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Three computer scientists from UC Irvine address the question 
“What’s next for big data?” by summarizing the current state  
of the big data platform space and then describing ASTERIX,  
their next-generation big data management system.
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Big Data Platforms: 
What’s Next?

A wealth of digital information is being generated daily, information has great potential 
value for many purposes if captured and aggregated effectively. In the past, data 
warehouses were largely an enterprise phenomenon, with large companies being 
unique in recording their day-to-day operations in databases, and warehousing and 

analyzing historical data to improve their businesses. Today, organizations and researchers 
in a wide variety of areas are seeing tremendous potential value and insight to be gained by 
warehousing the emerging wealth of digital information, popularly referred to as “big data,” 
and making it available for analysis, querying, and other purposes [1]. 

Online businesses of all shapes 
and sizes are tracking customers’ 
purchases, product searches, website 
interactions, and other information 
to increase the effectiveness of their 
marketing and customer service ef-
forts. Governments and businesses 
are tracking the content of blogs and 
tweets to perform sentiment analysis. 
Public health organizations are moni-
toring news articles, tweets, and Web 
search trends to track the progress of 
epidemics. Social scientists are study-
ing tweets and social networks to un-
derstand how information of various 
kinds spreads and/or how it can be 
more effectively utilized for the public 
good. It is no surprise that support for 
data-intensive computing, search, and 
information storage—a.k.a. big data 
analytics and management—is being 
touted as a critical challenge in today’s 
computing landscape.

In this article we take a look at the 

current big data landscape, including 
its database origins, its more recent 
distributed systems rebirth, and cur-
rent industrial practices and related 
trends in the research world. We then 
ask the question “What’s next?” and 
provide a very brief tour of what one 
particular project, namely what our 
ASTERIX project, is doing in terms of 
exploring potential answers to this 
question (and why). 

A BIT OF BIG DATA HISTORY
It is fair to say that the IT world has 
been facing big data challenges for 
over four decades—it’s just that the 
definition of “big” has been changing. 
In the 1970s, big meant megabytes; 
over time, big grew to gigabytes and 
then to terabytes. Today, the IT notion 
of big has reached the petabyte range 
for conventional, high-end data ware-
houses, and exabytes are presumably 
waiting in the wings.

In the world of relational database 
systems, the need to scale databases 
to data volumes beyond the storage 
and/or processing capabilities of a 
single large computer system gave 
birth to a class of parallel database 
management systems known as 
“shared-nothing” parallel database 
systems [2]. As the name suggests, 
these systems run on networked clus-
ters of computers, each with their own 
processors, memories, and disks. 
Data is spread over the cluster based 
on a partitioning strategy—usually 
hash partitioning, but sometimes 
range partitioning or random parti-
tioning—and queries are processed 
by employing parallel, hash-based 
divide-and-conquer techniques. 

A first generation of systems ap-
peared in the 1980s, with pioneering 
prototypes from the University of Wis-
consin and the University of Tokyo and 
the first commercial offering coming 
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Web and the resulting need to index 
and query its mushrooming content 
created big data challenges for search 
companies such as Inktomi, Yahoo, 
and Google. The processing needs in 
the search world were quite different, 
however, and SQL was not the answer, 
though shared-nothing clusters once 
again emerged as the hardware plat-
form of choice. Google responded to 
these challenges by developing the 
Google File System (GFS), offering a 
familiar byte-stream-based file view 
of data that is randomly partitioned 
over hundreds or even thousands of 
nodes in a cluster [3]. GFS was then 
coupled with a programming model, 
MapReduce, to enable programmers 
to process big data by writing two 
user-defined functions, map and re-
duce [4]. The MapReduce framework 
applied these functions in parallel 
to individual data instances (Map) 
in GFS files and to sorted groups of 

from Teradata Corporation. The past 
decade has seen the emergence of a 
second major wave of these systems, 
with a number of startups delivering 
new parallel database systems that 
were then swallowed up through ac-
quisitions by the industry’s major 
hardware and software vendors. Be-
cause high-level, declarative language 
(SQL) front relational databases, users 
of parallel database systems have been 
shielded from the complexities of par-
allel programming. As a result, until 
quite recently, these systems have ar-
guably been the most successful utili-
zation of parallel computing.

During the latter 1990s, while the 
database world was admiring its “fin-
ished” work on parallel databases and 
major database software vendors were 
busy commercializing the results, the 
distributed systems world began fac-
ing its own set of big data challenges. 
The rapid growth of the World Wide 

instances that share a common key 
(Reduce)—similar to the partitioned 
parallelism used in shared-nothing 
parallel database systems. Yahoo 
and other big Web companies such 
as Facebook created an Apache open-
source version of Google’s big data 
stack, yielding the now highly popu-
lar Hadoop platform with its associ-
ated HDFS storage layer. 

Similar to the big data back-end 
storage and analysis dichotomy, the 
historical record for big data also has 
a front-end (i.e., user-facing) story 
worth noting. As enterprises in the 
1980s and 1990s began automating 
more and more of their day-to-day 
operations using databases, the data-
base world had to scale up its online 
transaction processing (OLTP) sys-
tems as well as its data warehouses. 
Companies such as Tandem Com-
puters responded with fault-tolerant, 
cluster-based SQL systems. Similarly, 
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feature

1. Open source availability versus 
expensive software licenses.

2. Multiple non-monolithic layers 
and components versus having only a 
top-level query API through which to 
access the data.

3. Support for access to file-based 
external data versus having to first de-
sign, load, and then index tables before 
being able to proceed.

4. Support for automatic and incre-
mental forward recovery of jobs with 
failed tasks versus rolling long jobs 
back to their beginning to start all over 
again on failure.

5. Automatic data placement and 
rebalancing as data grows and ma-
chines come and go versus manual, 
DBA-driven data placement.

6. Support for replication and ma-
chine fail-over without operator inter-
vention versus pager-carrying DBAs 
having to guide data recovery activities.

Some of the cons are:
1. Similar to early observations on 

why database systems’ needs were not 
met by traditional OSs and their file 
systems [7], layering a record-based 
abstraction on top of a very large byte-
sequential file abstraction leads to an 
impedance mismatch.

2. There is no imaginable reason, 
other than “because it is already there,” 
to layer a high-level data language on 
top of a two-unary-operator runtime 
like MapReduce, as it can be quite un-
natural (e.g., for joins) and can lead to 
suboptimal performance.

3. With random data block par-
titioning, the only available parallel 
query processing strategy is to “spray-
and-pray” every query to all blocks of 
the relevant data files.

4. A flexible, semi-structured [8], 
schema-less data model (based on keys 
and values) means that important in-
formation about the data being oper-
ated on is known only to the programs 
operating on it (so program mainte-
nance troubles await).

5. Coupling front- and back-end 
big data platforms to cover the full big 
data lifecycle requires significant use 
of bubble gum, baling wire, and hand-
written ETL-like scripts.

6. While Hadoop definitely scales, 
its computational model is quite 
heavy (e.g., always sorting the data 
flowing between Map and Reduce, 

but later in the distributed systems 
world, large Web companies were 
driven by very expansive user bases 
(up to tens or even hundreds of mil-
lions of Web users) to find solutions to 
achieve very fast simple lookups and 
updates to large, keyed data sets such 
as collections of user profiles. Mono-
lithic SQL databases built for OLTP 
were rejected as being too expensive, 
too complex, and/or not fast enough, 
and today’s “NoSQL movement” was 
born [5]. Again, companies such as 
Google and Amazon developed their 
own answers (BigTable and Dynamo, 
respectively) to meet this set of needs, 
and again, the Apache open-source 
community created corresponding 
clones (HBase and Cassandra, two 
of today’s most popular and scalable 
key-value stores).

TODAY’S BIG DATA PLATFORM(S)
Hadoop and HDFS have grown to be-
come the dominant platform for Big 
Data analytics at large Web companies 
as well as less traditional corners of 
traditional enterprises (e.g., for click-
stream and log analyses). At the same 
time, data analysts have grown tired 
of the low-level MapReduce program-

ming model, now choosing instead 
from among a handful of high-level 
declarative languages and frame-
works that allow data analyses to be 
expressed much more easily and writ-
ten and debugged much more quickly. 
These languages include Hive from 
Facebook (a variant of SQL) and Pig 
from Yahoo (a functional variant of 
the relational algebra, roughly). Tasks 
expressed in these languages are com-
piled down into a series of MapReduce 
jobs for execution on Hadoop clusters. 
Looking at workloads on real clusters, 
it has been reported that well over 60 
percent of Yahoo’s Hadoop jobs and 
more than 90 percent of Facebook’s 
jobs now come from these higher-level 
languages rather than hand-written 
MapReduce jobs. MapReduce is essen-
tially being relegated to the role of a big 
data runtime for higher-level, declara-
tive data languages (which are not so 
very different than SQL). 

Given this fact, it is interesting to 
analyze the pros and cons of MapRe-
duce in this role as compared to more 
traditional parallel SQL runtime sys-
tems [6]. Important pros of Hadoop 
compared with parallel SQL systems 
include:
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and analytics. We call the result a Big 
Data Management System (or BDMS). 
By combining and extending ideas 
drawn from semi-structured data 
management, parallel databases, and 
first-generation data-intensive com-
puting platforms (notably Hadoop/
HDFS), ASTERIX aims to be able to ac-
cess, ingest, store, index, query, ana-
lyze, and publish very large quantities 
of semi-structured data. The design 
 of the ASTERIX BDMS is well-suited to 

always persisting temporary data to 
HDFS between jobs in a multi-job que-
ry plan, etc. [9]).

WHAT’S NEXT? 
Given the largely accidental nature of 
the current open-source Hadoop stack, 
and a need to store and manage as well 
as simply analyze data, we set out three 
years ago to design and implement a 
highly scalable platform for next-gen-
eration information storage, search, 

handling use cases that range all the 
way from rigid, relation-like data col-
lections—whose structures are well 
understood and largely invariant—to 
flexible and more complex data, where 
little is planned ahead of time and the 
data instances are highly variant and 
self-describing.

Figure 1 provides an overview of 
a shared-nothing ASTERIX cluster 
and how its various software compo-
nents map to cluster nodes. The bot-

Figure 2. Example AQL schemas, queries, and results.
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feature

tom-most layer of ASTERIX provides 
storage capabilities for ASTERIX-
managed datasets based on LSM-tree 
indexing (chosen in order to support 
high data-ingestion rates). Further up 
the stack is our data-parallel runtime, 
Hyracks [9], which sits at roughly the 
same level as Hadoop in implemen-
tations of Hive and Pig but supports 
a much more flexible computational 
model. The topmost layer of ASTERIX 
is a full parallel BDMS, complete with 
its own flexible data model (ADM) and 
query language (AQL) for describing, 
querying, and analyzing data. AQL is 
comparable to languages such as Pig 
or Hive, however ASTERIX supports 
native storage and indexing of data 
as well as having the ability to operate 
on externally resident data (e.g., data 
in HDFS). 

The ASTERIX data model (ADM) 
borrowed data concepts from JSON 
and added more primitive types as 
well as type constructors from semi-
structured and object databases. Fig-

ure 2(a) illustrates ADM by showing 
how it might be used to define a re-
cord type for modeling Twitter mes-
sages. The record type shown is an 
open type, meaning that its instances 
should conform to its specification 
but will be allowed to contain arbi-
trary additional fields that can vary 
from one instance to another. The ex-
ample also shows how ADM includes 
features such as optional fields with 
known types (e.g., “sender-location”), 
nested collections of primitive values 
(“referred-topics”), and nested records 
(“user”). More information about 
ADM can be found in a recent paper 
that provides an overview of the AS-
TERIX project [10].

Figure 2(d) shows an example of how 
a set of TweetMessageType instances 
would look. Data storage in ASTERIX 
is based on the concept of a dataset, 
a declared collection of instances of 
a given type. ASTERIX supports both 
system-managed datasets—such as 
the TweetMessages dataset declared 
at the bottom of Figure 2(a)—which 
are stored and managed by ASTERIX 
as partitioned, LSM-based B+ trees 
with optional secondary indexes, and 
external datasets, whose data can re-
side in existing HDFS files or collec-
tions of files in the cluster nodes’ local 
file systems.

The ASTERIX query language is 
called AQL, a declarative query lan-
guage designed by borrowing the es-
sence of the XQuery language, most 
notably its FLWOR expression con-
structs and composability, and then 
simplifying and adapting it to the 

ASTERIX aims  
to be able  
to access, ingest, 
store, index, query, 
analyze, and  
publish very large 
quantities of  
semi-structured data.
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fering several other experimental big 
data programming packages (includ-
ing Pregelix, a Pregel-like layer that 
runs on Hyracks, and IMRU, an itera-
tive map/reduce/update layer that tar-
gets large-scale machine learning ap-
plications [12]).

ASTERIX GOING FORWARD
Currently the ADM/AQL layer of AS-
TERIX can run parallel queries in-
cluding lookups, large scans, parallel 
joins (both regular and fuzzy), and 
parallel aggregates. Data is stored 
natively in partitioned B+ trees and 
can be indexed via secondary indexes 
such as B+ trees, R-trees, or inverted 
indexes. The system’s external data 
access and data feed features are also 
operational. We plan to offer a first 
open-source release of ASTERIX in 
late 2012, and we are seeking a few 
early partners who would like to run 
ASTERIX on their favorite big data 
problems. Our ongoing work includes 
preparing the code base for an initial 
public release, completing our initial 
transaction story, adding additional 
indexing support for fuzzy queries, 
and providing a key-value API for 
applications that prefer a “NoSQL” 
style API over a more general query-
based API. More information about 
the project and its current code base 
can be found on our project website 
(http://asterix.ics.uci.edu/). 

It is worth pointing out ASTERIX is 
a counter-cultural project in several 
ways. First, rather than “tweaking” 
Hadoop or other existing packages, 
we set out to explore the big data plat-
form space from the ground up. We 
are learning a great deal from doing 
so, as it is surprising just how many 
interesting engineering and research 
problems are still lurking in places re-
lated to “things that have already been 
done before.” Second, rather than 
building a highly-specialized system 
to later be glued into a patchwork of 
such systems, we are exploring the 
feasibility of a “one size fits a bunch” 
system that addresses a broader set 
of needs (e.g., by offering data stor-
age and indexing as well as support 
for external data analysis, short- and 
medium-sized query support as well 
as large batch jobs, and a key-value API 
as well as a query-based one).

types and data modeling constructs 
of ADM. Figure 2(b) illustrates AQL 
by example. This AQL query runs over 
the TweetMessages dataset to com-
pute, for those tweets mentioning 
“verizon,” the number of tweets that 
refer to each topic appearing in those 
tweets. Figure 2(c) shows the results of 
this example query when run against 
the sample data of Figure 2(d).

One of the primary application ar-
eas envisioned for ASTERIX is ware-
house-based Web data integration 
[11]. As such, ASTERIX comes “out of 
the box” with a set of interesting ca-
pabilities that we feel are critical for 
such use cases. One is built-in support 
for a notion of data feeds to continu-
ously ingest, pre-process, and persist 
data from external data sources such 
as Twitter. Another is support for fuzzy 
selection and fuzzy (a.k.a. set-similari-
ty) joins, as Web data and searches are 
frequently ridden with typos and/or in-
volve sets (e.g., of interests) that should 
be similar but not identical. Figure 2(e) 
illustrates a fuzzy join query in AQL. 
Yet another built-in capability is basic 
support for spatial data (e.g., locations 
of mobile users) and for queries whose 
predicates include spatial criteria.

Figure 3 shows the nature of the 
open-source ASTERIX software stack, 
which supports the ASTERIX system 
but also aims to address other big 
data requirements. To process que-
ries such as the example from Figure 
2(b), ASTERIX compiles each AQL 
query into an Algebricks algebraic 
program. This program is then opti-
mized via algebraic rewrite rules that 
reorder the Algebricks operators as 
well as introduce partitioned paral-
lelism for scalable execution, after 
which code generation translates the 
resulting physical query plan into a 
corresponding Hyracks job that uses 
Hyracks to compute the desired query 
result. The left-hand side of Figure 3 
shows this layering. As also indicated 
in the figure, the Algebricks algebra 
layer is data-model-neutral and is 
therefore also able to support other 
high-level data languages (such as a 
Hive port that we have built). 

The ASTERIX open-source stack 
also offers a compatibility layer for us-
ers with Hadoop jobs who wish to run 
them using our software as well as of-


