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Abstract—The wide use of XML for document management
and data exchange has created the need to query large repos-
itories of XML data. To efficiently query such large data and
take advantage of parallelism, we have implemented Apache
VXQuery, an open-source scalable XQuery processor. The sys-
tem builds upon two other open-source frameworks: Hyracks,
a parallel execution engine, and Algebricks, a language agnostic
compiler toolbox. Apache VXQuery extends these frameworks
and provides an implementation of the XQuery specifics (data
model, data-model dependent functions and optimizations, and
a parser). We describe the architecture of Apache VXQuery,
its integration with Hyracks and Algebricks, and the XQuery
optimization rules applied to the query plan to improve
path expression efficiency and to enable query parallelism.
An experimental evaluation using a real 500GB dataset with
various selection, aggregation and join XML queries shows
that Apache VXQuery performs well both in terms of scale-
up and speed-up. Our experiments show that it is about 3.5x
faster than Saxon (an open-source and commercial XQuery
processor) on a 4-core, single node implementation, and around
2.5x faster than Apache MRQL (a MapReduce-based parallel
query processor) on an eight (4-core) node cluster.

I. INTRODUCTION

The widespread acceptance of XML as a standard for

document management and data exchange has enabled the

creation of large repositories of XML data. To efficiently

query such large data collections, a scalable implementation

of XQuery is needed that can take advantage of parallelism.

While there are various native open-source XQuery proces-

sors (Saxon [1], Galax [2], etc.) they have been optimized

for single-node processing and do not support scaling to

many nodes. To create a scalable XQuery processor, one

could: 1) add scalability to an existing XQuery processor,

2) start from scratch, or 3) extend an existing scalable

query framework to support XQuery. Unfortunately, existing

XQuery processors would require extensive rewriting of

their core architecture features to add parallelism. Similarly,

building an XQuery processor from scratch would involve

the same complex scalable programming (some unrelated to

the XML data model). The last option, extending an existing

scalable framework to support XQuery, seems advantageous

since it combines the benefits of proven parallel technology

with a shorter time to implementation.
Among the several scalable frameworks available, one

could use a relational parallel database engine and take
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advantage of its mature optimization techniques. However,

this entails the overhead of translating the data/queries to the

relational model and back to XML; moreover, long XML

path queries may result in many joins. Another approach

is to build an XQuery processor on top of the MapReduce

[3] framework. Examples include ChuQL [4], which is a

MapReduce extension to XQuery built on top of Hadoop

[5], and HadoopXML [6], which combines many XPath

queries into a few Hadoop MapReduce jobs. Similarly,

Apache MRQL [7] translates XPath queries into an SQL-

like language implemented through MapReduce operators.

However, these Hadoop-based approaches are limited in that

they can only use the few MapReduce operators available

(i.e. map, reduce, and combine).

Recently, frameworks have been proposed that generalize

the MapReduce execution model by supporting a larger set

of operators to create parallel jobs (including Hyracks [8],

Spark [9], and Stratosphere [10]). Such ’dataflow’ systems

[11] typically include flexible data models supporting a

wide range of data formats (relational, semi-structured, text,

JSON, XML, etc.) which makes them easy to extend. In this

paper, we utilize Hyracks as our parallel framework and use

Algebricks [12], a language agnostic compiler toolbox, to

implement XQuery.

Our implementation is available as open source at the

ASF [13]. We have performed an experimental evaluation

using a large (500GB) real dataset (a NOAA weather dataset

from [14]) and various selection, aggregation, and join XML

queries that show the efficiency of our XQuery processor,

both in terms of speed up and scale up.

The rest of this paper is organized as follows: Section

II reviews current approaches for querying large XML data

repositories while Section III covers the Apache VXQuery

software stack with details about the underlying framework

(Hyracks and Algebricks) and how the data model, parser,

and runtime were extended for XQuery support. Given the

specifics of XQuery, we had to extend existing Algebricks

rewrite rules and introduce new ones; this discussion appears

in Section IV. Finally, Section V presents the results of our

experiments on Apache VXQuery’s performance as well as

a comparison with two open-source XML processors – the

single-threaded SaxonHE and the parallel Apache MRQL.
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II. RELATED WORK

Hadoop [15] provides a framework for distributed pro-

cessing based on the MapReduce model. That leaves a sig-

nificant implementation burden on the application program-

mer. As a result, a number of languages have been proposed

on top of Hadoop (e.g. Hive [16], PigLatin [17], and Jaql

[18]); however, popular high-level MapReduce languages do

not support the XML data model. Recent approaches to close

this gap include: ChuQL, Apache MRQL, HadoopXML, and

Oracle XQuery for Hadoop.
ChuQL [4] extends XQuery to include MapReduce sup-

port for processing native XML on Hadoop. In ChuQL, a

MapReduce expression is included as an XQuery function,

allowing the query writer to specify the MapReduce job

definition in XQuery. In contrast, VXQuery hides all parallel

processing details from the query writer while still using

standard XQuery constructs.
Apache MRQL (MapReduce Query Language) [19], [7] is

a SQL-like language designed to run big data analysis tasks.

The language supports parsing XML data from Hadoop

through a source expression defining the XML parser, XML

file, and XML tags. The XML parser processes the XML file

and returns all elements matching these tags; Apache MRQL

then translates these elements into the Apache MRQL data

model. Each query is translated to an algebra expression

for the Apache MRQL cost-based optimizer, which builds

upon known relational query and MapReduce optimization

techniques. The algebra uses a small number of physical

operators to create a more efficient MapReduce job than

directly writing it using the MapReduce operators.
HadoopXML [6] processes a single large XML file with

a predetermined set of queries (each currently in a subset

of XPath). The engine identifies the query commonalities

(paths that are common) and executes those once; it then

shares the common results and augments them with the

non-common parts per query. This processing is performed

using MapReduce jobs. When a query is executed, the query

optimizer determines the optimum number of jobs to execute

the requested query.
Recently, Oracle released Oracle XQuery for Hadoop

(OXH) [20], which runs XQuery data transformations by

translating them into a series of MapReduce jobs.
In summary, the above approaches share the MapReduce

framework and are thus limited to using only the available

MapReduce operators. Apache VXQuery differs in that it is

built on top of a more general scalable framework (Hyracks)

and can match XQuery computational tasks to Hyracks’

richer existing operators (e.g. join); this in turn provides

better performance. As will be seen in our experimental

section, our rewrite rules, together with Hyracks’ efficiency,

provides over twice the performance of approaches that

perform XML processing on top of MapReduce.
PAXQuery [21] implements XQuery top of Stratosphere

[10] (a dataflow system that is similar to Hyracks). The

Figure 1. The layers of the Apache VXQuery stack.

system translates XQuery queries into an internal XQuery

algebra and then into Parallelization Contracts (PACTs)

while Apache VXQuery translates the query into a lan-

guage agnostic algebra (Algebricks) and then into a Hyracks

job for execution. PAXQuery builds on previous unnesting

optimizations for tuple-based XQuery algebras [22], [23],

[24], [25] Since Apache VXQuery also uses a tuple-based

algebra, the same optimization techniques can be applied

to the Algebricks query plans. PAXQuery was not available

for comparison as of the writing of this paper. Similarly, the

Apache MRQL group is currently working on supporting

Apache MRQL on top of Apache Flink [26] (which evolved

from the Stratosphere project) but at the time of this writing

that implementation was still under development.

III. APACHE VXQUERY’S STACK

Apache VXQuery’s software stack can be represented in

three layers, as shown in Figure 1. The top layer, Apache

VXQuery, forms an Algebricks logical plan based on parsing

a supplied XQuery. The initial Algebricks logical plan is

then optimized and translated into an Algebricks physical

plan that maps directly to a Hyracks job. The Hyracks

platform executes the job and returns the results. A brief

explanation of each layer in the stack follows in the next

subsection. Figure 1 also shows AsterixDB [27], another

system that uses the Hyracks and Algebricks infrastructure,

A. Hyracks

Hyracks is a data-parallel execution platform that builds

upon mature parallel database techniques and modern big

data trends [8], [28]. This generic platform offers a frame-

work to run dataflows in parallel on a shared-nothing clus-

ter. The system was designed to be independent of any

particular data model. Hyracks processes data in partitions

of contiguous bytes, moving data in fixed-sized frames

that contain physical records, and it defines interfaces that

allow users of the platform to specify the data-type details

for comparing, hashing, serializing and de-serializing data.

Hyracks provides built-in base data types to support storing

data on local partitions or when building higher level data

types (first row of Table I).

A Hyracks job is defined by a dataflow DAG with

operators (nodes) and connectors (edges). During execution,

the operators allow the computation to consume an input
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partition and produce an output partition while the connec-

tors redistribute data among partitions. The dataflow among

Hyracks operators is push-based – each source (producer)

operator pushes the output frames to a target (consumer)

operator. The extensible runtime platform provides a number

of operators and connectors for use in forming Hyracks jobs.

While each operator’s operation is defined by Hyracks, the

operator relies on data-model specific functionality provided

by the client of the platform.

B. Algebricks

Algebricks [12], [29] is a parallel framework providing

an abstract algebra for parallel query translation and opti-

mization. This language-agnostic toolbox complements the

lower-level extensible Hyracks platform. Implementations

of data-intensive languages can extend its model-agnostic

algebraic layer to create parallel query processors on top

of the Hyracks platform. A language developer is free to

define the language and data model when using the Hyracks

platform and the Algebricks toolkit. Algebricks features a

rule-based optimizer and data model neutral operators that

each allow for language specific customization.

A system that uses Algebricks for its query processing

provides its own parser and translator to translate a query

to a query plan that uses Algebricks’ logical operators as

an intermediate representation. The Algebricks rule-based

optimizer then transforms the query plan over three stages.

The first is a Logical-to-Logical plan optimizer that creates

alternate logical plans. Once the logical plan is finalized,

the Logical-to-Physical plan optimizer converts the logical

operators into a physical plan. Then, the physical optimizer

considers the operator characteristics, partition properties,

and data locality to choose the optimal physical implemen-

tation for the plan. Algebricks provides generic language-

independent rewrite rules for each stage and allows for the

addition of other rules. Finally, a Hyracks job is generated

and submitted for execution on a Hyracks cluster.

Algebricks’ intermediate logical algebra uses logical oper-

ators that map onto Hyracks’ physical operators. A logical

operator’s properties are considered when determining the

best physical operator. For example, a join query that has

an equijoin predicate allows a hash based join instead of the

default nested loop join. The Algebricks logical operators

exchange data in the form of logical tuples, each of which

is a set of fields. The field names are represented by $$

followed by a number in remaining text. The following Al-

gebricks logical operators are commonly used in VXQuery:

The DATASCAN operator reads from a data source and

returns one tuple for each item in the data source.

The ASSIGN operator executes a scalar expression on a

tuple and adds the result as a new field in the tuple.

The DISTRIBUTE-RESULT operator collects the local

query results on each data node. Once the job is completed

the controller will request each local result and transfer it to

the user to create a complete result.

The EMPTY-TUPLE-SOURCE operator contributes the

first tuple without any fields. Algebricks uses this operator

to start all DAG dataflow paths.

The JOIN operator matches and combines tuples from two

streams of input tuples.

The AGGREGATE operator executes an aggregate expres-

sion to create a result tuple from a stream of input tuples.

The result is held until all tuples are processed and then

returned in a single tuple.

The UNNEST operator executes an unnesting expression

for each tuple, creating a stream of single item tuples.

The SUBPLAN operator executes a nested plan for each

tuple input.

The NESTED-TUPLE-SOURCE operator is used as the

initial operator in nested plans. The operator links the nested

plans with the input to the operator (such as a SUBPLAN)

defining the nested plan.

The Algebricks operators are each parameterized with

custom expressions. The expressions map directly to spe-

cific language functions or support runtime features. Each

expression is an instance of one the following expression

types: scalar, aggregate, and unnesting. Most operators use

a scalar expression, while the AGGREGATE and UNNEST

operators have their own expression types. The three ex-

pression types differ in their input and output cardinalities.

Scalar expressions operate on a single value and return a

single value. Aggregate expressions consume many values

to create a single result. Unnesting expressions consume a

single (usually structured) value to create many new values.

Correspondingly, the AGGREGATE and UNNEST operators

change the cardinality of the tuple stream.

C. Apache VXQuery

Apache VXQuery extends the language agnostic layer

provided by Algebricks to create a scalable XQuery proces-

sor. Apache VXQuery provides a binary representation of

the XQuery Data Model (XDM) (an example can be found

at the Apache VXQuery website [13]), an XQuery parser,

an XQuery optimizer, and the data model dependent expres-

sions. VXQuery can process data that is supplied in non-

fragmented XML documents partitioned evenly throughout

a cluster. A SAX based XML parser translates the XML

documents at runtime into XDM instances. Hyracks base

types were extended to build untyped XDM instances for

the XQuery node types and the XQuery atomic types. (All

XQuery types used are listed in Table I.)

Query evaluation proceeds through the usual steps. The

query is parsed into an abstract syntax tree (AST) and is then

analyzed, normalized, and translated into a logical plan. The

logical plan consists of Algebricks data model independent

operators parameterized with Apache VXQuery data model

dependent expressions. The logical plan is then optimized
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Hyracks Base boolean, byte, short, integer, long,

double, float, UTF8 string

XQuery Atomic binary, decimal, date, datetime, time,

duration, QName

XQuery Node attribute, comment, document, element,

processing instruction, text

Table I
APACHE VXQUERY BUILDS ON THE HYRACKS BASE TYPES TO CREATE

THE XQUERY ATOMIC AND NODE DATA TYPES.

Figure 2. The VXQuery cluster configuration.

using both generic rewrite rules provided by Algebricks and

XQuery specific rewrite rules provided by Apache VXQuery

(discussed in Section IV). After rewriting the logical plan,

it is translated into a physical plan and optimized further

(physical optimization includes, e.g., the selection of join

methods or the distribution of the plan). Finally the physical

plan is translated into a Hyracks job that is executed. Similar

to Algebricks operators that have physical representations

based on Hyracks operators, Apache VXQuery provides

executable functions that implement Apache VXQuery’s

data model dependent expressions.

Special attention is required regarding how the XDM

defines a set of items as a sequence. In Apache VXQuery,

an XDM sequence can have two forms: a sequence item
or a tuple stream. A sequence item holds all the values in

a single tuple field; a tuple stream represents the sequence

using a field with the same name in multiple tuples. To

switch between these representations, we provide the iterate
and the create sequence expressions. The iterate unnesting

expression works with Algebricks’ UNNEST operator to

convert a tuple field that holds a sequence item into a stream

of individual tuples. The create sequence aggregate expres-

sion executes within Algebricks’ AGGREGATE operator to

consume a tuple stream and create a sequence item for

inclusion in a single output tuple. The two expressions are

used during the logical rewrite process to switch between

formats to enable further optimization rules to be applied to

the query plan.

At runtime, the Apache VXQuery cluster processes a

query using the Apache VXQuery Client Library Interface

(CLI), a Hyracks Cluster Controller, and some Hyracks

Data Nodes (as shown in Figure 2). The process starts

with a user submitting an XQuery statement to the Apache

VXQuery CLI for parallel execution. The CLI parses and

optimizes the query and submits the generated Hyracks job

to the cluster controller, which manages and distributes tasks

to each of the data nodes for evaluation. Each data node

contains XML files, an XML parser and the XQuery runtime

expressions used to evaluate the node’s tasks. Finally, the

cluster controller collects the data nodes’ results and sends

the result back to the Apache VXQuery CLI, which returns

the result to the user.

IV. REWRITE RULES

Algebricks provides generic rules for both Logical-to-

Logical and Logical-to-Physical plan optimizations. These

rules include actions that consolidate, push down, and/or

remove operators based on the operators’ properties and

the query plan. In addition, to build the XQuery optimizer

we needed to implement XQuery-specific rules; these rules

fall into two categories. The Path Expression Rewrite Rules
attempt to remove subplans that are introduced by the

unnesting required to evaluate path expressions. The Parallel
Rewrite Rules transform the plan to enable parallel evalua-

tion for specific XQuery constructs (aggregation, join, and

data access) using both pipelined and partitioned parallelism.

A. Path Expression Rewrite Rules

The normalization phase of query translation introduces

explicit operations into the query plan that ensure the

correctness of the plan (for example sorting to maintain

document order). However, some of these operations may

not be required based on knowledge of the structure of the

plan and the implementation of operators and expressions.

The following XML segment is based on the sample XML

tree from the W3Schools tutorial [30] for XQuery and will

be used to outline the path expression rewrite rules.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <bookstore>
3 <book id="1" category="COOKING">
4 <title lang="en">Everyday Italian</title>
5 <author>Giada De Laurentiis</author>
6 <year>2005</year>
7 </book>
8 <book id="2" category="CHILDREN">
9 <title lang="en">Harry Potter</title>

10 <author>J K. Rowling</author>
11 <year>2005</year>
12 </book>
13 ...
14 </bookstore>

Consider the following simple query.

1 doc("book.xml")/bookstore/book

The query reads data from the document book.xml located

in the file system using the XQuery doc function. Next, the

first child path step expression (”/bookstore”) is applied to

the document node. Three stages are used when applying

the child path step expression to a tuple: each input node

is iterated over, any matching child nodes are put into a

single sequence, and the sequence is then sorted in document

order. The same path step process is applied to each resulting

”bookstore” element node for the second child path step
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EMPTY
TUPLE
SOURCE

ASSIGN
$$2
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NESTED
TUPLE
SOURCE
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$$4

iterate…

AGGREGATE
$$6

create_s…

SUBPLAN

NESTED
TUPLE
SOURCE

UNNEST
$$9

iterate…

AGGREGATE
$$11

create_s…

ASSIGN
$$12

sort-d…

UNNEST
$$13

iterate…

DISTRIBUTE
RESULT

SUBPLAN

Inner focus for “bookstore” 
path expression.

Inner focus for “book” 
path expression.

ASSIGN
$$7

sort-d…

Figure 3. Example query dataflow DAG before applying rewrite rules.

expression (”/book”). Finally, each ”book” element node is

then returned in the final query result.
VXQuery creates the initial plan shown below (after

removing unused variables); here the curly braces represent

nested plans that are executed for each of the SUBPLAN’s

input tuples. Schematically this plan, which is read bottom-

up, corresponds to the dataflow DAG in Figure 3. The DAG

is a single path of execution in this case. Each DAG is

initialized with an EMPTY-TUPLE-SOURCE operator and

collects its results into a DISTRIBUTE-RESULT operator.

1 DISTRIBUTE-RESULT( $$13 )
2 UNNEST( $$13:iterate($$12) )
3 ASSIGN( $$12:sort-distinct-nodes-asc-or-atomics($$11) )
4 SUBPLAN {
5 AGGREGATE( $$11:create_sequence(child(treat($$9,

element_node), "book")) )
6 UNNEST( $$9:iterate($$7) )
7 NESTED-TUPLE-SOURCE
8 }
9 ASSIGN( $$7:sort-distinct-nodes-asc-or-atomics($$6) )

10 SUBPLAN {
11 AGGREGATE( $$6:create_sequence(child(treat($$4,

element_node), "bookstore")) )
12 UNNEST( $$4:iterate($$2) )
13 NESTED-TUPLE-SOURCE
14 }
15 ASSIGN( $$2:doc(promote(data("books.xml"), string) )
16 EMPTY-TUPLE-SOURCE

The plan’s EMPTY-TUPLE-SOURCE operator creates

the initial empty tuple. The doc expression in the ASSIGN

operator (line 15) returns a document node using the string

URI argument and adds a new field – $$2:document node

– to the tuple. The promote and data expressions ensure

the doc URI argument will be a string. The SUBPLAN

operator (line 10) uses a nested plan to implement the first

and second stages of the /bookstore path step. The subplan’s

nested plan ensures the correct dynamic context for the path

step and provides an ”inner focus” to evaluate the expression

on each item in the sequence for the next step (if any).

The NESTED-TUPLE-SOURCE operator (line 13) connects

the nested plan to the SUBPLAN’s input dataflow. The

input tuple is passed on to the UNNEST operator (line 12)

where each $$2:document item is iterated over and added

as $$4:document. For the root path step expression, there is

only one item in the sequence. The inner focus is closed with

AGGREGATE (line 11) processing all SUBPLAN tuples

using the create_sequence(child(treat($$4, element_node),

UNNEST
$$13

iterate…

DISTRIBUTE
RESULT

ASSIGN
$$12

sort-d…

$$2 $$6 $$11 $$12 $$13

… … … {book:1, book:2, …} nodes book:1 node

… … … {book:1, book:2, …} nodes book:2 node

… … … {book:1, book:2, …} nodes …

$$2 $$6 $$11 $$12

… … … {book:1, book:2, …} nodes

Figure 4. Dataflow segment for the last UNNEST operator.

"bookstore")) expression. The expression ensures that child
expression’s argument is of type ”element node” (treat),
finds all ”bookstore” child nodes (child), and creates a

sequence of all the results (create sequence). The result-

ing tuple now holds two fields: $$2:document node and

$$6:”bookstore” node. All the SUBPLAN variables are

discarded except the final operator’s result (in this case,

AGGREGATE $$6). The third stage of the path step is

completed though the ASSIGN operator (line 9) with sort-

distinct-nodes-asc-or-atomics($$6). The expression creates

a new field with nodes that are in document order and

duplicate free from $$6:”bookstore” node. Since there is

only one item, the ”bookstore” node is copied over to $$7.

The next SUBPLAN (line 4) creates the inner focus for

the /book path step expression. Similar to the /bookstore

path step, the nested plan iterates over the input tuples

and saves all child nodes {book:1, book:2, ...} to $$11.

The ASSIGN (line 3) ensures document order in the child

”book” node sequence by removing duplicates and sorting

the sequence. Finally, each item in $$12:{book:1, book:2,

...} is unnested by UNNEST (line 2) to create a tuple stream

for the DISTRIBUTE-RESULT operator (line 1). See Figure

4 for a graphic representation of the tuples before and after

this UNNEST operator.

The initial query plan is inefficient and can be improved

in several ways: we can (i) remove the computationally

expensive sort operators (as document order is not changed

by any of the other operators) and (ii) remove the SUBPLAN

operators (since each SUBPLAN corresponds to a simple
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step expression the inner focus is not required). After

these optimization rules, the plan can be cleaned further

by (iii) enabling unnesting (improves operator efficiency)

and (iv) merging the path step unnesting operators (reduces

number of operators). Due to space constraints, a detailed

explanation of these path step expression rewrite rules can

be found in our technical report [31].
After applying these rewrite rules recursively to the sam-

ple query plan, the resulting plan only uses only a single

UNNEST operator to represent the two child path step

expressions. The path expression rewrite rules create the

following updated sample query plan:

1 DISTRIBUTE-RESULT( $$13 )
2 UNNEST( $$13:child(child($$2, "bookstore"), "book") )
3 ASSIGN( $$2:doc("books.xml") )
4 EMPTY-TUPLE-SOURCE

B. Parallel Rewrite Rules
After applying the path expression rewrite rules, the plan

is optimized for parallel XQuery processing. Hyracks allows

for both pipelined and partitioned parallelism. We thus

introduce rules to enable the use of Hyracks’ parallel ex-

ecution features. To take advantage of pipelining in Apache

VXQuery we create fine grained data items. For example,

the DATASCAN operator introduced next does not compute

a whole collection at once, but instead computes chunks that

can be fed to the remaining operators. As a side effect, the

needed buffer size (Hyracks’ frame) is reduced between the

operators in the pipeline. To introduce partitioned parallelism

we use partitioned data access for physically partitioned

data and we use partitioned parallel algorithms for join and

aggregation.
1) Introduce the DATASCAN Operator: To query a col-

lection of XML documents, XQuery defines a function

called collection that maps a string to a sequence of nodes.

Apache VXQuery interprets the string as a directory loca-

tion, reads in data from the files in the directory, and returns

all nodes as a single sequence value. Since the collection

query considers many documents, it can produce a large

number of query results. Instead of gathering all nodes into

a single sequence, we would like to send one node at a time

through the pipeline. To avoid this problem, we combine the

collection expression with an iterate expression (typically

inserted because of a path step or a for clause) to split

the large document sequence into many single document

tuples, thus reducing the size of the materialized result.

Below is a sample collection query similar to the previous

single document query example, followed by the query plan

generated after the path expression rules have been applied.

1 collection("/books")/bookstore/book

1 DISTRIBUTE-RESULT( $$13 )
2 UNNEST( $$13:child( child($$4, "bookstore"), "book") )
3 UNNEST( $$4:iterate($$2) )
4 ASSIGN( $$2:collection(promote(data("/books"), string)) )
5 EMPTY-TUPLE-SOURCE

The path expression rules have conveniently moved an

UNNEST iterate above the ASSIGN collection, creating

a stream of XML document tuples. Algebricks offers a

DATASCAN operator to directly create a stream of tuples

based on a data source. Since collection already defines

the data source, the DATASCAN operator can be used

to replace UNNEST iterate and ASSIGN collection. The

updated query plan is:

1 DISTRIBUTE-RESULT( $$13 )
2 UNNEST( $$13:child( child($$4, "bookstore"), "book") )
3 DATASCAN( collection("/books"), $$4 )
4 EMPTY-TUPLE-SOURCE

The finer grained tuples reduce the buffer size between

operators during the query execution. Note that the above

rewrite rule allows Apache VXQuery to process any amount

of XML data provided that the largest XML document in

the collection can fit in Hyracks’ frame size. This constraint

can be further reduced to the largest subtree under the

query path expression. This is possible when the UNNEST

child expression is the consumer of a DATASCAN operator.

The child expression can be merged into the DATASCAN

operator to provide even smaller tuples. The query plan is

updated to show that the DATASCAN operator has a third

argument specifying the child path expression; the updated

DATASCAN operator includes the path expression within

the collection:

1 DISTRIBUTE-RESULT( $$4 )
2 DATASCAN( collection("/books"), $$4, "/bookstore/book" )
3 EMPTY-TUPLE-SOURCE

In addition to the improved pipeline, the DATASCAN

operator offers a way to introduce partitioned parallelism

simply by specifying Apache VXQuery’s partition details

to this operator. In Apache VXQuery, data is partitioned

among the cluster nodes. Each node has a unique set of

XML documents stored under the same directory specified

in the collection expression. The Algebricks’ physical plan

optimizer uses these partitioned data properties details to

distribute the query execution. For example, path ”/books”

defined in the collection expression is located on each node

and represents a unique set of XML documents for the query.

These partition properties are added to the DATASCAN

operator although this is not shown in the query plan. Adding

these properties allows Apache VXQuery to achieve parti-

tioned parallel execution without any parallel programming.
2) Replace Scalar with Aggregate Expressions: The

XQuery aggregate expressions (avg, count, max, min, and

sum) use a default scalar implementation in a normalized

query plan. This implies that the whole result is first stored in

a sequence which is then processed to produce the aggregate.

Instead of materializing the sequence, we can match the

XQuery aggregate expression with an Algebricks AGGRE-

GATE operator. When the Algebricks AGGREGATE opera-

tor is used with an XQuery aggregate expression, the result

will be incremental aggregation instead of materializing all
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records in the operator’s buffer. Consider a query that counts

the number of book elements in an XML collection and the

query plan produced using the previous rules:

1 count(
2 for $x in collection("/books")/bookstore/book
3 return $x
4 )

1 DISTRIBUTE-RESULT( $$17 )
2 UNNEST( $$17:iterate($$16) )
3 ASSIGN( $$16:count($$15) )
4 SUBPLAN {
5 AGGREGATE( $$15:create_sequence($$4) )
6 DATASCAN( collection("/books"), $$4, "/bookstore/book" )
7 NESTED-TUPLE-SOURCE
8 }
9 EMPTY-TUPLE-SOURCE

The XQuery aggregate expression count is within an

ASSIGN operator (line 3). The SUBPLAN finds the book-

store nodes and uses an AGGREGATE operator (line 5) to

store them in a sequence. However, there is no UNNEST

directly above the SUBPLAN (as shown in our technical

report for the path expression rewrite rules) and thus the

SUBPLAN cannot be removed. However, the scalar count
expression applies its calculation on the produced XQuery

sequence to create $$16’s value. Instead, the aggregate count
expression can replace the create sequence within the Alge-

bricks AGGREGATE operator, thus performing aggregation

incrementally instead of first generating a large XQuery

sequence. The updated query plan becomes:

1 DISTRIBUTE-RESULT( $$17 )
2 UNNEST( $$17:iterate($$16) )
3 SUBPLAN {
4 AGGREGATE( $$16:count($$4) )
5 DATASCAN( collection("/books"), $$4, "/bookstore/book" )
6 NESTED-TUPLE-SOURCE
7 }
8 EMPTY-TUPLE-SOURCE

The new plan keeps the pipeline granularity and enables

partitioned aggregation processing. An additional Apache

VXQuery rule annotates the AGGREGATE operator with

local and global aggregate expressions, enabling the use of

Algebricks’ support for two-step aggregation – each partition

calculates its local aggregate result on its data and then

transmits the result to a central partition for the global

computation. As a result, partitioning also reduces commu-

nication thus improving parallel processing efficiency.

3) Introduce the JOIN Operator: In XQuery, two distinct

datasets can be connected (matched) through a nested for
loop. The normalized query plan follows the same nested

loop, which can be very expensive; we can do better by using

a relational-style join. We note that Algebricks provides a

JOIN operator as well as a set of language independent

rewrite rules to optimize generic query plans. We can thus

use these provided rewrite rules to translate the nested loop

plan in to a join plan. Consider a query that takes two

bookstores (Ann and Joe) and finds books with the same

title, and its query plan below:

1 for $r in collection("/ann-books")/bookstore/book
2 for $s in collection("/joe-books")/bookstore/book
3 where $r/title eq $s/title
4 return $r

1 DISTRIBUTE-RESULT( $$32 )
2 UNNEST( $$32:iterate($$27) )
3 SELECT( boolean(value-eq($$27, $$28)) )
4 ASSIGN( $$28:data(child($$26, "title")) )
5 ASSIGN( $$27:data(child($$13, "title")) )
6 DATASCAN(collection("/joe-books"),$$26,"/bookstore/book")
7 DATASCAN(collection("/ann-books"),$$13,"/bookstore/book")
8 EMPTY-TUPLE-SOURCE

In this example each dataset is identified and accessed by a

DATASCAN operator, while the SELECT operator contains

the condition for connecting the two datasets (which effec-

tively will become the join condition). The two ASSIGN

operators (line 4 and 5) find the title child node and return

the atomic value of the node. Three Algebricks language-

independent rules are used to introduce the JOIN operator.

The first rule converts the nested DATASCAN operator

into a cross product; it identifies that each data source is

independent and adds the JOIN operator with a condition of

true (basically a cross-product). The second Algebricks rule

manipulates the DAG to push down operators that only affect

one side of the join branch (selection, assign etc). The third

rule then merges the SELECT and JOIN operators so the join

condition (from the SELECT) is within the JOIN operator.

In the final plan, the JOIN operator has one branch from

each data source, which allows each branch to be processed

locally and then joined together globally.

1 DISTRIBUTE-RESULT( $$32 )
2 UNNEST( $$32:iterate($$27) )
3 JOIN( boolean(value-eq($$27, $$28)) )
4 {
5 ASSIGN( $$28:data(child($$26, "title")) )
6 DATASCAN(collection("/joe-books"),$$26,"/bookstore/book")
7 EMPTY-TUPLE-SOURCE
8 } {
9 ASSIGN( $$27:data(child($$13, "title")) )

10 DATASCAN(collection("/ann-books"),$$13,"/bookstore/book")
11 EMPTY-TUPLE-SOURCE
12 }

Going from here to the final logical plan does not require

any custom Apache VXQuery rules, but the physical plan

needs more information to choose the most efficient join

algorithm. The equality comparison in our sample query

allows the use of a more efficient partition-based algorithm.

If Algebricks understands the condition characteristics, it can

chose an optimal hash-based join. For Algebricks to identify

the join condition, this condition must be represented by a

boolean Algebricks expression, in this case the Algebricks’

equal expression for a hash-based join. (Other Algebricks

generic expressions include: and, or, not, less than, greater
than, less than or equal, greater than or equal, not equal.)
As the extraction of the XQuery’s Effective Boolean Value

of the value-comparison in the previous plan (boolean(value

-eq(...))) is equivalent to Algebricks’ equal expression,

we convert one to the other – thus enabling Algebricks to
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identify the join. After running the physical optimization

rules the Algebricks expression is converted back to the

original XQuery expressions for runtime evaluation. As a

result, Hyracks will now use a Hybrid-Hash Join algorithm

to achieve efficient partitioned parallelism.

V. APACHE VXQUERY PERFORMANCE

To examine the scalability of our XQuery implementation

we have performed an experimental evaluation using pub-

licly available weather XML data. We have also performed

a comparison of Apache VXQuery with two open source

XML processors: Saxon [1] and Apache MRQL [32], [7].

A. Weather Data

The NOAA website [14] offers weather data via an XML-

based web service. For our queries, we chose the Global

Historical Climatology Network (GHCN)-Daily dataset that

includes daily summaries of climate recordings. The core

data fields report high and low temperatures, snowfall, snow

depth, and rainfall. The complete data definition and field

list can be found on NOAA’s site [14]. The date, data type,

station id, value, and various attributes (i.e., measurement,

source, and quality flags) are included for each weather

report. In addition, a separate web service provides addi-

tional station data: name, latitude, longitude, and date of

first and last reading. The datasets used had four different

sizes, ranging from 500MB up to 500GB.

B. Queries

Here we consider three basic types of XQuery queries:

selection, aggregation and join. The complete benchmark

results include additional query variations, but due to space

constraints some are shown only in our technical report

[31]. For consistency, the queries below follow the same

numbering as [31].

Selection: Query 2 finds all readings that report an ex-

treme wind warning. Such warnings occur when the wind

speed exceeds 110 mph. (The wind measurement unit, tenths

of a meter per second, has been converted to miles per hour.)

1 for $r in collection("/sensors")/dataCollection/data
2 where $r/dataType eq "AWND"
3 and decimal(data($r/value)) gt 491.744
4 return $r

Query 2. Extreme Wind Warming

Aggregation: Query 4 finds the highest recorded temper-

ature in the weather data set. The Celsius temperature is

reported in tenths of a degree.

1 max(
2 for $r in collection("/sensors")/dataCollection/data
3 where $r/dataType eq "TMAX"
4 return $r/value
5 ) div 10

Query 4. Highest Recorded Temperature

Join: Query 6 finds the highest recorded temperature

(TMAX) for each station for each day during the year 2000.

1 for $s in collection("/stations")/stationCollection/station
2 for $r in collection("/sensors")/dataCollection/data
3 where $s/id eq $r/station
4 and $r/dataType eq "TMAX"
5 and year-from-dateTime(dateTime(data($r/date))) eq 2000
6 return ($s/displayName, $r/date, $r/value)

Query 6. High Temperature per Station

Join and Aggregation: In Query 8 we join two large

collections, one that maintains the daily minimum temper-

ature per station and one that contains the daily maximum

temperature per station. The join is on the station id and

date and finds the daily temperature difference per station

and returns the average difference over all stations.

1 avg(
2 for $r_min in collection("/sensors_min")/dataCollection/

data
3 for $r_max in collection("/sensors_max")/dataCollection/

data
4 where $r_min/station eq $r_max/station
5 and $r_min/date eq $r_max/date
6 and $r_min/dataType eq "TMIN"
7 and $r_max/dataType eq "TMAX"
8 return $r_max/value - $r_min/value
9 ) div 10

Query 8. Average Daily Temperature Differential

C. Experimental Results

Our performance study explores Apache VXQuery’s abil-

ity to scale locally with the number of cores and then in

a cluster with the number of nodes. In the single node

tests, the number of data partitions is varied to demonstrate

nodes scaling up to the number of available cores. For these

tests, partitions represent data splits and each partition has

a separate query execution thread. In the cluster tests, the

number of partitions per node has been fixed (to one partition

per core) and only the number of nodes is varied. The tests

were all executed on an eight-node gigabit-connected cluster.

Each node has two dual-core AMD Opteron(tm) processors,

8GB of memory, and two 1TB hard drives.

1) Single Node Experiments: Our single node experi-

ments used one cluster node and repeated each query five

times. The reported query time is an average of the last

three runs. (In our setting, the first two executions are used

to warm up the system.) The first single node experiment

compares Apache VXQuery with Saxon [33], which is a

highly efficient open source XQuery processor. The freely

available Saxon Home Edition (SaxonHE 9.5) is typically

limited to a single thread processing data that can fit into

one fifth the size of the machine’s memory. A group of

weather stations were selected to create query results that fit

these Saxon data restrictions. The 584MB data set has been

partitioned on a single hard drive. The speed-up test keeps

the total data set size constant while varying its number of

data partitions and corresponding query processing threads.

Figure 5 shows the single node speed-up performance

results for Apache VXQuery and Saxon. Only a single

experiment is shown for Saxon since multi-threading is not

available in the SaxonHE 9.5 version. Apache VXQuery
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Figure 5. Single node speed-up comparison for Saxon and Apache
VXQuery (584MB dataset; varying Apache VXQuery partitions).

outperforms Saxon when it uses two or more partitions.

The single partition results are slower due to overhead

introduced for parallel and distributed query processing. The

join queries (Query 6 and 8) are translated into hash-based

joins for Apache VXQuery, thus giving better performance

than Saxon’s nested loop join. Saxon’s result for Query 8 is

not reported since the large number of joined records caused

it to never complete (and based on our other results, this

query could take several months to complete). For the rest

of the queries (Query 2, 4 and 6), when using 4 or more

partitions, Apache VXQuery performed on average about

3.5x faster than Saxon. The Apache VXQuery performance

for 8 partitions is similar to its 4 partitions performance,

which is when the CPU becomes saturated.

Figure 6. Single node Apache VXQuery speed-up (15.2GB dataset).

To further test single node speed-up for Apache VXQuery,

we also used a dataset larger than the node’s memory

(8GB). For this we used a XML weather data subset, the

GCOS Surface Network (GSN) stations containing 15.2GB

of XML data. The results appear in Figure 6. As with

the previous figure, Apache VXQuery scales well up to

the node’s number of cores (4). Similar to the single node

584MB experiments, the CPU is saturated when using 4

or more partitions. While profiling our experiments, we

observed that Apache VXQuery is CPU bound here, despite

the larger data size, due to the overhead of parsing the

XML document for each query. This is also evident from

the improvement in performance when increasing threads.

2) Cluster Experiments: Based on the single node speed-

up results, the cluster experiments used eight nodes and

four partitions per node. The first cluster tests used the

U.S. Historical Climatology Network (HCN) stations dataset

which holds 57GB of XML weather data. This dataset

exceeds the available cluster memory when using less than

eight nodes. For each experiment, the dataset was equally

divided among the nodes participating in the experiment.

The cluster speed-up results for Apache VXQuery (as

well as for Apache MRQL, to be discussed later) appear in

Figure 7; the Apache VXQuery query times are depicted by

the circles inside the corresponding bars (full bars represent

Apache MRQL query times). As can be observed, adding

nodes to the cluster proportionally lowers the query time. We

next tested the scale-up characteristics of Apache VXQuery.

We started by using a dataset that fits in the memory of each

node (i.e., 7.2GB of data per node). The results appear in

Figure 8 (again Apache VXQuery query times correspond to

the circles). While nodes and data are added to the query, the

query time remains comparable, that is, the additional data

is processed in the same amount of time. Apache VXQuery

thus scales up well for Queries 2, 4, 6 and 8 on XML data.

Figure 7. Apache VXQuery and Apache MRQL cluster speed-up (57GB
dataset); circles mark the respective Apache VXQuery times.

Figure 8. Apache VXQuery and Apache MRQL cluster scale-up (7.2GB
per node); circles mark the respective Apache VXQuery times.

The next scale-up test utilizes all 528GB of weather data;

here each node has 66GB of data split evenly on two local

disks. The results appear in Figure 9; Apache VXQuery

clearly scales-up well even for very large XML datasets.

Figure 9. Apache VXQuery cluster scale-up (66GB per node).

Our final experiment sought to evaluate Apache

VXQuery’s performance against other open source parallel

XML processors. Among them we chose Apache MRQL [7]
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as it was readily available. Using the HCN (57GB) dataset,

we ran speed-up and scale-up tests for the same queries

on Apache MRQL running on top of Hadoop 1.2.1 using

MapReduce. Hadoop was configured with a 128MB block

size and a replication factor of 1 (to reduce space on the

cluster). Apache VXQuery outperforms Apache MRQL on

all queries in terms of both scale-up and speed-up (Figures

7 and 8). Apache VXQuery’s performance advantage comes

partly from reading and parsing XML about two times faster

than Apache MRQL. In addition, its richer set of operators

provides for better performance. For example, VXQuery

utilizes a Hybrid Hash Join algorithm that can keep a

partition in main memory. Being MapReduce-based, Apache

MRQL divides the join responsibility: partitioning is done by

the mapper, while the reducer joins the individual partitions.

These two steps do not share state, yielding a traditional

Grace Hash Join. On average over all experiments, VXQuery

is 2.5x faster than Apache MRQL on Hadoop, validating the

fact that building XQuery on top of a dataflow environment

like Hyracks provides more opportunities for optimization

and parallelism.

VI. CONCLUSIONS

Apache VXQuery is a scalable open-source XQuery pro-

cessor that we have built on top of Hyracks and Algebricks.

We have described its implementation, including the XML

data model dependent rewrite rules. These rules facilitate

existing, data model independent Algebricks optimizations

that serve to create efficient and parallel Hyracks jobs. We

have demonstrated using a real 500GB dataset that VXQuery

can scale out to the number of nodes available on a cluster

for various XML selection, aggregation, and join queries.

Comparatively, Apache VXQuery is about 3.5x faster than

Saxon on a single node and around 2.5x faster than Apache

MRQL on a cluster in terms of scale-up and speed-up. The

VXQuery source code is available at the Apache Software

Foundation [13]; the current release contains approximately

100K LOC. We plan to add XQuery 3.0 features that

support the analysis of Big Data, such as the group by and

window clauses and to utilize indexing for increased query

performance. Apache VXQuery developers are also adding

support for large XML documents stored on a distributed

file system and further optimizing the query compiler.
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