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Abstract—Soon after Google published MapReduce,
their paradigm for processing large amounts of data, the
open-source world followed with the Hadoop ecosystem.
Later on, LexisNexis, the company behind the world’s
largest database of legal documents, open-sourced its Big
Data processing platform, called the High-Performance
Computing Cluster (HPCC). This paper makes three
contributions. First, we describe our additions and im-
provements to the PigMix benchmark, the set of queries
originally written for Apache Pig, and the porting of
PigMix to HPCC. Second, we compare the performance
of queries written in Pig, Java MapReduce, and ECL.
Last, we draw conclusions and issue recommendations for
future system benchmarks and large-scale data-processing
platforms.

Index Terms—PigMix, HPCC Systems, MapReduce,
Benchmark, Big Data, Performance

I. INTRODUCTION

Data production and consumption has dramatically

increased in sectors ranging from healthcare to adver-

tising, business intelligence, and social sciences. To

address this demand, several large-scale data processing

platforms have emerged. The most well-known one is

Hadoop, inspired by Google’s MapReduce programming

model [1]. It has become popular very quickly and

large companies such as Twitter, Facebook, and Linkedin

are currently using it as their processing platforms to

gain insights from their data. Another open-source data-

processing platform is the High Performance Computing

Cluster (HPCC) from LexisNexis, the company behind

the largest legal database. The development of HPCC

started around 2000, and was open-sourced in 2012.

On top of these processing platforms, there is a need

to abstract the programming model to allow analysts

and data scientists to focus on analyzing data rather

than writing and debugging complex code. To address

this need, Big Data platforms have each adopted query

languages. For Hadoop, a popular language is Pig Latin

(commonly abbreviated as Pig), and for HPCC, it is

the Enterprise Control Language (ECL). Queries are

transparently compiled into jobs by a compiler: Pig for
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Fig. 1. Comparison of handwritten Java MapReduce (left), Pig scripts
(middle), and ECL scripts compiled into C++ jobs for HPCC (right).

Hadoop, and ECLCCServer for HPCC. But which plat-

form performs best? For which tasks? Can they be com-

pared rigorously? PigMix [2] is a benchmark released

by Yahoo! and Hortonworks, the main contributors to

Pig. PigMix has been used in studies ranging from cloud

computing [3] to user engagement modeling [4] and

security [5]. Therefore, we have ported PigMix to ECL to

run the benchmark queries on HPCC Systems. As shown

in Figure 1, this paper uses PigMix to compare three

data-processing approaches: 1) Hadoop MapReduce jobs

handwritten in Java 1, 2) Pig Latin scripts, compiled into

Java MapReduce jobs for Hadoop, and 3) ECL scripts,

compiled into C++ jobs for HPCC.

In the reminder of this paper, we provide some

context for our study, detail our contributions to the

PigMix benchmark, and provide performance results

from running the benchmark at several scales with the

three approaches of interest, and conclude with lessons

learned.

II. STUDY CONTEXT

In this section, we first introduce Hadoop and MapRe-

duce, then explain how Pig scripts run on Hadoop. We

continue by describing the HPCC platform, and finish

with an overview of the PigMix benchmark.

1The hand-written queries are intended to represent a reasonable
form of coding of the queries in Java MapReduce, assuming a basic
level of MapReduce programming expertise [2].
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A. Hadoop

Hadoop is designed for large-scale analytics on a

distributed cluster of commodity computers. One of its

major advantages is its ability to scale to thousands of

nodes. It is designed to efficiently distribute and handle

large amounts of work across a set of machines. The

Hadoop Distributed File System (HDFS) splits data into

smaller parts (i.e blocks) and distributes each part redun-

dantly (by default) across multiple nodes. A MapReduce

job [1] processes the blocks by running tasks on the

cluster nodes in parallel. The input and the output of the

job are stored on HDFS. Among other things, Hadoop

takes care of the scheduling, monitoring and re-execution

of failed tasks [6]. Hundreds of companies rely on

Hadoop to store and analyze their data sources. To name

a few: EBay, Hulu, Riot Games, Twitter, etc

B. Pig

Apache Pig is used to express and process complex

MapReduce transformations using a simple declarative

query language [2] [7]. Pig Latin (the query language)

defines a set of operations on sets of tuples, such as

aggregate, join and sort. Via a query compiler, Pig

translates the Pig Latin script into MapReduce so that

it can be executed on Hadoop. Pig has thousands of

users and contributors. Among the most prominent ones

are Netflix, LinkedIn, and Twitter. Yahoo! uses Pig to

express more than 60% of all its Hadoop jobs [8]. Pig

jobs are compiled into one or more MapReduce job(s),

each reading data from and writing data to HDFS. Pig

shares a few similarities with a traditional RDBMS: a

query parser, a type checker, an optimizer, and operators

(inspired by the relational algebra) that perform the data

processing. The parser transforms a Pig Latin script into

a logical plan. Semantic checks and optimizations [9] are

applied to the logical plan, which is then optimized to

a physical plan. The physical plan is then compiled into

a MapReduce plan, i.e, a chain of MapReduce jobs, by

the MapReduce compiler. This MapReduce plan is then

further optimized (combiners are used where possible,

jobs that scan the same input data are combined, etc).

Finally MapReduce jobs are generated by the job control

compiler. These are submitted to Hadoop and monitored

by the MapReduce launcher.

C. HPCC with ECL

From a high level, the HPCC architecture [10] appears

similar to that of Hadoop. They both run on a shared

nothing cluster and aim to use a software infrastructure

layer to coordinate the processing of Big Data in parallel

across commodity nodes with local storage. Many of the

components of Hadoop have corresponding components

in HPCC, although there is not always a one-to-one

mapping. ECL is the native operational language of the

HPCC platform. It is also a declarative programming

language and operates at a similar level of abstraction

to Pig Latin. Work is submitted to the HPCC system

by sending ECL programs to a component called the

ECL-CC server, which generates C++ code for each

logical operation (e.g. sort) that the HPCC engine will

execute. This is then compiled down to an executable.

That executable is then passed to an ECL agent, that

is responsible for the work flow for the particular job

[11]. The ECL agent cooperates with the ECL System

to schedule the execution of the job across one or more

Thor processing clusters. The Thor processing cluster is

structured to have a master and some number of slaves.

The executable contains code for each node to execute,

and also contains code to allow the master to coordinate

the execution of the slaves. Thor is the ”data refinery”

cluster and is responsible for all ETL operations. The

ECL optimizer is a key component of the platform.

The optimizer selects the most efficient components that

produce the end result the user requested; In general,

this will not be the same as what the user specified.

The optimizer partitions the execution of the job graph

to manage the consumption of machine resources at

each stage. In HPCC, data structures are datasets of

records (much like tuples in Pig) which may contain

child datasets nested to any level. One difference from

Pig’s data model is that the Pig map has no equivalent

data structure in ECL (hence the issue described later

with Q1 querying on a map).

D. Main differences

Babu and Herodotou have offered a list of criteria

to compare massively parallel databases [12]. We use

some of these criteria in Table I to highlight the key

conceptual differences between Hadoop and HPCC. The

design of Hadoop is oriented to provide reliability at the

tradeoff of performance. Intermediate results are written

to disk between each mapper and reducer and to HDFS

between one MapReduce job and another in a multi-

job query. Therefore, when several MapReduce jobs are

chained to execute a query, we can expect a slowdown

in the execution. This allows Hadoop jobs (and Pig) to

tolerate failures. In contrast, HPCC will fail an entire job

upon a task failure unless the user explicitly requests a

checkpoint. Hadoop also implements some functionality

that speeds up its jobs, such as speculation. Speculation

runs ”forks” of the same task on several nodes and

returns the first one to complete. This can shorten long

execution tails due to a slow machine (but not due to
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Hadoop HPCC
Processing paradigm MapReduce programming model Flexible

Task uniformity The same map/reduce task on all nodes Tasks can vary from one node to another

Internode communication Never directly (i.e., always file based) Sometimes

Data partitioning Only between the mapper and reducer phase At any stage

Reliability Configurable through HDFS One or two replicas

Fault tolerance High granularity at the task level Entire job fails w/o predefined checkpoints

Table I: Conceptual differences between Hadoop and HPCC.

skew). Also, Hadoop can reschedule a task on another

machine transparently.

E. PigMix

Recently a few efforts in the area of big data bench-

marks emerged [13], [14]. The PigMix benchmark [15]

was developed to test and track the performance of

the Pig query processor from version to version. It

was released in 2009 by Hortonworks. It consists of

17 queries operating on 8 tables testing a variety of

operators and features such as sorts, aggregations, and

joins. The benchmark includes, in addition to the Pig

Latin queries, their equivalents in Java to run directly as

MapReduce jobs as a baseline to test the performance

gap with Pig. The Pig and MapReduce versions of all

PigMix queries are part of the Apache Pig codebase.

The equivalent queries for HPCC, in ECL, can be found

in [15]. The 8 tables and respective schemas of PigMix

model logs from users requesting Yahoo! pages. The

main table, called page views, contains fields such as the

query terms that brought the user to the page or the time

that the user spent on the page. The actual data of PigMix

is randomly generated using a generator that is part of

the codebase for Pig. One can vary the amount of data to

generate by specifying the number of page views rows.

Our input sizes started at 10 million rows, i.e 16 GB,

which is the scale at which Hortonworks experiments

with the benchmark. We then scaled page views up to

270 million rows, which is 432 GB, partitioned over ten

nodes. Full details on all eight tables can be found on

the PigMix webpage [16].

III. BENCHMARK CONTRIBUTIONS

In the course of setting up, running, and analyzing

PigMix in our environment, we ended up making a

set of changes and contributions to PigMix itself. We

summarize each of them below.

A. Correctness patch for the Java MapReduce queries

As we first began to compare the results of the queries

in Java and Pig when running PigMix on our cluster,

we noticed that their outputs were different. Half of the

handwritten Java queries were actually incorrect (Q5-10,

Q12, Q15). For example, some queries were joining on

a wrong field, or wrongly tokenized the records, hence

outputting wrong results. (We found this to be surpris-

ing.) We fixed these queries to output correct results

and submitted a patch that is now part of Apache Pig

master branch (JIRA 3915). Interestingly (and luckily

for the Pig community), our contributions related to the

correctness of these queries had little impact on the

performance of the queries.

B. Performance patch for the Java MapReduce queries

1) Overuse of memory: Upon scaling the input sizes

for the PigMix experiments to several times the available

main memory, some of the MapReduce queries failed

due to out of memory errors (Q3, Q9-10, Q13-14).

The queries were naively buffering the two inputs for

the joins into two Java List objects prior joining them.

Rather, a join on two large tables should be implemented

as without buffering the lists and as described in the

MapReduce literature [17]. From then on, the queries

that were previously failing completed successfully.

2) Optimization of join queries: The PigMix bench-

mark has four large joins, and each of these joins in

MapReduce was originally implemented as a chain of

three MapReduce jobs: a separate job for reading each

of the branches (left and right inputs), and a third job

chained to the previous two for executing the actual join

operator using an identity mapper. There is a simpler

way to express a join, with one MapReduce job rather

than three. Chaining MapReduce jobs has significant

cost implications, i.e., writing the outputs to HDFS is

prolonging the execution of the queries. The improved

join implementation reads both inputs in the map phase

and joins them in the reduce phase [17]. Figure 2 shows

the execution time of the four PigMix joins on 270

million rows before and after the code change. This

optimization is part of our patch JIRA-4004.

3) Update APIs: Following the changes above, the

MapReduce queries were outputting the right results and

644645



0

500

1,000

1,500

2,000

Q3 Q5 Q13 Q14

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

Before (3 MR jobs) After (1 MR job)

Fig. 2. Optimization of the hand written MapReduce join queries.

executing successfully at scale. However, they had been

left unchanged since their publication in 2009, and the

mapred API used in the Java queries is now deprecated.

Pig’s compiler is using the new API called mapreduce.

It seemed to us a fairer comparison to update the

MapReduce queries as well. This significantly reduced

and simplified the code of the MapReduce queries (by

about half the lines). The patch, which has significant

performance contributions, has not been integrated yet

into the main Apache Pig branch, but we used it in

our experiments, as the changes were necessary to suc-

cessfully collect results at scale. Also, as the PigMix

benchmark has been the basis for research work and

numerous publications in the past few years, it seemed

important to publish results for our scaled, optimized,

and up-to-date MapReduce queries as the comparison

set for the Pig versions.

C. Adapting ECL

The HPCC team converted the PigMix data to CSV

format and ported the PigMix queries to ECL using an

internal tool for the translation [18]. However, nested

data cannot be represented in CSV format, so Q1 could

not be ported to HPCC Systems this way, and only 16

of the 17 queries were compared [19]. To fix this, we

parsed the PigMix-generated input data to XML (another

format HPCC can read) and rewrote the queries to handle

the XML input. The execution time for XML was then

14 hours (!) to merely count the XML records, as is

described in HPCC track system online, issue HPCC-

12504. To solve this issue, we read the XML input

files but then converted them to HPCC’s internal format.

From then on, we could successfully run all 17 queries

on all systems. Additionally, the scale at which the

previous experiments were conducted at HPCC was too

small to be conclusive. Therefore we used larger storage

in our experiments to scale-up to 270 page views million

rows.

IV. SOFTWARE AND HARDWARE CONFIGURATION

The experiments reported in this paper were conducted

on a cluster of 10 dual-socket, dual-core AMD Opteron

servers. Each server has 8 GB of memory and dual 1 TB

7200 RPM SATA disks. The servers were all connected

via 1 GB Ethernet on the same switch. We used Pig

version 0.13.1 and Hadoop version 1.2.1. For HPCC,

we used the community version 5.0.2-1. During the

experiments phase for Hadoop, we ran two concurrent

mappers and reducers per node. We set the HDFS block

size to 256MB.

V. PERFORMANCE RESULTS

We now present the results of running PigMix on the

aforementioned systems. We define the multiplier for

two systems as the ratio of their running times.

A. Default benchmark

The scale factor used by Yahoo! and Hortonworks is

10 million rows of page views (16GB). Over their ten-

node cluster, this is 1.6GB of input data per machine.

At this scale, all tuples fit in-memory. Since it is clearly

difficult to reach conclusions relevant to Big Data if the

input size of the experiments is that small, we opted in

section V-B to scale the input size to a factor of several

times the memory size of the nodes to better obtain better

Big Data results.

1) Pig execution time compared to Java MapReduce
on 10 million rows: Similar to the results published

by Hortonworks [16], the multipliers in Figure 3 range

mostly between 0.8 and 1.2 with an average multiplier

of 1.09. Therefore, the execution times for Pig and

MapReduce is close on small input sizes. The only query

which has a low multiplier compared to the others is

Q12. This query splits page views into three subsets and

writes them to a file. The filter condition for the three

outputs has a common conditional factor. Pig detects

that factor and calculates the common subset only once,

whereas MapReduce calculates the common subset three

times.

2) HPCC execution time compared to Pig on 10
million rows: HPCC ran faster than Pig on nearly all

queries for the 10 million row input size, except for the

sort queries, as shown in Figure 4. In HPCC, prior to

a sort operator, the master node collects statistics from

the slaves and predicts an optimal partitioning for the

sort operation [20]. Each node then redistributes data

from its data portion that falls outside its assignment to

the appropriate nodes. Upon receipt of this data, each

node can perform a merge sort to add the received

data to the previously sorted data portion. If the data

is skewed, so is the processing and the time for each
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Fig. 3. The multiplier comparing Pig to MapReduce. A multiplier
lower than 1.0 means that Pig completed before MapReduce.
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Fig. 4. The multiplier comparing HPCC to Pig. A multiplier higher
than 1.0 means that HPCC completed faster than Pig.

partition to process, impacting the overall time, so this

is an important optimization. For Pig, the optimization

for the sort operator also balances the output across

reducers. It does this by first sampling the input of the

order statement to get an estimate of the key distribution.

For that, it requires an additional MapReduce job to do

the sampling; this takes generally less than 5% of the

total job time. Based on this sample, it then builds a

partitioner that produces a balanced total order. Unlike

HPCC, a value can be sent to several reducers in Pig,

which allows the partitioner to distribute the key more

evenly. This appears to be a reason for Pig’s superiority

on queries Q9-10.

B. Scaling to Big Data

In this section, we describe PigMix query results on

experiments scaling up to four times the overall memory

size, i.e., 432 GB for the main table page views.

1) HPCC multiplier decreases as the input size in-
creases: In the previous section, on small input sizes,

HPCC ran faster on most queries. However, upon sizing-

up our experiments, we observed the opposite trend.

Size-up experiments are used to increase the input size

while keeping the same hardware [21]; one can then

observe how well a system operates with a higher data

load. In Figure 5 we compare HPCC and Pig on 10
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Fig. 5. Comparison of performance across queries between Pig and
HPCC. A performance comparison of -200% means that HPCC is two
times slower than Pig.

million and 270 million page views rows. On the right

hand side of the graph, the 10 million row queries

executed faster on HPCC (as discussed in the previous

section). On the left hand side, Pig completed faster

than HPCC for most queries. In other words, scaling

up reduces the advantage of HPCC running time as we

increased the input size. (This is also consistent with

experiments that we ran on intermediate sizes.) Space

precludes detailed discussion of performance differences

and their reasons. Full experimental results are available

online2.

VI. LESSONS LEARNED

A. Indexing

Besides Thor, HPCC also has a real-time data delivery

engine (Roxie) that uses indexing to be able to process

thousands of requests per node per second. We also tried

Roxie, but it did not improve the running time of HPCC

over the Pigmix benchmark, as the queries are converted

into full scans anyway due to low selectivity predicates

for the PigMix select and join operators. For future work,

it would be interesting to add to the Pigmix queries a set

of more selective queries on indexed data and compare

the execution times.

B. Hardware configuration

It is important to compare how different systems take

advantage of the available hardware resources. In a first

2http://www.kereno.com/pigmix
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round of experiments, we compared the three systems

on a ten-node cluster where each node had multiple

directly accessible disks. As the cluster was also used

for Hadoop/HDFS, the disks were mounted as JBOD;

i.e., they were mounted as separate Linux volumes and

were not utilizing any sort of abstraction between the

OS and disk besides the file system itself (i.e., no RAID

or LVM). For many Big Data systems, this is one of

their acceptable hardware configurations, with this type

of configuration being geared towards newer systems that

take on the tasks of replication and failover in software.

However, for HPCC Systems, one must have one (and

only one) location allocated for the data per node, ho-

mogeneously across the entire cluster [22]. Using RAID

was not an option for us, as the cluster’s hardware and

OS were shared with other users. Therefore we had to

limit our experiments to use only one disk for a fair

comparison of Hadoop and HPCC.

C. System tuning

As mentioned in [23], it is crucial to fine tune each

systems’ configuration settings to improve the perfor-

mance. The open source community blogs provide useful

information for these tasks. Additionally, one should

observe the distribution of the files over the cluster to

make sure there are no anomalies at the file system level,

as data distribution is critical for performance.

D. Dataset size matters

Pig and HPCC consumed the same input records

and produced exactly the same output, but the execu-

tion flow of these two systems and their components

are intrinsically different. The small size jobs on Pig

definitely suffered from the overhead to launch them

due to JVM setup, shipping jars to execute, setup the

distributed cache, etc. Another slow-down is due to the

fact that reducers don’t start before mappers are globally

finished. For certain tasks such as filtering or distinct, this

processing paradigm can slow down execution. At the

larger size, however, we observed that Pig outperformed

HPCC on most queries, i.e., these overheads were no

longer significant.

VII. CONCLUSIONS AND FUTURE WORK

We ran the PigMix benchmark on Pig and MapRe-

duce, and in the process we contributed to its correctness,

scaling, and performance. These additions are now part

of the Pig master branch, or available on JIRA as

a patch to the Pig codebase. Additionally, we ported

the PigMix benchmark to HPCC Systems and com-

pared the execution time on various sizes. Small input

sizes showed an advantage for Pig over MapReduce

and for HPCC over Pig. However, as we increased

the input sizes, the performance differences reduced.

The Hadoop startup overheads encountered on small

sizes were nullified when running at scale, i.e., with

an input of four times the memory size. The average

multiplier for Pig and MapReduce at scale was very

close, 0.98. For future work, it would be interesting to

experiment with additional queries such as shorter (more

selective) queries, or multi-join queries needing multiple

MapReduce jobs and intermediate outputs. Additionally,

it would be interesting to port the benchmark to other

Big Data systems and to the cloud.
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