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Abstract
A number of high-level query languages, such as Hive, Pig, Flume,
and Jaql, have been developed in recent years to increase analyst
productivity when processing and analyzing very large datasets.
The implementation of each of these languages includes a com-
plete, data model-dependent query compiler, yet each involves a
number of similar optimizations. In this work, we describe a new
query compiler architecture that separates language-specific and
data model-dependent aspects from a more general query com-
piler backend that can generate executable data-parallel programs
for shared-nothing clusters and can be used to develop multiple lan-
guages with different data models. We have built such a data model-
agnostic query compiler substrate, called Algebricks, and have used
it to implement three different query languages — HiveQL, AQL,
and XQuery — to validate the efficacy of this approach. Experi-
ments show that all three query languages benefit from the paral-
lelization and optimization that Algebricks provides and thus have
good parallel speedup and scaleup characteristics for large datasets.

Categories and Subject Descriptors H.2 Database Management
[Languages]: Query languages; H.2 Database Management [Sys-
tems]: Query processing

General Terms Languages, Design, Experimentation

Keywords Big Data, Query Languages, Parallel Query Processing

1. Introduction
Data has been growing at an astounding rate in recent years, primar-
ily due to the growth of the Internet and social media. Stagnating
single-processor speeds and the low cost of hardware have led com-
panies to invest in clusters of commodity machines to cope with the
storage and processing needs of this growing data.

Traditionally, businesses have used relational databases to store
and query business data. However, most web companies have found
that traditional databases are restrictive (owing to the flat rela-
tional model and transactional semantics) or inefficient for their
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use-cases. These shortcomings of relational databases have moti-
vated companies to explore custom systems tailored to their use-
cases instead of using a “one-size fits-all” paradigm. The MapRe-
duce paradigm developed by Google [18] ignited this phenomenon.
MapReduce was developed to support web-scale data processing
on a cluster of commodity machines by providing a simple yet
powerful user-model. Apache Hadoop [6] soon became the de-facto
open-source implementation of the MapReduce model.

While the MapReduce model is simple, it is extremely low-level
for most data processing tasks; it can require sophisticated puzzle-
solving and Java skills to develop jobs that reflect the requirements
of high-level end-user problems. As a consequence, higher-level
declarative languages have since been developed by the same web
companies to make their developers more productive in perform-
ing data-intensive jobs. For example, Google proposed Sawzall (an
awk-like language for text processing) [37], Facebook created Hive
(based on the SQL language) [41], and Yahoo developed Pig [34].
The success of declarative languages is evident from the job statis-
tics released by the major web companies. A few years ago Face-
book stated that upwards of 95% of the MapReduce jobs on their
cluster are produced by the Hive compiler and Yahoo put the num-
ber of MapReduce jobs created by Pig at 65% (and growing). Re-
cently, several new and more efficient SQL-on-Hadoop systems,
e.g., Impala [33] and SparkSQL [7], have been built to improve the
performance of Hive and the MapReduce runtime.

The proposed declarative languages differ significantly in terms
of data models and semantics. For example, in the two queries listed
below, the first query is a SQL query over the relational data model,
while the second is an XQuery over the XML data model. Despite
their differences, however, they share a common theme in that they
provide a set of bulk operations to manipulate collections of values.

1 select l_returnflag, l_linestatus, sum(l_quantity),

2 sum(l_extendedprice),

3 sum(l_extendedprice*(1-l_discount)),

4 sum(l_extendedprice*(1-l_discount)*(1+l_tax)),

5 avg(l_quantity), avg(l_extendedprice), avg(l_discount),

6 count(1)

7 from lineitem

8 where l_shipdate <= ’1998-09-02’

9 group by l_returnflag, l_linestatus

10 order by l_returnflag, l_linestatus;

1 fn:sum(

2 for $r in collection("sensors")/dataCollection/data

3 where $r/station eq "GHCND:USW00014771"

4 and $r/dataType eq "PRCP"

5 and year-from-dateTime(xs:dateTime(data($r/date)))

6 eq 1999

7 return $r/value

8 ) div 10
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Figure 1. Algebricks Software Stack.

Based on the observed commonality between compilers of high-
level declarative languages and the authors’ prior experience build-
ing query compilers, this paper motivates the need for a framework
that encapsulates common functionality that can be reused to build
different languages for processing data at large scale. As part of the
framework, we describe a set of data model-neutral operators and
describe their semantics via examples. The framework provides a
set of interfaces that must be implemented by the developer of a
high-level language to stitch in the data model specifics of the target
high-level language. The framework includes a rule-based rewriter∗
with a set of pre-implemented rules that are relevant for any lan-
guage implemented using our operators (e.g., pushing filters closer
to sources is a rule that is independent of the data model).

The reusable algebraic framework we have built for the compi-
lation of higher level languages into data parallel jobs is called Al-
gebricks. Algebricks is a by-product of the ASTERIX stack[3] that
has been under development at UC Irvine and UC Riverside. Fig-
ure 1 shows the present set of projects that make up the ASTERIX
Stack. Algebricks is shown within the highlighted box in Figure 1
and serves as the common compilation layer for three separate
high-level languages: HiveQL [41], XQuery [17] and AQL [3]. All
of these languages are declarative; they specify what is required to
be in the result, but do not specify how to compute it. The imple-
mentation is free to use any access paths (indexes) and partitioning
strategy in order to evaluate the query. The output of Algebricks are
jobs that can be scheduled and executed in parallel on the Hyracks
runtime platform, which is described in the following section.

The rest of the paper is organized as follows. Section 2 intro-
duces the target runtime platform for Algebricks. Section 3 walks
through the data model-neutral Algebricks interfaces and inter-
nals. Section 4 presents three query languages built on-top-of Alge-
bricks: HiveQL, AQL, and XQuery. Experimental evaluations are
discussed in Section 5. Related work appears in Section 6, and we
conclude the paper in Section 7.

2. The Hyracks Runtime
Hyracks [13] is the compilation target platform for the Algebricks
framework. This section covers the two bottom layers in Figure 1:
the general-purpose DAG (directed acyclic graph) execution engine
and its associated runtime libraries.

Execution Engine. Hyracks is a push-based data-parallel run-
time in the same space as Hadoop [6] and Dryad [30]. Jobs are sub-
mitted to Hyracks in the form of DAGs made up of operators and
connectors. Operators are responsible for consuming input parti-
tions and producing output partitions. Connectors redistribute data
between operators. For a job submitted in a Hyracks cluster, a mas-
ter machine instructs a set of worker machines to execute clones

∗ A prototype of a cost-based optimizer based on Algebricks has been
implemented at the Indian Institute of Technology, Bombay. However, this
is not yet a part of the Algebricks code distribution.

of the operator DAG in parallel and orchestrates data exchanges.
The Hyracks scheduler analyzes a job DAG to identify groups of
operators (stages) that can be executed together at any time while
adhering to the blocking requirements of the operators. The stages
are then parallelized and executed in the order of their data depen-
dencies. The Hyracks execution engine is extensible — users can
define their own operators and connectors to construct a job DAG.

Runtime Libraries. The following Hyracks libraries serve as
key runtime building blocks for Algebricks query plans (i.e., inter-
mediate representations for queries in high-level languages).

• Operator Library. This library includes operators that support
bulk operations on large datasets, such as hybrid-hash join [21],
external sort, and both sort-based and hash-based group-bys. All
those operators gracefully spill intermediate data to disks when
memory is under pressure.

• Connector Library. Data exchange patterns in the connector li-
brary include hash partitioning, range partitioning, random par-
titioning, and broadcasting. A connector is also associated with a
materialization policy that dictates whether or not to materialize
data at the sender and/or receiver side and whether the materi-
alization should block data sending/receiving. The Hyracks con-
nector library covers a spectrum of data redistribution strategies
beyond the Hadoop shuffle.

• Storage Library. A number of native storage and indexing mech-
anisms, such as B-Tree, R-Tree, inverted index, and their LSM-
based counterparts [4], are included in this library.

• HDFS Utilities. HDFS [6] read and write operators (for mul-
tiple HDFS versions) are provided in this library. In addition,
there is an associated client-side scheduler in this library to set
Hyracks location constraints [13] properly to make a best effort
for achieving data-local HDFS reads.

Algebricks targets Hyracks to create executable data parallel
programs. However, Algebricks concepts could also be applied to
other recent runtime platforms such as Spark [44] or Tez [8].

3. The Algebricks Framework
Algebricks is an algebraic layer for parallel query processing and
optimization. To be useful to implement various data-intensive
query languages, Algebricks has been carefully designed to be ag-
nostic of the data model of the data that it processes. Logically,
operators operate on collections of tuples containing data values.
The types and formats of data values carried inside a tuple are not
specified by the Algebricks toolkit; language implementors are free
to define any value types as abstract data types. For example, a
language developer implementing a SQL compiler on top of Alge-
bricks would define SQL’s scalar data types to be the data model,
provide a type computer for SQL expressions, and implement run-
time functions such as scalar functions and aggregate functions
as well as runtime operations such as comparison and hashing.
AQL [3] has a richer set of data types, including various collec-
tion types and nested types, and these have been implemented on
top of the Algebricks API as well.

The Algebricks framework consists of the following parts:

• A set of logical operators,
• A set of physical operators,
• A rewrite rule framework,
• A set of generally applicable rewrite rules,
• A metadata provider API that exposes metadata (catalog) infor-

mation to Algebricks, and,
• A mapping of physical operators to the runtime operators and

connectors in Hyracks.
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Figure 2. Flowchart of a typical Algebricks-based compiler.

Compilation Flow. Figure 2 shows the typical sequence of
compilation steps followed by a query processor built using Al-
gebricks. An incoming query string is first lexically analyzed and
parsed to construct an abstract syntax tree (AST). This AST is then
translated into the Algebricks logical plan, which is composed of
logical operators (described in Section 3.2) and serves as an inter-
mediate representation to perform the next steps involved in query
compilation. Type inference and checking is done over the initial
logical plan, using a language-provided expression type computer
which infers the type and checks type errors for each individual
expression. The logical plan is then handed to the logical optimizer
which rewrites it heuristically using logical rewrite rules. The phys-
ical optimizer translates the optimized logical plan to an Algebricks
physical plan by selecting physical operators (described in Sec-
tion 3.3) for every logical operation in the plan. Both optimizers
are rule-based and configured by selecting the set of rules to exe-
cute during the optimization phases. The resulting physical plan is
processed by the Hyracks Job Generator to produce a Hyracks job
that is parallelized and evaluated by the Hyracks execution engine.

Rewriting Rules. The query parser and translator (the first two
stages in Figure 2 are query language specific and must be imple-
mented by a query language developer. The next three stages (the
optimizers and Hyracks job generator) are provided by the Alge-
bricks library to be used by the developer. Algebricks also includes
a library of language-agnostic rewrite rules that can be reused by
the compiler developer. Additional language-specific rules are usu-
ally required in the optimization process, too. These need to be im-
plemented by the developer by extending well-defined interfaces
in the Algebricks library. Note that a language-provided expression
type computer should be called during certain rule applications to
propagate updated types for the updated intermediate logical plans.
The rewrite rule framework is described in Section 3.4.

Metadata Catalog. As shown in Figure 2, the various phases
of the query compilation process need access to information about
the environment in which the query is being compiled (usually
described as catalog metadata). The catalog is the authoritative

source of logical properties of sources (such as schema, integrity
constraints, key information, etc.) and their physical properties
(access methods, physical location, etc.) Algebricks provides a
Metadata Interface (Section 3.1) that must be implemented by the
compiler developer so that the various parts of the Algebricks
compiler can access relevant metadata information.

Runtime Operations/Functions. The Hyracks Job Generator
maps physical operators selected by the Physical Optimizer to
Hyracks runtime operators and connectors. In the process of this
translation, the runtime operators need to be injected with data
model-specific operations. The exact nature of the operation de-
pends on the runtime operator being used. For example, the Sort
operator must be provided a comparator to compare two data model
instances so that the input records can be sorted; the Hash-Join op-
erator needs a hash-function and a comparator to compute its result;
the Select operator requires a boolean interpreter to interpret the
result of its filtering condition expression; the Outer-Join operators
need a null writer to generate null fields according to the language-
defined data format. When using Algebricks, the language devel-
oper must provide families of operations (usually one family for
each data type, for example, comparators and hash functions) that
are needed for correct runtime Job construction. Finally, the lan-
guage developer must implement a mapping from function expres-
sions to its own function runtime implementations (e.g., arithmetic
functions, string functions, aggregate function, etc.) so that the data
model agnostic runtime operators (e.g., select, assign, aggregate,
etc.) can evaluate the data model-dependent functions.

3.1 Metadata Interface
Every data-management system that accesses stored data or exter-
nal data sources to process queries requires some form of metadata
that describes locations of the stored files or external data sources
and the various access paths available to get to the data bits. For
example, relational databases use a catalog to store information
(schema) about the tables and indexes present in the database; such
information is used by the query compiler when compiling query
plans. Algebricks provides a Metadata Interface which must be im-
plemented by the author of the host language so that the Algebricks
compiler can access metadata information required during the com-
pilation process. The goal of this interface is to allow Algebricks
access to all relevant details about datasources while not constrain-
ing the host language to a specific representation of the metadata
internally. The Metadata Interface provides the following pieces of
information to the compiler:

• Data Source Metadata. Stored collections of data or external
data sources are both modeled as a Data Source in Algebricks. For
example, in HiveQL, a table would be considered a Data Source
while a dataset or an external data feed would be modeled as
a Data Source in AsterixDB [3, 28]. The Data Source interface
enables Algebricks to get metadata about the data that it represents.
Source metadata can be broadly classified as Logical Metadata and
Physical Metadata. Logical Metadata about a Data Source includes
the type information of the data it represents and other logical
properties such as functional dependencies and integrity constraints
(keys, etc.). Physical Metadata provides details of how the data
is physically stored or obtained, specifically providing partitioning
information and any local ordering present in the stored data.

• Access Path Binding. The Metadata Interface in Algebricks
also serves as a factory to create the runtime binding to connect the
compiled Hyracks job to the “last mile” (operators that are capable
of reading the data from the stored location).

• Function Metadata. Algebricks further uses the Metadata
Interface to find Function Metadata to optimize function applica-
tions that appear in the plan being compiled.
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3.2 Logical Operators
The logical operators in Algebricks draw inspiration from a vari-
ety of algebraic systems proposed for nested-relational models de-
scription [29, 31] and for the processing of semi-structured data
[19, 32, 36]. Tuples in Algebricks are used as an abstraction that
hold values. Algebricks operators logically consume and produce
collections of tuples. Tuples contain fields that are created and ma-
nipulated by the operators; field names are represented by names
prepended with a $ sign in the description that follows. Note that
tuples as used in this section are not to be confused with tuples in
the relational model, as Algebricks tuple field values are allowed to
be of arbitrary data types (not just scalar types like in the relational
model). For example, in AsterixDB, an entire record (a composite
data structure that contains name-value pairs) can be the value of
a field in an Algebricks tuple and a concrete field type (i.e., open
type in AQL [3]) can even be determined at runtime.

Operators may also contain references to scalar or aggrega-
tion functions wrapped inside a generic logical expression interface
which exposes the used fields and allows for field name substitu-
tion. This allows Algebricks to rewrite the plan, while at runtime
native functions are run against the data model of the implemented
language. A logical expression also has methods for computing
logical constraints that can be inferred from that expression. The
constraints currently implemented are functional dependencies and
equivalence classes. They are used during rewriting, e.g. to reason
about interesting orders and partitioning properties. There are three
implementations of the logical expression interface:

• Constant holds constant values.
• VariableReference points to a logical variable (with a logical id)

which is a column in a tuple.
• FunctionCall holds a function identifier and references to argu-

ment expressions. It models all expressions which are not con-
stants nor variables and it is the only kind of expression that is
not a leaf in an expression tree.

FunctionCall is further refined by four implementations:

• ScalarFunctionCall is used for functions that compute their re-
sult by looking at only one tuple.

• AggregateFunctionCall functions produce a result after iterating
over a collection of tuples. SQL aggregate functions belong here.

• StatefulFunctionCall is similar to AggregateFunctionCall, but
produces a result after each tuple, not only at the end. Position
variables in XQuery fall in this category: for every binding in a
for-clause, they output the binding’s index in the sequence.

• UnnestingFunctionCall is given an input tuple and then can be
called multiple times, each time returning a possibly different
result, until a special value is returned. Examples are the range
function in Asterix which returns integer values from a specified
range or the collection function in XQuery which returns nodes
according to the arguments’ available collection.

From a given function expression, a query language implemen-
tation can create the runtime artifact, i.e., an evaluator, which is
capable of implementing its language-specific runtime semantics.
Evaluators run code specific to every language: in the case of
Hivesterix (a HiveQL implementation on top of Algebricks; see
Section 4.1), it runs the native Hive evaluators, which were not
designed specifically for Algebricks. Translation between logical
function calls and evaluators is done at job generation time (Sec-
tion 3.5). This design has the advantage that it allows multiples
ways of implementing the translation from logical to physical. In
Hivesterix, this is done by having the function call expressions
reference their evaluators. In AsterixDB, evaluators register them-
selves in a global map which is keyed on function identifiers.

3.3 Physical Operators
While the logical operators described in Section 3.2 capture the
semantics of an Algebricks logical plan, physical operators are used
to specify the exact algorithm to use for evaluating each operator.
During the query rewrite process (described in Section 3.4) rules
assign physical operators to each logical operator in the query plan,
thus deciding the concrete algorithms to use in evaluating the query.
Most logical operators in Algebricks map to a unique physical
operator. However, Join and Group-By operators have multiple
concrete implementations. Physically, joins can be performed using
the Hybrid-Hash Join [21] or the Nested-Loop Join algorithms.
The Group-By operation can be performed using a pre-clustered
implementation that assumes that its input is already clustered with
respect to the grouping keys or by using a hash-based or sort-based
Group-By algorithm that is capable of spilling to disk when the
in-memory state exceeds available memory [42].

In addition to physical operators corresponding to logical oper-
ators, Algebricks also provides physical operators to enforce order
properties as well as partitioning properties of data distributed to
individual operations during parallel evaluation of the query. Data
distribution between operator partitions is expressed using an Ex-
change operator, motivated by [24]. Currently, the data distribution
strategies offered by Exchange operators in Algebricks are:

• One-to-One Exchange: This strategy is used for the local
movement of data without redistribution of data between partitions.

• Hash Exchange: The Hash Exchange strategy hashes speci-
fied fields to determine how tuples are to be routed to the desti-
nation partitions. This operator helps in partitioning data based on
field values so that two tuples with the same partitioning field val-
ues are routed to the same destination.

• Range Exchange: The Range Exchange strategy uses a pro-
vided range vector to determine the destination partition to send a
record to, based on the values of specified fields. The range vector
maps disjoint ranges of values to target partitions. The value of the
partitioning fields of each record are used to probe the range vector
to decide the target partition. In addition to sending equal values
to the same partition, range-based partitioning also sends close-by
values to the same site. Such a distribution strategy is useful for
performing a global sort in a parallel manner.

• Random Exchange: Sometimes it is desirable to redistribute
data to a set of partitions in a load-balanced manner, but without
necessarily maintaining a value-based partitioning property. The
Random Exchange Operator does exactly that by sending each
record to a randomly determined partition.

• Broadcast Exchange: The Broadcast Exchange strategy is
used to make sure that the same data is delivered to every parti-
tion of the next operator. An example situation for the use of the
Broadcast Exchange operator is while joining a small relation with
a large partitioned relation. The small relation is broadcast to each
machine where a partition of the large relation resides prior to per-
forming a local join at each site.

Moreover, the Hash Exchange, Range Exchange, and Random
Exchange strategies have a second variant each, namely, Hash-
Merge Exchange, Range-Merge Exchange, and Random-Merge
Exchange. A merge variant applies the same partitioning strategy
as the non-merge variant, but uses a priority queue on the receiving
side that merges all incoming streams so as to maintain a specified
sort order that the data originally possessed before partitioning.

In Algebricks, the physical operator layer is extensible. Com-
pilers on top of Algebricks can register new physical operators by
implementing the following interface:

1 public interface IPhysicalOperator {
2 public PhysicalRequirements requiredPropertiesForChildren(
3 IPhysicalPropertiesVector requiredByParent);
4
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5 public void deliveredProperties(ILogicalOperator op,
6 IOptimizationContext context);
7

8 public void contributeRuntimeOperator(
9 IHyracksJobBuilder builder,

10 IOpSchema propagatedSchema, IOpSchema[] inputSchemas,
11 IOpSchema outerPlanSchema);
12 }

The methods requiredPropertiesForChildren and
deliveredProperties compute and propagate ordering, group-
ing and partitioning properties, close in spirit to SCOPE [45]. These
properties guarantee that the correct semantics of the operators are
implemented, e.g., a Pre-Clustered Group-By will have its inputs
partitioned by (a subset of) the group-by key and locally clustered
on each partition, while allowing for optimizations, e.g., if the data
partitioning already satisfies the requirements, no re-partitioning of
the input is needed. The contributeRuntimeOperator method
is essential in the job generation phase, discussed in Section 3.5.

In AsterixDB, we need physical operators for B-tree indexes,
to enable efficient access to the native storage layer [4]. Since they
are AsterixDB specific, they cannot be part of the Algebricks li-
brary, so they are added as language specific operators for ac-
cessing its native storage layer [4]. The BTreeSearch physical op-
erator’s contributeRuntimeOperator constructs a Hyracks B-
Tree search runtime operator which is added to the job DAG to-
gether with an incoming edge from the Hyracks operator that pro-
duces the search intervals. BTreeSearch generally delivers a local
ordering property on the key fields. For a primary index, the opera-
tor also delivers a hash-partitioning property of the key fields. The
operator generally requires its input (a stream of key intervals) be
broadcast over the locations where the index is partitioned, but for
primary indexes, the required property is hash-partitioning.

3.4 Rewriter
The Algebricks optimizer uses Logical-to-Logical rewrite rules to
create alternate logical formulations of the initial DAG. Logical-to-
Physical rewrite rules then generate a DAG of physical operators
that specify the algorithms to use to evaluate the query. For ex-
ample, a Join operator might be rewritten to a Hash-Join physical
operator. We expect that most language implementors using Alge-
bricks will need a rewriting framework to perform additional useful
data model-specific optimizations. The Algebricks toolkit contains
a rewriting framework that allows users to write their own rewrite
rules, but it also comes with a number of “out of the box” rules
that the user can choose to reuse for compiling their high-level lan-
guage. Examples of rules that apply for most languages include:

• Push Selects: Rule for pushing filters lower in the plan to
eliminate data that is not useful to the query.

• Introducing Projects: Rule to limit the width of intermediate
tuples by eliminating values that are no longer needed in the plan.

• Query Decorrelation: Rule to decorrelate nested queries to
use joins when possible.

An example rule implemented in AsterixDB that is not of gen-
eral applicability is one that uses ASTERIX metadata [3] to deter-
mine if a field is present in the declared schema (i.e., if its presence
is known a priori) in order to determine which field access method
to use: field-access-by-index or field-access-by-name.

The rewriter uses the properties below, which, together with the
graph of operators, dictate whether a rule is fired or not.

• Used/Produced Variables. Operators schemas determine how
projections and selections are pushed and are needed by most
rules that change the order of operators.

• Functional Dependencies and Data Properties. The process
of rewriting into a physical DAG uses partitioning properties
and local physical properties (grouping, ordering) of input data

sources. Similar to SCOPE [45], these are computed based on
functional dependencies and variable equivalence classes. Based
on partitioning properties, Data Exchange operators [22, 25] are
introduced to perform data redistribution between partitions.

• Equivalence Classes. The optimizer analyzes equivalence
classes of variables. For example, after an equal inner join, a
variable in the left-hand side join key and its corresponding vari-
able in the right-hand side join key are equivalent after the join
operator. With the information of equivalent classes, functional
dependencies and data properties are further propagated.

3.5 Job Generation
The job generation component outputs a Hyracks job implementing
the Algebricks plan (Figure 2). The job is constructed by walking
the plan and calling the contributeRuntimeOperator method
on the physical operators. A physical operator can contribute either
(a) a full Hyracks operator, (b) a micro-operator, which becomes
part of a pipeline running inside one Hyracks operator, (c) a con-
nector, typically when the Algebricks operator is an exchange. The
Hyracks runtime for DataSourceScan and WriteResult oper-
ators are obtained through the Metadata Interface which also re-
turns partitioning information needed to instantiate those opera-
tors. While the job generator currently only generates Hyracks jobs,
its architecture conceptually supports other runtimes (e.g. Spark,
Tez). E.g., instead of generating Hyracks connectors, in Tez we
would create “edges” and in Spark “partitioners”, which are all sim-
ilar concepts representing data movement from producers to con-
sumers.

4. Using Algebricks
In this section we delve into the details of how three query pro-
cessing systems — Hivesterix (Hive-on-Hyracks), AsterixDB, and
VXQuery — use Algebricks to compile queries.

4.1 Hivesterix
Hivesterix compiles HiveQL queries to run on the Hyracks plat-
form. For each HiveQL query, Hivesterix obtains the physical query
plan from the Hive compiler and turns that into an Algebricks log-
ical plan for Algebricks to produce a Hyracks job that calls back
to Hive’s function evaluators at runtime. Let us walk through a
HiveQL example. A simple HiveQL query shown below filters
records from a TPC-H “lineitem” table to retain only those records
which satisfy the filter predicate. Furthermore, the aggregated over-
all “revenue” from selected records are returned. The “lineitem”
table used in the query has the schema shown in Table 1.

1 select sum(l_extendedprice*l_discount) as revenue

2 from lineitem

3 where l_shipdate >= ’1994-01-01’

4 and l_shipdate < ’1995-01-01’

5 and l_discount >= 0.05 and l_discount <= 0.07

6 and l_quantity < 24;

Hivesterix translates this query into the Algebricks plan below.
In the plan, “algebricks-*” (e.g., alegebricks-gte, algebricks-lte) is a
function that Algebricks can recognize during rewriting but will use
a language-provided runtime implementation at evaluation time.

1 WRITE_RESULT( $$revenue )

2 AGGREGATE( $$revenue:sum($$l_extendedprice*$$l_discount) )

3 SELECT( algebricks-and(

4 algebricks-gte($$1_shipdate, ’1994-01-01’),

5 algebricks-lt($$1_shipdate, ’1995-01-01’),

6 algebricks-gte($$l_discount, 0.05),

7 algebricks-lte($$l_discount, 0.07),

8 algebricks-lt($$l_quantity, 24)) )
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Column Name l orderkey l partkey l suppkey l linenumber l quantity l extendedprice l discount l tax
Data Type bigint bigint bigint bigint float float float float

Column Name l returnflag l linestatus l shipdate l commitdate l receiptdate l shipinstruct l shipmode l comment
Data Type string string string string float float string string

Table 1. Schema of the TPC-H lineitem table.

9 ASSIGN( $$l_shipdate, $$l_discount, $$l_extendedprice,

10 $$l_quantity:

11 column_expr($l, "l_shipdate"),

12 column_expr($l,"l_discount"),

13 column_expr($l, "l_extendedprice"),

14 column_expr($l,"l_quantity") )

15 UNNEST( $$l:dataset(lineitem) )

16 EMPTY_TUPLE_SOURCE

While reading Algebricks plans, it is important to note that the
dataflow is assumed to flow from the bottom of the plan to the top.
The “unnest” operator produces the tuple streams from rows in the
“lineitem” table. The Metadata Interface (Section 3.1) implemented
in Hivesterix probes the Hive meta-store (the catalog database used
by Hive-on-Hadoop) to get schema information about the table
accessed by the query. As seen in Table 1, the “lineitem” table
has sixteen columns. Note that the translator does not prune the
source fields not used in the query. Algebricks includes the logic
necessary to perform this pruning. Continuing on with the initial
plan for the query, the translator creates an “assign” operator to
extract fields from input tuples and a “select” operator to represent
the “where” clause in the query. Finally, the “aggregate” operator
is used to perform the aggregate sum and a “write” operator is used
to write the results to HDFS.

After the translated plan is constructed, Hivesterix proceeds to
optimize the query. The Hivesterix optimizer is populated with a
total of 61 optimization rules out of which 4 rules are specific to
Hivesterix and the rest are part of the common Algebricks frame-
work. Figure 3 visualizes the finally generated Hyracks job from
the optimizer. The Algebricks rewrite rules have all the logic nec-
essary to parallelize the query without the need for Hivesterix to
provide any additional code.

WRITE-RESULT( $$revenue2 ) 

AGGREGATE( $$revenue2:sum($$revenue) ) 

1:1 

AGGREGATE( $$revenue: 
    sum($$l_extendedprice * $$l_discount) ) 
PROJECT( $$l_extendedprice, $$l_discount ) 
SELECT( algebricks-and( 
    algebricks-gte($$1_shipdate, '1994-01-01'), 
    algebricks-lt($$1_shipdate, '1995-01-01'), 
    algebricks-gte($$l_discount, 0.05), 
    algebricks-lte($$l_discount, 0.07), 
    algebricks-lt($$l_quantity, 24)) ) 
ASSIGN( $$l_shipdate, $$l_discount,  
    $$l_extendedprice, $$l_quantity: 
    column_expr($l, "l_shipdate"), 
    column_expr($l, "l_discount"), 
    column_expr($l, "l_extendedprice"), 
    column_expr($l, "l_quantity") ) 

m:1 aggregate 

DATA-SCAN( $$l:lineitem ) 

1:1 

EMPTY_TUPLE_SOURCE 

1:1 

Figure 3. Hivesterix Hyracks Job.

Note that most of the final Hyracks job looks similar to the
original translated plan with the following differences:

• A project operator is injected into the plan to prune unnecessary
columns.

• An additional aggregate operator is injected to perform local
aggregate in order to save the network bandwidth consumption,
since the aggregation function sum is distributive.

• An exchange operator with the associated data redistribution
strategy has been introduced between every pair of operators.
Operators below the lower aggregate operator use only one-to-
one exchange operators. A m-to-one exchange is placed between
the lower (local) aggregate and the higher (global) aggregate.

4.2 Apache AsterixDB
Apache AsterixDB is a full-featured Big Data Management System
for managing large quantities of semi-structured data. It is currently
undergoing incubation at the Apache Software Foundation (ASF).
AsterixDB’s data model supports JSON-like data and adds more
primitive and structured data types to JSON’s data types.

As a slightly more complex example, consider the query be-
low in the Asterix Query Language (AQL) [3]. This query per-
forms a join between two natively stored data collections, “Gleam-
bookMessages” and “GleambookUsers”, that matches records from
the two datasets on the “author id” and “id” fields respectively.
Note that as allowed by the flexible AsterixDB data model, “au-
thor id” is not in the declared schema of “GleambookMessages”
but “id” is part of the “GleambookUsers” schema. Furthermore, we
limit the results to contain users whose “user since” is within a time
range and messages whose “send time” is within a specific time in-
terval. Results are in the form of ADM (Asterix Data Model) [3]
records with two attributes, “uname” and “message”.

1 for $message in dataset GleambookMessages

2 for $user in dataset GleambookUsers

3 where $message.author_id = $user.id

4 and $user.user_since >= datetime(’2008-10-24T14:21:21’)

5 and $user.user_since < datetime(’2008-10-25T14:21:21’)

6 and $message.send_time >=datetime(’2011-02-24T20:01:48’)

7 and $message.send_time < datetime(’2011-02-25T05:01:48’)

8 return {"uname": $user.name, "message": $message.message}

The AQL translator translates the query to the following equiv-
alent logical plan representation:

1 DISTRIBUTE-RESULT( $$20 )

2 PROJECT( $$20 )

3 ASSIGN( $$20:open-record-constructor(

4 "uname", field-access-by-name($$1, "name"),

5 "message", field-access-by-name($$0, "message")) )

6 SELECT( algebricks-and(

7 algebricks-eq(field-access-by-name($$0, "author_id"),

8 field-access-by-name($$1, "id")),

9 algebricks-ge(field-access-by-name($$1, "user_since"),

10 datetime("2008-10-24T14:21:21")),

11 algebricks-lt(field-access-by-name($$1, "user_since"),

12 datetime("2008-10-25T14:21:21")),

13 algebricks-ge(field-access-by-name($$0, "send_time"),

14 datetime("2011-02-24T20:01:48")),

15 algebricks-lt(field-access-by-name($$0, "send_time"),

16 datetime("2011-02-25T05:01:48"))) )

17 UNNEST( $$1:dataset("GleambookUsers") )

18 UNNEST( $$0:dataset("GleambookMessages") )

19 EMPTY_TUPLE_SOURCE
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PROJECT( $$20 ) 
ASSIGN( $$20:open-record-constructor( 
    "uname", $$29, "message", $$30) ) 
PROJECT( $$29, $$30 ) 

Hybrid Hash JOIN( eq($$27, $$26) ) 

1:1 

PROJECT( $$27, $$30 ) 
SELECT( algebricks-and( 
    algebricks-ge($$23,  
        ADateTime: { 2011-02-24T20:01:48.000Z }),  
    algebricks-lt($$23,  
        ADateTime: { 2011-02-25T05:01:48.000Z}))) 
PROJECT( $$23, $$27, $$30 ) 
ASSIGN( $$30, $$27, $$23: 
    field-access-by-name($$0, "message"),  
    field-access-by-name($$0, "author_id"),  
    field-access-by-name($$0, "send_time") ) 
PROJECT( $$0 ) 

m:n hash partitioning 

DATA_SCAN( $$25, $$0:  
    SocialNetworkData.GleambookMessages ) 

1:1 

EMPTY_TUPLE_SOURCE 

1:1 

PROJECT( $$26, $$29 ) 
SELECT(algebricks-and( 
    algebricks-ge($$24,  
        ADateTime: { 2008-10-24T14:21:21.000Z }),  
    algebricks-lt($$24,  
        ADateTime: { 2008-10-25T14:21:21.000Z}))) 
PROJECT( $$24, $$26, $$29 ) 
ASSIGN( $$29, $$24: 
    field-access-by-name($$1, "name"),  
    field-access-by-name($$1, "user_since") ) 

DATA_SCAN( $$26, $$1:  
    SocialNetworkData.GleambookUsers ) 

1:1 

EMPTY_TUPLE_SOURCE 

1:1 

1:1 

DISTRIBUTE_RESULT( $$20 ) 

1:1 

Figure 4. AsterixDB Hyracks Job.

Then, the Algebricks optimizer transforms the initial logical
plan into an optimized physical plan by applying logical and phys-
ical rewriting rules. The optimizer utilizes 48 AsterixDB specific
rules and 41 generic Algebricks rules. Figure 4 visualizes the gen-
erated Hyracks job for this example query.

Note that the final optimized Hyracks job has the following
main differences from the original plan:

• A hybrid hash join operator is introduced to evaluate the equality
join condition.

• The original select conditions are pushed into the two join
branches.

• Project operators are injected into the plan wherever necessary.
• A hash partition exchange operator is enforced for the “Gleam-

bookMessages” branch to make sure data from this branch is
partitioned by “author id”. Note that there is no re-partition ex-
change for the “GleambookUsers” branch because data from this
branch has already been hash partitioned across the cluster ac-
cording to the primary key “id”.

4.3 Apache VXQuery
Apache VXQuery is an XQuery processor built for handling large
collections of XML data. It uses Algebricks and Hyracks to process

XML by adding a binary representation of the XQuery Data Model
(XDM), an XQuery parser, an XQuery optimizer, and the data
model dependent expressions. VXQuery is intended to implement
the complete XQuery specification.

The example XQuery statement is based on weather data pro-
vided by the NOAA [1]. The query finds all precipitation (”PRCP”)
records for the ”GHCND:USW00014771” station that occurred
during 1999. The precipitation readings are recorded in tenths of
an inch. After summing all readings, the result is divided by 10 to
find the total precipitation for 1999 in inches. The query (also in-
cluded in our experiments as VQ2) is shown below followed by a
sample XML weather record:

1 fn:sum(

2 for $r in collection("sensors")/dataCollection/data

3 where $r/station eq "GHCND:USW00014771"

4 and $r/dataType eq "PRCP"

5 and year-from-dateTime(xs:dateTime(data($r/date)))

6 eq 1999

7 return $r/value

8 ) div 10

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <dataCollection pageCount="1" totalCount="3">

3 <data>

4 <date>1999-12-02T00:00:00.000</date>

5 <dataType>PRCP</dataType>

6 <station>GHCND:USW00014771</station>

7 <value>0</value>

8 <attributes>

9 <attribute></attribute>

10 <attribute></attribute>

11 <attribute>a</attribute>

12 <attribute></attribute>

13 </attributes>

14 </data>

15 <data>

16 <date>1999-12-02T00:00:00.000</date>

17 <dataType>TMIN</dataType>

18 <station>GHCND:USW00014771</station>

19 <value>-6</value>

20 <attributes>

21 <attribute></attribute>

22 <attribute></attribute>

23 <attribute>0</attribute>

24 <attribute></attribute>

25 </attributes>

26 </data>

27 </dataCollection>

Apache VXQuery begins by translating the XQuery statement
into a logical query plan using the Algebricks logical operators. The
translator follows the XQuery specification and creates a correct
Algebricks query plan with all the XQuery type checking expres-
sions translated into the query plan. The optimizer will use these
expressions to type check the query plan.

XQuery is a complex language with well-defined but compli-
cated semantics for various parts of the language [2]. Below we
show the initial Algebricks logical plan generated by the VXQuery
translator for the weather query. Note that what appears as a sim-
ple path-step in XQuery (the / operator), is equivalent to a more
complex expression that involves unnesting, sorting, duplicate-
elimination, etc. For example, lines 68-74 in the listing below rep-
resent ”/dataCollection”. Please note that while we do not expect
the reader to glean all the details of the plan shown, we wish to
communicate the fact that Algebricks is capable of implementing
the semantics of a complex query language like XQuery.
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1 DISTRIBUTE-RESULT( $$59 )

2 UNNEST( $$59:iterate($$58) )

3 ASSIGN( $$58:divide(promote(<anyAtomicType?>, data($$56)),

4 promote(<anyAtomicType?>, data($$57))) )

5 ASSIGN( $$57:10 )

6 ASSIGN( $$56:sum(promote(<anyAtomicType*>, data($$55))) )

7 SUBPLAN {

8 AGGREGATE( $$55:sequence($$54) )

9 ASSIGN( $$54:sort-distinct-nodes-asc-or-atomics($$53) )

10 SUBPLAN {

11 AGGREGATE( $$53:sequence(child("value",

12 treat(<node*>, $$51))) )

13 UNNEST( $$51:iterate($$49)

14 NESTED-TUPLE-SOURCE

15 }

16 ASSIGN( $$49:treat(<item>, $$19) )

17 SELECT( boolean($$48) )

18 ASSIGN( $$48:and(boolean(data($$36)),

19 boolean(data($$47))) )

20 ASSIGN( $$47:value-eq(promote(<anyAtomicType?>,

21 data($$45)), promote(<anyAtomicType?>,data($$46))) )

22 ASSIGN( $$46:1999 )

23 ASSIGN( $$45:year-from-dateTime(promote(<dateTime?>,

24 data($$44))) )

25 ASSIGN( $$44:cast(<dateTime?>, $$43) )

26 ASSIGN( $$43:data(treat(<item*>, $$42)) )

27 ASSIGN( $$42:sort-distinct-nodes-asc-or-atomics($$41) )

28 SUBPLAN {

29 AGGREGATE( $$41:sequence(child("date",

30 treat(<node*>, $$39))) )

31 UNNEST( $$39:iterate($$37) )

32 NESTED-TUPLE-SOURCE

33 }

34 ASSIGN( $$37:treat(<item>, $$19) )

35 ASSIGN( $$36:and(boolean(data($$27)),

36 boolean(data($$35))) )

37 ASSIGN( $$35:value-eq(promote(<anyAtomicType?>,

38 data($$33)), promote(<anyAtomicType?>,data($$34))) )

39 ASSIGN( $$34:"PRCP" )

40 ASSIGN( $$33:sort-distinct-nodes-asc-or-atomics($$32))

41 SUBPLAN {

42 AGGREGATE( $$32:sequence(child("dataType",

43 treat(<node*>, $$30))) )

44 UNNEST( $$30:iterate($$28) )

45 NESTED-TUPLE-SOURCE

46 }

47 ASSIGN( $$28:treat(<item>, $$19) )

48 ASSIGN( $$27:value-eq(promote(<anyAtomicType?>,

49 data($$25)),promote(<anyAtomicType?>,data($$26)) ) )

50 ASSIGN( $$26:"GHCND:USW00014771" )

51 ASSIGN( $$25:sort-distinct-nodes-asc-or-atomics($$24) )

52 SUBPLAN {

53 AGGREGATE( $$24:sequence(child("station",

54 treat(<node*>, $$22))) )

55 UNNEST( $$22:iterate($$20) )

56 NESTED-TUPLE-SOURCE

57 }

58 ASSIGN( $$20:treat(<item>, $$19) )

59 UNNEST( $$19:iterate($$18) )

60 ASSIGN( $$18:sort-distinct-nodes-asc-or-atomics($$17) )

61 SUBPLAN {

62 AGGREGATE( $$17:sequence(child("data",

63 treat(<node*>, $$15))) )

64 UNNEST( $$15:iterate($$13) )

65 ASSIGN( $$13:sort-distinct-nodes-asc-or-atomics($$12))

66 NESTED-TUPLE-SOURCE

67 }

68 SUBPLAN {

69 AGGREGATE( $$12:sequence(child("dataCollection",

70 treat(<node*>, $$10))) )

71 UNNEST( $$10:iterate($$8) )

72 ASSIGN( $$8:sort-distinct-nodes-asc-or-atomics($$7) )

73 NESTED-TUPLE-SOURCE

74 }

75 SUBPLAN {

76 AGGREGATE( $$7:sequence(child("root",

77 treat(<node*>, $$5))) )

78 UNNEST( $$5:iterate($$3) )

79 NESTED-TUPLE-SOURCE

80 }

81 ASSIGN( $$3:collection(promote(<string>, data($$2))) )

82 ASSIGN( $$2:treat(<item>, $$1) )

83 ASSIGN( $$1:"/sensors" )

84 NESTED-TUPLE-SOURCE

85 }

86 EMPTY-TUPLE-SOURCE

After translating the plan, the Algebricks query optimization
phase uses 22 Apache VXQuery rules and 30 generic Algebricks
rules to create an optimized logical plan. Apache VXQuery rules
apply basic XQuery data type rules and path step expression op-
timizations to streamline the plan. One of Algebricks’ benefits to
this plan is a more efficient way to calculate the aggregation. Using
Algebricks logical operators, the built-in rules enable efficient two-
step aggregation across the cluster. Further, the VXQuery query
optimizer provides data specific details - enabling parallelization
of the query plan. Apache VXQuery achieves parallel execution
simply by providing XQuery function properties to Algebricks.

In the job generation phase, the VXQuery Metadata Interface
implementation finds how the non-fragmented XML documents are
partitioned throughout a cluster. Each machine has a unique set of
XML documents residing in a directory specified by the query’s
fn:doc or fn:collection function. While AsterixDB has a native
storage option, Apache VXQuery scans external XML documents
for each query. The weather query uses the collection function to
identify the “sensors” directory on all nodes. Using the plan and
the metadata interface, Algrebricks creates the Hyracks job shown
in Figure 5.

m:1 aggregate 

WRITE-RESULT( $$59) 

m:1 aggregate1

UNNEST( $$59:iterate($$58) ) 
ASSIGN( $$58:divide(data($$55), 10) ) 
AGGREGATE( $$55:sum($$65) ) 

1:1 

AGGREGATE( $$65:sum(data($$53)) ) 
ASSIGN( $$53:child("value", $$5) ) 
SELECT( boolean(and( 
    boolean(value-eq(data(child("station”, $$5)),  
        "GHCND:USW00014771")), 
    boolean(value-eq(data(child("dataType", $$5)),  
        "PRCP")),  
    boolean(value-eq(year-from-dateTime( 
        cast(<dateTime?>, data(child("date", $$5)))), 
        1999)))) ) 

DATA-SCAN( $$5:collection(“sensors”,  
    “/dataCollection/data” ) 

1:1 

EMPTY_TUPLE_SOURCE 

1:1 

Figure 5. VXQuery Hyracks Job.

In the current implementation of VXQuery, we assume a collec-
tion of many (typically small) XML files. Nevertheless, Algebricks
can also handle parallelization of queries over a single large doc-
ument stored on a distributed storage system such as HDFS. We
are currently implementing a parallel XML parser similar to [35]
to enable these use cases.

5. Experimental Evaluation
In this section, we demonstrate experimentally the parallel effi-
ciency of Hivesterix, AsterixDB, and VXQuery. In addition to
showing proof of their existence, these experiments aim to expose
the direct benefits of using Algebricks in achieving good paral-
lelization characteristics. We report performance for a representa-
tive set of queries for each system for different sizes of data and
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different numbers of nodes, with the goal of showing the scale-up
and speed-up characteristics of each system. (It is not a goal of the
paper to compare query performance across the different systems.)

5.1 Hivesterix
Cluster: We ran Hivesterix experiments on a 40-node cluster with
a Gigabit Ethernet switch. Each node had a Quadcore Intel Xeon
CPU E3-1230 V2 3.30GHz, 16GB of RAM, and 3TB RAID0
(3x1TB disks, linux software RAID). We compared Hivesterix
and Hive-on-Hadoop (Hive-0.12.0). In the experiments, the RAID0
disk on each node is used for the HDFS data directory and the
spilling workspace for query processing. Data: For speedup exper-
iments, we used TPC-H 250× ( 250GB). For scaleup experiments,
we used TPC-H 250×, 500×, 750×, 1000× ( 1TB) for 10, 20, 30,
and 40 machines respectively. Configuration: We ran eight parti-
tions per machine. Queries: We report three representative queries
from the TPC-H benchmark, a filter and aggregate query, a group-
by query, and a join with group-by query, shown below.

HQ1: Filter + Aggregate Query (TPC-H Q14)

1 select sum(l_extendedprice*l_discount) as revenue

2 from lineitem

3 where l_shipdate >= ’1994-01-01’

4 and l_shipdate < ’1995-01-01’

5 and l_discount >= 0.05 and l_discount <= 0.07

6 and l_quantity < 24;

HQ2: Group-by Query (TPC-H Q1)

1 select l_returnflag, l_linestatus, sum(l_quantity),

2 sum(l_extendedprice),

3 sum(l_extendedprice*(1-l_discount)),

4 sum(l_extendedprice*(1-l_discount)*(1+l_tax)),

5 avg(l_quantity), avg(l_extendedprice), avg(l_discount),

6 count(1)

7 from lineitem

8 where l_shipdate <= ’1998-09-02’

9 group by l_returnflag, l_linestatus

10 order by l_returnflag, l_linestatus;

HQ3: Join + Group-By Query (TPC-H Q9)

1 select nation, o_year, sum(amount) as sum_profit

2 from (

3 select n_name as nation, year(o_orderdate) as o_year,

4 l_extendedprice * (1 - l_discount) -

5 ps_supplycost * l_quantity as amount

6 from orders o join (

7 select l_extendedprice, l_discount, l_quantity,

8 l_orderkey, n_name, ps_supplycost

9 from part p join (

10 select l_extendedprice, l_discount, l_quantity,

11 l_partkey, l_orderkey, n_name, ps_supplycost

12 from partsupp ps join (

13 select l_suppkey, l_extendedprice, l_discount,

14 l_quantity, l_partkey, l_orderkey, n_name

15 from (

16 select s_suppkey, n_name

17 from nation n join supplier s

18 on n.n_nationkey = s.s_nationkey

19 ) s1 join lineitem l on s1.s_suppkey = l.l_suppkey

20 ) l1 on ps.ps_suppkey = l1.l_suppkey

21 and ps.ps_partkey = l1.l_partkey

22 ) l2 on p.p_name like ’%green%’

23 and p.p_partkey = l2.l_partkey

24 ) l3 on o.o_orderkey = l3.l_orderkey

25 ) profit

26 group by nation, o_year

27 order by nation, o_year desc;

As indicated by Figures 6 and 7, all queries show good speed-up
and scale-up characteristics. All three benefit from scanning blocks

of HDFS data in parallel. In HQ1 and HQ2, filtering is parallelized
and aggregation is done in two phases, reducing the amount of data
transferred across machines. HQ3 benefits from parallelizing joins
across the cluster. We have also executed TPC-H using Hive-on-
Hadoop (Hive-0.12.0) and a comparison with Hivesterix is shown
in Figure 8. (An interesting future exercise might include the new
generation of ”SQL on Hadoop” systems.)

Figure 6. Hivesterix cluster speed up (percentage of 10 machines).

Figure 7. Hivesterix cluster scale up (percentage of 10 machines).
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Figure 8. Hivesterix and Hive-on-Hadoop Comparison on TPC-H.

5.2 Apache AsterixDB
Cluster: We ran the reported experiments on a 10-node IBM x3650
cluster with a Gigabit Ethernet switch. Each node had one Intel
Xeon processor E5520 2.26GHz with four cores, 12GB of RAM,
and four 300GB, 10K RPM hard disks. On each machine 3 disks
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were used for data. The other disk was used to store ”system’s data”
(transaction logs and system logs). Data: We used a synthetic data
generator to create records for the collections related to these tests
(“GleambookUsers” etc.) For the speedup experiments, we gen-
erated 338GB of data, loaded on 9, 18 and 27 partitions. For the
scaleup experiments, we generated 169GB, 338GB and 507GB of
data for 9, 18 and 27 partitions respectively. A secondary index was
constructed on the user since field of the GleambookUsers dataset.
Configuration: We ran three partitions on each machine. We as-
signed a maximum of 6GB of memory to each node controller.
The buffercache size for each node controller was set to be 1GB.
Queries: We executed four representative AQL queries, as follows.

AQ1: Filter Query

1 for $t in dataset GleambookMessages

2 where $t.author_id < 0

3 return $t

AQ2: Filter Query Using Indexes

1 for $user in dataset GleambookUsers

2 where $user.user_since >= datetime(’2005-08-16T15:52:14’)

3 and $user.user_since < datetime(’2005-08-16T15:57:14’)

4 return $user

AQ3: Aggregate Query

1 avg(

2 for $t in dataset ChirpMessages

3 where $t.send_time >= datetime(’2008-11-15T19:42:51’)

4 and $t.send_time < datetime(’2008-11-15T23:27:51’)

5 return string-length($t.message_text)

6 )

AQ4: Join Query

1 for $message in dataset GleambookMessages

2 for $user in dataset GleambookUsers

3 where $message.author_id = $user.id

4 and $user.user_since >= datetime(’2011-02-24T20:01:48’)

5 and $user.user_since < datetime(’2011-02-25T05:01:48’)

6 and $message.send_time >=datetime(’2008-10-24T14:21:21’)

7 and $message.send_time < datetime(’2008-10-25T14:21:21’)

8 return {

9 "uname": $user.name,

10 "message": $message.message

11 }

Figure 9. AsterixDB cluster speed up (percentage of 3 machines).

Figure 9 and Figure 10 depict the parallel speedup and scaleup
of the four AQL queries. AQ1 and AQ3 benefit from the same rules

Figure 10. AsterixDB cluster scale up (percentage of 3 machines).

in Algebricks that helped HQ1 and HQ2 in Hivesterix. Scanning
partitions and filtering is done in parallel on the different nodes
of the cluster. In AQ3, the aggregation is performed in two phases
to reduce network transfer. Join parallelism allows AQ4 to use the
cluster effectively. AQ2 uses an index in AsterixDB to evaluate fil-
ters instead of scanning all the data. The index range scan is per-
formed in parallel on the different partitions. Note that Algebricks
includes facilities for utilizing indexes for query processing, but
AsterixDB is currently the only system built on top of Algebricks
that implements indexing at the storage level. Detailed AsterixDB
performance characteristics can be found in [3].

5.3 Apache VXQuery
Cluster: Experiments were run on a cluster whose nodes have two
Dual-Core AMD Opteron(tm) processor 2212 HE CPUs, 8GB of
RAM, and two 1TB hard drives. Data: We used NOAA’s Global
Historical Climatology Network (GHCN)-Daily dataset that in-
cludes daily summaries of climate recordings (e.g., high and low
temperatures, wind speed, rainfall). The complete XML data def-
inition can be found on NOAA’s site [1]. For the speed-up exper-
iments, we used 57GB of weather XML data partitioned over the
number of machines (varied from 1 to 8) for each run. The scale-up
experiments were performed while keeping the amount of data per
machine constant at 7.2GB and varying the number of machines
from 1 to 8. Configuration: We ran four partitions per machine.
Queries: We used the following three XQuery queries:

VQ1: Filter Query
Query VQ1 filters the data to show all readings that report an
extreme wind warning. Such warnings occur when the wind speed
exceeds 110 mph. (The wind measurement unit, tenths of a meter
per second, has been converted to miles per hour.)

1 for $r in collection("sensors")/dataCollection/data

2 where $r/dataType eq "AWND"

3 and xs:decimal(data($r/value)) gt 491.744

4 return $r

VQ2: Aggregate Query
Query VQ2 finds the annual precipitation for Syracuse, NY using
the airport weather station (USW00014771) for 1999. The precipi-
tation is reported in tenths of an inch.

1 sum(

2 for $r in collection("sensors")/dataCollection/data

3 where $r/station eq "GHCND:USW00014771"

4 and $r/dataType eq "PRCP"

5 and year-from-dateTime(xs:dateTime(data($r/date)))

6 eq 1999

7 return $r/value

8 ) div 10

 431



VQ3: Join + Aggregate Query
Query VQ3 finds the lowest recorded temperature (TMIN) in the
United States for 2001. This query includes nested loops which
are commonly used in XQuery. While XQuery does not have a
join expression, these nested loops can be converted into a join
operation using the Algebricks join operator. Converting a nested
loop into a more efficient join algorithm provides the expected
performance improvement for Apache VXQuery.

1 min(

2 for $s in

3 collection("stations")/stationCollection/station

4 for $r in collection("sensors")/dataCollection/data

5 where $s/id eq $r/station

6 and (some $x in $s/locationLabels satisfies

7 ($x/type eq "CNTRY" and $x/id eq "FIPS:US"))

8 and $r/dataType eq "TMIN"

9 and year-from-dateTime(xs:dateTime(data($r/date)))

10 eq 2001

11 return $r/value

12 ) div 10

Figure 11. VXQuery cluster speed up (percentage of 1 machine).

Figure 12. VXQuery cluster scale up (percentage of 1 machine).

Figure 11 and Figure 12 show the parallel speedup and scaleup
of Apache VXQuery. The optimizations implemented in Alge-
bricks help VQ1, VQ2, and VQ3 to achieve good parallel perfor-
mance by parallelizing scans, filters, aggregations, and joins. More
performance results for the current Apache VXQuery implementa-
tion on top of Algebricks can be found in [16].

6. Related Work
The early 1980s to the mid 1990s saw a flurry of parallel database
research that resulted in research systems like Gamma [22], the
Grace Database machine [23], and Bubba [12]. The Teradata [38]

commercial parallel database system was built during that same
time period. All of these systems were designed to evaluate SQL
on the flat relational data model without the aim of extensibility on
either the query language or data model fronts. Since these systems
targeted relatively small clusters, fault-tolerance during query pro-
cessing was also not a goal. However, in terms of parallel query
evaluation, they exploited partitioned, pipelined, and independent
parallel query evaluation techniques [20].

Genesis [10] proposed decomposing database systems into
smaller reusable components so that a new custom database sys-
tem could be assembled from the pieces. The design goals of
Hyracks [13] and Algebricks are strongly motivated by reusabil-
ity similar in spirit to Genesis but allow more flexibility in terms of
the data model (as Genesis largely targeted relational style queries).

Integration of abstract data types into database systems [40] was
a first step into achieving data model extensibility. EXODUS [15]
was a system built in an era of object-oriented databases when there
was heavy experimentation at the language and data model levels.
The high-level goal of EXODUS was to provide a general config-
urable tool-set to build data management systems efficiently. In this
regard, the goals of this work are similar to those of EXODUS. The
EXODUS optimizer generator [27] was built as part of the EXO-
DUS project to provide an extensible optimizer generator. System
designers could use its extensibility to implement their own equiva-
lence rules that the rewriter applied to enumerate query plans, much
like the rewrite rule system in Algebricks. Volcano [25] and Cas-
cades [26] took the work from EXODUS further by adding support
for parallelism. Algebricks continues this line of research and ad-
dresses the challenges of the post-MapReduce world, where query
plans are executed by highly scalable runtime engines.

Google’s unveiling of MapReduce [18] led to a renewed interest
in creating systems for evaluating programs in parallel on shared-
nothing clusters. Microsoft’s Dryad platform [30] allows develop-
ers to think of parallel programs as a DAG of vertices and edges.
DryadLINQ [43] and the SCOPE runtime system [45], both imple-
mented on top of Dryad, are functionally close to Algebricks. How-
ever, their extensibility is limited to .NET framework classes and
the LINQ/SCOPE language, while Algebricks has been used to im-
plement languages ranging from the SQL-like HiveQL to XQuery.

Nephele/PACTs [11] extends the MapReduce model with addi-
tional second-order operators (e.g. Cross, Match, CoGroup) while
maintaining the rigidity of having a fixed set of operators known
to the system. SparkSQL [7] and Spark DataFrames [5] share
the common Catalyst optimizer[9] and its relational algebra un-
derneath, but they are bound to a predefined data model. Apache
Calcite[14], formerly Optiq, is a dynamic framework for parsing
and planning queries now incubating at Apache; Calcite did not
explore the query language dimension, focusing only on SQL,
while Algebricks has been used for other languages like AQL and
XQuery. Orca [39] is a new implementation of a top-down opti-
mizer that exploits SMP parallelism to optimize SQL queries.

Another technique that was popular a few years ago for imple-
menting new data models and query languages was to build a map-
ping from those models to the relational model and use an RDBMS
to store the data in the form of tables. Queries in the new language
are then translated into SQL to produce the correct output.

7. Conclusions and Future Work
We presented the design, implementation, use cases, and evaluation
of Algebricks, a data model-agnostic query compiler backend built
on the Hyracks parallel dataflow engine. We described how three
query processing systems — Hivesterix, Apache AsterixDB, and
Apache VXQuery — have been built using Algebricks with good
scaling properties. While Algebricks is built on Hyracks, a similar
architecture and methodology could be adopted by other Big Data
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stacks, e.g., Spark [44], Stratosphere [11], or Tez [8]. We have
made several open source releases of the Algebricks framework
under the Hyracks repository (http://code.google.com/p/hyracks),
and we invite other Big Data researchers to download and try the
system. (It would be particularly interesting to see it explored for
array- or graph-based languages.) In the future, we plan to add cost-
based optimizations to Algebricks and to enhance the interactions
between Algebricks and the Hyracks scheduler to support dynamic
query re-optimization at execution time.
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