
XRDS44

Three computer scientists from UC Irvine address the question
“What’s next for big data?” by summarizing the current state
of the big data platform space and then describing ASTERIX,
their next-generation big data management system.

By Vinayak R. Borkar, Michael J. Carey, and Chen Li
DOI: 10.1145/2331042.2331057

Big Data Platforms:
What’s Next?

A wealth of digital information is being generated daily, information has great potential
value for many purposes if captured and aggregated effectively. In the past, data
warehouses were largely an enterprise phenomenon, with large companies being
unique in recording their day-to-day operations in databases, and warehousing and

analyzing historical data to improve their businesses. Today, organizations and researchers
in a wide variety of areas are seeing tremendous potential value and insight to be gained by
warehousing the emerging wealth of digital information, popularly referred to as “big data,”
and making it available for analysis, querying, and other purposes [1].

Online businesses of all shapes
and sizes are tracking customers’
purchases, product searches, website
interactions, and other information
to increase the effectiveness of their
marketing and customer service ef-
forts. Governments and businesses
are tracking the content of blogs and
tweets to perform sentiment analysis.
Public health organizations are moni-
toring news articles, tweets, and Web
search trends to track the progress of
epidemics. Social scientists are study-
ing tweets and social networks to un-
derstand how information of various
kinds spreads and/or how it can be
more effectively utilized for the public
good. It is no surprise that support for
data-intensive computing, search, and
information storage—a.k.a. big data
analytics and management—is being
touted as a critical challenge in today’s
computing landscape.

In this article we take a look at the

current big data landscape, including
its database origins, its more recent
distributed systems rebirth, and cur-
rent industrial practices and related
trends in the research world. We then
ask the question “What’s next?” and
provide a very brief tour of what one
particular project, namely what our
ASTERIX project, is doing in terms of
exploring potential answers to this
question (and why).

A BIT OF BIG DATA HISTORY
It is fair to say that the IT world has
been facing big data challenges for
over four decades—it’s just that the
definition of “big” has been changing.
In the 1970s, big meant megabytes;
over time, big grew to gigabytes and
then to terabytes. Today, the IT notion
of big has reached the petabyte range
for conventional, high-end data ware-
houses, and exabytes are presumably
waiting in the wings.

In the world of relational database
systems, the need to scale databases
to data volumes beyond the storage
and/or processing capabilities of a
single large computer system gave
birth to a class of parallel database
management systems known as
“shared-nothing” parallel database
systems [2]. As the name suggests,
these systems run on networked clus-
ters of computers, each with their own
processors, memories, and disks.
Data is spread over the cluster based
on a partitioning strategy—usually
hash partitioning, but sometimes
range partitioning or random parti-
tioning—and queries are processed
by employing parallel, hash-based
divide-and-conquer techniques.

A first generation of systems ap-
peared in the 1980s, with pioneering
prototypes from the University of Wis-
consin and the University of Tokyo and
the first commercial offering coming

XRDS 45

Web and the resulting need to index
and query its mushrooming content
created big data challenges for search
companies such as Inktomi, Yahoo,
and Google. The processing needs in
the search world were quite different,
however, and SQL was not the answer,
though shared-nothing clusters once
again emerged as the hardware plat-
form of choice. Google responded to
these challenges by developing the
Google File System (GFS), offering a
familiar byte-stream-based file view
of data that is randomly partitioned
over hundreds or even thousands of
nodes in a cluster [3]. GFS was then
coupled with a programming model,
MapReduce, to enable programmers
to process big data by writing two
user-defined functions, map and re-
duce [4]. The MapReduce framework
applied these functions in parallel
to individual data instances (Map)
in GFS files and to sorted groups of

from Teradata Corporation. The past
decade has seen the emergence of a
second major wave of these systems,
with a number of startups delivering
new parallel database systems that
were then swallowed up through ac-
quisitions by the industry’s major
hardware and software vendors. Be-
cause high-level, declarative language
(SQL) front relational databases, users
of parallel database systems have been
shielded from the complexities of par-
allel programming. As a result, until
quite recently, these systems have ar-
guably been the most successful utili-
zation of parallel computing.

During the latter 1990s, while the
database world was admiring its “fin-
ished” work on parallel databases and
major database software vendors were
busy commercializing the results, the
distributed systems world began fac-
ing its own set of big data challenges.
The rapid growth of the World Wide

instances that share a common key
(Reduce)—similar to the partitioned
parallelism used in shared-nothing
parallel database systems. Yahoo
and other big Web companies such
as Facebook created an Apache open-
source version of Google’s big data
stack, yielding the now highly popu-
lar Hadoop platform with its associ-
ated HDFS storage layer.

Similar to the big data back-end
storage and analysis dichotomy, the
historical record for big data also has
a front-end (i.e., user-facing) story
worth noting. As enterprises in the
1980s and 1990s began automating
more and more of their day-to-day
operations using databases, the data-
base world had to scale up its online
transaction processing (OLTP) sys-
tems as well as its data warehouses.
Companies such as Tandem Com-
puters responded with fault-tolerant,
cluster-based SQL systems. Similarly,

46 XRDS

feature

1. Open source availability versus
expensive software licenses.

2. Multiple non-monolithic layers
and components versus having only a
top-level query API through which to
access the data.

3. Support for access to file-based
external data versus having to first de-
sign, load, and then index tables before
being able to proceed.

4. Support for automatic and incre-
mental forward recovery of jobs with
failed tasks versus rolling long jobs
back to their beginning to start all over
again on failure.

5. Automatic data placement and
rebalancing as data grows and ma-
chines come and go versus manual,
DBA-driven data placement.

6. Support for replication and ma-
chine fail-over without operator inter-
vention versus pager-carrying DBAs
having to guide data recovery activities.

Some of the cons are:
1. Similar to early observations on

why database systems’ needs were not
met by traditional OSs and their file
systems [7], layering a record-based
abstraction on top of a very large byte-
sequential file abstraction leads to an
impedance mismatch.

2. There is no imaginable reason,
other than “because it is already there,”
to layer a high-level data language on
top of a two-unary-operator runtime
like MapReduce, as it can be quite un-
natural (e.g., for joins) and can lead to
suboptimal performance.

3. With random data block par-
titioning, the only available parallel
query processing strategy is to “spray-
and-pray” every query to all blocks of
the relevant data files.

4. A flexible, semi-structured [8],
schema-less data model (based on keys
and values) means that important in-
formation about the data being oper-
ated on is known only to the programs
operating on it (so program mainte-
nance troubles await).

5. Coupling front- and back-end
big data platforms to cover the full big
data lifecycle requires significant use
of bubble gum, baling wire, and hand-
written ETL-like scripts.

6. While Hadoop definitely scales,
its computational model is quite
heavy (e.g., always sorting the data
flowing between Map and Reduce,

but later in the distributed systems
world, large Web companies were
driven by very expansive user bases
(up to tens or even hundreds of mil-
lions of Web users) to find solutions to
achieve very fast simple lookups and
updates to large, keyed data sets such
as collections of user profiles. Mono-
lithic SQL databases built for OLTP
were rejected as being too expensive,
too complex, and/or not fast enough,
and today’s “NoSQL movement” was
born [5]. Again, companies such as
Google and Amazon developed their
own answers (BigTable and Dynamo,
respectively) to meet this set of needs,
and again, the Apache open-source
community created corresponding
clones (HBase and Cassandra, two
of today’s most popular and scalable
key-value stores).

TODAY’S BIG DATA PLATFORM(S)
Hadoop and HDFS have grown to be-
come the dominant platform for Big
Data analytics at large Web companies
as well as less traditional corners of
traditional enterprises (e.g., for click-
stream and log analyses). At the same
time, data analysts have grown tired
of the low-level MapReduce program-

ming model, now choosing instead
from among a handful of high-level
declarative languages and frame-
works that allow data analyses to be
expressed much more easily and writ-
ten and debugged much more quickly.
These languages include Hive from
Facebook (a variant of SQL) and Pig
from Yahoo (a functional variant of
the relational algebra, roughly). Tasks
expressed in these languages are com-
piled down into a series of MapReduce
jobs for execution on Hadoop clusters.
Looking at workloads on real clusters,
it has been reported that well over 60
percent of Yahoo’s Hadoop jobs and
more than 90 percent of Facebook’s
jobs now come from these higher-level
languages rather than hand-written
MapReduce jobs. MapReduce is essen-
tially being relegated to the role of a big
data runtime for higher-level, declara-
tive data languages (which are not so
very different than SQL).

Given this fact, it is interesting to
analyze the pros and cons of MapRe-
duce in this role as compared to more
traditional parallel SQL runtime sys-
tems [6]. Important pros of Hadoop
compared with parallel SQL systems
include:

Figure 1. ASTERIX Architecture

Data loads
and feeds from
external sources
(JSON, XML, …)

AQL queries
and results

Data publishing
to external sources

and applications

High Speed Network

Asterix Client Interface

Hyracks Dataflow Layer

Dataset/Feed Storage

LSM Tree Manager

AQL
Compiler
Metadata
Manager

Local Disks

Asterix Client Interface

Hyracks Dataflow Layer

Dataset/Feed Storage

LSM Tree Manager

AQL
Compiler
Metadata
Manager

Local Disks

Asterix Client Interface

Hyracks Dataflow Layer

Dataset/Feed Storage

LSM Tree Manager

AQL
Compiler
Metadata
Manager

Local Disks

ASTERIX Cluster

47XRDS

and analytics. We call the result a Big
Data Management System (or BDMS).
By combining and extending ideas
drawn from semi-structured data
management, parallel databases, and
first-generation data-intensive com-
puting platforms (notably Hadoop/
HDFS), ASTERIX aims to be able to ac-
cess, ingest, store, index, query, ana-
lyze, and publish very large quantities
of semi-structured data. The design
 of the ASTERIX BDMS is well-suited to

always persisting temporary data to
HDFS between jobs in a multi-job que-
ry plan, etc. [9]).

WHAT’S NEXT?
Given the largely accidental nature of
the current open-source Hadoop stack,
and a need to store and manage as well
as simply analyze data, we set out three
years ago to design and implement a
highly scalable platform for next-gen-
eration information storage, search,

handling use cases that range all the
way from rigid, relation-like data col-
lections—whose structures are well
understood and largely invariant—to
flexible and more complex data, where
little is planned ahead of time and the
data instances are highly variant and
self-describing.

Figure 1 provides an overview of
a shared-nothing ASTERIX cluster
and how its various software compo-
nents map to cluster nodes. The bot-

Figure 2. Example AQL schemas, queries, and results.

48 XRDS

feature

tom-most layer of ASTERIX provides
storage capabilities for ASTERIX-
managed datasets based on LSM-tree
indexing (chosen in order to support
high data-ingestion rates). Further up
the stack is our data-parallel runtime,
Hyracks [9], which sits at roughly the
same level as Hadoop in implemen-
tations of Hive and Pig but supports
a much more flexible computational
model. The topmost layer of ASTERIX
is a full parallel BDMS, complete with
its own flexible data model (ADM) and
query language (AQL) for describing,
querying, and analyzing data. AQL is
comparable to languages such as Pig
or Hive, however ASTERIX supports
native storage and indexing of data
as well as having the ability to operate
on externally resident data (e.g., data
in HDFS).

The ASTERIX data model (ADM)
borrowed data concepts from JSON
and added more primitive types as
well as type constructors from semi-
structured and object databases. Fig-

ure 2(a) illustrates ADM by showing
how it might be used to define a re-
cord type for modeling Twitter mes-
sages. The record type shown is an
open type, meaning that its instances
should conform to its specification
but will be allowed to contain arbi-
trary additional fields that can vary
from one instance to another. The ex-
ample also shows how ADM includes
features such as optional fields with
known types (e.g., “sender-location”),
nested collections of primitive values
(“referred-topics”), and nested records
(“user”). More information about
ADM can be found in a recent paper
that provides an overview of the AS-
TERIX project [10].

Figure 2(d) shows an example of how
a set of TweetMessageType instances
would look. Data storage in ASTERIX
is based on the concept of a dataset,
a declared collection of instances of
a given type. ASTERIX supports both
system-managed datasets—such as
the TweetMessages dataset declared
at the bottom of Figure 2(a)—which
are stored and managed by ASTERIX
as partitioned, LSM-based B+ trees
with optional secondary indexes, and
external datasets, whose data can re-
side in existing HDFS files or collec-
tions of files in the cluster nodes’ local
file systems.

The ASTERIX query language is
called AQL, a declarative query lan-
guage designed by borrowing the es-
sence of the XQuery language, most
notably its FLWOR expression con-
structs and composability, and then
simplifying and adapting it to the

ASTERIX aims
to be able
to access, ingest,
store, index, query,
analyze, and
publish very large
quantities of
semi-structured data.

ACM
Transactions on

Accessible
Computing

! ! ! ! !

This quarterly publication is a
quarterly journal that publishes
refereed articles addressing issues
of computing as it impacts the
lives of people with disabilities.
The journal will be of particular
interest to SIGACCESS members
and delegrates to its affiliated
conference (i.e., ASSETS), as well
as other international accessibility
conferences.

! ! ! ! !

www.acm.org/taccess
www.acm.org/subscribe

CACM_TACCESS_one-third_page_vertical:Layout 1 6/9/09 1:04 PM Page 1

Figure 3. ASTERIX software stack.

AsterixQL

HiveQL Piglet

Hadoop
M/R Job

Pregel
Job

IMRU
Job

Hyracks
Job

…

Asterix
Data

Mgmt.
System Hivesterix Other HLL

Compilers

Algebricks
Algebra Layer

Hyracks Data-parallel Platform

Hadoop M/R
Compatibility Pregelix IMRU

49XRDS

Acknowledgments

a grant from the UC Discovery program, a matching

References

[1] Lohr, S. The age of big data. .
February 12, 2012.

[2] DeWitt, D. and Gray, J. Parallel database systems:
The future of high performance database systems.
Communications of the ACM

Google file system. In Proceedings of the 19th ACM
Symposium on Operating Systems

data processing on large clusters. In Proceedings of

Design and Implementation

SIGMOD Record

management”: Ogres, onions, or parfaits. In
Proceedings of the 15th International Conference

database management. Communications of the ACM

[8] Abiteboul, S., Buneman, P., and Suciu, D. Data on the
Web: From Relations to Semistructured Data and
XML.

Proceedings of the 2011 IEEE International

Distributed and Parallel
Databases

[11] Alsubaiee, S., Behm, A., Grover, R., Vernica, R.,

Proceedings
of the ACM SIGMOD International Conference on
Management of Data

Biographies

School of Information and Computer Sciences at UC Irvine.
He has an M.S. in computer science and engineering from
IIT Bombay.

Michael J. Carey is a professor in the Bren School of
Information and Computer Sciences at UC Irvine. He has a

Chen Li is an associate professor in the Bren School of
Information and Computer Sciences at UC Irvine. He has a
Ph.D. in computer science from Stanford University.

fering several other experimental big
data programming packages (includ-
ing Pregelix, a Pregel-like layer that
runs on Hyracks, and IMRU, an itera-
tive map/reduce/update layer that tar-
gets large-scale machine learning ap-
plications [12]).

ASTERIX GOING FORWARD
Currently the ADM/AQL layer of AS-
TERIX can run parallel queries in-
cluding lookups, large scans, parallel
joins (both regular and fuzzy), and
parallel aggregates. Data is stored
natively in partitioned B+ trees and
can be indexed via secondary indexes
such as B+ trees, R-trees, or inverted
indexes. The system’s external data
access and data feed features are also
operational. We plan to offer a first
open-source release of ASTERIX in
late 2012, and we are seeking a few
early partners who would like to run
ASTERIX on their favorite big data
problems. Our ongoing work includes
preparing the code base for an initial
public release, completing our initial
transaction story, adding additional
indexing support for fuzzy queries,
and providing a key-value API for
applications that prefer a “NoSQL”
style API over a more general query-
based API. More information about
the project and its current code base
can be found on our project website
(http://asterix.ics.uci.edu/).

It is worth pointing out ASTERIX is
a counter-cultural project in several
ways. First, rather than “tweaking”
Hadoop or other existing packages,
we set out to explore the big data plat-
form space from the ground up. We
are learning a great deal from doing
so, as it is surprising just how many
interesting engineering and research
problems are still lurking in places re-
lated to “things that have already been
done before.” Second, rather than
building a highly-specialized system
to later be glued into a patchwork of
such systems, we are exploring the
feasibility of a “one size fits a bunch”
system that addresses a broader set
of needs (e.g., by offering data stor-
age and indexing as well as support
for external data analysis, short- and
medium-sized query support as well
as large batch jobs, and a key-value API
as well as a query-based one).

types and data modeling constructs
of ADM. Figure 2(b) illustrates AQL
by example. This AQL query runs over
the TweetMessages dataset to com-
pute, for those tweets mentioning
“verizon,” the number of tweets that
refer to each topic appearing in those
tweets. Figure 2(c) shows the results of
this example query when run against
the sample data of Figure 2(d).

One of the primary application ar-
eas envisioned for ASTERIX is ware-
house-based Web data integration
[11]. As such, ASTERIX comes “out of
the box” with a set of interesting ca-
pabilities that we feel are critical for
such use cases. One is built-in support
for a notion of data feeds to continu-
ously ingest, pre-process, and persist
data from external data sources such
as Twitter. Another is support for fuzzy
selection and fuzzy (a.k.a. set-similari-
ty) joins, as Web data and searches are
frequently ridden with typos and/or in-
volve sets (e.g., of interests) that should
be similar but not identical. Figure 2(e)
illustrates a fuzzy join query in AQL.
Yet another built-in capability is basic
support for spatial data (e.g., locations
of mobile users) and for queries whose
predicates include spatial criteria.

Figure 3 shows the nature of the
open-source ASTERIX software stack,
which supports the ASTERIX system
but also aims to address other big
data requirements. To process que-
ries such as the example from Figure
2(b), ASTERIX compiles each AQL
query into an Algebricks algebraic
program. This program is then opti-
mized via algebraic rewrite rules that
reorder the Algebricks operators as
well as introduce partitioned paral-
lelism for scalable execution, after
which code generation translates the
resulting physical query plan into a
corresponding Hyracks job that uses
Hyracks to compute the desired query
result. The left-hand side of Figure 3
shows this layering. As also indicated
in the figure, the Algebricks algebra
layer is data-model-neutral and is
therefore also able to support other
high-level data languages (such as a
Hive port that we have built).

The ASTERIX open-source stack
also offers a compatibility layer for us-
ers with Hadoop jobs who wish to run
them using our software as well as of-

