
External Data Access and Indexing in AsterixDB

Abdullah Alamoudi, Raman Grover, Michael J. Carey, Vinayak Borkar

Dept. of Computer Science,
University of California Irvine, CA, USA - 92697

{alamouda, ramang, mjcarey, vborkar}@uci.edu

Raman Grover
University of California Irvine

ramang@uci.edu

ABSTRACT
Traditional database systems offer rich query interfaces (SQL)
and efficient query execution for data that they store. Re-
cent years have seen the rise of Big Data analytics plat-
forms offering query-based access to “raw” external data,
e.g., file-resident data (often in HDFS). In this paper, we de-
scribe techniques to achieve the qualities offered by DBMSs
when accessing external data. This work has been built into
Apache AsterixDB, an open source Big Data Management
System. We describe how we build distributed indexes over
external data, partition external indexes, provide query con-
sistency across access paths, and manage external indexes
amidst concurrent activities. We compare the performance
of this new AsterixDB capability to an external-only solu-
tion (Hive) and to its internally managed data and indexes.

Categories and Subject Descriptors: H.2 [DATABASE
MANAGEMENT]: Systems - Query Processing
Keywords: AsterixDB, External data, HDFS, Access, In-
dexing.

1. INTRODUCTION
Database management systems employ many techniques

to achieve good performance. These include storage struc-
tures, access methods, caching, and efficient query execu-
tion. As a prerequisite, a DBMS requires data to be stored
into its storage layer and modified through its interface.
Having to pre-load data can be a major obstacle, particu-
larly when data is being produced in huge quantities by mul-
tiple sources and being persisted in different storage systems
and formats. Providing full-scan access to external data
from a DBMS is a first step that enables the use of queries
rather than error-prone ad hoc analysis scripts. However,
the lack of indexes is bound to give unacceptable query re-
sponse times. A natural next step is to support indexing for
external data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, Australia.
© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2806416.2806428.

1.1 External Access and Indexing Challenges
Efficient and flexible external data access in a parallel data

manager involves challenges stemming from lack of control
over the representation of records, their storage locations,
and the data modification path(s). These include:
C1) Disparate Data Sources and Formats: An external ac-
cess facility must be generic and extensible to allow access
to data in different data sources and formats.
C2) Seamless Integration: The distinction between external
and internal data should not be visible to the end-user when
framing queries in the language offered by the system.
C3) Parallel/Efficient Access: A parallel data manager must
exploit parallelism in accessing external data and utilize dis-
tributed index structures to achieve load balancing.
C4) Maintenance of Indexes: External data may change,
causing indexes to become stale. The system must enable
users to refresh the indexes with transactional behavior.
C5) Consistency of Query Results: The system should offer
consistent query results for external data regardless of the
access path used and concurrent changes to external data.

1.2 Contributions
We describe how we have recently enhanced AsterixDB to

enable users to efficiently query externally stored data. Our
solution supports a set of popular external data source types
and formats but is extensible to cater to new data sources
and formats. It allows users to build multiple distributed
indexes (e.g., B+ Trees and/or R-Trees) over external data.
The query compiler then utilizes these indexes to accelerate
queries. We offer the following contributions:
(1) External Data Access and Indexing: We provide a com-
plete conceptual and technical design for providing access to
and building distributed indexes over external data.
(2) Access Semantics: We introduce external data snapshot
semantics for queries accessing indexed external data. We
describe mechanisms to keep indexes in known synchrony
with the data and provide consistent query results.
(3) Incremental Updates: We detail the design for refresh-
ing a dataset’s indexes incrementally in AsterixDB in an
efficient and robust manner.
(4) Contribution to Open-Source: AsterixDB is open-source.
Its support for adapters, parsers, and indexing is extensible
to allow other project contributors to add new adapters and
parsers for other external data sources and formats.
(5) Experimental Evaluation: We measure the external data
access performance for different HDFS formats, comparing
AsterixDB’s performance when data resides externally in
Hive tables [2] to that of Hive itself. We also compare per-

3

formance for internal versus external data to see what can
be attained without moving data into AsterixDB.
The rest of the paper is organized as follows. Section 2

covers related work. We review AsterixDB and the Hadoop
Distributed File System (HDFS) in Section 3. Section 4
introduces the language-level support and concepts related
to external data access. We detail the corresponding de-
sign and implementation in Section 5. Section 6 presents
experimental results, and Section 7 concludes the paper.

2. RELATED WORK
The need to access external data has been long recog-

nized in the database community [16] and was added to
the SQL standard. Leading DBMSs provide raw data scan-
ning capabilities via features such as External Tables in
Oracle and MySQL and External Link and Open Row Set
in MS SQL. For extensibility, Oracle and DB2 offer Table
Functions and MS SQL provides Table-Valued User Defined
Functions. Use of these features involve full scans over exter-
nal data, which perform worse than queries over internally
stored data. In contrast to using a DBMS to access and
query external data, [15] described the use of Unix tools
(awk, grep) as an alternative, introducing FlatSQL as a lan-
guage to operate over text files. The trade-offs involved in
using Unix tools when accessing external data were further
explored in [14] and influenced the “NoDB” system [4].
It is common today to have large data files that span mul-

tiple machines in a distributed file system such as HDFS.
Loading such data into a DBMS imposes significant costs.
Several efforts (e.g. [18]) have focused on integrating Hadoop
(Map-Reduce) with a DBMS to avoid the costs involved in
movement of data. HadoopDB [3] allowed running queries
on raw HDFS files using MapReduce and provided sup-
port for incrementally loading data into the DBMS’s storage
layer. Other efforts to improve query execution over data in
HDFS include the use of Split-oriented indexes [12] to prune
unwanted input splits to reduce I/O costs and building Tro-
jan indexes [11] into the physical file splits when loading
data into HDFS storage using user-defined functions. In
the High Performance Computing field, SciHadoop field[9]
provide different mechanism to prune HDFS data partitions
and avoid the full scan cost. More recent related work can
be found in [7] and [10].
Our approach to external data access is unique in several

ways. It allows users to build distributed record-level in-
dexes over external data. It doesn’t cache or re-write data,
the query results are access path independent, and data is
not loaded into the AsterixDB storage layer at any time.
The presence of indexes doesn’t affect the external data,
and we support indexing of multiple HDFS input formats.
This is accomplished largely by making externally stored
data “look" like internally stored data from the perspective
of most of the system’s query processing components.
Our work has key differences from the concurrent effort

to index HDFS data in Polybase [13]. The differences, de-
tailed later in the paper, include a location-aware index par-
titioning strategy, a Record Id (RID) optimization, the ex-
ploitation of AsterixDB’s Log-Structured Merge (LSM) trees
when updating indexes atomically, support for indexing RC-
Files, snapshot-based consistency of query results, and the
roles of MapReduce (in Polybase) and HDFS in query pro-
cessing.

3. BACKGROUND
We begin by briefly reviewing AsterixDB and HDFS, the

systems for which this work was designed, implemented, and
evaluated.
AsterixDB: AsterixDB is an Apache incubator open source
Big Data management system. It has its own flexible data
model – ADM (inspired by JSON) – and comes with a full
query language – AQL – for querying and analyzing semi-
structured data. Its shared-nothing architecture involves a
central Cluster Controller (CC) and a set of worker nodes re-
ferred to as Node Controllers (NCs). Data resides as records
in datasets that are hash-partitioned on their primary keys
and stored in primary B+ tree indexes. Secondary indexes
(when created) are co-located with the corresponding par-
titions of the primary index [5]. To execute queries, Aster-
ixDB uses Hyracks [8] as its execution engine. A Hyracks
job is a DAG built using data operators and connectors.
HDFS: HDFS is the distributed file system of Hadoop [1].
HDFS files are partitioned into replicated binary blocks to
enable parallel reads and hardware failure tolerance. HDFS
consists of a NameNode that stores files’ metadata informa-
tion and a set of DataNode(s) that store the binary blocks
of data. HDFS files are append-only, meaning that records
contained in a file cannot be modified.

4. EXTERNAL DATASETS
External datasets in AsterixDB enable users to query data

stored in external sources. Unlike internal datasets, external
datasets do not support AQL load, insert, or delete state-
ments. External sources may store data in a variety of for-
mats and have specific protocols for fetching data. To cater
to the diversity of data sources and formats, a data manager
must also be extensible.

4.1 Dataset Adapters
Connecting to an external data source and receiving, pars-

ing, and translating its data into binary ADM records (for
AsterixDB processing) is done by a dataset adapter. The use
of an adapter includes providing a set of parameters that it
uses when interfacing with the source. AsterixDB offers a
set of initial adapters for common data sources; its design
also offers a plug-and-play model to allow new adapters to
be added. Common external data sources and their han-
dling by their respective AsterixDB adapters include:
(1) Data Files in Local File Systems: Files residing in
the local file systems of the AsterixDB nodes are accessible
using the Local File System adapter. This adapter is con-
figured with a set of file identifiers, where an identifier com-
bines the host name (AsterixDB node) and absolute path of
a local file on the host. The format associated with the file
is additionally specified. AsterixDB’s built-in text parsers
support parsing of data that is in delimited, JSON, or ADM
format. AsterixDB also allows using a custom implementa-
tion of a parser for additional formats. Multiple files on a
given node or on different nodes are read and parsed in par-
allel to exploit node-level and cluster-level parallelism.
(2)Data Files in HDFS: The HDFS adapter performs the
same function for data files residing in HDFS. This adaptor
takes an additional argument that describes the InputFile-
Format of the dataset’s files.
(3) Data in Web Resources: AsterixDB’s web adapters
read data from resources identified by URIs. The level of
parallelism when using this adapter is dictated by the num-

4

create external dataset ExLineitem(lineitemType)
using hdfs (
("hdfs"="hdfs://namenode:54311"),
("path"="/data/tpch/lineitem"),
("input-format"="text-input-format"),
("format"="delimited-text"),("delimiter"="|"));
for $l in dataset ExLineitem
where $l. lshipdate <= date("1998-09-02")
order by $l .lextendedprice
return $l ;

Listing 1: Creating and querying an External
Dataset

create index OrdIdx on Lineitem(lorderkey);
create index OrdIdx on ExLineitem(lorderkey);

Listing 2: Creating a B+ Tree Index over Internal
and External datasets

refresh external dataset ExLineitem;

Listing 3: Refreshing an External Dataset

ber of URIs, and the task of reading and parsing records is
assigned to different nodes during query compilation.
An adapter is referred to in AQL by its alias and spec-

ified as part of the create external dataset statement. The
example statement in Listing 1 uses the HDFS adapter and
provides parameters to describe the HDFS instance and con-
tained data. There is no subsequent distinction between
internal and external datasets when using them in AQL
queries.
4.2 Indexing of External Datasets
The current version of AsterixDB supports full-scan access

to external data. The extensions detailed here add support
for indexing a variety of HDFS-resident data formats and
allow users to build distributed B+ tree and/or R-tree in-
dexes to quickly access records without having to load them
into AsterixDB’s storage. They were designed to fit in with
the typical data lifecycle for a large enterprise Hadoop sys-
tem, which involves rolling-in and rolling-out data batches
in HDFS files. The AQL syntax for defining an index over
a set of attributes for any dataset is illustrated in Listing 2.
The create index statement syntax is common to both kinds
of datasets, internal or external. However, unlike an inter-
nal dataset (Lineitem), the data referenced by an external
dataset (ExLineitem) can change outside the purview of As-
terixDB, causing indexes to become stale. We now explain
the consistency model we provide for indexed external data.

4.3 User Experience and Semantics
Manipulation of data in an external source impacts the

referencing queries within AsterixDB in two ways. First,
external data could change during query execution. Second,
creating secondary indexes at different points in time could
yield inconsistencies across indexes. To obtain consistent
access semantics for external data, we introduce the con-
cept of an external dataset metadata snapshot. An external
dataset metadata snapshot denotes the state of an external
dataset’s files at a given point in time. The information con-
tained in a snapshot is used in preserving consistency across
an external dataset’s indexes and in enforcing a consistent

shared view over data between different access paths (full
scans or alternative index-based access paths).
The first use of a create index statement (Listing 2) with

an external dataset implicitly creates a metadata snapshot
for the external dataset. A metadata snapshot contains
only a list of files’ absolute paths, sizes, and modification
times, and is thus lightweight. It is used to guide subse-
quent dataset access or index creation. Records added to the
external source after a snapshot will remain hidden from As-
terixDB until the snapshot and indexes are re-synchronized
with the external data via an explicit refresh external dataset
statement (Listing 3). The refresh operation is executed in
a distributed way over an AsterixDB cluster with transac-
tional semantics; in the event of a failure during a refresh
operation, the metadata snapshot and all indexes associ-
ated with the external dataset are restored to their previous
state. We ensure that a refresh statement does not impact
concurrent queries and that an executing query always uses
the same metadata snapshot associated with an external
dataset.
Our user-guided snapshot consistency model differs from

the consistency model of Polybase [13]. Polybase computes
a metadata delta for HDFS files before answering queries
and it aims to deliver results based on the current state of
indexed HDFS files. To do so, it resorts to using a more
costly Hybrid access path when an index is found to be
stale. We avoid this overhead and provide older consistent
results.

5. IMPLEMENTATION DETAILS
We now turn to the physical aspects of creating and main-

taining snapshots and indexes and using them for queries.

5.1 Unindexed External Data
Consider the example query from Listing 1. In the ab-

sence of indexes, the query involves a full scan of the ex-
ternal dataset ExLineitem. The compiler first refers to the
Metadata to find the associated dataset adapter and its pa-
rameter values. Access to an external dataset is done by an
ExternalDataScan operator. Multiple instances of this oper-
ator may run in parallel, each fetching and parsing records
from the external source. A dataset adapter has an associ-
ated factory class used by AsterixDB to create instance(s)
of the adapter. The factory class uses configuration parame-
ters to determine the degree of parallelism (count constraint)
and any specific set of AsterixDB nodes (location constraint)
where instances of the adapter should run. As an example,
the factory for the HDFS adapter connects with the HDFS
NameNode to determine the count and location of input
partitions. In determining the location constraint, it gives
preference to co-located AsterixDB nodes to facilitate local
reads.

5.2 Index Design and Implementation
A parallel external indexing facility needs a way to identify

records, to distribute index components in a cluster, and to
maintain any/all information in a way that minimizes inter-
node communication when an index is used at runtime.

5.2.1 Identifying Records
Indexing requires each data record to have a unique id,

hereafter referred to as its RID. (For internal data, the
primary key serves as the RID.) RIDs must enable fast

5

Figure 1: External Data and Index Distribution

record retrieval and must be small in size. As a single exter-
nal dataset can map to multiple external files, an external
record’s RID is a combination of a file id and a record loca-
tor. The file id consists of the file’s path and modification
time. Discovering a file with the same path but a differ-
ent modification time implies a deletion of the file followed
by a creation of a new file. Since storing the file path and
modification time in each RID in an index would be very ex-
pensive, we replace the long file id with an assigned 4 byte
(integer) value and store the file id mappings for external
datasets’ files in a separate B+ Tree index referred to as the
snapshot index.
The other component of an RID, the record locator, de-

pends on the format of the HDFS file. For the TextInput and
SequenceInput formats, the record locator is just the 8 byte
(long) offset of the record within the file1. The RCFile for-
mat stores records in columnar order and groups them into
row groups of configurable size. Its record locator is then
a combination of the 8 byte (long) row group offset and 4
byte (integer) row number within the containing group.
Support for an additional HDFS file format can be achieved

by providing three components. The first is the structure of
the RID for the file format; this is used by AsterixDB’s
query compiler when utilizing operators for index-building
or index-accessing jobs. The second component is a runtime
indexing adapter that produces RIDs for records being read
from HDFS. The third is a runtime lookup adapter that uses
the stored RIDs to read the selected records.

5.2.2 Index Distribution
Distribution of data is critical to load-balancing and scal-

ability in a parallel data manager. Records contained in
an internal dataset in AsterixDB are hash-partitioned by
primary key and stored in primary B+tree indexes across
the nodes in a cluster. This achieves near-uniform distri-
bution of records and allows optimizations of joins involv-
ing primary keys. Secondary index partitions of internal
AsterixDB datasets are co-located with their primary index
partitions, which ensures zero extra communication between
nodes when accessing data through a secondary index.
External files in HDFS are partitioned into blocks that

are replicated and distributed across a set of Data Nodes.
Given this, our external indexes use a block-based distri-
bution strategy aimed at achieving locality and load bal-
ancing. Co-locating indexes with data reduces communi-

1This is reminiscent of NoDB’s positional map[4].

cation and allows accessing of HDFS records directly in a
short-circuited manner without going through HDFS Data
Nodes. The HDFS replication factor and the overlap be-
tween AsterixDB NCs and HDFS Data Nodes affect the
choices made when selecting an index partition for records
in HDFS blocks.
An AsterixDB cluster and an HDFS cluster with data to

be externally accessed can have different degrees of node
overlap. They may overlap completely, not at all, or par-
tially (the general case, shown in Figure 1). Copies of an
HDFS data block may thus be stored on an HDFS node that
also hosts an AsterixDB NC (blocks 1, 2, and 4 in Figure
1) or is outside the AsterixDB cluster (block 3 in Figure 1).
This yields an index responsibility assignment optimization
problem whose objective is to maximize the number of local
assignments while minimizing the variance in the number of
blocks assigned to each NC. To solve this, we give priority
to locality and use a greedy 2-pass algorithm to pick the
location of each block’s index partition. We first identify
the locations of the targeted HDFS blocks and keep track
of the number of assignments per NC. In the first pass, we
loop over the blocks, assigning overlapping blocks to a co-
located NC with the lowest number of assignments (skipping
remote blocks). In the second pass, we loop over any unas-
signed blocks and assign them to the NC with the lowest
number of assignments. Ties are broken using node ids.

5.2.3 Snapshot Management
AsterixDB stores metadata about the HDFS files of in-

dexed external datasets; it is used to maintain consistency
when interacting with an external dataset. For each external
file, the path, modification time, and size in bytes are used
to remember its external state at a given point in time and
are collectively referred to as the metadata snapshot. (In-
cluding the file size is critical because an HDFS file can, in
some cases, grow without changing its modification time.)
When creating an external index or accessing an external
dataset using the ExternalDataScan operator, any records
lying beyond the stored size of an external file are ignored
(treated as not yet visible) to ensure a consistent view of the
dataset.
The metadata snapshot of an external dataset is cap-

tured from HDFS when the first index on the dataset is
created. This snapshot is subsequently updated in a trans-
actional manner when performing external dataset refresh
operations. The information contained in the snapshot is
stored in AsterixDB’s Metadata in a special dataset, the
ExternalFile dataset. External files are assigned integer ids
before capturing their information in a snapshot; these ids
are used in the RIDs of external records in place of file paths
and modification times. To perform external index accesses,
AsterixDB nodes need to lookup metadata snapshots using
these assigned ids. This could cause an additional commu-
nication overhead and become a bottleneck when accessing
AsterixDB Metadata. To avoid this, a snapshot index is cre-
ated for each external dataset in an AsterixDB node. This
snapshot index contains the metadata records of external
files that belong to the index’s associated dataset and it is
used to lookup files for indexed access.

5.2.4 Constructing an Index
We now describe the runtime for the create external index

statement (Listing 2) and the operators involved in the gen-

6

Figure 2: Dataflow for Index Construction

erated Hyracks job. When a user creates a secondary index
over an external dataset, the Cluster Controller (CC) first
checks whether a metadata snapshot for the dataset exists in
the ExternalFile dataset. If one is not found, the CC queries
the HDFS NameNode to get the status of the dataset’s files
and stores it in the ExternalFile dataset. The captured
snapshot is then broadcast to all participating nodes in the
AsterixDB cluster and stored in B+ tree indexes. The CC
then uses the intersection of the stored metadata and the
existing files in HDFS to create a list of HDFS block-sized
logical file splits to be indexed. Indexing of records in differ-
ent blocks is assigned to different nodes in AsterixDB as per
the distribution strategy described earlier in Section 5.2.2.
A Hyracks load pipeline consisting of four operators is

constructed on each participating NC (Figure 2). The In-
dexingSource operator at the head of the pipeline uses an
indexing adapter that fetches records and their RIDs. This
indexing operator queries the HDFS NameNode to locate
the assigned blocks. For blocks local to an NC (e.g., blocks
1, 2 and 4 in Figure 1), the operator can read records di-
rectly from the node’s disk without communicating with the
DataNode as illustrated by the optional dotted connection
in Figure 2. For remote blocks (e.g., block 3 in Figure 1), the
operator reads records from one of the DataNodes holding
the block.
Output from the IndexingSource operator is fed into a

Project operator that extracts the secondary keys from the
parsed records and passes them with their RIDs to the Sort
operator. Tuples sorted on the secondary keys are consumed
by the IndexBuild operator, which builds the index tree in
a bottom up fashion. When the job completes execution on
all nodes the index can be used to access the dataset.

Figure 3: Dataflow for Index Use in Queries

5.2.5 Using an Index
When querying an indexed external dataset, AsterixDB’s

compiler can choose to access the dataset using a secondary
index. To access an external dataset through an index, the

compiler produces a Hyracks job that contains the pipeline
shown in Figure 3. The IndexSearch operator uses search
predicates to search the secondary index, producing RIDs
that point to external records. These RIDs are then sorted
by the Sort operator and fed to an ExternalLookup operator.
Sorting RIDs prior to accessing records reduces the associ-
ated I/O cost due to sequential access when the number of
records are large and incurs a negligible cost when access-
ing few records since the sort operation would take place
in memory. In HDFS case, this also reduces the number of
connections made to DataNodes.
The ExternalLookup operator uses a lookup adapter to

selectively fetch external records by RID. This operator uses
the NC’s local snapshot index to retrieve files’ metadata.
Before opening an external file, the operator contacts the
HDFS Name Node to validate the existence of the file. If
the file was not found, subsequent RIDs with the same file
id are dropped. If the block containing accessed records is
found to be local, the operator can skip the connection to the
DataNode and read directly from its local disk; otherwise the
operator reads the records from one of the HDFS DataNodes
that holds the block. The operator parses and sends the
fetched records in binary ADM format to the consuming
operator in the query execution pipeline.

5.3 Updating an External Dataset
Data can change over time, causing external indexes to

become stale. To advance the metadata snapshot associ-
ated with an external dataset to the current point in time
and update all of its secondary indexes, the refresh external
dataset AQL statement is used. The refresh operation fol-
lows the presumed-abort 2-Phase Commit (2PC) protocol
[17] to atomically update an external dataset. We exploit
AsterixDB’s usage of LSM indexes [6] to perform shadow-
based transactional batch updates. An LSM index consists
of multiple disk-resident immutable components plus a mu-
table in-memory component. When beginning an external
dataset refresh transaction, a new shadow index component
is created. All operations under the refresh transaction will
be applied to the shadow component. Such components can
handle the addition of new records as well as the deletion
of existing records. When a refresh transaction commits,
its shadow components are revealed and added to the LSM
indexes to be used in answering subsequent queries [17, 6].
Aborting a refresh transaction results simply in the deletion
of its shadow components.2 Our failure handling before the
decision to commit is fail-backward and we don’t support
resume operations.
Each external dataset refresh operation starts by comput-

ing a snapshot delta that consists of a set of deleted files, a
set of record-appended files, and a set of new files. If all three
sets are empty, the operation is complete, and otherwise the
delta is recorded on disk and the transaction enters the “pre-
sumed abort” state. AsterixDB updates both the snapshot
index and the secondary indexes of the dataset undergoing
the refresh transaction in each NC. In the shadowed com-
ponent of the snapshot index, new tuples are added for new
files and anti-matter tuples (delete flags) for deleted files.
Subsequently, and for each secondary index, a Hyracks job
similar to the index building job is constructed to update
the index.
2Shadow components are only used for external data refresh
transactions and are not used with internal datasets.

7

Deletion of index entries for records in deleted files is im-
portant to enhance index performance and to reclaim space,
but adding an anti-matter tuple for each deleted record
would require expensive scans of deleted index components
and yield large shadow components. To avoid this, a special
“buddy B+ Tree” is paired with each external LSM index
component; it is used to store the file numbers of newly
deleted files that potentially had entries in older index com-
ponents. During an index search, the buddy B+ Trees en-
able deleted records to be filtered out early. Each buddy B+
Tree is accompanied by a Bloom filter to further reduce the
number of I/O operations during searches. When merging
LSM index components, the buddy B+ Trees of the index
are used to filter out the deleted record entries and reclaim
disk space.
A refresh transaction moves into the “ready-to-commit"

state when all of the dataset’s indexes have their shadow
components ready. The CC then records the transaction
state on disk and instructs all nodes to commit the trans-
action locally. After it has committed on all NCs, the delta
is added to the ExternalFile dataset and the transaction
is marked complete. This use of 2PC enables external in-
dexes to recover from crashes and maintain a consistent
state. When bootstrapping, the CC loops over all incom-
plete transactions to perform global recovery. Transactions
in the presumed abort state are rolled back, and transactions
in the ready-to-commit state are rolled forward. Since re-
fresh operations always bulk load their changes into shadow
components, no record-level logging is required.

5.4 Consistency and Concurrency
The semantics of our logical design forbid external data

refresh transactions from affecting external data access in
queries that began before the transaction is committed. The
semantics are maintained while allowing datasets to be ac-
cessed (using indexes or using a scan) and refreshed simul-
taneously. In this section, we explain how different external
datasets’ operations correctly interleave.
AsterixDB’s CC maintains up to two versions (transiently)

of the state of each external dataset plus a pointer to the
more recent version. It also tracks the number of queries
accessing each version. NCs similarly manage two versions
for each external index. Each of these corresponds to one
of the versions at the CC and is just a list of pointers to a
subset of the index’s LSM components. (Index components
can be shared between the two versions of the index.)
Before a query accesses an external dataset, the compiler

marks it with the id of the most recent version of the dataset
and increments the number of queries accessing that version.
During query execution, external index search operators use
the assigned id to only search the LSM index components
that belong to the matching version of the index. When a
query finishes execution, the access count for each of its ac-
cessed datasets’ versions is decremented. When the number
of queries accessing the older version of a dataset reaches 0,
it becomes inactive and can be deleted.
A dataset refresh can start only when the older version of

the dataset is inactive. When committing a refresh transac-
tion locally, new versions of the dataset’s indexes are created
that contain existing index components in addition to newly
uncovered shadow components. On a global commit, the
pointer to the most recent view of the index is updated and
it is then ready to accept queries. This allows queries to run

and use external indexes for a dataset that is concurrently
being refreshed without affecting their results.
Most operations on external datasets can be executed in

parallel. Multiple indexes can be created concurrently. How-
ever, refresh operations for a dataset must be serialized. A
dataset refresh is also mutually exclusive with index cre-
ation, as indexes are created according to a captured snap-
shot (which is updated through refresh operations).

6. EXPERIMENTAL EVALUATION
We now compare the performance of AsterixDB external

datasets, on Hive-created data, against that of Hive itself on
the same data files. We also compare external and internal
dataset performance for the same data content; this shows
the trade-offs involved in moving data into the system versus
indexing it externally.

6.1 Experimental Setup
We used a 10 node cluster; each node had a dual core

processor, 8GB RAM and 2x 1TB 7200rpm hard drives.
AsterixDB (0.8.6) and Hadoop (2.2.0) were set up to utilize
all nodes in the cluster. Hadoop was configured with an I/O
buffer size of 64 KB, a block size of 64 MB, and a replication
factor of 3. We used TPC-H data at scale=250. The data
(delimited-text) was put uniformly into HDFS with an equal
number of blocks on each of the 20 disks on the cluster.
Hive (0.13.0) tables were created (using insert into select
style queries) with data in three different formats – Text
file, Sequence file, and RCFile. Data in the RCFile format
used 4 MB as the row group size. Table 1 shows the sizes
for the Hive tables in each format. Datatypes were defined
in AsterixDB to model TPC-H data. The time and space
involved in loading the Lineitem, Order, and Customer data
into internal AsterixDB datasets are shown in Table 2. The
time includes the cost to fetch and parse data from HDFS,
hash-partitioning and sort received records by primary key,
and bulk-load them into B-Tree indexes partitioned across
the cluster.
The queries in the following section were run in sequence.

Each was run multiple times ranging from 5 times for full
scan queries to 50 for expensive range lookups and 500 for
low cost queries, and results were averaged. Predicate ranges
were controlled for each point in the x-axis and their position
was selected using a uniform random number generator. In
contrast, simply creating an external dataset amounts to
an insert of a row in AsterixDB’s Metadata and requires
negligible space and time.

6.2 Results and Analysis
In this section, we compare the performance of full scan

operations using Hive, AsterixDB external datasets, and
AsterixDB internal datasets. We also show the time and
space implications of indexing different external and inter-
nal datasets. Subsequently, we evaluate the performance of
indexed access to external versus internal datasets for sev-
eral different query scenarios.

6.2.1 Aggregation and Lookup Queries (Full Scan)
We first ran queries to aggregate a single attribute and to

look up a single record. Aggregates highlight performance
when computation is performed on a single attribute, which
affects the minimum deserialization requirements (taken ad-
vantage of by Hive with its RCFile formatted records). List-

8

Dataset Format Size (GB) Number of files

Lineitem
Text 187.2

749Sequence 207.6
RCFile 173.9

Orders
Text 41.9

167Sequence 46.1
RCFile 39.35

Customer
Text 5.75

23Sequence 6.22
RCFile 5.6

Table 1: HDFS raw data files
Dataset Loading time (mins) Primary Index Size
Lineitem 43 334GB
Orders 9 60GB

Customer 1.25 7.7GB

Table 2: Cost of loading data

--Aggregate Query
SELECT MAX(l.L_PARTKEY) FROM lineitem l;
--Lookup Query
SELECT * FROM lineitem li

WHERE li.L_SUPPKEY = a
AND li.L_LINENUMBER = b
AND li.L_QUANTITY = c
AND li.L_EXTENDEDPRICE = d;

--Aggregate Query
SELECT MIN(o.O_TOTALPRICE) FROM orders o;
--Lookup Query
SELECT * FROM orders o

WHERE o.O_CUSTKEY = a
AND o.O_TOTALPRICE = b
AND o.O_OSHIPPRIORITY = c;

--Aggregate Query
SELECT MAX(c.C_BALANCE) FROM customer c;
--Lookup Query
SELECT * FROM customer c

WHERE c.C_CNAME = a AND c.C_ADDRESS =
b;

Listing 4: Aggregation and Lookup queries in
HiveQL

ings 4 and 5 show the queries in HiveQL and AQL. The
parameters a, b, c, and d were picked from specific records
in different files. In the absence of an index, each query
involved a full scan of the data. Figures 4(a), 4(b) and
4(c) show the results for the Lineitem, Customer and Order
datasets, respectively, for data in different platforms and
formats. The following are the key observations.
1) Querying Internal Data: Queries against AsterixDB’s
internal datasets are faster than querying HDFS data, in any
format, using either Hive or AsterixDB’s external datasets.
This is due to internal data being stored in AsterixDB’s
binary data format (ADM), requiring no translation. Fur-
ther, the I/O done by AsterixDB is sequential, with a single
thread reading from each I/O device with no concurrent I/O
activities. For HDFS data, multiple threads may access dif-
ferent splits of data simultaneously and interfere.
2) Querying External Data
(a) Text and Sequence File Format: AQL queries on exter-
nal data in Text and Sequence File formats in HDFS run
faster than the corresponding Hive queries. This is due to
the different execution engines of AsterixDB and Hive. An

let $litems := for $li in dataset Lineitem
return $li .partkey

return max($litems);
for $li in dataset Lineitem

where $li .lsuppkey = a
and $li .llinenumber = b
and $li . lquantity = c
and $li .lextendedprice = d

return $li ;
let $price := for $ord in dataset Orders

return $ord. ototalprice
return min($price);
for $ord in dataset Orders

where $ord.ocustkey = a
and $ord.ototalprice = b
and $ord.oshippriority = c

return $ord;
let $balance := for $cust in dataset Customer

return $cust.cbalance
return max($balance);
for $cust in dataset Customer

where $cust.cname = a and $cust.caddress = b
return $cust;

Listing 5: Aggregation and Lookup queries in AQL

AQL query is compiled into one Hyracks job, while a Hive
query is compiled into a Map-Reduce job (or jobs) to run on
Hadoop. Hyracks exploits partitioned and pipelined paral-
lelism to offer a more efficient execution model than Hadoop.
Additional details on Hyracks can be found in [8].
(b) RCFile Format: Queries against the largest dataset,
Lineitem, for the RCFile format, run faster in Hive than in
AsterixDB as an external dataset being queried with AQL.
Also, Hive performs relatively worse for simple selects as
compared to aggregates. This is due to its need for addi-
tional field deserialization. However, this is mitigated by the
use of a lazy deserializer that only deserializes fields when
needed. AsterixDB, however, parses all the external fields.
This difference lessens for datasets with smaller numbers of
fields, e.g., Orders and Customers. In addition, AsterixDB
does two-step parsing in its current Hive parser, deserial-
izing records into Hive objects before converting them to
ADM.

6.2.2 Joins (Full Scan)
Next, we evaluate a join between Customer and Order

data on customer key. The result sizes were limited to
around 1000 records via a range predicate on CustKey of
Orders. The ranges, a and b, were picked randomly from
the range of CustKeys where b is greater than a by 100.
Listings 6 and 7 show the join query in HiveQL and AQL
respectively. Figure 5 compares the query execution times
for different storage platform and data format combinations.
AsterixDB employs a completely hash-based join algorithm
that is more efficent than the sort-and-shuffle-based join al-
gorithm used by Hive. In addition, Hyracks jobs have lower
cost than Map-Reduce jobs. Therefore, joins in AsterixDB
run faster than joins in Hive. The internal dataset join
achieves the best performance, as only the (selected) Orders
records are shuffled to the nodes containing the matching
Customer records (since the join key is a primary key) and
internal datasets avoid parsing overhead.

9

(a) Lineitem Dataset

(b) Orders Dataset

(c) Customer Dataset

Figure 4: Performance comparison: Aggregate and
Lookup queries (Full Scan)

Figure 5: Performance comparison: Join of Cus-
tomers and Orders (Full Scan)

6.2.3 Constructing Indexes: Internal vs. External
Next, we explore the costs of building secondary indexes

on internal AsterixDB data versus external HDFS data. As
shown in Table 3, indexing external data is slower than inter-
nal data. To see why, recall the index-construction pipeline
from Figure 2. Indexing an external dataset requires parsing
the data into ADM format. In addition, larger composite

TPC-H Key Format Time Size
Data (secs) (GB)

Lineitem
order key

Text 1458 48.8
Sequence 1678 48.8
RCFile 1796 58.6

part key
Internal 1313 40
Text 1632 48.8
Sequence 1802 48.8
RCFile 2156 58.6

Orders
customer key

Internal 297 7.7
Text 356 12
Sequence 422 12
RCFile 473 14.5

order key
Text 300 48.8
Sequence 362 48.8
RCFile 341 58.6

Customer customer key
Text 38 1
Sequence 39 1
RCFile 49 1.47

Table 3: Indexing of external and internal datasets

SELECT cust.ccustkey, cust.cname, ord.oorderkey
FROM orders ord JOIN

customer cust ON(ord.ocustkey = cust.ccustkey)
WHERE ord.ocustkey > a and ord.ocustkey < b;

Listing 6: Join query example in HiveQL

for $ord in dataset Orders
for $cus in dataset Customer
where $ord.ocustkey = $cus.ccustkey
and $ord.ocustkey > a and $ord.ocustkey < b
return { "key":$cus.ccustkey,

"name":$cus.ccname,
"orderkey":$ord.oorderkey };

Listing 7: Join query example in AQL

count(for $ord in dataset Orders
where $ord.oorderkey > a and $ord.oorderkey < b
return $ord);

Listing 8: Range query on Orders using order index

Record IDs slow down the sort operation. Further, an HDFS
record reader may scan multiple files from partitions on the
same I/O device, causing interference and non-deterministic
delays. (The Hadoop 2.2.0 API doesn’t provide a way to de-
termine the I/O device hosting each block and to schedule
accordingly.) Note that the index size for the RCFile format
is larger due to the additional row number field in each RID.

6.2.4 Index Access: Internal vs. External
Having built indexes on both internal and external datasets,

we then ran queries to use them. Each query was run for
multiple data ranges to show its performance for different
result sizes. The parameters a and b in Listings 8, 9, 10,
and 11 were substituted with values picked from their re-
spective data ranges using a uniformly distributed random
value generator. The difference between a and b was used
to control the result sizes. Throughout our experiments, the
measured queries just count the results rather than return-

10

Figure 6: AsterixDB range queries on Orders
dataset using order index

ing their data; we did so to isolate computation costs from
the cost of result delivery. We now examine the results.
(1)External Secondary Index vs. Internal Primary
Index: Queries on primary keys benefit when data storage
is internal using a primary index. To gain similar efficiency,
such queries on external data need secondary indexes (as
external datasets lack primary keys). We ran an example
query (Listing 8) on an internal dataset as well as on external
datasets with different HDFS formats. Figure 6 shows the
results. At a result size of 250 records, internal and external
data perform similarly; times are dominated by query com-
pilation and running a small Hyracks job. As we increase
the result size to 2.5 million records by altering the order
key predicate, the time for the internal dataset remains well
below 1 second. In contrast, the time for external datasets
increases by factors of 10 and 14 for the RCFile and Se-
quence/Text formats. Querying an internal dataset benefits
from evenly distributed processing due to hash-partitioning
of records on search key. Moreover, the primary index ac-
cess requires a sequential scan just of the index leaves, as
opposed to random accesses of leaves and internal nodes of
primary indexes when accessing data via secondary indexes.
Querying external datasets involves additional steps (and
overheads) including a secondary index search, sorting RIDs
to ensure more clustered access, using RIDs to read external
records, and parsing records into ADM binary format.
The generated raw data for the Orders dataset was ini-

tially sorted on the order key. Hence, external index ac-
cess in the query involved sequential I/O. In the case of the
RCFile format, groups of records (4 MB in size) were read
together, whereas records in the Text/Sequence file formats
were read one at a time (causing additional context switch-
ing overhead). For this reason, querying external data in the
RCFile format was observed to be faster than querying the
same data in the Sequence and Text formats (by a factor of
1.4) when reading 2.5 million records.
(2)Secondary Index Access - Internal vs. External:
To compare secondary index access on external and inter-
nal datasets, we ran the range queries shown in Listings 9
and 10. Such a range query does not benefit from hash-
partitioned distribution of data records. Furthermore, sec-
ondary access paths for internal datasets incur additional
CPU and I/O costs to search the primary index to fetch the
records. External datasets, on the other hand, can directly
use the records’ physical locations (embedded in their RIDs)
to fetch them from HDFS. Figures 7 and 8 show the results
with different range predicates. Both figures show fairly
comparable performance for internal data and external data
with Text and Sequence formats. In contrast, secondary

Figure 7: AsterixDB range queries on Orders
dataset using customer index

Figure 8: AsterixDB range queries on Lineitem
dataset using part index

Figure 9: AsterixDB index-based join of Orders and
Customers datasets on customer key

index access for the RCFile format starts out being about
3 times slower than the other formats (at 10K in Figure 7
and at 30K in Figure 8). This is because accessing RCFile
records requires reading their containing row groups (4 MB
in size). Starting at the 100K range for the Orders dataset
and 300K for the Lineitem dataset, the rate of increase of
the RCFile access time decreases, and the cost eventually
becomes lower than the other formats. This is due to the
increase in the ratio of records to row groups, as the bene-
fits of performing sequential reads and less context switching
eventually outweighs the cost of reading extra records. The
I/O and parsing costs associated with reading Text and Se-
quence records are similar. A single read etches a minimum
of 64 KB for both formats. However, the actual location of
their HDFS blocks and indexes on disks are different, cre-
ating small differences in their performance for individual
queries.
(3)Index Nested Loop Joins - Internal vs. External:
Finally, we evaluate an AQL index nested loop (INL) join
(Listing 11). This query counts the output of a select on the

11

count(for $ord in dataset Orders
where $ord.ocustkey > a and $ord.ocustkey < b
return $ord);

Listing 9: Range query on Orders using customer
index

count(for $li in dataset Lineitem
where $li . lpartkey > a and $li . lpartkey < b
return $li) ;

Listing 10: Range query on Lineitem using part
index

count(for $ord in dataset Orders
for $cus in dataset Customer
where $ord.ocustkey = /*+indexnl*/ $cus.ccustkey
and $ord.ocustkey > a and $ord.ocustkey < b
return $cus);

Listing 11: Index nested loop join query

Orders dataset using a predicate on the customer key fol-
lowed by an INL join on this key with the Customer dataset.
As shown in Figure 9, the join runs faster against internal
datasets by a factor ranging between 1.4 and 3. For the in-
ternal dataset, only Orders records are re-partitioned since
the nodes with matching Customer records are known (Cus-
tomer is hash-partitioned on the customer key). This is not
so for external datasets, where partitioning knowledge is un-
available and each produced record must be broadcast to all
participating nodes. To get the matching record, the in-
ternal dataset need only search the primary index, while
external datasets first search their secondary indexes and
then perform seek, read and parse operations before join-
ing the records. Note that join performance is fairly similar
across the three external file formats. As seen previously,
RCFile access is slower than the other formats at smaller
ranges due to the additional I/O cost. RCFile access cost
remained fairly flat even when the join size increased from
50K records to 200K records. This shows that reading more
records when accessing RCFile data doesn’t necessarily in-
crease the I/O cost, which dominates for this query. The
text and Sequence formats showed linear increases in access
time while maintaining their difference (around 35 seconds)
from internal joins.

7. CONCLUSION
We have described how AsterixDB provides efficient query

access to data living outside the system (e.g., in HDFS).
Pluggable adapters and parsers provide an extensible frame-
work to support a variety of non-native data sources and
formats. To support queries with small to medium selectiv-
ity, we added incrementally refreshable distributed indexes
that provide carefully enforced access semantics to ensure
answer consistency across access paths. We also explained
how consistency is ensured when building, using, and re-
freshing external indexes as well as how failures are handled.
We showed that AsterixDB’s support for external HDFS
data provides both good full scan performance (compared
to Hive) as well as significant improvements from indexing.
We also compared external and internal data access costs
for different queries to gauge the relative performance of ex-

ternal data access. AsterixDB will release these features in
its first official Apache incubation release in 2015. Apply-
ing these techniques on new data formats (e.g., Parquet or
ORC) and/or measuring performance against new "SQL on
Hadoop" platforms (such as Impala, Stinger, or SparkSQL)
are possible future work. We may also explore HDFS’s new
inotify feature to automate external index refresh and inves-
tigate support for resuming index refresh on failures.
Acknowledgements This work was supported by NSF IIS
award 0910989 and CNS awards 1305430 and 1059436.

8. REFERENCES
[1] Apache Hadoop. http://www.hadoop.org/.
[2] Apache Hive. http://oozie.apache.org.
[3] A. Abouzied et al. Invisible Loading: Access-driven

Data Transfer from Raw Files into Database Systems.
Proc. EDBT Conf., 2013.

[4] I. Alagiannis et al. NoDB: Efficient Query Execution
on Raw Data Files. Proc. SIGMOD Conf., 2012.

[5] S. Alsubaiee et al. AsterixDB: A Scalable, Open
Source BDMS. Proc. VLDB Endow., 7(14), 2014.

[6] S. Alsubaiee et al. Storage Management in AsterixDB.
Proc. VLDB Endow., 7(10), 2014.

[7] S. Blanas et al. Parallel Data Analysis Directly on
Scientific File Formats. Proc. SIGMOD Conf., 2014.

[8] V. Borkar, M. Carey, et al. Hyracks: A Flexible and
Extensible Foundation for Data-intensive Computing.
Proc. ICDE Conf., 2011.

[9] J. B. Buck et al. SciHadoop: Array-based Query
Processing in Hadoop. Proc. ACM Int’l. Conf. on
High Perf. Comp., Netw., Storage and Analysis, 2011.

[10] Y. Cheng and F. Rusu. Parallel In-situ Data
Processing with Speculative Loading. Proc. SIGMOD
Conf., 2014.

[11] J. Dittrich et al. Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even
Noticing). Proc. VLDB Endow., 3(1-2), 2010.

[12] M. Y. Eltabakh, F. Özcan, Y. Sismanis, et al.
Eagle-eyed Elephant: Split-oriented Indexing in
Hadoop. Proc. EDBT Conf., 2013.

[13] V. R. Gankidi et al. Indexing HDFS Data in PDW:
Splitting the Data from the Index. Proc. VLDB
Endow., 7(13), 2014.

[14] S. Idreos et al. Here Are My Data Files. Here Are My
Queries. Where Are My Results? Proc. CIDR Conf.,
2011.

[15] K. Lorincz, K. Redwine, and J. Tov. Grep versus
FlatSQL versus MySQL: Queries using UNIX tools vs.
a DBMS, 2003.

[16] J. Melton et al. SQL and Management of External
Data. ACM SIGMOD Rec., 30(1), 2001.

[17] C. Mohan et al. Transaction Management in the R*
Distributed Database Management System. ACM
TODS, 11(4), 1986.

[18] Y. Xu, P. Kostamaa, and L. Gao. Integrating Hadoop
and Parallel DBMS. Proc. SIGMOD Conf., 2010.

12

