20].

3.2 Apache Hive

The architecture of Apache Hive looks very similar to that of Pig. Hive first parses queries in HiveQL into a
logical parse tree representation. A Semantic Analyzer consults metadata information in the system catalog to
check the existence of the tables named in the query. The semantic analyzer also makes sure that the query is
well-formed with respect to the fields of tables accessed in the query and flags any operations that are incorrect
with respect to data types. The parse tree is then translated into a logical plan by the Logical Plan Generator. The
logical plan is a tree of operators where some of the operators are relational algebra operators while others are
specific to Hive to ease the construction of MapReduce jobs. The logical plan is optimized using a rule-based
optimizer (just as in Pig). The Hive rules perform logically similar tasks as those performed by the Pig optimizer,
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but they have been implemented to process plans represented using the logical operators implemented in Hive.
Hive has additional optimizations as compared to Pig, including:

1. Convert a series of joins into a multi-way join
2. Perform map-side partial aggregation for aggregate queries
3. Preserve and exploit interesting orders in subplans when possible
4. Use sampling to better plan queries
After the optimization process, as in Pig, the logical plan is converted into a series of MapReduce jobs to be

evaluated on Hadoop [2, 33].

4 An Approach to Unification: Algebricks

Observing the amount of overlap in functionality in Pig and Hive (and query processors for XQuery, SQL, and
AQL that the authors have implemented before) and the similarities in algebras used to express their semantics,
we have embarked on creating a unified framework to help future implementors of parallel query processors
to quickly build new language implementations to be evaluated over Big Data using a data-parallel platform.
AQUA [24] was a similar effort undertaken back in the object database era to create a framework where bulk
types (collections) and their operations were separated from OO data model details so as to develop one algebra
capable of expressing the query semantics for a variety of OO languages.

Our platform, Algebricks [1], is a model-agnostic, algebraic layer for parallel query processing and opti-
mization.

The Algebricks toolkit consists of the following parts:
1. A set of logical operators: Algebricks includes about fifteen logical operators that language implementors

can use to construct query plans. In addition to the standard relational operators (Select, Project, etc),
Algebricks contains operators for representing nested query plans.

2. A set of physical operators: While most logical operators have one corresponding physical operator, some
operators provide alternate physical choices. In Algebricks, the Select operator has a single physical
operator while the Join operator provides multiple choices such as Nested-Loop Join, Hybrid-Hash Join,
Grace-Hash Join etc.

3. A rewrite rule framework: Algebricks currently includes a rule-based query transformation framework that
provides interfaces for users to implement rewrite rules and a rule engine to execute rules to transform
queries.

4. A set of generally applicable rewrite rules: Algebricks includes query transformation rules that usually
show promise in most scenarios. For example, pushing Select operators to filter data early in a query is
usually considered to help with query efficiency. Algebricks includes a rewrite rule to push Select oper-
ators lower in the query plans. Another example of a generally applicable rewrite rule for parallel query
processing is one that converts an aggregation query into a two-step aggregation query (when the aggre-
gate function lends itself to partial computation). Since aggregation functions are language dependent and
implemented by the language author, their properties (such as the ability to be split into two-level aggrega-
tion functions) have to be indicated to the Algebricks framework for the parallel aggregation optimization
rule to trigger.

5. A metadata provider API that exposes metadata (catalog) information to Algebricks: The metadata API
serves as the window through which Algebricks looks at the host language’s ecosystem. It is through
the metadata API that Algebricks is able to learn about physical data properties of sources (for example),
that is then used by the compiler to reason about interesting orders and interesting partitions during query
optimization.

6. A mapping of physical operators to the runtime operators in Hyracks [11] (a data-parallel platform built
from the ground up at UCI): Currently, Algebricks provides a translation of queries to a single runtime
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layer, viz. Hyracks. While this is an artifact of the current implementation of Algebricks, in principle, it
should be possible to extend Algebricks to generate runtime plans for other data-parallel platforms.

4.1 Data Model Agnostic Bulk Operators

An important principle that underlies the design of Algebricks, as mentioned earlier, is a data model agnostic
design of bulk operators. To be useful for implementing arbitrary parallel data-intensive languages, Algebricks
takes a two-level approach to represent operations on data. “Bulk Operators” are used to manipulate collections
(sets, bags, lists, etc.) of tuples. Tuples serve as abstract containers that hold scalar data values whose types
are defined by the language being implemented using Algebricks. While Algebricks provides bulk operators,
language specific scalar data operations have to be implemented by the author of the language. Bulk operators
in Algebricks are parametrized with “accessor” functions that expose to them data model properties necessary
to perform their task. For example, the Select operator used to restrict the items in a collection based on a
boolean predicate only needs a “function” that, when applied to an item, indicates if the item is to be preserved
in the result or is to be discarded. By encapsulating data model specific operations in the function, the Select
Operator itself remains agnostic to the specifics of data types needed to support a high-level language using
Algebricks. Although this principle has been adopted by several data-parallel execution engines [5, 8, 11]
to build extensible runtime systems, we use this principle in Algebricks to implement a data model agnostic
compiler framework. Every piece of functionality usually present in a parallel query compiler, such as the query
transformation framework used to manipulate query plans, the data property computation logic used to reason
about interesting orders and interesting partitioning properties of data, and finally the logic necessary to generate
runtime artifacts, is implemented in Algebricks following the same two-level approach described earlier. Query
transformation rules that depend entirely on the semantics of bulk operators are made available out-of-the-box
with Algebricks and can be re-used by every language implemented using the compiler framework. Similarly,
runtime plan generation (a process usually referred to as “code generation”) of bulk operations is provided by
Algebricks requiring the author of the higher-level language to only provide code generation logic for data model
specific functions.

4.2 The Anatomy of an Algebricks-based Compiler

Figure 1 shows the typical sequence of steps followed by a query compiler built using Algebricks. An incoming
query string is first lexically analyzed and parsed to construct an abstract syntax tree (AST). The resulting AST is
then checked for semantic and type errors before transforming it into an Algebricks logical plan. The Algebricks
logical plan is composed of logical operators (described next) and serves as an intermediate language for query
compilation. The initial logical plan is handed to the logical optimizer to be transformed into an equivalent, but
more efficient, logical plan. The resulting optimized logical plan is then translated to an Algebricks physical
plan by selecting physical operators for every logical operation in the plan; this is done by the physical optimizer.
Both optimizers in Algebricks are rule-based and are configured by selecting the set of rules to execute during
the optimization phases. Finally, the resulting physical plan is processed by the Hyracks job generator to produce
a Hyracks job that is then parallelized and evaluated by the Hyracks runtime platform.

The query parser and the translator (the first two stages in Figure 1) are query language specific and have
to be implemented by the developer of a new language’s compiler. The next three stages (the two optimizers
and the Hyracks job generator) are provided by the Algebricks library to be used by developers. Algebricks
also includes a library of language independent rewrite rules that can be reused by the compiler developer.
Additional language-specific rules are usually required in the optimization process and can be implemented by
the developer by extending well-defined interfaces in the Algebricks library.

As shown in Figure 1, the various phases of the query compilation process need access to information
about the environment in which the query is being compiled (usually described as catalog metadata). The

61



���������	��


����������

��
���	�����

������������

��	�������������
���

���������	�������������

�������	��

������������ �!��

�������	��

��	��������� �!��

���������	�������������

���������	���	���������

"�����	�#��

$��������

"�����	�#��

"�����	������ �

�������

%�������

����

����������	

�� �������	&

"�	�'�������	

(�'�������

����� �	

Figure 1: Flowchart of a typical Algebricks-based compiler

catalog contains metadata about the data sources that are accessible in a query. The catalog serves as the
authoritative source of information about the logical properties of sources (such as schemas, integrity constraints,
key information, etc.) and about their physical properties (access methods, physical locations, etc.). Algebricks
provides a metadata interface that must be implemented by the compiler developer so that the various parts of
the Algebricks compiler can access the relevant metadata information.

The Hyracks job generator maps the physical operators selected by the physical optimizer into Hyracks
runtime operators. In the process of this translation, the Hyracks operators need to be injected with certain data
model specific operations. The exact nature of the operations depend on the Hyracks operator being used. For
example, the Sort operator in Hyracks must be provided with a comparator to compare two data model instances
so that the input records can be sorted. Similarly, the Hash-Join operator needs a hash-function and a comparator
to compute its result. When using Algebricks, the compiler developer must provide a family of operations that
might be needed for Hyracks job construction.

5 Conclusion and Status

In this paper, we briefly looked at four declarative languages (SQL, XQuery, HiveQL, and PigLatin) used for
large-scale query processing. We saw that an abstraction that extends relational algebra, allows the modeling
of various types of collections (sets, bags, and lists), and is capable of providing support for nested data and
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queries could be used to capture the semantics of queries expressed in the four languages we have seen here.
The overlap in functionality in the Pig and Hive compilers shows that a framework that provides commonly
required functionality in query compilers would help reduce the amount of code a developer has to write to
implement a new language compiler.

To these ends we have developed Algebricks, a model-agnostic query compiler framework that meets the
properties listed above. At UCI, we are implementing our own query language to process semi-structured data,
called the ASTERIX Query Language (AQL). AQL is being built using Algebricks as the underlying compiler
framework. As another proof of concept, we have already ported the HiveQL compiler to use Algebricks to
compile HiveQL queries to run on the Hyracks data-parallel platform. We have seen a performance improvement
of up to 9x and an average performance improvement of about 4x, at scale, compared to Hive on Hadoop.
VXQuery is a project currently being incubated at the Apache Software Foundation that aims to provide a
standards compliant XQuery 1.0 query processor that runs on large amounts of XML data using the Hyracks
data-parallel platform. VXQuery also uses Algebricks as its compiler framework. Currently, VXQuery reuses
Hyracks (90 KLOC) and Algebricks (36 KLOC) and provides a complete parallel XQuery processor for an
additional 45 KLOC. More Algebricks implementation and performance details will be available in [1].
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