
LSM-Based Storage and Indexing:
An Old Idea with Timely Benefits

Sattam Alsubaiee
King Abdulaziz City for Science and Technology

Riyadh, Saudi Arabia
ssubaiee@kacst.edu.sa

Michael J. Carey, Chen Li
University of California, Irvine

CA 92697, USA
{mjcarey, chenli}@ics.uci.edu

ABSTRACT
With the social-media data explosion, near real-time queries, par-
ticularly those of a spatio-temporal nature, can be challenging. In
this paper, we show how to efficiently answer queries that target re-
cent data within very large data sets. We describe a solution that ex-
ploits a natural partitioning property that LSM-based indexes have
for components, allowing us to filter out many components when
answering queries. Our solution is generalizable to any LSM-based
index structure, and can be applied not just on temporal fields (e.g.,
based on recency), but on any “time-correlated fields” such as Uni-
versally Unique Identifiers (UUIDs), user-provided integer ids, etc.
We have implemented and experimentally evaluated the solution in
the context of the AsterixDB system.

1. INTRODUCTION
Not long ago, traditional data warehouse systems were the norm

for data analytics, and that technology was accessible only to large
enterprises. The growth of social-networking data, however, com-
bined with open source software platforms, has motivated smaller
companies and organizations to collect and store huge amounts of
data on a daily basis as well. Thanks to the recent advances in the
Big Data space, those companies can now use Hadoop-based so-
lutions to analyze the data and gain valuable insights that can help
them sustain their businesses. With the evolving world of social
media, however, it has quickly become evident that not all data-
analytics problems can be solved efficiently with Hadoop, particu-
larly due to its nature as a batch processing system. Location-based
advertising, credit card fraud analytics, and recommendation sys-
tems are examples of applications that require real-time responses
for which the speed of answering such queries in Hadoop is not
sufficient. Therefore, new data platforms such as NoSQL systems
and stream-processing systems have emerged to handle such use
cases (e.g., MongoDB, HBase, Cassandra, BigTable, Spark, Storm,
etc.). In many cases, companies have ended up using Hadoop-
based solutions for long-running tasks, mostly for analyzing histor-
ical data, while using index-based (e.g., LSM-tree based NoSQL
stores) and streaming-based solutions for short-running tasks that
are more time-critical for their businesses.

c©2015 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
GEORICH’15 , May 31 - June 04 2015, Melbourne, VIC, Australia
c©2015 ACM. ISBN 978-1-4503-3668-0/15/05...$15.00

DOI: http://dx.doi.org/10.1145/2786006.2786007.

One class of queries that require real-time answers and have a
wide range of use cases are spatio-temporal query workloads fa-
voring recent data. As an example, suppose a campaign manager
for a US presidential candidate wants to know how potential vot-
ers are currently reacting to the candidates in a certain geographic
area. A useful piece of information is the level of voters’ interest in
other rivals, as this is clearly valuable to the decision-making pro-
cess of the campaign. We can formulate a spatial aggregation query
to find tweets mentioning the names of other rivals that have been
posted within the last day, group them on a spatial grid structure,
and compute the number of such tweets for each cell in the grid. By
doing this time-based spatial analysis, the campaign staff can gain
an understanding of the current public opinion and make informed
decisions such as broadcasting more political ads in certain areas.

In this paper, we study how to answer queries on recent data
efficiently in the context of the AsterixDB Big Data Management
System. AsterixDB has taken a different approach than other sys-
tems by combining a wide range of capabilities in a single unified
system so as to provide better manageability, functionality, and per-
formance, as opposed to gluing together multiple independent so-
lutions. One novel feature of AsterixDB is wholly adopting LSM-
trees as the underlying technology for all of its internal data storage
and indexing. We show how to utilize a natural partitioning prop-
erty that LSM-based indexes have for components to provide near
real-time responses to query workloads that favor recent data.

The rest of this paper is organized as follows. First, we provide
a brief introduction to AsterixDB. Next, we explain our solution,
which exploits the multi-component nature of LSM-based indexes
to provide near real-time performance for queries on recent data.
Finally, we briefly present results from an experimental study that
we conducted to evaluate the solution.

2. THE ASTERIXDB SYSTEM
In this section, we briefly introduce AsterixDB [2], including its

data model, query language, and storage engine.

2.1 Data Model and Query Language
Consider the US election example mentioned in Section 1. We

will use this example to briefly show the capabilities of AsterixDB,
including its spatial support. The Asterix Data Model (ADM) is
based on ideas from JSON extended with additional primitive types
as well as type constructors borrowed from object databases. Fig-
ure 1 shows the use of ADM to model a Twitter messages dataset.

Data types in ADM are open by default; instances will conform
to the type specification but may have extra fields with names and
types that vary from one instance to the next. The “?” in the
sender-location field means that the presence of this geospa-
tial field is anticipated but optional. The hashtags field is a col-

create type TwitterUserType {
screen-name: string ,
lang: string ,
friends_count: int32 ,
statuses_count: int32 ,
name: string ,
followers_count: int32

};

create type TweetType {
tweetid: int64 ,
user: TwitterUserType ,
sender-location: point? ,
send-time: datetime ,
hashtags: {{ string }} ,
message-text: string ,
userid: int32

};
create dataset Tweets(TweetType) primary key tweetid ;

Figure 1: Metadata definition for the running example.

lection (multiset or unordered list) of primitive string values, and
user information is modeled as a nested record of another type. As
shown in Figure 1, a dataset called Tweets is created to store data
instances conforming to the TweetType data type, where the pri-
mary key is the tweetid field. (An AsterixDB dataset is loosely
analogous to a table in the relational world.)

The Asterix Query Language (AQL) is a declarative query lan-
guage that draws on ideas from XQuery. Suppose we are just a
few days away from the US presidential election that is going to
be held on November 8th, 2016. A campaign manager could use a
GUI to submit a spatial aggregation query to AsterixDB, such as the
query shown in Figure 2, to see how potential voters are reacting
to the candidate “Hillary Clinton”, recently, in the swing state of
Ohio. This query spatially aggregates election-related tweets. (Its
variables are denoted by “$” identifiers.) It starts by constraining
tweets to being within a bounding rectangle inside Ohio, a date-
time window of the last day, and containing the hashtag “Hillary
Clinton”. The spatial-cell function determines which grid
cell each tweet belongs to. This function receives the location of
the tweet, the origin of a bounding rectangle for the grid, and the
latitude and longitude increments that specify the resolution of the
grid. It returns the cell (represented by a rectangle) that the tweet
belongs to. Those tweets are then grouped according to their con-
taining grid cells. Finally the count function is applied to each
group of tweets to return the final answer in the form of pairs of
cells and the number of tweets (that satisfy the predicates) in the
corresponding cell. Figure 3 shows a color-coded density grid on
the map that visualizes the results of a typical spatial aggregation
query using the Google Maps API.

for $tweet in dataset Tweets
l e t $searchHashTag := "Hillary Clinton"
l e t $leftBottom := create-point(38.52,-84.78)
l e t $rightTop := create-point(41.94,-80.48)
l e t $latResolution := 3 .0
l e t $longResolution := 3 .0
l e t $region := create-rectangle($leftBottom,$rightTop)
where spatial-intersect($tweet.sender-location, $region)
and $tweet.send-time > datetime("2016-11-05T00:00:00Z")
and (some $hashTag in $tweet.hashtags

sat i s f i e s ($hashTag = $searchHashTag))
group by $cell := spatial-cell($tweet.sender-location,
$leftBottom, $latResolution, $longResolution)
with $tweet

return { "Cell": $cell, "NumTweets": count($tweet) }

Figure 2: A spatial aggregation query over tweets that were
generated by Ohio state users, close to the US presidential elec-
tion in 2016, containing the hashtag “Hillary Clinton”.

2.2 Storage Management
Datasets are managed by AsterixDB as partitioned LSM-based

Figure 3: A visualization of the results of a spatial aggregation
query. The color of each cell indicates the tweet count.

B+-trees with optional LSM-based secondary indexes [3]. LSM-
trees [7] are well-known for providing superior performance for
insert-intensive workloads by batching updates into a component of
the index that resides in main memory – an in-memory component.
When the space occupancy of the in-memory component exceeds
a specified threshold, its entries are flushed to disk forming a new
component – a disk component. As disk components accumulate
on disk, they are periodically merged together subject to a merge
policy that decides when and what to merge. The benefit of LSM-
trees comes at the cost of possibly sacrificing read efficiency, but,
as shown in [8], these inefficiencies can be mostly mitigated.

AsterixDB has adopted a framework for converting a class of
indexes (including conventional B+ trees, R trees, and inverted in-
dexes) into LSM-based secondary indexes, allowing higher data in-
gestion rates. In fact, for certain index structures such as the LSM
R-tree, our results [3] have shown that an LSM-based version of
an index can be made to significantly outperform its conventional
counterpart for both data ingestion and query speed.

3. LSM-BASED FILTERS FOR ACCELER-
ATING QUERIES

In this section, we present a technique that leverages the structure
of an LSM-based index, including the LSM R-tree, to accelerate
queries. Our technique works best with a monotonically increasing
sequence of values, e.g., time-correlated fields such as UUID and
datetime fields, making it a perfect fit for providing near real-time
performance for recency queries such as the time-based spatial ag-
gregation query of Figure 2.

3.1 Basic Idea
Since an LSM-based index naturally partitions data into multiple

disk components, it is possible, when answering certain queries, to
exploit partitioning to only access some components and safely fil-
ter out the remaining components, thus reducing query times. This
can be achieved by augmenting each disk component with extra in-
formation (called a “filter” hereafter) about one or more other fields
of the record (called the filter’s key hereafter). Hence, the index can
filter out entries based on two dimensions, one based on the original
index key(s), and the second based on the filter’s key.1

To support filtering, each LSM disk component has an associ-
ated filter record that maintains the minimum and maximum filter
key values for the records in the component. Then, when accessing
the index to answer a query, the index lookup operation can first
leverage the associated filter records to prune components that do

1The current release of AsterixDB (Release 0.8.6) supports the cre-
ation of single-field filters. Allowing multi-field filters is a straight-
forward extension and it is planned for a future release.

not match the filter’s predicate. The normal search on the index
need only be performed for those components that survive the fil-
tering process. Notice that filters can be used with both primary
and secondary indexes for additional pruning power.

One of the main use cases for LSM-based filters is to use them to
index time-correlated fields or monotonically increasing sequences,
such as datetime fields. In this case, the filters on the disk compo-
nents are likely to have disjoint minimum and maximum values,
making them very effective for pruning. Next, we provide two ex-
amples that show the benefits of using filters with LSM indexes.

Example 1: Suppose that users are interested in retrieving recent
tweets from the Tweets dataset posted by specific users based on
their sending time (e.g., tweets posted by “John Smith” in the last
day). Figure 4 shows the AQL query for this example. We can
create a filter on the send-time field of the primary index and
then AsterixDB can utilize the components’ filter records to quickly
prune components that do not match the temporal predicate.

for $tweet in dataset Tweets
where $tweet.send-time > datetime("2015-05-14T00:00:00Z")
and $tweet.user.name = ’John Smith’
return $tweet

Figure 4: A query that returns all the tweets posted by “John
Smith” in the last 24 hours (assuming the current date is May
5th, 2015).

Example 2: Consider the spatial aggregation query, shown in
Figure 2. We can maintain a secondary LSM R-tree index on the
sender-location field and create a filter on the send-time
field of the primary and secondary indexes. When answering the
spatial aggregation query, AsterixDB can first access the LSM R-
tree, using the index components’ filter records to quickly filter out
those components that do not match the temporal predicate of the
query, and then search the remaining R-tree components that sur-
vive the filtering process. Similarly, when using the resulting pri-
mary keys to probe the primary index, the lookup operation can
filter out all older disk components of the index and probe only
those components that satisfy the temporal predicate.

Clearly, LSM-based filters can help improve the performance of
queries by pruning as many records as possible in an early stage.
They also can improve data ingestion performance by not requir-
ing a separate secondary index in some scenarios (as in the first
example). In addition, they can potentially improve data ingestion
performance under concurrent queries by reducing contention on
system resources (CPU and I/O) due to component filtering.

3.2 LSM-based Filters in AsterixDB
In this section, we discuss the implementation of LSM-based fil-

ters in AsterixDB. We first describe how to declare dataset filters at
the logical level. We then explain the changes that we made to the
system’s internals to incorporate filters in AsterixDB’s indexes.

3.2.1 User Model
We have added support for LSM-based filters to all of Aster-

ixDB’s index types (LSM B+-trees, LSM R-trees, and LSM in-
verted indexes). To enable the use of filters, the user must specify
the filter’s key when creating a dataset, as shown in Figure 5. Fil-
ters can be based on any totally ordered datatype (i.e., any field that
can be indexed using a B+-tree), such as integers, doubles, floats,
UUIDs, datetimes, etc.

The name of the filter’s key field is persisted in the “dataset”
dataset (which is the metadata dataset that stores the details of each
dataset in an AsterixDB instance) so that DML operations against

create dataset Tweets(TweetType) primary key tweetid
with f i l t e r on send-time;

Figure 5: Creating a dataset of tweets with a filter on the
send-time field.

the dataset can recognize the existence of filters and can update
them or utilize them accordingly. Creating a dataset with a filter
in AsterixDB implies that the primary and all secondary indexes of
that dataset will maintain filters on their disk components. Once
a filtered dataset is created, the user can use the dataset normally
(just like any other dataset). AsterixDB will automatically maintain
the filters and leverage them to efficiently answer queries whenever
possible (i.e., when a query has predicates on the filter’s key).

3.2.2 Maintaining the Filters
In an LSM index, there are three possible methods where a new

disk component is created: through a flush, merge, or fresh bulk-
load operation. To guarantee the correctness of a dataset’s filters,
each of these operations must ensure that the filter associated with
a new disk component has the minimum and maximum filter key
values of the records contained therein. In the following, we show
how each of those operations maintains these values efficiently:

1. Flush: Each index incrementally maintains the minimum and
maximum filter key values for the records contained in its
in-memory component. Those values must be updated, as
needed, with each insert and delete operation against the in-
dex. When the in-memory component is flushed to disk, its
filter record is also flushed with it to disk.

2. Merge: The minimum and maximum values for the result-
ing component’s filter record are taken from the smallest and
largest values of all components participating in the merge.

3. Bulk-load: Each added entry simply updates the filter record’s
minimum and maximum values as needed.

The leaf node entries in secondary indexes in AsterixDB are of
the form e = 〈SK ,PK 〉, where SK is the secondary key and PK
is the associated primary key. Although this form is still maintained
in the presence of filters, we had to change the insert, delete, and
load plans for indexes with filters so that the filter key values are
also passed to the index with each record for the purpose of updat-
ing its components’ filter records.

3.2.3 Query Processing
We have added a new rewrite rule to the AsterixDB rule-based

optimizer that checks whether or not a query can be optimized to
use filters. The rule first checks to see if the queried dataset has
a filter. If so, then it analyzes the query in the hope of finding
an applicable query predicate. In particular, the rule searches for
predicates on the filter’s key that use one of the following operators:
>, >=, <, <=, and =. If it finds such predicates, it modifies the
plan so that the filter’s predicates are passed to all the indexes of
the dataset that appear in the query plan (in conjunction with other
predicates that are normally used to search the indexes).

At runtime, the filter’s predicates will be used to prune compo-
nents that do not match. Note that the implementation of Aster-
ixDB’s LSM indexes was designed from the start to allow each in-
dex operation (e.g., search) to choose the components that it needs
to perform its logic against, and this is where component filtering
takes place. In other words, the search cursors for LSM indexes
did not have to change to support filters. Once the components

not matching the filter’s predicates have been filtered out, a normal
search on the index is performed for the remaining components.

3.2.4 Effect of Merge Policies
Merge policies play a key role with respect to the data ingestion

and query performance of LSM indexes. This role is even more
important for LSM-based filters to be effective. Here we discuss the
tradeoffs of the various AsterixDB merge policies (constant, prefix,
and no-merge policies [3]) and introduce a new merge policy that
further improves query performance when using filters.

To understand the effect of merge policies on filters, let us revisit
a similar concept that has been heavily used in many database sys-
tems, which is table partitioning. In these systems, partitioning is
mainly used to mitigate the impact of table scans. A table can be
divided into smaller partitions based on a partitioning key. Queries
with predicates on the partitioning key can then prune those parti-
tions that do not satisfy the predicates, thus reducing query times.
Similarly, when using filters, each LSM disk component is essen-
tially treated as a partition. Thus, the number and size of disk com-
ponents can greatly impact query performance.

Generally speaking, having very few disk components will re-
duce a filter’s pruning power for highly selective queries on the fil-
ter’s key. On the other hand, less selective queries on the filter’s key
will perform best when the number of disk components is minimal.
The constant merge policy tries to keep as few disk components as
possible by constantly merging all the disk components into a sin-
gle disk component. This has been shown in [3] to have a negative
impact on ingestion performance since merges are CPU and I/O
intensive operations. In addition, the constant merge policy will
also have a negative impact on the performance of queries when
using filters since the chances of accessing all the disk components
becomes very high, eliminating the benefits of filters.

In contrast, when used in conjunction with filters, AsterixDB’s
no-merge policy can provide excellent performance for selective
queries on the filter’s key; this is due to the high chance of pruning
many of the components. However, similar to the constant merge
policy, the no-merge policy has proven to provide bad ingestion
performance due to the time spent searching the many disk com-
ponents before each primary key insert to enforce key uniqueness,
making the no-merge a bad choice for write-intensive workloads.

The AsterixDB prefix merge policy, which relies on component
sizes and the number of components to decide which components
to merge, has proven to provide excellent performance for both in-
gestion and queries. However, when evaluating our filtering solu-
tion with the prefix policy, we observed a behavior that can reduce
filter effectiveness. In particular, we noticed that under the pre-
fix merge policy, the disk components of a secondary index tend
to be constantly merged into a single component. This is because
the prefix policy relies on a (single) size parameter for all of the
indexes of a dataset. This parameter is typically chosen based on
the sizes of the disk components of the primary index (e.g., 1GB
in our experiments), which tend to be much larger than the sizes
of the secondary indexes’ disk components. This difference caused
the prefix merge policy to behave similarly to the constant merge
policy (i.e., relatively poorly) when applied to secondary indexes.
Consequently, the effectiveness of filters on secondary indexes was
greatly reduced under the prefix-merge policy, but they were still
effective when probing the primary index.

Based on this behavior, we developed a new merge policy, an
improved version of the prefix policy, called the correlated-prefix
policy. The basic idea of this policy is that it delegates the deci-
sion of merging the disk components of all the indexes in a dataset
to the primary index. When the policy decides that the primary

index needs to be merged (using the same decision criteria as for
the prefix policy), then it will issue successive merge requests to
the I/O scheduler on behalf of all other indexes associated with the
same dataset. The end result is that secondary indexes will always
have the same number of disk components as their primary index
under the correlated-prefix merge policy. This has improved query
performance, as we will see in Section 4.5, as disk components of
secondary indexes now have a much better chance of being pruned.

4. EXPERIMENTS
This section briefly presents the results of an experimental evalu-

ation, including queries with temporal and spatial predicates, of the
filtering solution designed and implemented in AsterixDB. We re-
fer interested readers to [1] for more detailed experimental results.

4.1 Data Generation
We used AsterixDB’s data feeds [4] to populate a dataset using

streams of synthetic tweets, with an average tweet size of 1KB. The
generated tweets conform to the type definition shown in Figure 1.
We generated tweets with monotonically increasing ids, and chose
user ids randomly with replacement from the range [0-4999]. All
the generated tweets had geographic locations that were generated
randomly from a distribution similar to the one described in [3].
The send-time value of each tweet was populated with the exact
time of actual tweet generation.

4.2 Machine and Parameter Configurations
We used two machines2 to conduct our experiments. The first

one generated synthetic tweets to send over the network to a sec-
ond machine hosting a single-machine AsterixDB instance for in-
gestion. The latter was an IBM server with a 4-core Xeon 2.27 GHz
CPU, 12GB of main memory, and four 10,000 rpm SATA drives.
We dedicated one disk to the transaction log manager, using the
other three disks as data storage disks for separate partitions of the
Tweets dataset and their associated secondary index partitions.
Each dataset was given 1GB of memory for its in-memory com-
ponent(s). Unless otherwise specified, we used AsterixDB’s prefix
merge policy to manage the disk components of each datset’s in-
dexes.

4.3 Query Generation
For our experiments, we ingested a total of 70GB of synthetic

tweets into the targeted dataset. We then stopped data ingestion
and issued queries with multiple predicates on different fields, with
one predicate being based on time-recency to mimic a query work-
load that is targeting recent data. This predicate was based on the
largest ingested send-time value. For example, if its largest in-
gested value was datetime("2015 -04-26T10:10:00Z"),
and the goal was to retrieve all tweets ingested in the last 1 minute,
the predicate would be “retrieve all tweets with a send-time
larger than datetime("2015-04 -26T10:09:00Z")”. We
used the approach described in [3] to generate random spatial pred-
icates that provide result sets with similar cardinalities.

We experimented with recency predicates with varying selectivi-
ties ranging from a predicate that only matches the most recent data
(e.g., the last 8 seconds) all the way to a predicate that matches all
of the ingested data. To do that, we chose an initial time unit (e.g.,
8 seconds) that served as the smallest recency predicate width (e.g.,
all tweets ingested in the last 8 seconds). We then multiplied this
time unit by different factors to increase the window size of the

2 Since filters are purely a node-level storage optimization, scale-
out testing on a multi-machine cluster was not required.

recency predicate. For those experiments that used an initial time
unit of 8 seconds, we used the following time-unit multipliers: 1,
6, 42, 180, 540, and 2160. Thus, the corresponding recency predi-
cates were: last 8 seconds, last 48 seconds, last 5.6 minutes, last 24
minutes, last 72 minutes, and last 288 minutes. Unless otherwise
specified, we used an initial time unit of 8 seconds for all the ex-
periments. The query times shown are averaged across 200 random
queries using different time unit factors.

We plotted the results using histogram charts in log scale, where
the X axis represents the different time-unit factors and the Y axis
represents the average query time.

4.4 Query Performance
Figure 6 shows the average query time (log scale) for spatial ag-

gregation queries, similar to the one shown in Figure 2 (excluding
the textual predicate), against two datasets that are both using a
secondary LSM R-tree on the field sender -location; one of
them was also utilizing a filter on the field send-time.

The results show that the dataset that had a filter on send-time
benefited greatly when the recency predicate was selective due to
the pruning power of filters. For instance, for the time-unit fac-
tor one, all disk components of the corresponding indexes were
pruned, resulting in searching only the in-memory component of
the index. However, as we decreased the selectivity of the recency
predicate by using larger time-unit factors, the effectiveness of fil-
ters decreased. This is expected since the less selective a recency
predicate is, the more disk components that satisfy the predicate
and thus must be searched. That being said, even for the extreme
case when the recency predicate is unselective, filters do not hurt
query performance and perform as if the filters did not exist. This
can be seen when using the time-unit factor 2160, where all the
records satisfy the recency predicate.

 0.01

 0.1

 1

 10

 100

1 6 42 180 540 2160

A
v
g
 Q

u
e
ry

 T
im

e
 (

s
e
c
s
)

(L
o
g
 S

c
a
le

)

Time-Unit Factor

WithoutFilter WithFilter

Figure 6: Average time to answer spatial aggregation queries
when using a dataset with a secondary LSM R-tree on
sender-location and a dataset with both a secondary LSM
R-tree on sender-location and a filter on send-time.

4.5 Impact of Merge Policies
Next, we explored the impact of using different merge policies

with filters. Each dataset had a secondary LSM B+-tree on userid.
Since the handled TPS when using a different merge policy varies
widely (the total time for ingesting 70GB of tweets was 110 min-
utes versus 26 hours for the prefix versus no-merge policies, re-
spectively), the selectivity of recency queries using the same time-
unit factor would also vary widely. Thus, here we added a new
field called integer-send-time to the TweetType defini-
tion and used it as the filter’s key (it was populated with monoton-
ically increasing integer values). This way, we were able to isolate
the impact of TPS variance on the selectivity of queries, allowing
for an accurate comparison between the different merge policies.
We also used an initial time unit of 32,000 for all of the experi-
ments in this section. (As an example, for the time-unit factor 540,

the corresponding recency predicate would ask for all tweets with
integer-send-time values that are 540 x 32000 = 17280000
smaller than the largest ingested integer-send-time value.)

Figure 7 shows the average query time (log scale) for answer-
ing recency queries, similarly to the query shown in Figure 8, for
datasets using different merge polices. All the datasets provided
identical average query time for the smaller time-unit factors, 1
and 6, because all disk components were pruned by the filters since
they did not match the recency predicates.

 0.01

 0.1

 1

 10

 100

1 6 42 180 540 2160 3500

A
v
g
 Q

u
e
ry

 T
im

e
 (

s
e
c
s
)

(L
o
g
 S

c
a
le

)

Time-Unit Factor

Prefix NoMerge Constant

Figure 7: Average query time when using constant, no-
merge, and prefix merge policies on a dataset with both
a secondary LSM B+-tree on userid and a filter on
integer-send-time.

l e t $count := count (
for $tweet in dataset Tweets
where $tweet.integer-send-time > 105477969
and $tweet.userid = 3319
return $tweet

)
return {"NumTweets": $count}

Figure 8: One example of an aggregation query that we used
in our experiments to compare the impact of different merge
polices on filters.

Clearly, the performance differences are huge (log scale) when
the recency predicates are less selective and, as a result, disk com-
ponents must be accessed. The constant merge policy always pro-
vided the same high average query time for the larger factors. This
is because it had a single disk component for both the primary and
secondary indexes at the end of the ingestion period, and thus, the
pruning power of the filters was lost.

Both the no-merge and prefix policy provided query times that
are relative to the number of accessed disk components. For the
middle time-unit factors (i.e., 42, 180, and 540), the prefix policy
slightly suffered from having only three disk components for the
secondary index, reducing the effectiveness of its filters. The index
had only three disk components since, as described in Section 3.2.4,
this policy tends to behave similarly to the constant policy when us-
ing large values for its size parameter. On the other hand, in the case
of the no-merge policy, the queries had to touch fewer secondary
index entries due to the many disk components that were pruned,
and as a result there were much fewer primary index probes. How-
ever, as the selectivity of the recency predicate decreased, the no-
merge policy had to pay for accessing many smaller disk compo-
nents. This can be seen in the case of the largest two time-unit
factors, where 158 and 242 out of 242 disk components (for both
the secondary and primary indexes) had to be accessed for the 2160
and 3150 time-unit factors, respectively.

Figure 9 (log scale) shows how the new correlated-prefix merge
policy combines the benefits of both the prefix and no-merge po-
lices. For the middle time-unit factors (i.e., 42, 180, and 540), the

correlated-prefix policy behaved similar to the no-merge policy in
the sense that it benefited from having multiple disk components
for the secondary index. For the larger time-unit factors, 2160 and
3500, it behaved in a manner similar (with minor overhead) to the
prefix policy in the sense that it does not have too many smaller disk
components (there were 22 secondary index disk components).

 0.01

 0.1

 1

 10

 100

1 6 42 180 540 2160 3500

A
v
g
 Q

u
e
ry

 T
im

e
 (

s
e
c
s
)

(L
o
g
 S

c
a
le

)

Time-Unit Factor

Prefix
NoMerge

CorrelatedPrefix

Figure 9: Average query time when using the correlated-prefix
compared to the no-merge and prefix policies on a dataset with
both a secondary LSM B+-tree on userid and a filter on
integer-send-time.

Figure 10 (again log scale) shows how the LSM R-tree behaved
when using the correlated-prefix policy to answer queries similar
to the one shown in Figure 2 (excluding the textual predicate). We
see that under the correlated-prefix policy, the selective recency
predicates benefited from having multiple smaller R-tree compo-
nents. Clearly, the performance differences here are larger com-
pared to those for secondary LSM B+-tree. This is due to the fact
that searching an R-tree is more expensive than searching a B+-tree.
For very large time-unit factors, however, the queries did not ben-
efit from the filters. In this case, having very few disk components
can help query performance, as can be seen in the case of the prefix
policy for the time-unit factor 3500.

 0.01

 0.1

 1

 10

 100

1 6 42 180 540 2160 3500

A
v
g
 Q

u
e
ry

 T
im

e
 (

s
e
c
s
)

(L
o
g
 S

c
a
le

)

Time-Unit Factor

Prefix CorrelatedPrefix

Figure 10: Average query time for answering spatial aggrega-
tion queries when using the prefix and correlated-prefix merge
policies on a dataset with both a secondary LSM R-tree on
sender-location and a filter on integer-send-time.

In addition to query performance, it is worth mentioning that
data ingestion performance was not hampered by the filters since
they are very cheap to maintain. In fact, when using the correlated-
prefix policy, the data ingestion time was improved by around 10%
due to performing fewer secondary index merge operations, and, as
a result, reducing the system’s CPU and I/O contention.

5. RELATED WORK
Using LSM-trees for indexing fast data ingestion was intrduced

in [7]. Different variations of the LSM-tree were then suggested,
e.g., [5, 8]. Muth et al. [6] have introduced an index structure called
LHAM for transaction-time temporal data. They used an LSM-like
structure to index record versions in two dimensions: one dimen-
sion is the conventional record key and the other is the timestamp

of the record version. The record version is obtained at the time
of insertion, representing the transaction timestamp. The outcome
is that data is partitioned into successive components based on the
timestamps of the record versions. Queries with temporal predi-
cates only need to access components that satisfy the predicates;
the remaining components can be skipped. HBase uses a similar
idea by tagging its LSM disk components with the minimum and
maximum timestamps of the records contained in the component,
which can be used during query time for effective pruning.

Our work differs from LHAM and HBase in the following ways:

1) We do not limit the use of filters to transaction timestamps.
Instead, when creating a dataset, a user may create a filter on
any totally-ordered datatype field of the record (e.g., integer,
double, datetime, UUID, etc.).

2) We apply filters not only on disk components of the primary
index, but also on the disk components of secondary indexes,
leading to significant additional pruning power.

3) We have studied the effect of different merge policies on
query performance when using our generalized filters and ex-
perimentally demonstrated their tradeoffs and benefits.

6. CONCLUSIONS
In this paper, we have presented an efficient solution for handling

spatio-temporal query workloads that favor recent data, allowing
the AsterixDB system to provide near real-time performance for
recency queries. We have designed and implemented filters for all
of AsterixDB’s index types, including LSM B+-tree, LSM R-tree,
and LSM inverted indexes for textual data. Our solution exploits
the fact that LSM indexes partition data into successive disk com-
ponents based on freshness. By maintaining filters on disk com-
ponents of LSM indexes, we were able to reduce recency query
response times by up to 99% (for very selective queries that only
access the in-memory component of the index). Our experimental
evaluation explored the impact of LSM merge policies and showed
the benefits of our new correlated-prefix policy.

Acknowledgements This work was supported by a graduate fel-
lowship from KACST. It was also supported by NSF projects IIS-
0910989, CNS-1305430, and IIS-1447720. Industrial support came
from Facebook, Google, HTC, and Oracle Labs.

7. REFERENCES
[1] S. Alsubaiee. Spatial Indexing in the Era of Social Media.

Ph.D. thesis, UC Irvine, 2014.
[2] S. Alsubaiee et al. AsterixDB: A scalable, open source

BDMS. VLDB, 2014.
[3] S. Alsubaiee et al. Storage management in AsterixDB. VLDB,

2014.
[4] R. Grover and M. J. Carey. Data ingestion in AsterixDB.

EDBT, 2015.
[5] C. Jermaine, E. Omiecinski, and W. G. Yee. The partitioned

exponential file for database storage management. The VLDB
Journal., 16(4), 2007.

[6] P. Muth et al. Design, implementation, and performance of the
LHAM log-structured history data access method. VLDB,
1998.

[7] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Inf., 33(4), 1996.

[8] R. Sears and R. Ramakrishnan. bLSM: a general purpose log
structured merge tree. SIGMOD, 2012.

	Introduction
	The AsterixDB System
	Data Model and Query Language
	Storage Management

	LSM-based Filters for Accelerating Queries
	Basic Idea
	LSM-based Filters in AsterixDB
	User Model
	Maintaining the Filters
	Query Processing
	Effect of Merge Policies

	Experiments
	Data Generation
	Machine and Parameter Configurations
	Query Generation
	Query Performance
	Impact of Merge Policies

	Related Work
	Conclusions
	References

