
2017 IEEE International Conference on Big Data (BIGDATA)

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 2730

A Performance Study of AsterixDB

Keren Ouaknine
School of Engineering and Computer Science

Hebrew University of Jerusalem, Israel
Email: keren.ouaknine@mail.huji.ac.il

Michael Carey
Bren School of Information and Computer Sciences

University of California, Irvine
Email: mjcarey@ics.uci.edu

Abstract— Apache AsterixDB is a relatively new Big Data
management platform providing ingestion, storage, manage-
ment, indexing, querying, and analyses of vast quantities of
semi-structured information on scalable computer clusters.
This paper compares the execution and performance of an
early release of Apache AsterixDB with two popular platforms,
Apache Hadoop and HPCC Systems, over the 17 PigMix
benchmark query scenarios. We discuss the results and also
how they have influenced the AsterixDB effort.

Keywords-AsterixDB; Hadoop; HPCC; Performance;

I. INTRODUCTION

Social networks, online communities, mobile devices and
instant messaging applications generate complex, unstruc-
tured data at a hight rate, resulting in large volumes of
data. This creates challenging scenarios for data management
systems aiming to ingest, store, index and analyze such data
efficiently.

Apache AsterixDB [1], [2] is a recent open source Big
Data platform co-developed at UC Irvine, UC Riverside
and UC San Diego. It is able to ingest, manage, index,
query and analyze mass quantities of semi-structured data.
Based on ideas from parallel databases and first generation
Big Data platforms, AsterixDB is a next-generation open-
source platform running on large, shared-nothing, commodity
computing clusters. To explore its potential benefits, in 2015
we decided to analyze and compare the performance of
AsterixDB to two popular Big Data platforms using the
PigMix benchmark running on all the 17 PigMix use-cases.

II. STUDY CONTEXT

A. Apache AsterixDB

AsterixDB is a parallel, semistructured information man-
agement platform that provides the ability to ingest, store,
index, query, and analyze mass quantities of data. It has a
flexible data model (ADM) that is a superset of JSON and
a query language (AQL) comparable to languages such as
Pig [3], and Hive [4]. Through ADM and AQL, AsterixDB
supports native storage and indexing of data as well as access
to external data (e.g. data in HDFS). AsterixDB uses the
Hyracks data-parallel platform [5] as its runtime engine.

ALGEBRICKS

HYRACKS

GENERATED
HYRACKS�JOB

AQL

Figure 1: Compilation of AsterixDB queries

B. Algebricks

To process a query, Apache AsterixDB compiles an AQL
query into an Algebricks [5] algebraic program also known
as the logical plan as illustrated in Fig. 1. This plan is then
optimized via rewrite rules, as described in Appendix A, that
reorder the Algebricks operators and introduce partitioned
parallelism for scalable execution. After the optimization step,
a code generation step translates the resulting physical query
plan into a corresponding Hyracks Job that uses the Hyracks
engine to compute the requested query results. Finally, the
runtime plan is distributed on the system and executed locally
on every slave of the cluster.

The AsterixDB query optimizer takes into consideration
many properties of the data such as the data partitioning and
ordering and decides according to a set of rules (which are
the core of Algebricks) what the steps should be to execute
the query in the most performant manner.

C. PigMix

PigMix [6] was developed by Hortonworks in 2009 to test
and track the performance of the Pig query processor from
version to version. It has been used in studies ranging from
cloud computing [7] to user engagement modeling [8] and
security [9]. It consists of 17 queries operating on 8 tables,
and tests a variety of operators and features such as sorts,
aggregations, and joins. In Table I, we describe the eight input
tables and their respective schemas representing Yahoo! users
requesting for web pages. The main table, called page_views,
contains fields such as the query terms that brought the user
to the page as well as the time that the user spent on that
page. Table II describes the 17 queries.

2731

Table I: The 8 input datasets of PigMix

Name of table Schema Purpose

page_views user name, action, timespent, query_term, ip_addr, main table
timestamp, estimated_revenue, page_info, page_links

users name, phone, address, city, state, zip user information
page_views_sorted same as page_views pre-requisite table for merge-join evaluation
users_sorted same as users pre-requisite table for merge-join evaluation
power_users name, phone, address, city, state, zip small table to test replicate join
widerow name and 499 integers very wide row table
widegroupbydata same schema as page_views repeated three times aggregation of wide keys

Table II: Description of each query in the PigMix benchmark

Q1 list of users with a count of the pages they viewed or the number of links matching a specific value (’b’) depending on the user’s action
Q2 the total revenue for each user present in both page_views and power_users
Q3 the total revenue for each user present in both page_views and power_users
Q4 the number of actions (page_views) per user
Q5 all the users from page_views that do not have a matching user from the table users
Q6 groups the page_ views dataset by user, query term, ip address, and time. It returns the cumulated time spent for each group.
Q7 count of the morning and afternoon accesses for each user
Q8 the total time spent and estimated revenue for the page_views dataset
Q9 the page views records ordered by query term
Q10 the page views records ordered by a combination of query term, estimated revenue, and time spent
Q11 returns records of page views and widerow distincted by username
Q12 returns (i) the anonymous page_view records grouped by query term and sums the time spent for each group, (ii) the non-anonymous

page_view records with a query term not null grouped by user and sums the estimated revenue for each group(iii) the non-anonymous
queries with a null query term, grouped by user, and counts the action for each group

Q13 user names in page views with their phones from the users table
Q14 user names in page views with their users from the users table
Q15 a count of the action, a sum of the revenue, and an average of the time spent. The count includes unique actions only. The sum adds unique

estimated revenue. The average includes distinct time spent only. The query groups by one field, removes duplicates within groups, and
aggregates (count, sum, average) each group

Q16 the sum of the estimated revenue for each user
Q17 the users grouped by all their fields

1) Data generation: The actual data of PigMix is randomly
generated. One can vary the amount of data to generate by
specifying the number of page_views rows. Our input sizes
started at 10 million rows, i.e 16 GB, which is the scale at
which Hortonworks experiments with the benchmark. We
then scaled page_views up to 270 million rows, which is
432 GB, partitioned over ten nodes to test the platforms at a
Big Data scale.

The PigMix input table users has unique keys derived from
page_views and additional columns such as phone, address,
etc. The input table power_users has the same schema as
users but is smaller. It has 500 rows generated by skimming
unique names from users. This produces a table that can
be used to test replicated joins where one table is typically
small. The input table widerow has 500 fields consisting of
one string and 499 integers. The PigMix benchmark also has
two sorted tables, page_views_sorted, and users_sorted, to be
used in a merge-join query where the two inputs to the join
need to be sorted prior to the join execution. Additionally,
the benchmark uses a sample input table which retains only
half of the records in power_users and uses the table in
another join query. Lastly, PigMix also has an input table

widegroupbydata with the fields of page_views replicated
three times to cover the case of a wide group key. Full details
on all of these tables (including field lengths, etc) can be
found on the PigMix webpage [6].

III. PERFORMANCE RESULTS AND ANALYSIS

The PigMix benchmark [6] has four main query types:
sort, join, aggregate, and union. In this section, we analyze
the execution plans and execution times of these types of
queries across the four systems circa 2015: AsterixDB 0.8.7,
Pig 0.13.1, Hadoop 1.2.1, and HPCC community 5.0.2-1 as
summarized in Table III.

Hardware: We used a cluster of 10 dual-socket, dual-core
AMD Opteron servers. Each server has 8 GB of memory
and dual 1 TB 7200 RPM SATA disks. The servers were all
connected via 1 GB Ethernet on the same switch. Note that
despite running on the same hardware and having the same
input data, each system has a different representation of that
input data. For example, the stored size of the main input
table page_views is 436 GB on Hadoop, 376 GB on HPCC
Systems, and 585 GB on AsterixDB.

2732

Table III: Query performance for our four scenarios (sec)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17
PIG 2,427 856 1,236 1,033 1,027 1,251 1,221 1,026 7,304 9,577 1,041 1,222 1,118 978 1,277 1,201 4,678
MapReduce 2,403 973 1,248 1,099 1,180 1,158 848 1,153 6,580 8,475 1,239 3,394 1,153 1,164 1,055 1,144 4,725
HPCC 1,382 1,189 1,292 1,286 1,409 1,377 1,372 1,223 29,687 29,627 1,168 3,509 1,302 1,396 3,894 1,277 1,400
AsterixDB 29,207 15 1,383 1,175 1,738 1,902 9,668 1,180 20,863 20,710 1,203 2,514 1,549 1,006 3,901 1,454 4,831

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Q2 Q3 Q13 Q14

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

Join

Pig MapReduce HPCC AsterixDB

Figure 2: Performance results for the join queries

A. Join Queries

We begin our analysis with Join, which is used very
frequently in database systems. Pig implements three types
of joins: a replicated (also known as a broadcast) join, a
merge join, and a skew join. These are benchmarked in four
of the PigMix queries using hints and are described below:

(i) A replicated join has one of its two inputs typically
small. The small table is broadcast entirely to all nodes and
joined at each one with a portion of the large table. A major
advantage of this join is that the large dataset does not need
to be repartitioned to be joined with the small dataset. In
Pig and HPCC the input is broadcast. A match is looked for
in the small table for each record in the large table using a
nested-loop join. Given an appropriate join hint, AsterixDB
executes the join using an index-nested loops join, so its
execution time is much faster than the other systems as shown
for Q2 on Fig. 2.

(ii) In a skew join particular to Pig, one dataset is
partitioned and the other one is streamed. This join has two
phases: (1) First comes a preparation phase, during which
Pig takes samples to estimate the key distribution. In order
to reduce spillage, the sampler conservatively estimates the
number of rows that can be sent to a single reducer based
on the memory available for the reducer. The partitioner
uses the key distribution to send the data to the reducer in a
round robin fashion. The mapper task uses the distribution
file to copy the data of the other table to each of the reduce
partitions matching the key. Since more than one reducer
can be associated with a key, the table records that match
the key need to be copied over to each of those reducers. (2)
The tuples from the two tables are then joined.

(iii) A third type of join intends to test the case where the

data is already sorted. Pig and HPCC have a merge join as
an available join strategy, whereas AsterixDB does not so
instead it uses a hash join to execute the join.

1) Results Analysis for Join: Fig. 2 shows all the join
query performance results. The results are fairly similar
except for the superiority of AsterixDB in Q2, which was
due to indexes as explained above. As for the other queries,
where no index was used, AsterixDB was slightly slower
than Pig which is not surprising as it has a larger input size.

The three execution plans for a join (with aggregation) on
large input tables (Q3) are shown in Fig. 5 for each of the
systems, and the plans are similar.

B. Sort Queries

The sort operator is a widely used and is a relatively
expensive operation in parallel processing systems [10]. Sort
is covered in the PigMix benchmark by two queries (Q9, Q10)
and involves three steps: determining a vector of splitting
ranges, repartitioning the input by these ranges, and sorting
the resulting partitions locally using an external merge sort.
In the first step, the systems determine the ranges manually
or using automatic sampling techniques. In the second step,
all systems repartition the data according to the ranges. In
the third and last step, the data is locally sorted on each
node.

1) Sampling techniques for sort optimization: The first
step of sort determines ranges so that all the data going to one
node is "pre-sorted" compared to that of another node. The
sampling step provides an estimate for the key distribution
to plan a balanced repartition of the data between the
nodes. Each system has its own sampling and redistribution
technique. The Pig optimizer runs a MapReduce job to sample
the data, then the partitioner redistributes the data according
to these ranges. This step happens between the map and
the reduce phase i.e., the shuffle phase. The data sent by
the mappers to the reducers is sorted using the Hadoop
framework. Since the data is range-partitioned and locally
sorted, the data is globally sorted. Note that to minimize skew,
Pig can (unlike HPCC and AsterixDB) distribute records with
the same key to two different partitions. This has a positive
impact on the performance of Pig for sort queries with skewed
data. On HPCC, ranges are also determined automatically.
In AsterixDB1 and hand-written MapReduce Java code, the
ranges are defined by the user manually.

1Automatic sampling is currently under development in AsterixDB.

2733

Reduce�job

Store

ForEach

Package�Tuples

Key�setting�(LR)

ForEach

Load�page_views

Map�reduce�job�2

Map�job

Map�reduce�job�1

Reduce�job

Store

ForEach

Package�Tuples

Key�setting�(LR)

ForEach

Load�page_views

Map�job

Project

Empty�Tuple�Source

Distribute

Project

Exchange�1:1

Order

Exchange�1:1

Hash�partition�
exchange�(M:N)

Assign

Exchange�1:1

Data�source�

Exchange�1:1

 Pig/Hadoop plan(a) AsterixDB plan(b) HPCC System plan

Disk�write
L9

Sort�operation

Disk�read
page_views

Figure 3: Execution plan of a SORT query

2) The Execution Plans and Result Analysis: The execu-
tion plan for a sort query (Q9, Q10) on all three platforms
is shown in Fig. 3. On the left hand side of the figure is the
Pig plan. It has two MapReduce jobs concatenated, one for
sampling and the second one for sorting. The first MapReduce
job collects samples and builds ranges according to which the
following MapReduce job will repartition the data. The data
is then sorted by the MapReduce framework transparently.
The middle graph shows the execution of AsterixDB. It is a
sequence of Hyracks runtime operations, mainly scan, project,
sort and merge. Note that AsterixDB is the only system to use
an external merge sort rather than quicksort for the local sort.
The HPCC plan doesn’t provide us much details; however
we noticed a high skew of the data during execution which
slows down the entire job. In Fig. 4, we can see a significant
shorter execution time for Pig and MapReduce as compared
to the AsterixDB and HPCC Systems. This is due to the fact
that Pig can handle skew involving a single key value, e.g.
many null values, whereas AsterixDB and HPCC don’t have
this capability. MapReduce also shows a short execution time
due to a similar fine tuning of the partitions.

Figure 4: Performance results for the sort query (Q9)

C. Group-By Queries

The group-by operator groups tuples by one or more
columns. In the PigMix benchmark, ten of the seventeen
queries execute grouped aggregations. There are two common
types of group-by implementations: (i) Sort-based group-
by, which locally sorts and groups the partitions; this step
provides a partial aggregation. The intermediate results are

2734

ForEach

Package�Turples

Key�setting�(LR)

ForEach

Package

Key�setting�(LR)

ForEach

Pre�Combiner
�rearrange

Load�local�
intermediate�results

Key�setting�(LR)

ForEach

Load�users

Distribute

Project

Assign

Group-by(final)

Hash�partition�merge
exchange

Group-by(local)

Hash�join

Project

Hash�partition�exchange

Project

Project

Assign

Data�source�scan

Empty�Tuple�Source

Hash�partition�exchange

Project

Project

Assign

Data�source�scan

Empty�Tuple�Source

 Pig/Hadoop plan(a) AsterixDB plan(b) HPCC System plan

Disk�read�user

Hash�join

Disk�read�page�v.

Disk�write�spill

Key�setting�(LR)

Reduce�job

Combine�job

Map�reduce�job�2

Map�job

ForEach

Load�page�views

Reduce�job

Map�job

Store

Store

Join

Union

Disk�write

Grouped�aggregate

Local�group

Distribute�merge

Grouped�aggregate

Local�sort

Disk�read�spill

Local�group

Map�reduce�job�1

Figure 5: Execution plan of a JOIN query + aggregation

then shuffled according to the group-by key(s). Following
that, the final aggregation phase executes. If there is an index
on the group-by key, the local sort phase can be eliminated
from the plan. (ii) Hash aggregation, which builds a hash
table of the aggregates for the groups. Each record updates
a current group in the table or creates a new group.

AsterixDB, HPCC, Pig and MapReduce all execute their
aggregations using a sort-aggregate by default as described
in (i).

1) Results Analysis for Aggregation: The group-by results
are shown in Fig. 6 and Fig. 7. In the queries Q1 and Q7
in Fig. 6, there is slow execution on AsterixDB due to
a materialization issue (an unnecessary persistence step of
intermediate data). For all other aggregation queries in Fig. 7,
we can see similar timings for all systems except in Q12,
Q15, and Q17. Q12 is actually three queries that could be
factorized, but this is only done in Pig. There is a similar
issue in Q15. Q17 operates on a table which was tripled
horizontally (schema wise) compared to the main table, so
the difference between the systems is significantly higher.
The execution plan for a basic aggregation query (Q4) on

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

Q1 Q7

Ex
ec

u
ti

o
n

 T
im

e
 (

se
c)

Aggregation

Pig MapReduce HPCC AsterixDB

Figure 6: Performance results for Aggregations Q1, Q7

Figure 7: Performance results for Aggregations

all three platforms is shown in Fig. 8.

2735

Distribute

Project

Assign

Group-by(final)

Hash�partition
merge�exchange

Group-by(local)

Project

Distinct

Order

Hash�partition
exchange

Project

Assign

Empty�TupleSource

Datasource�scan

Project

Reduce�job

Key�setting�(LR)

ForEach

Package

Combine�job

Key�setting�(LR)

ForEach

Precombiner

Store

ForEach

Package�Tuples

Disk�write

Grouped�
aggregate

Group

Sort

Grouped�
aggregate

Disk�read

ForEach

Load�page�views

 Pig/Hadoop plan(a) AsterixDB plan(b) HPCC System plan

Figure 8: Execution plan for aggregation query

D. Differences

Babu and Herodotou [11] have offered a list of criteria
to use to compare massively parallel databases. We use
some of these criteria in Table IV to highlight the key
conceptual differences between Hadoop (and Pig), HPCC
and AsterixDB.

The design of Hadoop is oriented towards providing high
reliability to long jobs at the tradeoff of raw performance.
Intermediate results are written to disk between each mapper
and reducer and to HDFS between one MapReduce job
and another in a multi-job query. Therefore, when several
MapReduce jobs are chained to execute a query, we can
expect a slowdown in the execution. This allows MapReduce
jobs to tolerate failures within the execution of a job with
minimal computing loss. AsterixDB and HPCC do not have
this capability and therefore will lose the computing progress
of a failed job. Another feature of Hadoop that speeds up jobs
is called speculation. Speculation runs “forks” of the same
task on several nodes and returns the first one to complete.

This can shorten long execution tails due to a slow machine
(but not due to skew). Also, Hadoop can reschedule a task
on another machine transparently.

IV. CONTRIBUTIONS TO ASTERIXDB

Unlike the other systems tested, AsterixDB is a "younger"
system. Therefore many features needed to be implemented
or improved in order to import the PigMix queries and
run them all successfully. As such, we opened and solved
many issues as detailed in Table V. Among them, were plan
optimization issues, auto-generation problems, AQL issues,
aggregation and selection issues, etc. We implemented the
union operator on AsterixDB. We added a new result delivery
mode (known as synchronous deferred). Finally, we also built
a graph visualization tool. This work was thus very helpful
to the current AsterixDB hardening effort. More details of
these issues is on the AsterixDB JIRA [12].

2736

Table IV: Conceptual differences between Hadoop, HPCC and AsterixDB.

Parameter Hadoop (and Pig) HPCC AsterixDB

Processing paradigm MapReduce programming model Flexible dataflow Flexible dataflow
Task uniformity Same map/reduce task on all nodes Tasks can vary from node to node Tasks can vary from node to node
Internode communication Never directly (always file based) Sometimes Sometimes
Repartitioning Between mapper and reducer only At any stage At any stage
Reliability Configurable through HDFS One or two replicas One to three replicas
Fault tolerance High granularity at the task level Entire job fails unless predefined checkpoints Entire job fails
Schema Schema-less (unstructured data) Schema required Schema optional

Table V: Contributions to AsterixDB

Feature/Bug Purpose Status

Sorting (#902) sort on primary key resolved
Group by(#899) group-by on nullable field resolved
Type creation (#893) Transaction flush failure resolved
Aggregation (#970) Performance improvement resolved
Data insertion (#968) Performance improvement (days to minutes) resolved
Materialization during loading (#1039) WAF Files larger than the src input were generated (!) won’t fix
Aggregation error (#949) count operator resolved
Storage (#948) Read and store data resolved
Left outer join(#903) on a nullable field did not work resolved
Count (#898) Make it work on large sets (ArrayIndexOutOfBound) resolved
(#888) cannot sort on primary key resolved
ADM (#897) ADM file scan with certain characters resolved
Auto-generated field (#889) Field auto-generated isn’t generated resolved
Type definition (#885) Large type definition failed resolved
String value (#867) Casting issue resolved
Type computing (#865) Records not generated resolved
Missing bytes (#3749) Data gets lost resolved
Complex type (#904) Type with more than one list cannot be created resolved
Complex type (#972) bag of list of records cannot be created resolved
Graph visualizer Build a graph visualizer to represent the operators flow in Algebricks completed

V. CONCLUSIONS AND FUTURE WORK

We have reported on a comparison of the 2015 performance
and execution of AsterixDB with Hadoop MapReduce, Pig
and HPCC Systems. We used the PigMix benchmark, which
covers various scenarios, including: sort, join, and several
aggregations. We ported the PigMix queries to AQL and
added many contributions to AsterixDB to run PigMix on
AsterixDB successfully. Pig performed best on join queries
due to its ability to work well with skewed data (e.g. many
null values). However, AsterixDB returned significantly faster
when an index existed on the join fields. Similarly, Pig and
MapReduce outperformed HPCC and AsterixDB on sort
queries thanks to efficient sampling and a resulting ability
to manage value skew well and a faster local sort algorithm.
Lastly, aggregation queries were mostly faster on HPCC since
some of the queries benefited from its non-materialization
approach.

All of the systems tested have evolved since these ex-
periments were conducted. Additionally, new systems have
appeared on the scene, such as Spark. As future work, it
would be interesting to rerun these experiments again on the

latest versions of the broader set of available systems.

APPENDIX A.
THE ALGEBRICKS RULES

Table VI below contains the list of Algebricks rules.

APPENDIX B.
DATA TYPE DEFINITIONS

The statements below illustrate the PigMix data type and
dataset definitions in AsterixDB.

1

2 create dataverse pigmix;
3

4 create type page_info_type as open {}
5

6 create type page_views_type as closed {
7 user: string,
8 action: int32,
9 timespent: int32,

10 query_term: string,
11 ip_addr: int32,
12 timestamp: int32,
13 estimated_revenue: double,
14 page_info: page_info_type,
15 page_links: {{ page_info_type}}
16 }
17

2737

18 create type power_users_type as closed {
19 id: int32,
20 name: string?,
21 phone: string?,
22 address: string?,
23 city: string?,
24 state: string?,
25 zip: int32?
26 }
27

28 create type widegroupbydata as closed {
29 user: string,
30 action: int32,
31 timespent: int32,
32 query_term: string,
33 ip_addr: int32,
34 timestamp: int32,
35 estimated_revenue: double,
36 page_info: page_info_type,
37 page_links: {{ page_info_type}},
38 user_1: string,
39 action_1: int32,
40 timespent_1: int32,
41 query_term_1: string,
42 ip_addr_1: int32,
43 timestamp_1: int32,
44 estimated_revenue_1: double,
45 page_info_1: page_info_type,
46 page_links_1: {{ page_info_type}}
47 }
48

49 create dataset page_views(page_views_type)
50 primary key user;
51

52 load dataset page_views using localfs
53 (("path"="localhost:///page_views_test.adm"),("format"="adm"));

ACKNOWLEDGMENTS

This effort has been partially supported by NSF CNS
award 1305430.

REFERENCES

[1] “AsterixDB Apache website,” http://asterixdb.incubator.apache.
org/.

[2] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. Borkar,
Y. Bu, M. Carey, I. Cetindil, M. Cheelangi, K. Faraaz et al.,
“AsterixDB: A Scalable, Open Source BDMS,” Proceedings
of the VLDB Endowment, 2014.

[3] “Overview of Pig Apache,” http://pig.apache.org/docs/r0.9.1/
api/overview-summary.html.

[4] “Hive,” https://hive.apache.org.

[5] V. Borkar, Y. Bu, E. P. Carman Jr, N. Onose, T. Westmann,
P. Pirzadeh, M. J. Carey, and V. J. Tsotras, “Algebricks: A data
model-agnostic compiler backend for Big Data languages,”
in Proceedings of the Sixth ACM Symposium on Cloud
Computing. ACM, 2015, pp. 422–433.

[6] “Apache Pigmix website,” http://cwiki.apache.org/confluence/
display/PIG/PigMix.

[7] J. Ortiz, V. De Almeida, and M. Balazinska, “A Vision for
Personalized Service Level Agreements in the Cloud,” in 2nd
Workshop on Data Analytics in the Cloud. ACM, 2013.

[8] M. Lalmas, “User Engagement in the Digital World,” Dispon-
ible en, 2012.

[9] James Stephen, et al, “Program Analysis for Secure Big Data
Processing,” in ACM/IEEE Conf. on Automated Software Eng.,
2014.

[10] R. Ramakrishnan and J. Gehrke, “Database management
systems,” 2000.

[11] S. Babu and H. Herodotou, “Massively Parallel Databases and
MapReduce Systems,” Foundations and Trends in Databases,
2013.

[12] “Apache AsterixDB JIRA Issues,” http://issues.apache.org/jira/
browse/ASTERIXDB.

2738

Table VI: The Algebricks Rules
RULE NAME ACTION

BreakSelectIntoConjunctsRule two selects conjuncted are broken to two selects
ByNameToByIndexFieldAccessRule transforms names to positions
CheckFilterExpressionTypeRule checks filter condition are of type boolean
ComplexJoinInferenceRule removes subplan and generates join from two unnest calls
ComplexUnnestToProductRule unnest followed by a join turns into two consecutive joins.
ConsolidateAssignsRule assigns are gathered to one
ConsolidateSelectsRule selects are gathered to one
ConstantFoldingRule replaces one function by another
CountVarToCountOneRule index replacement, from index to int
EliminateGroupByEmptyKeyRule removes an empty group-by
EliminateSubplanRule removes the wrapper- subplan call
EnforceOrderByAfterSubplan order-by is pushed after the subplan
EnforceStructuralPropertiesRule handles the ordering, grouping and partitioning properties and generates physical operators accordingly
ExtractCommonExpressionsRule redundant expressions are removed
ExtractCommonOperatorsRule expressions redundant are removed
ExtractDistinctByExpressionsRule simplifies distinct by adding assigns
ExtractFunctionsFromJoinConditionRule extracts the function-call to an assign
ExtractGbyExpressionsRule extracts the expressions from group-by and pushes them to an assign
FuzzyEqRule checks the condition in select or join operator. If it finds "∼=", it converts it into similarity-jaccand or edit-distance function.
IfElseToSwitchCaseFunctionRule adds a switch case
InferTypesRule computes outputs types of each operator (usually propagate)
InlineAssignIntoAggregateRule gathers the assign into an aggregate call
InlineSingleReferenceVariablesRule removes assign
InsertOuterJoinRule eliminates subplan
InsertProjectBeforeUnionRule if the variables are not used project them out
IntroduceAggregateCombinerRule gathers aggregates into one
IntroduceDynamicTypeCastRule casts using additional assign
IntroduceGroupByCombinerRule adds a group-by
IntroduceGroupByForSubplanRule subplan turns into group-by and smaller subplan
IntroduceMaterializationForInsertWithSelfScanRule adds materialization
IntroduceProjectsRule adds a projects
IntroduceRapidFrameFlushProjectAssignRule optimization of frame consuming
IntroduceSelectAccessMethodRule data-scan is replaced by a unnest-order-unnest-assign
IntroduceStaticTypeCastForInsertRule casting of open types to closes, of bags to int etc
IntroduceUnnestForCollectionToSequenceRule removes collection-to-sequence from plan
IntroHashPartitionMergeExchange hash partition exchange operator followed by a sort merge is transformed into hash partition merge exchange
IntroJoinInsideSubplanRule nested in subplan turns to a join true (the rewritten join plan will be done by a subsequent rule)
IsolateHyracksOperatorsRule adds one to one exchange
LeftOuterJoinToInnerJoinRule select + left-outer join are transformed to inner join
NestedSubplanToJoinRule eliminates subplan and adds a join, in the case where the subplan does not get any variables from outside of the subplan
NestGroupByRule removes subplan and lower groupby
PullSelectOutOfEqJoin joins condition is split to a select and a join
PushAggFuncIntoStandaloneAggregateRule push down aggregate function call
PushAggregateIntoGroupbyRule pushes count into groupby and removes listify
PushAssignBelowUnionAllRule pushes assign down
PushAssignDownThroughProductRule simply pushed the assign earlier
PushFieldAccessRule removes assign
PushFunctionsBelowJoin pushes functions below a join
PushGroupByThroughProduct operator replacement
PushLimitDownRule generates a limit earlier in the plan
PushNestedOrderByUnderPreSortedGroupByRule consolidates orderings
PushProjectDownRule early projects
PushProperJoinThroughProduct operator replacement
PushSelectDownRule pushes select down
PushSelectIntoJoinRule adds the select condition to join and removed the select operator.
PushSimilarityFunctionsBelowJoin extends PushFunctionsBelowJoin
PushSubplanWithAggregateDownThroughProductRule complex,pushes subplan down
ReinferAllTypesRule recomputes types or similar
RemoveRedundantGroupByDecorVars operator replacement
RemoveRedundantListifyRule removes listify
RemoveRedundantVariablesRule redundant variables are replaced by a unique reference
RemoveUnusedAssignAndAggregateRule removes assigns
RemoveUnusedOneToOneEquiJoinRule removes joins
ReplaceSinkOpWithCommitOpRule replace sink with commit
SetAlgebricksPhysicalOperatorsRule translates the logical to physical operators
SetAsterixPhysicalOperatorsRule introduces BTree indexes
SetClosedRecordConstructorsRule open-record-constructor becomes closed-record-construcotr if all the branches below lead to dataset scans for closed record types
SetExecutionModeRule modifies the execution property of all operators
SimilarityCheckRule looks for functions similarity-jaccard or edit-distance, and converts them to their equivalent check functions
SimpleUnnestToProductRule two consecutive data-scans are transformed to a join (true)
SubplanOutOfGroupRule not fired in Asterix test suite
UnnestToDataScanRule transforms unnest to data-scan

