
2017 IEEE International Conference on Big Data (BIGDATA)

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 2829

A Performance Study of Big Data Analytics
Platforms

Pouria Pirzadeh
Microsoft §

United States
pouriap@microsoft.com

Michael Carey
University of California, Irvine

United States
mjcarey@ics.uci.edu

Till Westmann
Couchbase, Inc.

United States
till@couchbase.com

Abstract—Big Data analytics has become an invaluable tool
in a wide variety of businesses for exploiting the wealth of Big
Data that they now have access to. As a result, various solutions
within different categories of Big Data systems are emerging to
meet their needs. In this paper we use the TPC-H benchmark to
compare the performance of four Big Data systems picked from
the major categories of Big Data platforms: a commercial parallel
relational database (from the traditional DBMS world), Hive and
Spark SQL (from the SQL-on-Hadoop world), and AsterixDB
(from the world of NoSQL systems). All of these systems have
sufficiently rich query APIs and runtime systems to run TPC-H
in its full form. On the other hand, the systems also have major
differences in terms of their architectures, preferred storage
formats, support for complex schema definitions, and approaches
to query processing. This makes them a very interesting set
of representative Big Data systems to compare. We present
the results that we obtained through running these systems at
different TPC-H scales using various settings, and we analyze
a selected set of interesting query results in more detail to
explore the trade-offs between performance, storage formats, and
schema definitions. A follow-up discussion is included as well to
summarize the lessons learned from this effort.

Keywords-Big Data; Performance Evaluation; Benchmarking.

I. INTRODUCTION

Big Data is turning out to be an essential factor in decision
making processes at leading companies that seek to outperform
their competitors. Big Data analytics is an important tool
that an organization can exploit to use the wealth of data it
has access to. Big Data analytics is about collecting, storing,
and analyzing large volumes of data efficiently with the goal
of extracting invaluable, but often hidden, information from
it. It is expected that Big Data analytics will redefine the
competitive landscape of various industries in the near future,
and companies that do not adopt a Big Data analytics strategy
risk losing market share and momentum [1].

Unlike transaction processing (OLTP-style) workloads,
which are characterized by a large number of short and mostly
concurrent requests initiated by many users, Big Data analytics
workloads are characterized by fewer requests, mostly submit-
ted by experts and business analysts, with each query tending
to be complex and resource intensive. An analytical workload
normally has a set of characteristics that includes: extreme
data volume, complex data model, bulk operations, multi-step

§Work done while at the University of California, Irvine.

analysis algorithms, and intermediate staging of temporary
data [2]. The response times in an analytical workload mostly
tend to be on the order of tens to hundreds of seconds and
depending on the available resources, CPU, I/O, the network,
or a combination thereof could be the processing bottleneck.

Because of the inherent differences between OLTP and
OLAP workloads, the serving systems for them are built in dif-
ferent manners. Key design points in an analytical processing
framework include functional richness and efficient resource
usage. Moreover, the requirements of applications using ana-
lytical frameworks have evolved over time and become more
complex. Therefore, the richness of the API(s) to interact with
such systems and adequate expressive power in their supported
query languages are among other major design points.

Parallel relational databases and data warehouses were the
prominent solutions for serving analytical workloads for a
long time. With the advent of Big Data, however, various
new frameworks have been developed to manage and run
analytics to serve different applications such as log analysis,
text analytics, or the task of organizational decision-making.
Examples of these systems include Hive [3], Presto [4], Impala
[5], Dremel [6], Drill [7], Spark SQL [8], and IBM Big SQL
[9]. These frameworks normally require an environment with
characteristics such as high storage capacity, fast data transfer
capacity, and large volumes of available memory in order to
achieve a desired performance level and proper horizontal
scaling. In terms of their data storage, all of these systems
can operate on data which is stored in HDFS. In terms of
their APIs, they all provide SQL-based languages to describe
queries. However, they differ significantly in terms of their
architecture, optimization and code generation techniques, and
run-time processing approaches. As analytical workloads tend
to be complex and resource-intensive, these differences can
considerably impact their performance.

In this paper, we use the TPC-H benchmark to evaluate four
Big Data systems selected from different regions of the Big
Data platform design space. We chose TPC-H because its data
model and query workload are complex enough to serve as a
reasonable set of analytics tasks. Moreover, many vendors are
still using this benchmark to evaluate and report on the perfor-
mance of their technology. The systems we are comparing to
each other here are Apache Hive and Spark SQL (chosen from
the SQL-on-Hadoop world), System-X, which is a commercial



2830

parallel relational DBMS, and Apache AsterixDB [10] (chosen
from the world of NoSQL systems). All four have sufficiently
rich SQL-based query APIs and underlying runtime systems
to run all queries in the TPC-H query suite. On the other
hand, their architectures, preferred storage formats, support for
auxiliary index structures, and level of richness and flexibility
in schema definition have major differences that makes them
an interesting set of systems to compare. The main goal in
this paper is to study the performance of these systems and
their scale-up behavior with a focus on the impact of different
storage formats, ability to support complex schemas (e.g.,
nesting in the definition and storing of data), and different
query optimization techniques. In the remainder of this paper
we discuss some related work and review the important details
about the systems and workload, we consider. The full set
of results and details regarding our experiments come next,
followed by a deeper analysis of a number of interesting
queries. We conclude the paper with a discussion on the
lessons we learned from this effort.

II. RELATED WORK

The performance evaluation of data stores for analytical
workloads has long been a major topic in the context of
Big Data benchmarking. Among the released benchmarks by
TPC, TPC-H [11] and TPC-DS [12] include analytical and
OLAP-style queries with different levels of complexity. Both
benchmarks have been used in various works on Big Data
benchmarking. From the Big Data community, one of the very
first works on the topic of Big Data analytics was [13], which
compared MapReduce (Hadoop) to RDBMSs. Being focused
on basic architectural differences of the frameworks such as
their programming model, expressiveness, and fault-tolerance,
the analytical workload in [13] included four simple non-TPC
queries: filtered selection, grouped aggregation, join, and UDF
aggregation. A more recent study that compared Hive against
SQL Server parallel data warehouse (PDW) using the TPC-
H benchmark was [14]. That work showed that a relational
system can provide a significant performance advantage over
Hive. Another recent paper [15] compared the performance
of Hive and Impala using TPC-H and a TPC-DS inspired
workload. With a focus on the I/O efficiency of columnar
storage formats, the results in [15] showed that Impala was
faster than Hive for different queries. Its main conclusion
was to reaffirm the clear advantages of using a shared-
nothing dataflow architecture for analytical SQL queries over
a MapReduce-based runtime. Our work in this paper has some
overlap with [14] and [15] in terms of workload (using TPC-
H) and one of the evaluated frameworks (Hive). However,
beside the fact that the set of systems and settings used
for the experiments are different here, we also focus on
how support for non-1NF schemas and nested data types
along with differences in query optimization affect the overall
performance of an analytical workload.

There have also been recent Big Data benchmarks that
consider a schema with nesting for semi-structured and un-
structured data in their workloads (such as [16]). In the

context of TPC-H, the Impala developers have modified the
benchmark’s schema, added nesting to it, and used it to
evaluate the support of complex types in their system [17].
Their approach has some differences with ours and in our
view did not follow the most sensible way of denormalizing
(nesting) a relational schema considering the entities and their
relationships of the TPC-H data.

III. SYSTEMS OVERVIEW

This section provides an overview of the systems and
storage formats considered for the purpose of our evaluation. It
also goes over the important details of TPC-H and describes
the changes that we made to its original schema to include
nesting in the data and query set for our experiments.

A. Systems Overview

1) Apache Hive: Hive [3] is a data warehouse on top of
Hadoop [18]. It provides a SQL-like interface through its
query language, HiveQL, on tables created on existing data
files in HDFS. Hive supports various file formats for the
data which have significant performance differences such as
sequence and text files and ORC [19]. A client’s query in Hive
gets compiled and turned to an optimized DAG of map and
reduce jobs to be executed by Hadoop. Apache Tez [20] is a
newer runtime engine that can also be used with Hive; Tez is
an open-source framework designed to build dataflow-driven
processing runtimes [21]. Tez generalizes the MapReduce
paradigm to execute complex computations more efficiently
through parallel runtime producer and consumer tasks. Hive’s
performance improves with Tez, as Tez uses pipelining and
in-memory writes and it allows for multiple reduce stages.

2) Apache AsterixDB: AsterixDB [10] is an open source
Big Data management system (BDMS) with a rich set of
features for storing, managing and analyzing semi-structured
data. Its SQL-based query language is SQL++ and its data
model (ADM) is a “super-set” of JSON. AsterixDB has built-
in support for collection data types (arrays and bags) and sup-
ports data types with an arbitrary level of nesting. AsterixDB
uses a hash-partitioned LSM-based storage layer as its native
storage [22] while it also has support for HDFS as external
storage. AsterixDB provides users with different types of
indexing structures such as B+ Trees, spatial indices (R-Tree),
and text indices (inverted index). As the execution engine,
AsterixDB uses Hyracks [23], a data-parallel runtime platform
for shared-nothing clusters. Clients can use the available HTTP
API in AsterixDB to submit queries. The queries are first
compiled into an algebraic form that is then optimized by a
rule-based optimizer and ultimately turned into corresponding
Hyracks jobs. Hyracks executes the jobs and the results are
delivered back to the client synchronously or can be fetched
asynchronously.

3) System-X: System-X is a commercial, parallel, shared-
nothing, relational database system (unnamed for licensing
reasons). It uses the relational data model to define schemas
and uses SQL as the query language. System-X partitions data



2831

horizontally among the cluster nodes. The data is stored in ta-
bles and the storage is managed using efficient native RDBMS
storage technology. System-X has support for different types
of indices and integrity constraints. A client can submit a query
through any of system’s supported APIs, such as standard,
vendor-provided JDBC drivers. Having a mature cost-based
query optimizer (which can be equipped with statistics about
the data), an input request gets converted into an optimized
query plan whose execution is then done in parallel by the
nodes in the cluster.

4) Apache Spark: Apache Spark [24] is a general purpose
distributed computing engine that uses a multi-stage, in-
memory computational model to achieve fast and scalable
performance. Spark core [25] is the central component of
the Spark project and it is responsible for creating parallel
tasks and scheduling them. Spark SQL [8] is a component
on top of Spark core that integrates relational processing with
Spark’s functional programming API. Users can interact with
Spark SQL via different available APIs, including a SQL API
and Spark shell, and they can read data from existing Hive
tables. Spark SQL uses Catalyst, an open-source extensible
query optimizer, to analyze query plans and do runtime code
generation which eventually gets executed by Spark core.

B. Columnar Storage Formats

The advantages of using columnar data formats are well
known for analytical workloads in relational databases [26]
[27]. They improve the storage efficiency by effective data
compression and achieve significant performance gains by
moving only relevant portions of data into memory during
query processing. Columnar storage formats have been avail-
able for storing data in HDFS [28] for quite some time.
Currently, the Optimized Row Columnar (ORC) format [19]
and the Parquet format [29] are the two most popular ones for
HDFS. As ORC is mainly optimized for Hive, and Parquet has
become the suggested file format for Spark, we chose these
two formats to run the TPC-H workload to examine the impact
of such optimized storage formats on performance.

Both ORC and Parquet utilize type-specific writers that
use different built-in compression techniques to create much
smaller files from the original data. Beside compression, these
formats achieve I/O efficiency via reorganizing data and split-
ting it horizontally into fixed size chunks (stripes in ORC and
row groups in Parquet). They also include lightweight indexes
that contain statistics such as the minimum and maximum
values for each column in each of these chunks. By combining
these indices with a filter push-down optimization, the file
readers in these columnar formats can sometimes skip entire
groups of rows that are not relevant to a query based on the
query’s predicate.

C. TPC-H Workload

TPC-H [11] is a decision support benchmark that runs
against a database with a normalized schema consisting of
eight tables. The query suite in TPC-H consists of 22 read-
only queries where each tries to answer a specific “business

question” in the context of the benchmark. The official spec-
ification for TPC-H includes a translation of the functional
definitions of the queries in standard SQL. We used this exact
set of SQL statements for System-X. For Hive and Spark SQL,
we used the revised versions of TPC-H queries in HiveQL that
were created by the authors of [15]. This set uses some of the
later features in HiveQL such as its support for nested sub-
queries. For AsterixDB, we created a translation of the query
suite into SQL++ that can be found at [30].

The TPC-H benchmark specification also describes the set
of primary and foreign keys (PK/FK) in the database and
allows for the creation of auxiliary index structures on these
key columns. We added these indices to the schema definitions
for AsterixDB and System-X as they each have built-in support
for secondary indices.

D. Nested Schema

TPC-H as defined uses a normalized 1NF schema that
is native to relational systems. In a 1NF schema, we have
exactly one data value within a single row/column position. In
contrast, a nested schema allows multiple values per position.
When properly used. a nested schema can help an analytical
workload achieve significant potential performance gains at
scale, as logically related values can be grouped and physically
stored together in the same dataset. This can eliminate some of
the distributed and potentially expensive PK/FK joins that are
common in analytical workloads. With a nested schema, such a
join turns into scanning a single dataset in parallel as the child
records (FK side of the join) are now stored with their unique
parent (PK side). Aggregations, which are also common in
analytical workloads, can also benefit from a nested schema
performance-wise as the children are already grouped with
the parent. On the other hand, a nested schema can negatively
impact the scan-dominant parts of an analytical workload since
embedding children records into their parents increases the I/O
size for full scans.

In this paper, we decided to create a modified version of
the schema and queries in TPCH in order to evaluate the
actual impact of a nested schema on its performance. For
this purpose, we picked the LINEITEM table (which has the
largest size among all tables for a given TPC-H scale factor)
and nested its rows into the ORDERS table. This means for a
given ORDERS record, we now store a list of all LINEITEM
records that belong to that specific order. This is natural,
as the lineitems are simply “part of” an order in an E-R
sense. We called this new dataset NESTEDORDERS. We also
modified all of the queries (19 out of 22 queries) that use
either of the two tables or both and rewrote them to use the
NESTEDORDERS dataset.

We used AsterixDB, the representative of NoSQL systems
in our experiments, which has built-in support to store and
query nested schemas, to evaluate the nested extension to
the benchmark and compare its performance to the original
normalized design.



2832

IV. EXPERIMENTS

In this section, we discuss the details of the experiments.
We describe the hardware and the settings used in our tests
followed by presenting and analyzing the performance results.

A. Experimental Setup

For our experiments, we used a 10-node IBM x3650 cluster
with a Gigabit Ethernet switch. Each node had one Intel Xeon
processor E5520 2.26GHz (4 cores), 12 GB of RAM, and four
300GB, 10K RPM hard disks. The machines were running 64-
bit CentOS 6.6 as their operating system. Three disks on each
machine were used as local persistent storage. The fourth disk
was dedicated to storing the transaction and system logs.

We ran the TPC-H workload itself using a client running
on a separate machine (with 16GB of RAM and 4 CPU cores)
that was connected to the tests’ cluster via the same switch.
We measured the average end-to-end response time of each
individual query from the client’s perspective and used it as
the performance metric. In each test, we ran the full set of 22
TPC-H queries sequentially, one after the other, three times
for each combination of system/settings. The first iteration was
used to warm-up the caches and we report the average of the
last two runs as the response time for each query.

We used Apache Hadoop version 2.6.0 with a heap size of
8GB and a replication factor of 1. Each node in the cluster
was running the DataNode daemon for HDFS and Yarn’s
NodeManager daemon. The NameNode and ResourceManager
daemons were running on a separate machine with a similar
configuration as the cluster nodes. For Apache Hive and Tez,
we used the stable versions 1.2.0 and 0.7.0 respectively. We
enabled optimizations in Hive such as predicate push-down
and map-side joins.

We used Apache Spark version 1.5.0 with the Kryo serial-
izer. Each worker was running four executors (one per core)
with 2GB of memory. The driver program to execute our Spark
benchmarking application ran on the client machine with 6GB
of memory and it used Hive’s metastore to access the schema
and data for the tables created on files in HDFS.

For AsterixDB, we used version 0.8.9 with one NC running
on each node with 3 partitions. We set a maximum of 8GB
of memory and 2GB of buffer cache size and increased the
system’s join and sort memory budgets to 128MB per NC.

For System-X, we used a commercial version that was
provided to us in 2013 by its vendor. Each node in the cluster
was serving three database partitions. The automatic memory
manager of System-X was responsible for tuning its resource
allocations. A JDBC driver, provided by the vendor, was used
by the client to submit the queries to the system.

a) Data and storage: We conducted our experiments
with a focus on the scale-up characteristics of the systems.
For this purpose, we considered three cluster scales with 9, 18,
and 27 partitions running on 3, 6, and 9 machines respectively.
We placed 50GB of TPC-H data on each machine, which is
almost five times their available memory. To do so, we used
the DBGen tool, included in TPC-H benchmark, to generate a

total of 150GB, 300GB, and 450GB of data for these different
system scales.

For Hive, we used two types of tables: external tables
created on raw text data files and ORC format tables. In
Spark SQL we considered both external and Parquet tables.
For the ORC and Parquet cases, the CUSTOMER and SUP-
PLIER tables were created as partitioned tables using the
NATION KEY column as the partitioning attribute (there are
total of 25 possible values for NATION KEY). For AsterixDB
we loaded data into internal datasets and included the attributes
from the TPC-H schema in our DDL statements. We also
created secondary indices on the attributes according to the
rules in TPC-H specification. In System-X, we created hash-
partitioned tables using the primary key(s) in each table. We
also created the secondary indices and included the definition
of referential constraints (PK/FK relationships) in the DDL
statements. After loading data for each scale factor, we ran
the statistics gathering scripts of System-X to provide its cost-
based optimizer with the information required for generating
effective query plans.

B. Results

In this part of the paper, we review the experimental
results that we obtained from running all systems on the three
different cluster scales.

1) Data size: Table I shows the total size of each table
in the TPC-H schema for the scale of 450GB after loading
based on the target systems and formats. For AsterixDB and
System-X, the number includes the total size of all secondary
indices on a specific table. For the smaller scales of 150GB
and 300GB, the numbers are not shown as they scaled down
proportionally. As one can see, there are significant storage
size differences between different formats and systems. ORC
and Parquet are the most efficient formats in terms of storage
size due to their use of columnar storage and built-in compres-
sion. These two formats use different compression techniques
and physically organize the data in different manners, which
is why they differ from one another in terms of their total
size. AsterixDB and System-X use their own managed storage
layers. Each of these systems has its own storage format and
loads the data into a variant of B-Tree and organizes the
records in pages with enough information stored per page for
future access. This comes with additional overheads in terms
of storage space as compared to the raw data format.

2) Query Times: Tables II, III, and IV show the full set of
results that we obtained on the three scales. There were cases
where we could not obtain a stable response time to report: For
Spark SQL, Q11 took a very long time (on the order of hours)
within an aggregation step at all scales, and Q21 faced a failure
in memory allocation for the scales of 300GB and 450GB. In
Hive, Q4 did not complete with Tez/ORC, as the framework
killed a Yarn container after running for a long time. In the
tables, the cells corresponding to these cases are marked by
“-”. We also have three cells per table for AsterixDB Nested
where the response time is shown in parenthesis (Q2, Q11 and
Q16). These are the queries in TPC-H which do not use the



2833

Nation Region Part Supplier Partsupp Customer Orders Lineitem
Nested
Orders

Text 2 KB 389 Bytes 11.07 0.64 55.4 11.12 80.97 363.67 -
ORC 1.75 KB 1 KB 1.77 0.23 13.86 3.68 19 81 -
Parquet 3.2 KB 1.1 KB 5.7 0.67 50.4 10.8 60 154 -
AsterixDB 9.6 MB 1.92 MB 16.39 0.92 70.2 14.71 116.1 621 680
System-X 54 MB 54 MB 13 0.79 57 12 86 412 -

TABLE I
TPC-H TABLES SIZE (IN GB) - SF 450

LINEITEM or ORDERS tables, so their response times are
the same for both the nested and the normalized cases.

In Hive, we obtained results for four different combinations
by using both the MR and Tez execution engines against
the ORC and text formats. We observed that the Tez/ORC
combination outperforms other three combinations for almost
all queries. For this reason and to save space, here we only
include the Tez/ORC and MR/Text results for Hive to show
its best performance and its gain compared to the alternative
runtime and storage format.

Tables II to IV show that that no system or storage format
was able to provide the best performance for all of the queries,
and different systems showed different scale-up behaviors.

AsterixDB shows a proper scale-up behavior for both the
normalized and nested schema cases, as for most queries
the response times remain more or less the same while the
data and number of partitions grow. The datasets are stored
in AsterixDB’s binary data format (ADM) and there is no
need for a format transformation as records are being read.
Moreover, I/O requests are done in a single-threaded fashion
per I/O device (partition) by AsterixDB, which means that
readers won’t be blocked by other concurrent reading threads
on the same partition, and I/O is not really a bottleneck
for the majority of such requests. Comparing AsterixDB’s
performance for pairs of queries between the normalized and
nested cases, one can see that while there are some queries
that considerably benefit from nested records (such as Q18),
there are other queries that did not achieve a measurable
performance gain (such as Q19) or even got worse (such as
Q22) with nesting. This is expected, as those queries that
involve costly joins between the ORDERS and LINEITEM
datasets are expected to benefit the most from the nested
schema as a result of join elimination. On the other hand, scan-
dominant queries on the ORDERS dataset experience longer
scan times as a result of reading more data. We will look
more closely at example queries from both groups in the next
section.

In Spark SQL, Parquet tables outperform the raw text format
for all queries and show a reasonable scale-up behavior and
better performance compared to the other systems for several
queries. This is mainly due to Parquet’s built-in optimiza-
tions as a columnar storage format combined with Spark’s
pipelined in-memory computation model. Unlike the raw text
format, with Parquet we observed parallel reads happening
among all Spark workers. In addition, Parquet’s effective data

compression and built-in metadata indices reduce the I/O
effort significantly both by reading less data and by skipping
unnecessary column chunks according to the query.

Similar to Spark SQL, Hive on Tez/ORC leverages opti-
mizations in Tez (as a parallel distributed execution engine)
and ORC (as a compressed columnar storage format) and
achieves a satisfactory level of scale-up. Comparing to Hive’s
MR execution engine, the queries benefited from Tez, espe-
cially those involving multi-way joins. The small job-starting
overhead and skipping of intermediate materialization steps
in Tez as compared to MR reduce the overall join costs. The
combination of Tez/ORC also showed better behavior in terms
of utilizing the Map-side join optimization in Hive. There
were several queries that used Map-side joins only with this
combination (e.g., Q2 and Q5).

System-X shows a nearly flat (ideal) scale-up behavior
for most of the TPC-H queries. There are two queries for
which System-X had a strange behavior: Q10 shows a non-
linear performance change between different scales, and Q22’s
response time grows as the total data size grows. We will look
at these two cases in more detail in the next Section.

V. SELECTED QUERIES

In this section, due to limited space, we examine a selected
handful of queries in greater detail. The main reason to choose
these particular queries is that either the systems performed
significantly differently for them or a specific system showed
a different scale-up behavior as compared to the other queries.

A. Query 1

The first query from the TPC-H workload provides a
summary pricing report for all lineitems shipped as of a given
date [11]. It accesses only one, but the largest, table in the
database, namely LINEITEM. From a runtime perspective, this
is a query that can measure how fast a system performs filtered
scans and aggregations on a large table. The size and format
of storage along with the way that selection predicates are
evaluated on records are the key factors in determining the
systems’ response times for this query.

As Table IV shows for the largest scale (SF=450GB), Spark
SQL with Parquet was able to achieve the best time among
all systems. The execution of this query in Spark consists
of two stages: during the first one, the LINEITEM table is
scanned with the selection predicate and a local aggregation
is performed. After a data exchange, the global aggregation is



2834

AsterixDB
Normalized

AsterixDB
Nested

Spark SQL
Text

Spark SQL
Parquet

Hive
MR & ORC

Hive
Tez & ORC System-X

Q1 603 654 827 154 315 273 270
Q2 100 (100) 162 73 332 141 56
Q3 474 302 983 263 695 489 417
Q4 407 288 842 114 754 - 409
Q5 445 258 1212 500 1155 891 421
Q6 317 338 695 82 84 90 259
Q7 932 492 1256 385 2799 1044 590
Q8 497 312 1196 358 1023 1061 375
Q9 1921 1542 1929 1057 3607 3523 587
Q10 381 298 901 168 532 359 1604
Q11 79 (79) - - 534 228 41
Q12 432 370 877 123 315 265 320
Q13 202 352 244 133 426 280 99
Q14 276 372 687 86 166 142 442
Q15 276 364 1366 165 360 186 319
Q16 158 (158) 158 44 278 147 33
Q17 1354 1318 1711 445 1582 1716 269
Q18 706 314 1612 218 2018 1702 375
Q19 395 425 827 158 1302 1394 265
Q20 453 496 823 137 474 319 2316
Q21 2705 2160 2575 725 2093 1649 8776
Q22 282 1737 181 42 337 203 336

TABLE II
TPC-H QUERIES RESPONSE TIME (IN SEC) - SF 150

AsterixDB
Normalized

AsterixDB
Nested

Spark SQL
Text

Spark SQL
Parquet

Hive
MR & ORC

Hive
Tez & ORC System-X

Q1 602 660 1863 162 320 277 277
Q2 151 (151) 246 76 343 149 58
Q3 505 315 2381 491 705 518 429
Q4 410 291 2042 118 756 - 415
Q5 590 304 2859 930 1290 982 433
Q6 317 340 1742 86 91 93 262
Q7 982 519 2804 635 3041 1127 698
Q8 536 319 2396 388 1112 1089 452
Q9 2012 1671 3354 1152 3925 3629 595
Q10 418 333 2231 298 534 378 1618
Q11 80 (80) - - 781 246 42
Q12 435 383 2166 220 325 273 340
Q13 211 374 422 141 453 292 116
Q14 281 375 1697 92 177 144 446
Q15 284 370 3397 189 360 189 328
Q16 173 (173) 225 69 334 150 44
Q17 1391 1393 3767 475 1642 1757 271
Q18 768 325 3534 244 2060 1751 386
Q19 442 494 1896 179 1324 1489 269
Q20 454 498 1960 140 531 331 2914
Q21 2734 2223 - - 2274 1845 11102
Q22 328 1915 349 45 357 210 868

TABLE III
TPC-H QUERIES RESPONSE TIME (IN SEC) - SF 300



2835

AsterixDB
Normalized

AsterixDB
Nested

Spark SQL
Text

Spark SQL
Parquet

Hive
MR & ORC

Hive
Tez & ORC System-X

Q1 605 658 2870 168 324 283 286
Q2 189 (189) 326 80 351 152 60
Q3 513 320 3825 709 714 537 436
Q4 412 294 3236 121 759 - 424
Q5 719 348 4512 1359 1385 1082 442
Q6 320 341 2717 90 96 98 265
Q7 1091 592 4272 879 3261 1218 796
Q8 540 328 3599 417 1190 1104 524
Q9 2069 1777 4785 1260 4423 3745 601
Q10 428 352 3558 417 535 389 455
Q11 81 (81) - - 1025 266 42
Q12 439 400 3451 313 339 285 355
Q13 228 382 573 149 474 300 125
Q14 291 379 2702 97 186 146 454
Q15 296 380 5419 210 360 193 334
Q16 192 (192) 290 90 385 154 51
Q17 1414 1408 5827 504 1695 1784 272
Q18 805 327 5417 273 2105 1792 399
Q19 509 533 2962 201 1341 1573 273
Q20 454 503 3097 141 575 346 3535
Q21 2765 2285 - - 2417 2016 12986
Q22 347 1958 513 47 268 213 1393

TABLE IV
TPC-H QUERIES RESPONSE TIME (IN SEC) - SF 450

computed in the second stage. Effective I/O parallelization in
conjunction with Parquet readers’ ability to skip non-relevant
blocks of data according to the query’s range filter are the
main reasons in achieving that level of performance. Similar
to Spark SQL’s stages, Hive uses two MapReduce jobs to
process this query. Using Tez and the ORC file format, the
same argument as the one for Spark SQL applies to Hive.

In both AsterixDB and System-X, we have a secondary
index on the column used in the query’s predicate, i.e.,
L SHIPDATE. The selectivity of this predicate is relatively
large. For the scale of 450GB, it selects more than 887
million tuples out of almost 2.7 billion LINEITEM tuples.
As a result, exploiting this auxiliary index, instead of a full
sequential scan, will not help performance. System-X’s cost-
based optimizer decides to fully scan all LINEITEM records
for this reason. In AsterixDB, the “skip-index” hint is available
for this purpose and it was used for the response times we
report. Moreover, the combination of values in the grouping
columns (L RETURNFLAG and L LINESTATUS) has only 4
possible values. In AsterixDB we used hash-based aggregation
(enabled also with a hint) for the query and it resulted in
better performance as compared to sort-based aggregation. (It
reduced the response time for SF=450GB by about 30%).
However, System-X’s optimizer decided to use sorting for
grouping and aggregation here. The first phase of the query
(fully scanning LINEITEM) is comparable for both systems
(for SF=450GB, it took 270 seconds for AsterixDB and
250 seconds for System-X). However, System-X shows better
performance during the second phase (filtering, grouping and
aggregation) and ends up performing better than AsterixDB in

terms of the overall performance on this query.
This query took longer with the nested schema compared

to the normalized one for AsterixDB, as the sequential scan
needs to read a larger dataset (i.e. NESTEDORDERS). While
the total number of records is the same in both cases, the
actual amount of data being read is more with nesting since
the data related to the ORDERS portion of each record will
be fetched as well. The ratio of total response time between
the nested and normalized cases is proportional to the ratio of
the sizes of the NESTEDORDERS and LINEITEM datasets.

B. Query 10

This query finds the top 20 customers in terms of their
effect on lost revenue for a given quarter [11]. The query
involves a 4-way join between the CUSTOMER, ORDERS,
LINEITEM, and NATION tables, which have a wide range of
sizes, with LINEITEM and ORDERS being the two largest
tables while NATION has only 25 rows. For such a case, an
optimizer has different join ordering and join strategy choices
to choose from. The systems we picked generate different
plans for the query: Spark SQL first joins CUSTOMER with
filtered ORDERS tuples and then joins these results with
filtered LINEITEM tuples and finally joins the results with
the NATION table. AsterixDB, with the normalized schema,
joins CUSTOMER and filtered ORDERS tuples first (while
it uses the secondary index on O ORDERDATE for applying
the predicate on ORDERS). This join is followed by joining
its results with the NATION table. Finally the results are
joined with the filtered LINEITEM tuples. In terms of the join
strategy, AsterixDB currently uses hybrid hash joins for its



2836

equi-joins. Spark SQL, on the other hand, decides to use sort
merge joins for the first two joins, and for the join involving the
NATION table it broadcasts this table and performs a hybrid
hash join in each partition. In AsterixDB, switching to the
nested schema eliminates the most expensive join (between
LINEITEM and ORDERS) and has a significant impact on the
response time. As Table IV shows, AsterixDB with nesting
achieves the best performance among all systems for the
largest scale by performing a scan on the NESTEDORDERS
dataset and eliminating the join. Hive follows a similar strategy
as Spark SQL and uses 4 map and 4 reduce steps. It first joins
CUSTOMER and ORDERS using sort merge join and then
replicates NATION and performs a broadcast hash join with
LINEITEM.

One reason we found this query interesting is that System-X
scaled up non-linearly for SF=450GB as it changed the query
plan for this scale. For all 3 scales, System-X first joins filtered
ORDERS and LINEITEM tuples. It exploits the secondary
indices on O ORDERDATE and L ORDERKEY for filtering
and joining. For the two smaller scales (150GB and 300GB),
System-X proceeds by scanning the CUSTOMER table and
joining it with NATION, and as the output is already sorted on
customer keys, it chooses a merge join to do the join between
the results of the latter join (CUSTOMER and the NATION)
and the results of the first join (ORDERS and LINEITEM).
In 450GB case, however, System-X decides to broadcast the
NATION table across all partitions and do a hash join at the
end. This change in the strategy helps System-X achieve much
better performance for this query for SF=450GB.

C. Query 18

This query ranks customers based on their having placed
a “large quantity” order, which is an order whose to-
tal quantity is above a certain level (for this query,
SUM(L QUANTITY)>300) [11]. For the normalized schema,
where LINEITEM and ORDERS records are stored in separate
tables, all four systems decide to use similar strategies with
some small differences. They scan the three tables in the query
(namely CUSTOMERS, ORDERS and LINEITEM) and use
three joins. They first join CUSTOMERS and ORDERS, then
join between these results and grouped/aggregated and filtered
LINEITEM records (to apply the “large quantity” predicate);
the last join is between the results of the second one and
LINEITEM. Projected records from the results of the third
join feed an aggregation to produce the final results.

Spark SQL and Hive hash exchange all three tables on the
join keys and do sorting to use merge joins. System-X uses
the secondary indices on the primary/foreign keys to run index
nested loop joins. AsterixDB hash exchanges LINEITEM and
ORDERS records and runs hybrid hash joins.

One reason we consider this query to be interesting is
the considerable performance gain achieved using the nested
schema. With nesting, all LINEITEM records that belong to a
certain order are already grouped and stored within their parent
ORDERS record. Therefore, the joins between the LINEITEM
and ORDERS tables in the normalized case to apply the “large

quantity” predicate can be replaced by a predicate evaluation
step during scanning of the NESTEDORDERS dataset. As-
terixDB does that using a sub-plan (involving unnesting and
aggregation on the list of lineitems per record) when scanning
NESTEDORDERS. The projected results of this filtered scan
are then hash exchanged and joined with CUSTOMERS to
produce the final results. Tables II to IV show that such a
change in plan to eliminate two costly joins helps AsterixDB
to achieve better performance (more than two times faster)
compared to the normalized schema.

D. Query 19

This query finds the gross revenue for all orders shipped
by air and delivered in person for three types of parts [11].
The query joins the PART and LINEITEM tables on their
PK/FK columns while it has complex disjunctive and con-
junctive predicates on both tables. A careful look at these
filters shows that the predicates on the L SHIPMODE and
L SHIPINSTRUCT columns from LINEITEM are common
among all three disjuncts. These predicates in fact are strongly
selective, as approximately only 3.5% of tuples pass them (in
SF=450GB, less than 97 million tuples pass them out of more
than 2.7 billion total LINITEM tuples). Therefore, pushing
these predicates down and applying them prior to the join can
help a system’s performance significantly.

Spark SQL indeed extracts the common predicate and
applies it prior to the join step. It also extracts the common
lower bound of the range filter on the P SIZE column from the
PART table and pushes it down, but since all the PART tuples
satisfy this lower bound that is of no help in this case. The
remaining case-specific predicates on the P BRAND column
from the PART table are applied to the results of the join,
which are then fed to the final aggregation step. The plan
that System-X generates for this query is similar to Spark’s
plan; the main difference is in the predicates it picks to push
down. System-X decides to apply all of the predicates (both
the common and case-specific ones) for both tables while
scanning them. The case-specific predicates are grouped and
are first applied disjunctively and then applied again in a case-
specific manner on the join results. In this way, System-X
tries to reduce the input sizes for the join. For example, in
SF=450GB, about 58 million (out of more than 2.7 billion)
LINEITEM tuples and about 216,000 (out of 90 million) PART
tuples pass these filters. Unlike Spark SQL and System-X,
Hive does not extract the common predicate on LINEITEM
from the disjuncts to push it down. Hive first uses two maps
to fully scan both tables and sorts them on the PARTKEY
column. Then two reducers are used to perform a merge join,
grouping and aggregation. The negative impact of joining a
large number of unneeded tuples is the main reason that Hive’s
performance for all scales are significantly worse than others.

In AsterixDB, the optimizer did not factor out the common
predicates to push them down when the query was based on a
straightforward translation from SQL. It decided to first fully
join LINEITEM and PART, and since the equi-join attribute
from the PART side is PART’s primary key, LINEITEM is



2837

hash-exchanged. This decision results in a significant overhead
in data movement and impacts AsterixDB’s performance neg-
atively. A more careful translation of the query removes this
overhead by helping the system to push down the common
predicates and improves its performance by a factor of 3. The
reported numbers are based on this revised version. As the
ORDERS dataset is not used in this query, switching to a
nested schema does not help. In fact, the query’s response time
even gets slightly worse since scanning the NESTEDORDERS
dataset takes longer than scanning LINEITEM as a result of
fetching the unneeded ORDERS portion of each record.

E. Query 22

This query counts the number of customers within a specific
range of country codes that have not placed orders but have a
greater than average positive account balance [11]. This query
is interesting to us for two reasons: First, System-X shows
its worst scale-up behavior among all queries for this one.
Second, switching to the nested schema degrades AsterixDB’s
performance significantly.

Checking the query plan that each system uses, we ob-
served that calculating the average account balance (i.e.
AVG(C ACCTBAL)) on the CUSTOMER table is the same
among all systems. The main performance difference between
the systems is based on how the “greater-than” predicate
(C ACCTBAL > AVG(C ACCTBAL)) and the “anti-join”
part (CUSTOMER tuples with no orders) are evaluated. Spark
SQL decides to use a sort-merge outer join to find customers
with no orders and then applies the greater-than predicate
after doing a Cartesian product. Hive uses three map and four
reduce steps to process this query. It first calculates the average
value (using one map and one reduce) and broadcasts it.
Another map step finds the qualified CUSTOMER tuples, and
then by using a map and reduce step a group-by on ORDERS
based on O CUSTKEY is calculated. Then Hive performs
an outer merge join on the qualified CUSTOMERS and the
grouped ORDERS. The greater-than predicate is also applied
in this step. The final aggregation happens on the output of
this join and generates the results. System-X, however, decides
to use the index on O CUSTKEY on the ORDERS table to
evaluate a sub-query for finding customers with no orders;
the greater-than predicate evaluation happens in a subsequent
nested loop join. In the normalized case, AsterixDB first
applies the greater-than predicate and finds the customers with
above average balances by performing a nested loop index join
and then it evaluates the anti-join sub-query as the last step.

By breaking the query down into pieces and running each
one, we realized that the anti-join step to find customers with
no orders takes the most time. While both Spark SQL and
AsterixDB use outer joins for this part, System-X chooses to
use the secondary index on the foreign key column. In each
scale, almost 28% of the customer records pass the predicate
on C PHONE and one third of these customers have no orders.
Therefore, these predicates have a relatively large selectivity
for secondary index lookups. As the data grows, the number
of qualifying customers according to the predicates also grows

proportionally. Because of the access method that System-X
uses to find them (index lookups rather than an outer join),
as the cardinality scales up more and more random I/Os are
needed, proportional to the data size. This negatively impacts
System’x overall response time for all the scales.

Considering the nested schema, since the LINEITEM data
is not used in the query, AsterixDB uses the same query
plan as the normalized case. However with nesting, fetch-
ing the ORDERS records needs to happen by scanning the
NESTEDORDERS dataset which is much larger than the
ORDERS dataset because of the embedded list of LINEITEM
records in each order. Table I shows that for SF=450GB,
NESTEDORDERS is 5.8 times larger than ORDERS in size.
Comparing AsterixDB’s performance for the normalized and
nested cases in Table IV shows that a similar ratio exists
between the corresponding response times for this query.

VI. DISCUSSION

In this section, we summarize the main lessons that we
have learned from our TPC-H based performance study. These
lessons are not entirely new, but they provide valuable insight
into the current state of reality in Big Data analytics platforms.
L1. Importance of cost-based optimization: As Big Data
analytics queries tend to be complex, the quality of the
physical plans for processing them plays a significant role in
the overall performance. Section 5 showed that the systems
considered here come up with different query plans for most
of our selected queries (for example Q10 and Q22). In practice,
finding the optimal plan is a complicated task, as a complex
query may have many different possible execution paths.
Having a comprehensive set of rewrite rules, an accurate cost
model, statistics about the data, and reasonable estimates of the
sizes of intermediate results are crucial factors in generating an
efficient plan. From this perspective, relational databases still
have significant advantages over modern Big Data systems.
However, query optimization in new Big Data platforms is
getting richer fast, as they are learning from DBMSs and
also focusing on tackling various performance issues that have
arisen with Big Data.
L2. Importance of storage format and I/O parallelism: Our
experiments clearly showed the beneficial impact of optimized
storage formats on Big Data analytics platforms’ performance.
Both Spark SQL and Hive showed significant performance
improvements when switching from the raw text to columnar
formats. A part of these performance gains comes from the
reduced storage sizes with Parquet and ORC because of data
compression. Another key reason is the combination of format-
specific readers with the inherent optimizations of these newer
storage formats (such as using a columnar model with built-
in auxiliary information). Such a combination can reduce the
overhead of I/O by avoiding reading unneeded data for a
query. The developers of Spark and Hive have put considerable
efforts into exploiting the features in these file formats, so
by pairing them with other optimizations (such as predicate
push-down), I/O becomes less of a bottleneck in the overall
performance.



2838

L3. Importance of dataflow processing: Our experiments
re-confirmed the performance advantages of using a pipelined
query execution model for complex queries whose processing
consists of several stages. Hive’s results on Tez experienced
performance gains for all queries due to the overall impact of
reduced scheduling overhead and data materialization. Both
Spark and Hyracks [23] (used by AsterixDB) are execution en-
gines built from scratch to run dataflow jobs efficiently. While
MapReduce is fine for one-pass computations, especially large
computations whose running times require failure-tolerance, it
suffers from performance-related issues for more complex jobs
due to its limited (stylized) two-step programming model and
its spilling of intermediate results to disk.
L4. Denormalized schema vs. normalized schema: Unstruc-
tured and semi-structured data are now popular in the Big Data
world. Big Data platforms are expected to ingest, store and
process large volumes of heterogeneous records in a near real
time fashion. These records originate from various sources,
including non-relational systems or applications which widely
use non-SQL programming languages. Therefore, data items
tend to have various complex structures (with fields of different
types, including “collections” or multiple levels of nesting). A
relational system needs to break a complex record and store
it across normalized tables. While normalization comes with
advantages, such as having compact records per table with
no duplicates or redundancy, it can suffer from performance
degradation due to expensive joins when retrieving tuples from
different tables to reconstruct the original records. On the other
hand, a NoSQL system that allows a nested schema can group
the fields in a record tightly together and store them in their
original form. In addition, relaxed schema assumptions in the
“document” model enable such a system to store related, but
heterogeneous, records together in a single dataset. As a result,
analytical workloads can benefit from keeping the logical
representation and physical storage of data closer to each other,
as some expensive distributed joins now turn into scans and
aggregations run on pre-grouped values. This means less I/O
and less network overhead for some parts of an analytical
workload. Scan-dominant parts of the workload, however, can
take longer, as they may need to fetch and process more
data. Combining nested schema support with columnar formats
can potentially improve the latter issue. In our experiments,
comparisons of AsterixDB’s results for the normalized and
nested schema showed examples of both cases (for example,
Q18 benefited from nesting, while Q22 got worse).

VII. CONCLUSION

In this paper, we have reported on a performance evaluation
of Big Data systems for OLAP-style workloads. We used the
TPC-H benchmark to evaluate four Big Data platforms: Hive,
Spark SQL, AsterixDB, and System-X (a parallel commercial
RDBMS). We explored several different storage formats for
Spark SQL and Hive. We also considered a variant of the
benchmark’s schema with nesting for AsterixDB. Our results
showed that no system, storage format, or schema variant
gave the best performance for all of the queries. Moreover,

different systems showed different scale-up behaviors. We also
showed how the optimized columnar storage formats (ORC
and Parquet) or a nested schema can improve performance in
many cases. To better understand the performance differences
between the systems, we analyzed a selected subset of the
queries in more detail to study the impact of some of the
systems’ different optimizations on performance.

Acknowledgement. We would like to thank certain individuals
affiliated with System-X’s vendor for their valuable help on
this work. We thank Avrilia Floratou for sharing the revised
Hive queries from [15]. We also thank Yingyi Bu for his help
on revising and improving some of the queries for AsterixDB.

REFERENCES

[1] “Forbes Report,” http://onforb.es/1nwCOsb/.
[2] A. Edwards and G. Davies, “Understanding Analytic Workloads -

Meeting the complex processing demands of advanced analytics,” 2011.
[3] “Apache Hive,” http://hive.apache.org/.
[4] “Presto,” http://prestodb.io.
[5] “Impala,” http://impala.io/.
[6] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,

and T. Vassilakis, “Dremel: interactive analysis of web-scale datasets,”
PVLDB, 2010.

[7] “Apache Drill,” https://drill.apache.org.
[8] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,

X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark SQL:
Relational data processing in Spark,” in SIGMOD, 2015.

[9] “Big SQL,” https://www.ibm.com/us-en/marketplace/big-sql.
[10] M. J. Carey et al., “AsterixDB: A Scalable, Open Source BDMS,”

PVLDB, 2014.
[11] “TPC-H,” http://www.tpc.org/tpch.
[12] “TPC-DS,” http://www.tpc.org/tpcds/.
[13] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,

and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in SIGMOD, 2009.

[14] A. Floratou, N. Teletia, D. J. DeWitt, J. M. Patel, and D. Zhang, “Can
the Elephants Handle the NoSQL Onslaught?” PVLDB, 2012.

[15] A. Floratou, U. F. Minhas, and F. Özcan, “SQL-on-Hadoop: Full circle
back to shared-nothing database architectures,” PVLDB, 2014.

[16] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A.
Jacobsen, “BigBench: Towards an Industry Standard Benchmark for Big
Data Analytics,” in SIGMOD, 2013.

[17] https://www.slideshare.net/cloudera/data-modeling-for-data-science-
simplify-your-workload-with-complex-types-in-impala.

[18] “Apache Hadoop,” http://hadoop.apache.org/.
[19] “Apache ORC,” https://orc.apache.org/.
[20] “Apache Tez,” https://tez.apache.org.
[21] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino,

“Apache Tez: A Unifying Framework for Modeling and Building Data
Processing Applications,” in SIGMOD, 2015.

[22] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim, M. J. Carey,
M. Dreseler, and C. Li, “Storage Management in AsterixDB,” PVLDB,
2014.

[23] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica, “Hyracks:
A Flexible and Extensible Foundation for Data-Intensive Computing,”
in ICDE, 2011.

[24] “Apache Spark,” http://spark.apache.org.
[25] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: cluster computing with working sets,” in USENIX conference
on Hot topics in cloud computing, 2010.

[26] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
database systems,” PVLDB, 2009.

[27] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil et al., “C-store:
a column-oriented DBMS,” in VLDB, 2005.

[28] Apache HDFS, http://hadoop.apache.org/hdfs/.
[29] “Apache Parquet,” https://parquet.apache.org/.
[30] https://github.com/pouriapirz/tpch-on-asterixdb.


