
	

UNIVERSITY	OF	CALIFORNIA,	
IRVINE	

	
	

Active	Replication	in	AsterixDB	
	

THESIS	
	
	

submitted	in	partial	satisfaction	of	the	requirements	
for	the	degree	of	

	
	

MASTER	OF	SCIENCE	
	

in	Computer	Science	
	
	
by	
	
	

Akshay	Manchale	Sridhar	
	
	
	
	
	
	
	

																																																															Thesis	Committee:	
																															Professor	Michael	J.	Carey,	Chair	

	Professor	Chen	Li	
																																														Assistant	Professor	Ardalan	Amiri	Sani	

	
	
	
	
	
	
	

2017	 	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

©	2017	Akshay	Manchale	Sridhar	

	

	iii	

	
TABLE	OF	CONTENTS	

	
	
	

																												Page	
	
LIST	OF	FIGURES	 																																								v	
	
LIST	OF	TABLES	 																																							vi	
	
ACKNOWLEDGMENTS	 																																					vii	
	
ABSTRACT	OF	THE	THESIS	 																																				viii	
	
	

1		Introduction	...	1	
2		Related	Work	..	4	

2.1	Data	Replication	in	Centralized	Databases	..	4	
2.2	Data	Replication	in	Distributed	Databases	..	5	

3		AsterixDB	Background	..	7	
3.1	Architecture	and	Data	Model	..	7	
3.2	Storage	and	Transactional	Model	..	9	
3.3	Passive	Replication	in	AsterixDB	..	13	
3.4	Fault-Tolerance	..	15	

4		Active	Replication	in	AsterixDB	...	18	
4.1	Basic	Architecture	..	18	
4.2	Log	Replication	Protocol	..	21	
4.3	Log	Replay	..	23	
4.4	Index	Management	..	26	
4.5	Fault-Tolerance:	Node	Failover	..	29	
4.6	Fault	Tolerance:	Node	Failback	..	31	
4.7	Design	Discussion	...	32	

4.7.1	Data	Consistency	..	32	
4.7.2	Index	Memory	Management	..	34	
4.7.3	Flow	Control	for	Replay	Operations	...	34	

5		Initial	Performance	Evaluation	..	36	
5.1	Experimental	Setup	..	36	
5.2	Results	and	Analysis	...	38	

5.2.1	Ingestion	Time	..	38	
5.2.2	Failover	Time	..	44	
5.2.3	Failback	Time	..	46	
5.2.4	Query	Response	Time	...	46	

	

	iv	

6		Conclusion	and	Future	Work	...	49	
6.1	Conclusion	..	49	
6.2	Future	Work	...	50	

6.2.1	Weakly	Consistent	Querying	...	50	
6.2.2	Delta	Recovery	..	50	

Bibliography	...	51	
	 	

	

	v	

	
LIST	OF	FIGURES	

	
Figure	3.1:	AsterixDB	Architecture	...	8	

Figure	3.2:	Creating	a	dataverse,	a	data	type,	and	a	dataset.	..	9	

Figure	3.3:	AsterixDB	Node	Controllers	..	10	

Figure	3.4:	Node	Controllers	with	Passive	Replication	...	14	

Figure	4.1:	Node	Controllers	running	with	Active	Replication	Factor	of	2	19	

Figure	4.2:	Job	Execution	with	Active	Replication	..	21	

Figure	4.3:	Log	Replay	Management	..	24	

Figure	4.4:	Handling	Flush	operations	for	inactive	partition	indexes	...	28	

Figure	5.1:	DDL	used	to	create	the	dataset	for	experiments	...	37	

Figure	5.2:	Data	Ingestion	Time	with	Replication	Factor	2	..	38	

Figure	5.3:	Data	Ingestion	Time	with	Replication	Factor	3	..	40	

Figure	5.4:	Percent	increase	in	ingestion	time	with	Active	Replication	factor	2	and	3	41	

Figure	5.5:	Aggregated	Network	Bandwidth	with	Replication	Factor	2	42	

Figure	5.6:	Aggregated	Network	Bandwidth	with	Replication	Factor	3	43	

Figure	5.7:	Recovery	time	for	a	cluster	with	Active/Passive	Replication	factor	of	2	44	

Figure	5.8:	Failback	Time	for	a	cluster	with	Active/Passive	Replication	Factor	of	2	46	

Figure	5.9:	Range	Query	used	during	ingestion	...	47	

Figure	5.10:	Query	Response	Time	during	Ingestion	...	48	

	

	

	 	

	

	vi	

	
LIST	OF	TABLES	

	
Table	3.1:	Replica	Placement	in	a	three-node	cluster	with	Replication	Factor	2	14	

Table	4.1:	Partitions	and	their	status	in	Node	Controllers	...	20	

Table	4.2:	Transaction	Log	Record	structure	..	22	

Table	 4.3:	 Partition-Node	 assignments	 initially,	 after	 failure	 of	 Node	 1,	 and	 after	 failback	 of	

Node	1	with	initial	Replication	Factor	3	...	31	

Table	5.1:	Dataset	Size	...	37	

	
	 	

	

	vii	

	
ACKNOWLEDGMENTS	

	
I	would	like	to	first	thank	my	thesis	advisor,	mentor,	and	a	friend,	Professor	Michael	Carey,	

who	has	been	immensely	supportive	from	the	beginning.	This	thesis	would	not	have	been	

possible	without	him	steering	me	to	ask	the	right	questions	while	giving	me	the	freedom	to	

answer	those	questions.	His	humility,	passion,	knowledge	and	dedication	have	shown	me	

how	to	be	a	good	researcher.			

	

I	would	like	to	thank	the	AsterixDB	community	for	their	support	whenever	I	needed	help.	I	

would	 like	 to	 thank	 Ian	Maxon,	 for	 being	 a	 good	 friend,	 and	his	 continuous	 support	 and	

inputs	have	been	truly	valuable	in	understanding	and	working	with	AsterixDB.		

	

I	would	 to	 thank	my	committee	members	Professors	Chen	Li	 and	Adralan	Amiri	Sani	 for	

reviewing	my	thesis.		

	

The	work	reported	in	this	thesis	has	been	supported	in	part	by	NSF	IIS	award	1059436	and	

NSF	 CNS	 award	 1305430.	 In	 addition,	I	 would	 like	 to	 acknowledge	 the	 Donald	 Bren	

Foundation	for	its	generosity	in	contributing	to	the	scientific	investigation	that	has	driven	

my	research	and	academic	goals.	

	

	

	
	 	

	

	viii	

	
ABSTRACT	OF	THE	THESIS	

Active	Replication	in	AsterixDB	

By		

Akshay	Manchale	Sridhar	

Master	of	Science	in	Computer	Science	

University	of	California,	Irvine,	2017	

Professor	Michael	J.	Carey,	Chair	

AsterixDB	 is	 a	Big	Data	Management	System	 (BDMS)	designed	 to	manage	data	on	

clusters	 of	 commodity	 hardware.	 In	 any	distributed	 system,	 failures	 of	 hardware	 and/or	

software	components	in	the	system	are	an	eventual	certainty	and	a	choice	has	to	be	made	

between	consistency	and	availability.	AsterixDB,	being	a	CP	system	(as	opposed	to	an	AP	

system),	 sacrifices	 availability	 when	 there	 is	 a	 partition	 in	 the	 network	 and	 seeks	 to	

maintain	data	consistency.		

In	 this	 thesis,	 we	 describe	 a	 replication	 protocol	 called	 Active	 Replication	 that	

eagerly	replicates	the	state	of	a	node	in	the	cluster	to	one	or	more	replicas	and	provides	a	

Mean	 Time	 to	 Recovery	 (MTTR)	 close	 to	 the	 time	 needed	 to	 detect	 a	 given	 failure.	 The	

protocol	works	without	sacrificing	the	consistency	of	the	system	by	exploiting	properties	of	

AsterixDB’s	 record-oriented	 transactional	 model	 and	 the	 lifecyle	 of	 its	 Log-Structured	

Merge-trees.	We	describe	the	implementation	of	the	Active	Replication	protocol	as	well	as	

the	fault-tolerance	mechanism	built	on	top	of	the	protocol.	We	evaluate	the	performance	of	

the	protocol	and	show	how	to	achieve	a	 low	MTTR	with	a	10–25%	decrease	 in	 ingestion	

throughput.	

	

	1	

Chapter	1		
	

	

Introduction		
	
Distributed	 data	 management	 systems	 have	 overtaken	 centralized	 RDBMS	 systems	 in	

recent	 years	 due	 to	 the	 volume	 of	 data	 involved.	Many	 systems	 have	 been	 developed	 in	

recent	 years	 to	 handle	 the	 scale	 of	 data	 that	 we	 see	 today.	 However,	 scaling	 out	

horizontally	 by	 adding	 more	 systems	 (nodes)	 connected	 by	 a	 network	 introduces	 new	

failure	 models	 that	 have	 to	 be	 carefully	 handled.	 Additionally,	 there	 needs	 to	 be	 some	

coordination	 between	 the	 systems	 to	make	 them	 behave	 like	 a	 single	 system.	Much	 like	

software,	hardware	is	not	free	from	faults	and	can	fail	without	fair	warning.	These	failures	

are	more	common	in	distributed	systems	due	to	the	number	of	components	involved	and	

the	 fact	 that	 they	 are	 physically	 separated	 from	 each	 other	 and	 connected	 by	 unreliable	

networks.	 For	 instance,	 the	mean	 time	 to	 failure	 (MTTF)	 for	 a	 disk	 to	 fail	 in	 a	 cluster	 of	

systems	is	much	higher	than	the	MTTF	per	driver	mentioned	in	the	device	specification	[1].	

Certain	applications	demand	SLAs	that	have	very	stringent	requirements	on	being	available	

in	case	of	failures,	and	how	we	recover	from	failures	is	as	important	a	design	question	as	

the	rest	of	the	system.	

	

	

	2	

Introducing	 redundancy	 is	 a	 common	 approach	 to	 handling	 failures	 and	 to	 remaining	

available.	Redundancy	can	be	employed	either	 in	the	hardware,	software	or	both.	 In	data	

management	systems,	replication	is	a	common	approach	to	handling	failures	by	duplicating	

the	underlying	data	in	multiple	physical	systems.	Duplicating	the	state	of	a	system	comes	

with	 the	 costs	of	 increased	communication	overheads	and	synchronization	 to	maintain	a	

consistent	 state.	 Data	 replication	 protocols	 are	 complex	 and	 can	 be	 implemented	 in	

multiple	 layers	 of	 a	 system.	 System	 design	 decisions	 have	 to	 make	 tradeoffs	 between	

availability	 and	 consistency,	 throughput	 and	 latency	 etc.	 Over	 the	 years,	 many	 data	

replication	 methods	 have	 been	 developed	 [2,	 3],	 each	 with	 its	 own	 advantages	 and	

disadvantages	[4].		

	

In	 this	 thesis,	 we	 have	 implemented	 a	 new	 data	 replication	 protocol	 in	 AsterixDB	 that	

keeps	hot-standbys	ready	to	take	over	the	responsibilities	of	a	node	in	the	cluster	and	that	

provides	a	mean	time	to	recovery	(MTTR)	that	is	very	close	to	the	time	required	to	detect	a	

failure.	We	do	this	with	an	acceptable	reduction	in	the	overall	throughput	of	the	system	by	

exploiting	 the	 underlying	 data	 partitioning,	 isolation	 model,	 and	 properties	 of	 Log-

Structured	Merge	Trees	[5]	without	compromising	the	consistency	of	data.		

	

The	 rest	 of	 this	 thesis	 is	 structured	 as	 follows:	 Chapter	 2	 describes	 related	 work	 and	

approaches	in	popular	Big	Data	Management	Systems.	Chapter	3	provides	the	background	

of	 AsterixDB	 and	 its	 existing	 data	 replication	 protocol.	 Chapter	 4	 details	 the	 design	 and	

implementation	of	 the	new	Active	Replication	protocol	 and	 its	design	 for	 fault-tolerance.	

	

	3	

Chapter	 5	 evaluates	 the	 performance	 of	 the	 protocol’s	 implementation.	 Chapter	 6	

concludes	the	thesis	and	discusses	avenues	for	continued	work	on	Active	Replication.	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	4	

Chapter	2		
	

	

Related	Work	
	
2.1	Data	Replication	in	Centralized	Databases	

Centralized	 data	 management	 systems	 have	 replication	 protocols	 that	 are	 designed	 to	

duplicate	 the	data	and	 the	system	state	 in	a	different	geographical	 location	 that	 can	 take	

over	when	there	is	a	failure	of	the	primary	database	[6].	The	consistency	requirements	of	

the	primary	and	the	backup	copy	leads	to	two	possible	replication	strategies	in	centralized	

databases:	 	1-safe	and	2-safe	[7].	1-safe	algorithms	apply	all	changes	to	the	primary	copy	

and	then	asynchronously	replicate	 the	new	physical	data	or	replay	 the	 logical	operations	

on	the	replica.	However,	this	means	that	when	there	is	a	failure	of	the	primary	copy	after	a	

transaction	commits,	the	replica	may	not	have	received	the	information	about	the	last	few	

transactions	and	it	will	have	no	way	to	recover	that	data,	leading	to	an	inconsistency	in	the	

system.	 This	 is	 an	 acceptable	 tradeoff	 for	 certain	 applications	 that	 do	 not	 have	 strict	

requirements	 on	 the	 consistency	 of	 the	data.	 Since	 the	primary	 system	does	not	 have	 to	

coordinate	 with	 the	 replica	 for	 every	 operation,	 the	 latency	 involved	 in	 updating	 1-safe	

data	is	close	to	the	case	with	no	replication	since	an	operation	does	not	need	to	wait	on	the	

replica(s)	to	make	progress.	In	contrast,	2-safe	algorithms	make	progress	by	synchronously	

updating	 both	 the	 primary	 and	 the	 replica	 for	 every	 committed	 operation.	 2-safe	

	

	5	

algorithms	ensure	that	any	side	effect	visible	 in	 the	primary	site	will	always	be	visible	 in	

the	 backup	 site.	 This	 requires	 coordination	 between	 the	 primary	 and	 replica	 for	 every	

operation,	so	the	minimum	latency	of	a	committed	operation	is	at	least	one	round	trip	time	

between	the	primary	and	the	replica	[8].	

	

2.2	Data	Replication	in	Distributed	Databases	

Distributed	Databases	differ	from	centralized	databases	in	that	there	are	now	multiple	sites	

where	 a	 given	 operation	 can	 happen.	 Replicating	 data	 is	 useful	 for	 improving	 both	 the	

availability	 and	 the	 performance	 of	 the	 system.	 Replication	 techniques	 can	 be	 broadly	

classified	based	on	the	nature	of	the	protocol	(synchronous	or	asynchronous),	the	cluster	

architecture	(primary	copy	or	update-everywhere),	and	commit	protocols	(voting	or	non-

voting)	 [9].	 Among	 these	 strategies,	 it	 is	 possible	 for	 distributed	 databases	 to	 utilize	 a	

single	 primary	 copy	 replication	 scheme	 by	 (horizontally)	 partitioning	 data	 between	 the	

machines	 in	 the	 cluster	 [10,	 11].	 By	 partitioning	 the	 data,	 a	 system	 can	 provide	 the	

semantics	 of	 a	 single	master	 database,	 similar	 to	 a	 centralized	 database,	 except	 that	 the	

primary	copy	of	each	partition	is	only	responsible	for	its	subset	of	the	data.	Such	a	scheme	

still	faces	similar	challenges	due	to	fundamental	impossibilities	that	are	inherent	in	every	

distributed	 system.	 The	 CAP	 theorem	 [12]	 provides	 a	 view	 of	 what	 is	 possible	 in	 a	

distributed	system	when	there	is	a	partition	in	the	network.	It	states	that	when	there	is	a	

partition,	 a	 database	 can	 either	 be	 consistent	 (CP)	 or	 available	 (AP)	 but	 not	 both	 at	 the	

same	time.	It	is	important	to	note	that	the	CAP	theorem	does	not	“allow”	CA	systems;	while	

a	 system	 can	 be	 both	 consistent	 and	 available	 during	 normal	 operating	 conditions,	 the	

theorem	encourages	 system	designers	 to	 reason	about	 the	behavior	of	 the	 system	 in	 the	

	

	6	

event	of	a	network	partition.	That	is,	the	choice	between	Consistency	and	Availability	has	to	

be	made	when	 there	 is	a	network	partition	or	a	 fault/failure	of	a	machine	 in	 the	cluster.	

Data	replication	is	useful	in	CP	systems	to	recover	after	failures,	and	there	will	be	a	window	

during	recovery	where	the	system	will	be	unavailable	[13].	In	AP	systems,	data	replication	

will	generally	allow	for	updates	to	go	to	multiple	places	so	that	the	overall	 throughput	of	

the	system	is	higher	and	so	that	a	failure	cannot	halt	progress	of	the	entire	system	[14].	AP	

systems	 operate	 assuming	 that	 data	 inconsistency	 is	 inevitable,	 so	 they	 instead	 provide	

mechanisms	 to	 provide	 a	 reasonably	 consistent	 picture	 of	 the	 data	 in	 the	 cluster.	

Fundamentally,	 this	means	 that	 it	 is	 possible	 to	 have	 replicas	with	 different	 information	

that	may	be	reconciled	at	a	later	time,	but	that	will	be	inconsistent	for	unbounded	amounts	

of	time	as	long	as	there	are	nodes	that	are	unreachable	due	to	a	partition	in	the	network	or	

a	failure	of	the	underlying	hardware	or	software	running	on	a	node.		

	

	 	

	

	7	

Chapter	3		
	

	

AsterixDB	Background	
	
Apache	AsterixDB	 [15]	 is	 a	 Big	Data	Management	 System	 (BDMS)	 that	 is	well	 suited	 for	

large	 scale	data	 ingestion,	 social	media	data	 storage	and	analysis,	data	warehousing,	 and	

other	Big	Data	applications.	It	is	built	on	top	of	a	parallel	runtime	layer	called	Hyracks	[16]	

which	 is	 different	 from	 the	 traditional	 MapReduce-based	 Big	 Data	 platforms.	 AsterixDB	

supports	 semi-structured	 data	 storage	 with	 a	 rich	 set	 of	 data	 types,	 and	 it	 supports	

querying	through	the	Asterix	Query	Language	(AQL)	and	SQL++	[17].	A	detailed	overview	

of	 AsterixDB	 can	 be	 found	 in	 [18].	 In	 this	 section,	 we	 will	 discuss	 the	 architecture	 of	

AsterixDB	 and	 its	 storage	 and	 transactional	 model	 and	 examine	 its	 existing	 support	 for	

fault-tolerance.		

	

3.1	Architecture	and	Data	Model	

Figure	3.1	shows	the	high-level	architecture	of	an	AsterixDB	cluster.	A	Client	communicates	

with	 the	 system	 through	 the	Cluster	Controller	 (CC)	 that	will	 forward	 the	 request	 to	 the	

appropriate	Node	Controllers	(NCs).	The	cluster	controller	manages	the	state	and	lifecycle	

of	 the	 cluster	 and	 also	 exposes	 RESTful	 APIs	 to	 ingest	 and	 query	 data.	 One	 of	 the	Node	

Controllers	in	the	cluster	is	designated	as	the	Metadata	Node	and	hosts	the	system	catalogs.	

	

	8	

When	a	user	submits	a	query,	the	query	is	compiled	into	a	Hyracks	job	that	is	expressed	as	

a	 Directed	 Acyclic	 Graph	 of	 operators	 and	 connectors.	 The	 job’s	 DAG	 is	 executed	 as	 a	

pipeline	with	 support	 for	 the	parallel	 execution	of	 operators	on	 the	NCs.	The	underlying	

records	 are	 encapsulated	 in	 frames	 that	 are	 pushed	 between	 the	 operators	 during	 job	

execution.		

	

	
Figure	3.1:	AsterixDB	Architecture	

	

AsterixDB	uses	a	data	model,	called	the	Asterix	Data	Model	(ADM),	which	is	a	super	set	of	

JSON	[19].	The	fields	are	optionally	typed	with	support	for	user-defined	types.	The	top	level	

storage	container	is	called	a	Dataverse,	similar	to	a	database	in	an	RDBMS.	Dataverses	are	

populated	with	records	that	go	into	Datasets	(akin	to	tables	in	an	RDBMS)	that	are	defined	

with	a	Datatype.	Datatypes	in	AsterixDB	are	semi-structured,	and	the	user	can	either	have	a	

fully-typed	definition	of	each	field	in	the	Datatype	or	it	can	be	defined	as	an	open	type	that	

	

	9	

can	 accept	 any	 valid	 ADM	 object.	 All	 records	 residing	 in	 a	 dataset	must	 conform	 to	 the	

structure	 defined	 by	 the	 given	 Datatype.	 The	 NC	 that	 hosts	 the	 Metadata	 has	 all	 the	

schema-related	information	about	Dataverses,	Datasets,	and	Dataypes	in	the	cluster.	As	an	

example,	 Figure	 3.2	 shows	 an	 AQL	 DDL	 statement	 that	 creates	 a	 dataverse	 called	

SocialNetwork,	a	UserType	with	an	ID,	User	name,	the	time	when	the	user	registered,	and	a	

list	of	Friend	IDs.	The	UserType	is	then	used	to	create	a	dataset	called	Users	with	the	user	

ID	 as	 the	 primary	 key.	 AsterixDB	 can	 optionally	 generate	 a	 UUID	 and	 use	 that	 as	 the	

primary	key	if	no	user-provided	primary	key	is	defined	in	the	dataset.		

create dataverse SocialNetwork;

use dataverse SocialNetwork;

create type UserType as {

 userid: int64,

 username: string,

 since: date,

 friends: {{ int64 }}

};

create dataset Users(UserType) primary key userid;

Figure	3.2:	Creating	a	dataverse,	a	data	type,	and	a	dataset.	
	

3.2	Storage	and	Transactional	Model	

AsterixDB	 uses	 Log-Structured	Merge	 (LSM)	 Trees	 [5]	 for	 all	 storage	 and	 indexing.	 LSM	

based	 indexes	 have	 an	 in-memory	 component	 that	 receives	 all	 writes	 until	 the	 indexes’	

memory	utilization	reaches	a	certain	configurable	threshold.	The	entries	in	the	in-memory	

component	 are	 flushed	 into	 an	 immutable	 disk	 component	 as	 a	 single	 sequential	 write	

operation,	similar	to	bulk	loading	a	new	index,	when	the	in-memory	threshold	is	reached.	

	

	10	

The	 index	 components	 on	 the	 disk	 are	 periodically	merged	 according	 to	 a	merge	 policy	

[20].	This	index	lifecycle	of	writing	to	an	in-memory	component	and	sequentially	writing	to	

disk	enables	high	volume	data	ingestion.		

	

AsterixDB	datasets	are	hash-partitioned	on	the	primary	key	(or	generated	UUID),	with	all	

secondary	indexes	placed	in	the	partition	that	contains	the	associated	primary	key	for	that	

record.	A	partition	is	local	to	a	single	Node	Controller,	and	there	is	no	shared	state	between	

partitions	 within	 a	 node	 or	 across	 Node	 Controllers	 in	 the	 cluster.	 Partitions	 are	 single	

master	shards	of	a	dataset’s	primary	and	secondary	index	records	in	AsterixDB.		Figure	3.3	

shows	a	 three-node	AsterixDB	cluster	with	each	node	hosting	 two	partitions	of	a	dataset	

named	A.		

	
Figure	3.3:	AsterixDB	Node	Controllers	

Each	node	in	the	figure	has	two	partitions,	and	the	partitions	are	assigned	globally	unique	

identifiers.	 The	 Cluster	 Controller	 keeps	 track	 of	 the	 assignment	 of	 partitions	 to	 node	

controllers.	The	index	created	for	dataset	A	has	its	representation	in	each	partition	of	every	

	

	11	

node	 in	 the	 cluster.	 The	 index	 will	 have	 memory	 components	 in	 each	 partition	 (IA0	 in	

partition	 0,	 IA1	 in	 partition	 1	 of	 Node	 1),	 and	 when	 a	 memory	 component	 reaches	 its	

threshold,	 it	 is	flushed	and	becomes	an	immutable	disk	component.	The	disk	components	

of	a	dataset	are	periodically	merged	into	larger	components	in	a	fashion	defined	by	a	merge	

policy.		

	

Transactions	 in	AsterixDB	are	only	 at	 the	 record	 level,	 that	 is,	 per-record	updates	 to	 the	

primary	and	the	secondary	indexes	are	atomic	and	a	record	is	visible	for	reading	only	after	

the	primary	and	all	associated	secondary	indexes	for	that	dataset	are	updated.	A	write	job	

can	span	multiple	records	but	the	set	of	operations	over	all	the	records	is	not	atomic.	For	

example,	if	we	have	a	job	that	spans	1000	records,	AsterixDB	does	not	guarantee	that	the	

operations	on	all	1000	records	will	either	occur	or	not.	However,	it	does	ensure	that	there	

will	 be	1000	 individual	 atomic	 record	operations	 regardless	of	 the	number	of	 secondary	

indexes	 that	are	present	on	the	dataset.	 In	other	words,	a	 job	might	 fail	after	500	atomic	

record	updates,	and	such	a	 job	 failure	will	not	roll	back	the	changes	related	to	those	500	

record	updates.	However,	if	the	501st	record	being	inserted	has	only	updated	the	primary	

index	when	the	failure	occurs,	 that	change	will	be	rolled	back	unless	all	of	 the	associated	

secondary	indexes	for	that	record’s	dataset	have	also	already	been	updated.	This	Record-

level	 isolation	 and	partitioning	over	primary	keys	 allows	 for	 any	 given	 transaction	 to	be	

local	 to	a	single	partition:	Since	 transactional	semantics	are	only	applicable	at	 the	record	

level,	 and	 the	primary	and	all	 associated	 secondary	 indexes	 for	 the	primary	are	within	a	

partition,	 no	 atomic	 operations	 happen	 across	 partitions.	 Additionally,	 since	 the	 system	

does	 not	 support	 transactions	 spanning	 multiple	 records,	 it	 avoids	 any	 coordination	

	

	12	

requirements	 between	 partitions	 and	 hence	 between	 node	 controllers	 for	 reading	 or	

writing	a	particular	record.	

	

For	 durability,	 AsterixDB	 uses	 a	 no-steal/no-force	Write	 Ahead	 Log	 (WAL)	 that	 logs	 the	

changes	 to	 a	 record	 along	 with	 the	 logical	 operation	 performed	 on	 the	 record	 to	 a	

transaction	 log.	 This	 transaction	 log	 is	 the	 database	 and	 the	 source	 of	 truth	 for	 crash	

recovery.	 Since	AsterixDB	 is	 based	 on	 LSM	 indexes	 that	 reside	 in	memory,	with	 updates	

going	 into	 the	 in-memory	 components,	 the	 only	 durable	 resource	 in	 the	 database	 is	 the	

transaction	 log	until	 the	LSM	components	are	 flushed	to	disk.	 In	order	to	bound	the	time	

for	 recovery	 of	 the	 in-memory	 components,	 AsterixDB	 periodically	 checkpoints	 by	

requesting	 the	 LSM	 components	 to	 be	 flushed	 to	 the	 disk	 and	 by	 capturing	 the	 Log	

Sequence	 Number	 (LSN)	 corresponding	 to	 when	 this	 operation	 successfully	 completes.	

This	 allows	 the	 recovery	 algorithm	 to	 start	 reading	 the	 transactional	 logs	 from	 the	 last	

checkpoint	 to	 reconstruct	 the	 state	before	 the	 failure.	After	 a	 crash,	 the	 system	does	not	

allow	any	new	jobs	to	make	progress	during	local	recovery	processing	from	the	transaction	

log;	 this	 is	 easy	 to	 control	 because	we	 have	 a	 single	 cluster	 controller	 that	manages	 the	

current	state	of	the	cluster.		

	

The	transactional	 log	buffer	on	each	NC	is	 flushed	to	the	 log	disk	periodically	(a	 la	group	

commit)	 or	 whenever	 the	 log	 disk	 is	 idle.	 The	 latter	 ensures	 that	 there	 is	 no	minimum	

latency	 for	 updates	 due	 to	 delayed	 periodic	 flushing	 of	 the	 log	 buffers.	 The	 record	 locks	

acquired	by	transactions	are	released	when	the	associated	log	buffer	has	been	successfully	

flushed,	 and	 the	 user	 gets	 a	 response	 only	 after	 the	 logs	 have	 been	written	 to	 disk.	 Log	

	

	13	

buffers	are	recycled	from	a	list	to	prevent	other	transactions	from	having	to	wait	while	one	

log	buffer	is	being	written	to	disk.		

	

3.3	Passive	Replication	in	AsterixDB	

As	described	in	the	previous	section,	AsterixDB’s	partitions	are	each	single	masters	–	they	

are	 resident	on	only	one	node	 controller	which	will	have	all	 the	 state	 required	 for	 crash	

recovery,	which	happens	locally.	However,	if	a	node	controller	fails,	we	completely	lose	the	

data	within	that	partition	until	it	comes	back	online,	at	which	point	the	node	controller	can	

run	local	recovery	by	replaying	the	operations	in	the	transaction	log	from	the	earliest	flush	

operation	or	checkpoint	in	that	node	controller.	Without	replication,	local	partition	storage	

is	a	 single	point	of	 failure	 in	 the	cluster	and	 the	cluster	cannot	service	any	read	or	write	

requests	when	one	node	controller	 is	down	because	it	could	potentially	serve	incomplete	

information	 for	 read	queries	and	 it	will	not	have	 the	 failed	node	controller	 to	accept	 the	

writes	for	its	partition(s).	

	

AsterixDB	 has	 recently	 added	 support	 for	 high-availability	 and	 fault-tolerance	 by	

replicating	the	transaction	log	records	in	multiple	node	controllers.		We	call	this	approach	

Passive	 Replication	 [21]	 because,	 during	 normal	 operation,	 it	 does	 not	 keep	 an	 active	

(queryable)	 replica	 of	 the	 in-memory	 components	 of	 dataset	 partitions	 –	 only	 the	 log	

contents	are	replicated	in	order	to	prevent	data	loss.	As	a	result,	during	failover	of	a	Node	

Controller,	the	system	first	has	to	redo	the	operations	of	the	failed	partition	by	reading	and	

replaying	the	remote	log	records	that	were	received	from	the	failed	Node	Controller	before	

the	replica	can	be	used	to	process	queries.		Passive	replication	has	two	main	operations:		

	

	14	

1. For	 ongoing	 transactional	 operations,	 the	 local	 log	 records	 that	 are	 generated	 are	

sent	over	to	the	replicas	and	persisted	on	the	replicas.			

2. When	an	in-memory	component	gets	flushed	to	disk,	the	flushed	disk	component	is	

transferred	to	the	designated	replica(s).	

	
Figure	3.4:	Node	Controllers	with	Passive	Replication	

	
Partition	 Primary	Replica	Node	 Remote	Replica	Node	
0	 Node	1	 Node	2	
1	 Node	1	 Node	2	
2	 Node	2	 Node	3	
3	 Node	2	 Node	3	
4	 Node	3	 Node	1	
5	 Node	3	 Node	1	

Table	3.1:	Replica	Placement	in	a	three-node	cluster	with	Replication	Factor	2	
	
Figure	3.4	depicts	a	cluster	with	a	passive	replication	factor	of	two	and	Table	3.1	shows	the	

assignment	of	partitions	to	node	controllers.	Node	1’s	replica	is	Node	2,	Node	2	replicates	

to	Node	3,	and	similarly,	Node	3	replicates	to	Node	1.	A	Node	is	called	a	primary	replica	for	

a	partition	for	which	it	hosts	the	in-memory	components	of	a	dataset’s	indexes	whose	key	

values	hash	 to	 that	partition.	The	partitions	 that	have	 in-memory	components	of	 indexes	

are	called	the	local	partitions	of	that	Node	Controller.	In	the	diagram,	Node	1	is	the	primary	

	

	15	

replica	 for	 partitions	 0	 and	 1	 and	 Node	 2	 is	 a	 remote	 replica	 for	 partitions	 0	 and	 1.	

Partitions	0	and	1	are	called	 local	partitions	on	Node	1	and	replica	partitions	on	Node	2.	

Remote	 replicas	 store	 transaction	 log	 records	generated	 from	operations	on	 the	primary	

replica	partitions	in	addition	to	the	log	records	that	are	generated	by	operations	on	indexes	

on	its	local	partitions.	This	enables	a	remote	replica	to	recover	the	state	of	the	in-memory	

components	of	 indexes	on	 its	primary	replica	partition	when	 the	primary	replica	 fails	by	

using	 the	 transaction	 log	 records	 to	 redo	 operations.	 Additionally,	 each	 remote	 replica	

contains	 immutable	 disk	 components	 that	 are	 generated	 by	 flushing	 the	 in-memory	

components	of	indexes	in	its	primary	replica.	The	disk	components	IA4	and	IA5	in	Node	1	are	

generated	when	Node	3	flushes	those	indexes	to	disk	and	they	are	copied	over	the	network	

to	Node	1.		

	

Replicas	 are	 placed	 on	 nodes	 based	 on	 Chained-Declustering	 [22]	 and	 the	 replica	

placement	 information	 is	shared	with	the	node	controllers	during	runtime	(using	a	static	

configuration	during	cluster	bootstrap).	

	

3.4	Fault-Tolerance	

When	 a	 node	 fails	 in	 the	 cluster,	 no	 jobs	 can	 make	 immediate	 progress	 without	

compromising	 the	 consistency	 of	 the	 system.	 AsterixDB	 is	 a	 CP	 system,	 so	 it	 gives	 up	

availability	when	there	is	a	node	failure,	but	because	of	passive	replication	we	can	recover	

the	state	of	the	failed	node	locally	in	a	replica	without	needing	any	additional	information	

from	the	failed	node.	This	happens	in	three	steps	–		

	

	16	

1. The	Cluster	controller	considers	all	the	nodes	that	are	currently	active	and	picks	a	

node	 to	 take	 over	 the	 partitions	 of	 the	 failed	 node.	 The	 cluster	 controller	 may	

optionally	pick	multiple	nodes	if	 it	has	to	recover	many	partitions,	which	will	help	

with	the	distribution	of	the	load	after	failover.		

2. A	failover	node	taking	over	a	partition	identifies	the	minimum	of	the	maximum	LSNs	

of	all	the	persistent	disk	components	of	the	remote	replica’s	partitions.		

3. The	 failover	 node	 performs	 a	 redo-operation	 to	 recover	 the	 state	 of	 the	 remote	

primary’s	in-memory	LSM	components.		

4. When	 all	 failover	 nodes	 complete	 their	 redo	 operations,	 the	 Cluster	 Controller	

updates	all	necessary	state	to	ensure	that	jobs	in	the	future	will	make	use	of	the	new	

partition	 placement	 information	 for	 their	 read/write	 queries	 and	 then	 it	 sets	 the	

state	of	the	cluster	to	ACTIVE	to	resume	jobs.		

When	 the	 failed	 node	 comes	 back	 online	 and	 is	 ready	 to	 re-join	 the	 cluster,	 the	 cluster	

performs	the	following	operations	to	get	the	failed	node	up	to	speed	on	the	current	state	–		

1. The	Cluster	Controller	requests	a	flush	operation	for	all	indexes	on	the	node	that	is	

currently	 performing	 the	 operations	 on	 behalf	 of	 the	 failed	 node	 and	 also	 on	 the	

node	 controllers	 that	have	 replicas	 for	 the	partitions	 that	 the	 failback	node	was	a	

replica	for	before	its	failure.	

2. The	flushed	disk	components	are	copied	over	to	the	failback	node.	

3. The	Log	Manager	enables	logging	from	an	LSN	greater	than	all	disk	component	LSNs	

in	the	failback	node.		

4. The	Cluster	Controller	updates	the	state	of	partitions	and	makes	the	cluster	ACTIVE	

again.		

	

	17	

In	both	cases,	the	replica	connections	are	re-established	since	there	has	been	a	change	in	

the	primary	replicas	for	the	partitions	of	the	failed	node.	The	Cluster	Controller	may	decide	

to	reduce	the	replication	factor	if	there	are	fewer	nodes	in	the	cluster	than	the	number	of	

nodes	required	to	support	the	originally	configured	replication	factor.	

	

Passive	 replication	has	a	 relatively	 low	overhead	 in	 terms	of	 its	utilization	of	CPU	cycles	

and	memory	[21].	The	network	is	used	for	communicating	log	records	and	the	flushed	disk	

components.	Components	are	sent	over	the	network	consuming	at	least	as	much	network	

bandwidth	as	the	size	of	the	disk	components	for	every	flush	operation.	Disk	utilization	is	

slightly	 higher	 since	 the	 system	 will	 have	 to	 write	 the	 flushed	 disk	 components	 of	 the	

remote	 primary	 partition	 to	 disk	 in	 each	 replica.	 Passive	 Replication’s	 modest	 runtime	

overhead	comes	at	a	cost	of	increased	recovery	time,	at	which	point	the	system	first	has	to	

replay	operations	in	the	transaction	log	to	resurrect	an	in-memory	component.	While	this	

time	is	controllable	by	switching	to	a	smaller	in-memory	component	size	threshold,	doing	

so	 will	 potentially	 give	 up	 other	 benefits	 of	 having	 larger	 in-memory	 components	 that	

allow	for	deferring	of	I/O	to	larger	sequential	disk	writes	at	a	later	time.		 	

	

	18	

Chapter	4		
	

	
Active	Replication	in	AsterixDB		
	
Active	 Replication	 is	 a	 new	 AsterixDB	 replication	 protocol	 that	 maintains	 hot-standby	

partitions	on	the	replicas;	that	is,	it	replays	log	operations	on	the	replica	when	it	receives	

them	instead	of	doing	so	later	during	recovery.	This	enables	the	system	to	rapidly	recover	

from	 a	 failure	 since	 the	 stand-by	 node	 will	 already	 have	 the	 state	 of	 the	 in-memory	

components	of	its	replica	and	that	will	minimize	the	downtime	of	the	cluster	when	a	Node	

Controller	 fails.	 In	 this	 chapter,	 we	 discuss	 the	 design	 and	 implementation	 of	 Active	

Replication	in	AsterixDB.	

	

4.1	Basic	Architecture	

In	contrast	to	Passive	Replication,	eagerly	replaying	the	log	records	will	result	 in	keeping	

the	LSM	indexes’	in-memory	components	in	the	primary	replica	and	all	its	remote	replicas.	

Table	4.1	and	Figure	4.1	illustrate	the	state	of	the	memory	and	persistent	disk	components	

in	 Active	 Replication	 mode	 with	 each	 of	 the	 nodes	 hosting	 two	 data	 partitions	 with	 a	

replication	 factor	 of	 two.	 Active	 Partitions	 are	 those	 partitions	 for	 which	 the	 Node	

Controller	is	a	primary	replica.	Similarly,	an	Inactive	Partition	is	a	partition	that	hosts	the	

in-memory	components	that	shadow	the	operations	on	its	corresponding	remote	primary	

	

	19	

partition	and	that	will	be	eventually	consistent	with	the	remote	primary’s	Active	Partition	

content.	In	a	sense,	the	inactive	partition	is	eventually	consistent	with	respect	to	its	active	

partition	on	the	remote	primary	replica	because	the	remote	primary	replica	partition	will	

have	 operations	 that	 are	 not	 synchronously	 committed	 to	 the	 inactive	 partition	 in	 the	

replica.	 The	 operations	 represented	by	 remote	 log	 records	 are	 queued	 for	 asynchronous	

replay,	and	the	committed	operation	represented	by	the	remote	log	record	is	allowed	to	be	

visible	to	the	user	at	the	primary	copy	before	it	has	been	replayed	on	the	replicas.	(We	will	

discuss	potential	inconsistencies	due	to	this	design	further	in	Section	4.7.)	

	
Figure	4.1:	Node	Controllers	running	with	Active	Replication	Factor	of	2	

In	the	figure,	Node	1	hosts	partitions	0	and	1	as	Active	Partitions,	and	all	reads	and	writes	

for	 a	 record	 that	 should	 belong	 to	 partition	 0	 or	 1	will	 be	 directed	 to	Node	 1.	 Similarly,	

partitions	2	and	3	are	Active	Partitions	on	Node	2,	i.e.,	Node	2	hosts	the	primary	replicas	for	

partitions	2	and	3.	Partitions	0	and	1	are	inactive	partitions	on	Node	2	and	they	are	remote	

replica	partitions	on	Node	1.	When	a	user	submits	a	write	(or	read)	operation	of	any	kind,	

the	 operation	 is	 forwarded	 to	 the	 active	 partitions	 where	 it	 should	 be	 executed.	 The	

	

	20	

corresponding	 transaction	 log	 record	 generated	 by	 the	 operation	 on	 an	 active	 partition	

index	is	forwarded	to	all	the	replicas	that	hosts	the	same	partition	as	an	inactive	partition	

and	 they	 will	 queue	 the	 generated	 transaction	 log	 record	 for	 asynchronous	 replay.	 The	

inactive	 partition	 contents	 are	 flushed	 by	 the	 replica	 to	 disk	 when	 a	 flush	 operation	 is	

triggered	in	the	active	partition	on	its	primary	replica.		

	

Partition	 Active	Partition	Node	 Inactive	Partition	Node	
0	 Node	1	 Node	2	
1	 Node	1	 Node	2	
2	 Node	2	 Node	3	
3	 Node	2	 Node	3	
4	 Node	3	 Node	1	
5	 Node	3	 Node	1	

Table	4.1:	Partitions	and	their	status	in	Node	Controllers	

Each	node	controller	 in	an	AsterixDB	cluster	 is	aware	of	 the	number	of	nodes	that	are	 in	

the	cluster	and	the	total	number	of	partitions,	including	their	default	placement,	through	a	

static	cluster	configuration	made	available	when	the	cluster	is	created.	After	bootstrapping	

and	 performing	 any	 crash-recovery	 required,	 each	 node	 controller	 informs	 the	 cluster	

controller	that	it	is	active	and	ready	to	accept	new	jobs.	The	CC	then	broadcasts	a	message	

to	all	the	nodes	currently	active	in	the	cluster	with	information	about	the	node	that	is	now	

active	including	the	active	partitions	that	it	is	hosting.	The	node	controller	also	establishes	

a	TCP	connection	with	the	nodes	that	are	replicas	for	its	active	partitions.	This	connection	

is	 used	 to	 communicate	 the	 transaction	 logs	 and	 other	 replication	 events	 and	 functions	

when	required.		

	

	21	

4.2	Log	Replication	Protocol		

Figure	4.2	illustrates	the	replication	protocol	lifecycle	when	a	job	is	submitted	and	how	the	

replicas	 receive	 the	 transaction	 logs,	 and	 Table	 4.2	 describes	 the	 transaction	 log	 entry	

structure	in	detail.	

	

Figure	4.2:	Job	Execution	with	Active	Replication	

A	client	submits	a	job	to	insert	a	record	to	the	Cluster	Controller	(1),	where	it	is	compiled	

into	a	Hyracks	job	for	execution	on	a	node	controller	(2).	The	job	performs	an	insertion	in	

the	primary	replica	partition,	which	 involves	writing	to	all	 the	 in-memory	components	of	

the	associated	indexes	associated	with	the	record’s	dataset	(3).	Each	insertion	into	an	LSM	

index	 generates	 an	 associated	UPDATE	 type	 log	 record	with	 the	new	value	 in	 that	 index	

which	 is	 written	 to	 the	 log	 tail	 and	 eventually	 written	 out	 to	 disk	 before	 the	 commit	

operation	is	made	visible	to	the	user	(4).	The	primary	index	is	always	the	first	 index	that	

gets	updated	 so	 that	 subsequent	 insertions	 into	all	 secondary	 indexes	 can	 safely	 refer	 to	

the	primary	key	value	in	the	primary	key	index.	Once	all	the	secondary	indexes	have	also	

been	 updated	 and	 their	 associated	 log	 records	 have	 been	written	 to	 the	 transaction	 log	

	

	22	

buffer,	 the	 job	creates	an	ENTITY_COMMIT	log	record	for	that	record.	 (The	 job	 itself	may	

affect	multiple	records,	but	since	isolation	is	only	at	the	record	level,	the	ENTITY_COMMIT	

log	record	is	the	commit	operation	for	the	given	record.)	When	the	last	record	is	written,	

the	job	also	issues	an	overall	JOB_COMMIT	log	record	containing	the	identifiers	for	the	job.	

The	transaction	log	buffer	is	never	forced	to	disk	and	AsterixDB	does	group	commit	for	all	

the	 operations.	 The	 user	 gets	 a	 response	 reporting	 the	 status	 of	 a	 job	 only	 after	 the	 log	

buffer	containing	its	JOB_COMMIT	log	record	has	been	safely	persisted	to	disk.	Additionally,	

the	 transaction	 log	 buffer	 is	 replicated	 in	 batches	 to	 each	 of	 the	 partition’s	 replicas	 by	

sending	the	log	records	over	the	network	to	the	replicas	(5).		

Field	 Description	 Size	(Bytes)	
Source	 Local/Remote:	Local	logs	are	generated	for	active	

partitions	and	Remote	log	records	are	received	
from	a	replica	

1	

Operation	 UPDATE	/	ENTITY_COMMIT	/	JOB_COMMIT	/	
JOB_ABORT	/	FLUSH:	The	type	of	operation	that	
generated	the	log	record	

1	

Job	ID	 Globally	unique	monotonically	increasing	
identifier	for	jobs	

4	

Dataset	ID	 The	dataset	on	which	the	operation	was	
performed	

4	

Partition	ID	 The	partition	of	the	index	that	generated	
UPDATE/ENTITY_COMMIT	

4	

Primary	Key	Hash	 The	Hash	of	the	Primary	Key	value	that	decides	
the	partition	where	this	key	will	reside	

4	

PK	Size	 Size	of	the	primary	key	(PK_SIZE)	 4	
PK	Value	 Value	of	the	primary	key	 PK_SIZE	
Resource	ID	 A	globally	unique	identifier	for	each	in-

memory/disk	component	in	a	partition	
4	

New	Value	Size	 Size	of	the	new	value	in	the	record,	if	applicable	
(NV_SIZE)	

4	

New	Value	 Serialized	record	content	 NV_SIZE	
Table	4.2:	Transaction	Log	Record	structure	

When	the	replica	receives	a	batch	of	 log	records,	 the	Log	Replay	Manager	first	writes	the	

log	records	to	the	log	tail	(6).	While	these	operations	are	ongoing,	the	primary	replica	will	

	

	23	

not	wait	for	the	remote	replica	to	replay	the	log	records	in	the	replica’s	inactive	partition,	

as	 this	would	otherwise	 result	 in	 a	 synchronous	 commit	 for	 every	 record,	 increasing	 the	

latency	 to	 include	 the	 acknowledgement	 from	 the	 replica.	 However,	when	 there	 is	 a	 job	

commit,	 the	 primary	 replica	 waits	 for	 an	 acknowledgement	 from	 each	 of	 the	 remote	

replicas;	 an	 acknowledgement	 will	 be	 sent	 after	 the	 remote	 replica	 has	 persisted	 the	

JOB_COMMIT	 log	 record	 in	 its	 local	 transaction	 log	 (7).	 This	 synchronous	 job	 level	

replication	commit	operation	ensures	that	all	the	log	records	that	were	sent	to	the	replica	

have	been	persisted	to	disk	on	the	replica	without	increasing	the	latency	for	the	individual	

updates	to	records.	UPDATE	and	ENTITY_COMMIT	log	records	are	eventually	written	out	

to	disk;	that	is,	the	primary	replica	does	not	wait	for	these	log	records	to	be	persisted	in	the	

replicas.	 The	 Log	 Replay	 Manager	 eventually	 performs	 the	 operation	 represented	 by	

remote	log	records	on	the	inactive	partition	index	(8),	the	details	of	which	are	explained	in	

the	next	section.	

	

4.3	Log	Replay		

Figure	4.3	shows	the	details	of	how	the	log	is	replayed	at	a	replica	during	normal	operation.	

Log	records	are	processed	in	buffers	that	arrive	through	a	TCP	connection	from	the	remote	

primary.	The	incoming	log	records	are	first	written	to	the	 local	transaction	log	with	their	

log	source	field	set	to	REMOTE	(1).	Once	a	remote	log	record	is	in	the	WAL,	it	is	recoverable	

in	case	of	failure.	Each	such	log	record	is	now	sent	to	a	demultiplexer	that	forwards	the	log	

record	to	a	thread	responsible	for	the	inactive	partition	on	which	it	has	to	be	replayed	(2).	

The	globally	unique	partition	identifier	is	a	part	of	every	log	record,	and	that	information	is	

used	 to	 forward	 the	 log	record	 to	 the	correct	 replay	manager.	Each	partition’s	 log	replay	

	

	24	

manager	has	two	buffers	–	a	write	buffer	that	is	used	to	copy	the	incoming	log	records	(3),	

and	 a	 read	 buffer	 that	 is	 used	 to	 read	 the	 payload	 and	 then	 to	 perform	an	 insert/delete	

operation	on	the	index	with	the	new	value	present	in	the	transaction	log.	The	write	buffer	

is	consumed	from	a	list	of	empty	buffers	that	is	created	during	node	controller	bootstrap.	

When	 the	write	buffer	 is	 full,	 it	 is	added	 to	a	backlog	queue	 (4).	The	replay	 thread	 takes	

buffers	 from	 the	 backlog	 queue	 (5)	 and	 performs	 the	 operation	 that	 generated	 the	 log	

record	in	the	inactive	partition	(6).		

	
Figure	4.3:	Log	Replay	Management	

When	 all	 the	 log	 records	 in	 a	 read	 buffer	 have	 been	 replayed,	 it	 is	 recycled	 through	 the	

empty	buffer	queue.	The	Replay	Manager	does	not	wait	until	an	incoming	log	buffer	is	full	

before	 sending	 it	 to	 the	 backlog	 queue	 because	 it	would	 then	not	 be	 replayed	until	 new	

operations	on	 the	 remote	primary	 replica	 fill	 up	 the	write	buffer	 and	 it	 is	 flushed	 to	 the	

	

	25	

backlog.	 To	 avoid	waiting	 indefinitely	 for	 subsequent	 operations	 on	 the	 index	 to	 fill	 the	

write	buffer,	the	replay	thread	pulls	the	current	write	buffer	into	the	backlog	whenever	it	

goes	idle.	(This	is	similar	to	how	the	non-replicated	AsterixDB	transaction	log	is	managed.)	

Stealing	the	incoming	buffer	when	the	backlog	is	empty	ensures	that	there	are	no	stale	log	

records	waiting	 in	 the	write	buffers	 to	be	 replayed	at	a	 later	 time	when	 the	write	buffer	

becomes	full.	Each	buffer	is	as	large	as	a	log	page,	and	the	number	of	buffers	is	equal	to	the	

number	of	log	pages	in	the	node	controller.	The	backlog	cannot	exceed	the	length	of	all	the	

buffers	available	in	the	empty	queue	at	bootstrap.	When	the	queue	is	full,	 incoming	write	

buffers	will	make	the	remote	replica	wait	before	proceeding	with	the	next	set	of	buffers	for	

replication.	This	is	important	in	order	to	ensure	that	the	remote	primary	replica	will	slow	

down	its	own	ingestion	if	the	replica	is	falling	behind	by	the	maximum	allowed	limit.		

	

Since	the	operations	on	a	replica	are	generated	from	the	remote	primary	partition’s	index,	

and	because	AsterixDB	does	not	support	reads	from	the	inactive	partitions,	the	replicas	do	

not	acquire	any	locks	or	run	their	replay	operations	in	a	regular	transactional	context.	For	

consistency,	a	transaction	running	on	a	primary	partition	of	a	dataset	in	AsterixDB	will	lock	

the	primary	key	on	the	dataset	and	then	perform	the	operation.	Record-level	isolation	and	

the	serial	backlog	make	the	transaction	manager	redundant	for	the	inactive	partitions.	Not	

locking	on	inactive	partitions	has	the	advantage	of	making	the	write	path	for	the	index	for	

replay	operations	faster	than	the	write	path	for	regular	operations	on	the	index,	as	active	

partition	operations	can	be	concurrent	and	therefore	require	 locking.	A	serial	schedule	 is	

already	ensured	by	the	locking	done	at	the	active	partition,	and	the	log	buffer	will	contain	

operations	 corresponding	 to	 that	 serial	 schedule.	 This	 serial	 history	 is	 available	 in	 the	

	

	26	

replication	 log	buffer	queue	and	 the	protocol	 can	 safely	demultiplex	 it	 by	partition.	Note	

that	 replay	operations	on	Partition	5	can	be	 interleaved	differently	with	operations	 from	

Partition	4,	but	the	ordering	of	operations	within	a	given	partition	will	be	consistent	with	

its	 primary	 replica.	 (A	 lock	manager	would	 become	necessary	 if	 the	 protocol	 introduced	

any	additional	level	of	concurrency	while	writing	within	an	inactive	partition.	It	currently	

has	 only	 a	 single	 writer	 per	 inactive	 partition,	 and	 there	 cannot	 be	 any	 conflicting	

operations	within	a	partition	since	they	are	already	serialized.)		

	

4.4	Index	Management		

When	 a	 new	 dataset	 is	 created,	 its	 active	 partitions	 create	 the	 necessary	 metadata	

information	 along	 with	 a	 set	 of	 persistent	 files	 that	 describe	 the	 index.	 When	 such	 an	

operation	 is	 performed,	 the	 node	 controller	 also	 creates	 a	 Replication	 Job	 that	 sends	 to	

each	replica	the	LSM	index	properties	and	other	information	required	to	create	the	index	

structures	in	the	replicas.	Any	persistent	files	that	are	created	as	a	part	of	the	create	index	

operation	are	copied	over	the	network	to	each	of	the	replicas.		

	

Active	 partitions’	 indexes	 are	managed	 by	 each	 node	 controller	 by	monitoring	 their	 on-

going	operations	and	keeping	a	watch	on	the	memory	utilization	of	the	index	partitions	so	

that	the	NC	as	a	whole	doesn’t	exceed	a	global	limit	allocated	to	the	indexes	of	each	dataset.	

When	the	per-NC	footprint	of	a	given	dataset	exceeds	the	threshold	allotted	for	in-memory	

components,	 the	 in-memory	 components	 of	 each	 index	 in	 the	 dataset	 are	 asked	 to	 flush	

themselves	to	disk	once	any	on-going	operations	are	complete.	The	flush	operation	waits	

for	 any/all	 on-going	 record	modifications	 to	 commit,	 because	 LSM	 disk	 components	 are	

	

	27	

immutable	 and	 there	 should	never	be	 any	 record	 in	 an	 immutable	 component	 for	which	

there	is	no	associated	ENTITY_COMMIT	log	record	in	the	transaction	log	(i.e.,	a	NO	STEAL	

policy	is	enforced).		

	

Figure	4.4	illustrates	how	a	flush	operation	is	handled	in	the	replicas.	Node	1	is	a	primary	

replica	for	partitions	0	and	1,	and	Node	2,	being	a	replica	of	Node	1,	hosts	these	partitions	

as	 inactive	partitions.	When	the	dataset	exceeds	 its	 in-memory	component	 threshold,	 the	

Active	Index	Manager	triggers	a	flush	operation	by	first	writing	a	FLUSH	log	record	to	the	

log	tail	(1).	When	the	log	is	persisted	to	disk,	the	Index	Manager	asks	Indexes	IA0	and	IA1	to	

flush	 their	 associated	 in-memory	 components	 (2).	 Since	 each	 in-memory	 component	 is	

double-buffered,	the	request	switches	the	buffer	for	new	operations	to	write	to	the	second	

buffer,	and	the	first	buffer	is	asynchronously	written	to	disk.	The	log	tail	in	Node	1,	which	

contains	the	FLUSH	log	record,	is	sent	to	its	replica,	Node	2	(3).	Node	2	writes	the	remote	

FLUSH	 log	 record	 to	 its	 local	 transaction	 log	 and	 copies	 the	 FLUSH	 log	 record	 to	 each	

inactive	 partition’s	 write	 buffer	 (4).	 The	 write	 buffer	 gets	 added	 to	 the	 backlog	 and	 is	

eventually	dequeued	from	the	backlog	into	a	read	buffer	(5).	The	read	buffer	is	then	read	

sequentially	 and	 the	 corresponding	 operations	 are	 performed	 on	 the	 associated	 index	

replica.	When	a	flush	log	record	is	read	from	the	read	buffer,	the	replay	manager	asks	the	

inactive	partition	 index	associated	with	 the	 read	buffer’s	partition	 to	 flush	 (6).	The	 flush	

operation	for	the	index	happens	in	a	manner	similar	to	the	active	index	flush	operation	by	

switching	to	a	second	in-memory	component	for	new	incoming	writes	and	asynchronously	

writing	the	previous	in-memory	component	of	that	index	to	disk	(7).	Although	the	indexes	

IA0	and	IA1	will	begin	and	complete	their	flush	operations	at	different	times,	the	contents	of	

	

	28	

the	 immutable	 replica	 will	 ultimately	 be	 the	 same	 as	 those	 of	 the	 immutable	 primary	

component	on	the	primary	replica’s	node.		

	
Figure	4.4:	Handling	Flush	operations	for	inactive	partition	indexes	

Notice	that	the	flush	operations	for	the	replicas	are	triggered	independently,	per	partition,	

instead	of	flushing	all	inactive	partition	indexes	that	belong	to	the	dataset.	This	is	due	to	the	

fact	that	the	backlog	of	operations	can	be	different	for	each	of	the	partitions	in	the	replica.	

In	the	diagram,	the	backlog	of	operations	for	partition	0	and	1	in	Node	2	are	different	and,	

when	 the	FLUSH	 log	 record	 is	 read	 from	 the	 read	buffer	 in	 the	Log	Replay	Manager,	 the	

state	 of	 the	 in-memory	 component	 will	 be	 the	 same	 as	 that	 of	 the	 active	 partition’s	 in-

memory	 component	 on	 the	 remote	 primary	 replica.	 Adding	 the	 flush	 request	 to	 each	

partition’s	queue	ensures	that	each	partition	will	replay	the	same	operations	as	the	active	

partition	did	 at	 the	point	when	 the	 flush	 request	 is	 dequeued.	 In	 other	words,	when	 the	

	

	29	

flush	request	is	read	from	the	replay-read	buffer,	there	will	not	be	any	pending	dirty	writes	

on	the	inactive	replica	partition	due	to	the	fact	that	that	invariant	is	already	checked	by	the	

primary	replica.	(We	will	discuss	some	implications	of	this	design	in	more	detail	in	Section	

4.7.)	

	

4.5	Fault-Tolerance:	Node	Failover	

AsterixDB	 detects	 failures	when	 there	 is	 a	 network	 partition	 between	 Node	 Controllers.	

When	there	is	a	partition	in	the	network,	log	records	cannot	be	sent	to	the	replicas,	and	this	

will	 block	 incoming	write	 requests	 from	 being	 serviced.	When	 a	 replica	 detects	 that	 the	

connection	to	its	primary	is	broken,	it	informs	the	Cluster	Controller	about	the	link	failure	

and	 starts	 a	 timeout	 to	wait	 for	 the	 failed	 node	 to	 rejoin	 and	 re-establish	 a	 connection.	

When	 the	 timeout	 elapses,	 the	 Cluster	 Controller	 updates	 the	 state	 of	 the	 cluster	 to	

INACTIVE	and	suspends	all	jobs	until	a	candidate	has	been	identified	to	take	over	the	active	

partitions	 that	 were	 hosted	 on	 the	 failed	 node.	 Candidate	 selection	 may	 consider	 any	

previous	failures	and	the	number	of	partitions	hosted	on	each	candidate	node;	it	selects	a	

node	controller	to	take	over	the	newly	unavailable	partitions.	The	chosen	node	controller	

will	 be	 one	 of	 the	 hot-standby	 replicas.	 When	 the	 failover	 node	 receives	 a	 partition	

takeover	request	 from	the	cluster	controller,	 it	 flushes	all	of	 its	 log	replay	buffers	 for	 the	

relevant	 inactive	partitions	 and	waits	 for	 the	 replay	 threads	 to	 replay	 any	 remaining	 log	

records	 that	 are	 in	 the	 backlog.	 Once	 the	 backlog	 is	 empty,	 all	 of	 the	 partitions	 in	 the	

failover	node	will	be	in	the	same	state	as	they	were	on	the	Node	Controller	that	hosted	the	

active	partitions.	The	node	controller	the	marks	its	copy	of	the	partitions	as	active	and	asks	

the	 cluster	 controller	 to	 refresh	 its	 state	 again.	 The	 cluster	 controller	 then	 updates	 its	

	

	30	

internal	 state	 about	 active	partitions,	 and	broadcasts	 this	 information	 to	 all	 of	 the	 active	

node	controllers	 in	 the	cluster.	The	replica	connections	are	reestablished,	and	the	cluster	

can	resume	processing	of	incoming	jobs.	

	

With	Active	Replication,	the	recovery	process	after	the	timeout	does	not	involve	any	replay	

operations	 except	 for	 waiting	 for	 anything	 remaining	 in	 the	 backlog	 to	 be	 completed.	

Furthermore,	when	waiting	for	the	timeout	for	a	failed	node	to	rejoin	the	cluster,	each	node	

controller	 can	 continue	 performing	 operations	 from	 its	 replay	 backlog,	 and	 each	 node	

controller	gets	at	least	the	time	needed	to	detect	the	failure	to	catch	up	with	their	primary	

replicas.	The	total	time	to	recover	in	the	worst	case	is	bounded	by	the	timeout	to	mark	a	

node	as	 failed	plus	the	time	needed	to	replay	all	 the	 log	records	 in	the	backlog.	Since	the	

length	of	 the	backlog	 is	 fixed,	 the	 total	 time	 to	recover	will	not	be	more	 than	 the	 time	 to	

insert	the	number	of	records	in	the	backlog.	In	our	experiments,	to	be	discussed	in	Chapter	

5,	we	have	observed	that	the	backlog	is	almost	always	empty	by	the	time	that	the	recovery	

of	 a	 node	 begins,	 which	 means	 that	 the	 total	 downtime	 for	 the	 cluster	 is	 determined	

primarily	by	 the	 timeout	 to	detect	a	 failure	plus	 the	 time	needed	 to	reassign	a	new	node	

controller	to	take	over.		

	

In	 the	 event	 that	 there	 are	 now	 fewer	 nodes	 than	 the	 requested	 replication	 factor,	 the	

Cluster	 Controller	 could	 decide	 to	 reduce	 the	 replication	 factor	 to	 the	 highest	 number	

lower	 than	 the	 requested	 number	 that	 can	 be	 supported	with	 the	 number	 of	 remaining	

active	nodes	in	the	cluster.		

	

	31	

4.6	Fault	Tolerance:	Node	Failback	

The	 failback	 process	 for	 a	 rejoining	 NC	 in	 Active	 Replication	 involves	 deleting	 its	 entire	

persistent	state	and	fully	recovering	that	state	from	the	replica	that	is	currently	active	for	

its	 partitions	 by	 transferring	 the	 disk	 components	 of	 all	 indexes	 in	 partitions	 that	 were	

previously	owned	by	the	failing	back	NC	before	its	failure.	When	a	node	tries	to	rejoin	the	

cluster,	 the	cluster	controller	 first	 identifies	 the	node	which	currently	hosts	all	 the	active	

and	 inactive	partitions	that	were	previously	assigned	to	the	 failing	back	node.	 In	general,	

the	recovery	plan	constructed	by	the	Cluster	Controller	may	contain	different	nodes	from	

which	to	remotely	recover	the	state.		

	

Partition	 Partition	State	 Initial	Location	 Failover	from	Node	1	 Failback	to	Node	1	
0	 Active	 Node	1	 Node	2	 Node	1	

Inactive	 Node	2,	Node	3	 Node	3	 Node	2,	Node	3	
1	 Active	 Node	2	 Node	2	 Node	2	

Inactive	 Node	3,	Node	1	 Node	3	 Node	3,	Node	1	
2	 Active	 Node	3	 Node	3	 Node	3	

Inactive	 Node	1,	Node	2	 Node	2	 Node	1,	Node	2	
Table	4.3:	Partition-Node	assignments	initially,	after	failure	of	Node	1,	and	after	failback	of	

Node	1	with	initial	Replication	Factor	3	
	

Table	 4.3	 shows	 an	 example	 of	 the	 state	 of	 the	 cluster	 before	 failure,	 after	 failover,	 and	

finally	 after	 failback	 completion.	 (The	 failover	 process	 was	 discussed	 in	 the	 previous	

section.)	When	Node	1	informs	the	cluster	that	it	wants	to	rejoin	the	cluster,	the	node	has	

to	obtain	recovery	information	from	both	Nodes	2	and	3.	Node	1	has	to	recover	its	assigned	

active	 partition	 0	 from	 Node	 2,	 which	 is	 currently	 maintaining	 partition	 0	 in	 the	 active	

state.	Additionally,	Node	1	has	to	recover	the	states	of	partitions	2	and	3	to	host	them	as	

inactive	partitions	after	failback.	Node	1	receives	the	persistent	components	of	partition	2	

	

	32	

from	Node	 2	 and	 those	 of	 partition	 3	 from	Node	 3.	 The	 Cluster	 Controller	 then	 sends	 a	

request	 to	 the	 Node	 Controllers	 to	 flush	 their	 in-memory	 components	 for	 the	 partitions	

that	 the	 failback	 node	 must	 receive.	 Once	 these	 components	 have	 been	 flushed,	 the	

persistent	disk	components	are	transferred	according	to	the	recovery	plan	constructed	by	

the	Cluster	Controller.	Once	the	disk	components	have	been	transferred,	 the	 log	manager	

starts	logging	from	the	maximum	LSN	from	among	all	of	the	disk	components.	The	nodes	

will	also	reestablish	all	of	 their	replication	connections	since	 the	placement	of	active	and	

inactive	 partitions	 is	 now	 different.	 The	 Cluster	 Controller	 will	 know	 the	 state	 of	 the	

partition	assignments	post-failure	so	that	incoming	jobs	will	use	the	latest	information	for	

replication	and	regular	job	execution.		

	

4.7	Design	Discussion		

In	this	section,	we	discuss	the	Active	Replication	protocol’s	implications	on	the	consistency	

of	the	data	and	other	potential	issues.	

	

4.7.1	Data	Consistency	

As	described	in	the	previous	chapter,	AsterixDB’s	isolation	is	at	the	record	level.	A	record	is	

considered	 committed	 once	 a	 corresponding	 ENTITY_COMMIT	 transaction	 log	 record	 is	

safely	on	disk	on	the	active	partition’s	node	controller.	AsterixDB’s	transaction	model	does	

not	wait	for	a	JOB_COMMIT	before	allowing	another	job	to	read	the	inserted	record.	Once	

the	ENTITY_COMMIT	log	record	is	written	to	disk,	the	locks	acquired	are	released	and	the	

record	will	 become	 visible	 for	 reading	 in	 the	 primary	 replica.	 However,	 if	 the	 node	 fails	

	

	33	

after	a	reader	sees	the	new	record	but	before	the	corresponding	transaction	log	record	is	

sent	to	the	replica,	the	replica	will	not	replay	this	operation	and	the	new	value	will	not	be	

visible	to	users	after	failover,	despite	the	fact	that	it	was	previously	(albeit	briefly)	visible	

before	 the	 failure.	 However,	 if	 the	 record	 is	 a	 part	 of	 a	 larger	 job	 that	 completes	 its	

execution,	 the	 job	 level	 JOB_COMMIT	 is	 synchronously	 replicated	and	will	 ensure	 that	all	

previous	log	records	are	persisted	to	disk	both	on	the	primary	and	all	its	replicas.	Note	that	

since	 there	 is	 no	 limit	 on	 the	 number	 of	 records	 that	 a	 given	 job	 can	 insert/read,	 it	 is	

possible	 that	 a	 failure	 during	 execution	 before	 a	 JOB_COMMIT	 can	 result	 in	 such	 a	 read	

inconsistency	in	the	replica.	This	can	be	mitigated	by	either	having	fewer	records	per	job	or	

by	 periodically	 “checkpointing”	 the	 job’s	 progress	 with	 respect	 to	 its	 replicas	 by	

synchronously	replicating	ENTITY_COMMITs	at	regular	intervals	for	long	running	jobs.	

	

In	a	cluster	with	a	replication	factor	greater	than	two,	it	is	possible	for	a	node	controller	to	

fail	 after	 replicating	 its	 transaction	 log	 record	 to	 a	 subset	of	 replicas	but	not	 all	 replicas.	

Depending	on	the	replica	that	 is	chosen	as	the	failover	node,	the	replicas	will	either	have	

additional	 operations	 that	 were	 not	 sent	 to	 every	 other	 replica	 or	 they	 will	 have	 some	

operations	missing	 that	are	visible	on	other	replicas.	This	can	be	mitigated	by	 letting	 the	

cluster	 controller	 pick	 the	 node	 with	 the	 highest	 known	 LSN	 in	 the	 replication	 buffers	

among	all	candidates.	Alternatively,	 if	a	different	replica	 is	chosen,	a	replica	that	contains	

additional	 log	records	can	replicate	those	records	to	the	chosen	primary	replica	to	replay	

during	failover.	

	

	

	34	

4.7.2	Index	Memory	Management	

The	lifecycles	of	the	in-memory	index	components	of	an	inactive	partition	are	driven	by	the	

node	controller	that	hosts	the	corresponding	active	partition	for	that	index.	All	active	and	

inactive	partition	index	resources	are	managed	at	the	dataset	level.	When	an	index	crosses	

its	 threshold	 for	 in-memory	 components	 due	 to	 some	 relatively	 larger	 inactive	 partition	

memory	 component	 for	 an	 index,	 the	 node	 controller	 will	 only	 flush	 the	 indexes	 in	 its	

active	 partition	 memory	 component.	 When	 such	 a	 flush	 occurs,	 the	 active	 partition’s	

memory	component	may	actually	be	utilizing	less	memory	than	the	inactive	partition,	but	

the	active	partition	indexes	are	the	only	indexes	that	can	be	flushed	safely	(by	checking	for	

on-going	 operations	 on	 that	 index	 on	 the	 same	 node	 controller).	 This	 can	 lead	 to	 disk	

components	that	are	irregularly	sized	and	that	are	suboptimal	for	reading,	and	this	can	lead	

in	 turn	to	smaller	 than	expected	sequential	writes	on	the	disk	because	of	 their	 less-than-

ideal	 size.	 This	 could	 be	 mitigated	 by	 managing	 the	 index	 resources	 independently	 for	

active	and	inactive	partitions	or	by	locally	tracking	the	status	of	operations	on	the	inactive	

partition	indexes	so	that	flushes	can	be	triggered	locally	(yet	safely)	without	waiting	for	a	

message	from	the	remote	primary	replica	for	that	partition.		

	

4.7.3	Flow	Control	for	Replay	Operations		

The	replay	operations	on	an	inactive	partition	are	bounded	by	the	size	of	the	buffers	in	the	

Log	 Replay	 Manager’s	 empty	 queue	 when	 the	 node	 controller	 is	 started.	 If	 a	 remote	

primary	replica	has	additional	resources	that	cause	its	throughput	to	be	higher	than	any	of	

its	 replicas,	 the	 remote	 primary	will	 have	 to	wait	 for	 the	 replicas	 to	 free	 up	 buffers	 for	

	

	35	

replay	 operations,	which	will	 reduce	 the	primary	 replica’s	 throughput,	 thus	 allowing	 the	

replicas	to	catch	up.	Additionally,	such	a	reduction	in	the	throughput	on	the	primary	replica	

ensures	 that	 a	 replica	 node	 controller	 can	 control	 the	 memory	 utilization	 of	 the	 replay	

operation	backlog	in	the	remote	replicas.	This	controlled	replay	backlog	size	is	 important	

to	 ensure	 that	 the	 recovery	 time	 for	 a	 node	 controller	 does	 not	 involve	 replaying	 an	

unbounded	number	of	operations	from	the	backlog,	which	could	take	longer	than	the	time	

required	to	detect	a	failure.		

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	36	

Chapter	5		
	

	

Initial	Performance	Evaluation	
	
In	 this	 chapter,	 we	 present	 experimental	 results	 to	 quantify	 the	 performance	 impact	 of	

maintaining	Active	Replicas	in	AsterixDB.	Section	5.1	outlines	the	experimental	setup	and	

then	describes	the	dataset	used	for	all	the	experiments.	The	rest	of	the	chapter	explores	the	

performance	 impact	 of	 Active	 Replication	 under	 different	 scenarios	 and	 compares	 its	

performance	with	both	an	AsterixDB	cluster	running	without	replication	and	with	Passive	

Replication.		

	

5.1	Experimental	Setup	

The	experiments	reported	in	this	section	were	performed	on	a	cluster	consisting	of	6	Node	

Controllers	 and	 1	 Cluster	 Controller.	 Each	 of	 the	 nodes	 has	 two	 Opteron	 2212HE	

processors,	8	GB	of	DDR2	RAM,	and	two	1	TB	I/O	devices	running	at	7200	RPM.	The	Node	

Controllers	 each	 use	 one	 disk	 for	 the	 transaction	 log	 and	 the	 other	 disk	 to	 host	 a	 single	

active	data	partition.	The	disk	buffer	cache	 is	2.5GB,	and	 the	 indexes	have	an	 in-memory	

component	limit	of	2GB,	which	is	the	limit	for	both	the	active	and	the	shadow	buffer	of	the	

in-memory	component	per	dataset.	The	node	controller	has	5	log	tail	buffers	of	6MB	each	

plus	 5	 reusable	 log	 tail	 replication	 buffers	 that	 are	 used	 to	 send	 the	 locally-generated	

	

	37	

transaction	 log	 records	 to	 the	 replicas.	The	 replication	 log	buffer	block	 size	 is	2KB	when	

sending	data	 to	 the	replicas.	The	Replay	Manager	starts	with	5	empty	pages	 in	 its	empty	

queue,	with	each	page	being	equal	to	6MB,	the	size	of	a	log	page	per	partition.	These	empty	

queues	are	used	by	the	backlog	to	queue	operations	in	the	remote	log	records	for	replay.	

create dataverse Gleambook;
use dataverse Gleambook;

create type EmploymentType as {

organization: string,
start_date: date,
end_date: date?

}

create type GleambookUserType as {
 id: int64,
 alias: string,
 name: string,
 user_since: datetime,
 friend_ids: {{ int64 }},
 employment: [EmploymentType]
};

create dataset GleambookUsers(GleambookUserType)
primary key id;

Figure	5.1:	DDL	used	to	create	the	dataset	for	experiments	
	

Number	of	Records	(Millions)	 Size	
1	 384	MB	
5	 1.9	GB	
10	 3.8	GB	
15	 5.8	GB	
20	 7.8	GB	

Table	5.1:	Dataset	Size	

Figure	5.1	shows	the	DDL	used	to	create	the	dataset.	The	datasets	used	for	the	experiments	

were	generated	using	SocialGen	[23].	SocialGen,	as	used	here,	distributes	the	data	in	ADM	

format	 into	 6	 partitions,	 one	 for	 each	 node	 controller.	 The	 file	 containing	 the	 data	 to	 be	

ingested	in	each	node	controller	is	placed	on	the	same	I/O	device	as	the	data	partitions.		

	

	38	

The	experiments	are	executed	on	different	dataset	sizes.	Table	5.1	shows	the	dataset	sizes	

(as	measured	on	disk)	and	the	corresponding	number	of	records	present	in	each	dataset.		

	

5.2	Results	and	Analysis	

5.2.1	Ingestion	Time	

AsterixDB	supports	high	speed	data	 ingestion	 into	a	dataset	with	 feeds	by	having	a	 long-

running	continuous	insertion	job	that	waits	for	data	to	arrive	from	the	feed’s	source	[24].	In	

this	experiment,	we	have	created	a	file-feed	job	that	consumes	data	in	ADM	format	in	a	file	

on	disk.	The	dataset	described	in	the	previous	section	is	partitioned,	and	one	partition	of	

the	dataset	 is	 available	 in	each	Node	Controller.	We	evaluate	 the	 time	 taken	 to	 complete	

ingesting	the	data	from	the	contents	in	the	partitions	of	all	the	Node	Controllers.		

	
Figure	5.2:	Data	Ingestion	Time	with	Replication	Factor	2	

	

	39	

	
Figure	 5.2	 shows	 the	 results	 from	 ingesting	 datasets	 with	 no	 replication,	 passive	

replication,	 and	 active	 replication	 with	 a	 replication	 factor	 of	 two.	 The	 average	 data	

ingestion	time	increase	due	to	Active	Replication	compared	to	no	replication	is	between	10	

and	 15%.	 Passive	 Replication,	 on	 the	 other	 hand,	 has	 a	much	 lower	 overhead,	with	 less	

than	 a	 5%	 increase	 in	 the	 ingestion	 time	 when	 compared	 to	 the	 system’s	 ingestion	

performance	without	replication.	This	is	because	with	Passive	Replication,	the	system	only	

writes	 additional	 log	 records	 received	 from	 replicas	 into	 the	 transaction	 log	 file.	 In	

contrast,	with	Active	Replication,	in	addition	to	writing	transaction	log	records	from	every	

active	replica,	 the	cluster	also	has	to	perform	twice	the	number	of	(in-memory)	 insertion	

operations	on	the	node.	Additionally,	since	we	have	compared	the	performance	while	not	

changing	 the	memory	allocation	per	dataset	 for	all	 three	cases,	Passive	Replication	and	a	

cluster	with	no	replication	will	have	twice	the	amount	of	memory	per	index	because	they	

only	 work	 with	 the	 active	 partition.	 This	 results	 in	 larger	 sequential	 writes	 to	 disk	

compared	to	Active	Replication,	where	there	will	be	smaller	sequential	writes	to	the	disk,	

and	 this	happens	more	 frequently	 than	with	passive	replication.	However,	 the	amount	of	

data	written	to	disk	will	be	the	same	with	both	active	and	passive	replication;	the	source	of	

the	data	to	write	for	passive	is	the	network,	while	for	active,	it	is	memory.	

	

	

	40	

	
Figure	5.3:	Data	Ingestion	Time	with	Replication	Factor	3	

Figure	5.3	shows	the	results	of	the	same	experiment	with	a	replication	factor	of	3.	With	a	

Replication	Factor	of	3,	a	cluster	using	Active	Replication	will	have	one	third	of	the	memory	

available	 per	 dataset	 because	 each	 of	 the	 other	 two	 thirds	 of	 the	memory	 budget	 for	 a	

dataset	will	be	used	 to	host	 inactive	partitions	on	which	 to	replay	operations	 from	other	

node	controllers	in	the	cluster.	This	translates	to	more	writes	to	disk,	with	smaller	memory	

components	 being	written,	 since	 the	 index	 is	managed	 at	 the	 dataset	 level	 and	 includes	

both	the	active	and	inactive	partitions	for	that	dataset.		

	

	41	

	
Figure	5.4:	Percent	increase	in	ingestion	time	with	Active	Replication	factor	2	and	3	

	
Figure	5.4	shows	the	relative	slowdown	during	ingestion	incurred	due	to	Active	Replication	

compared	 to	 a	 cluster	 without	 replication.	 With	 a	 replication	 factor	 of	 two,	 we	 have	

observed	an	average	11%	slowdown	and	22%	with	a	replication	 factor	of	 three.	The	 low	

overhead	of	in	the	ingestion	time	can	be	explained	by	the	fact	that	for	the	replica	indexes,	

we	do	not	maintain	 the	 same	 immediately	 readable	 transactional	 semantics	 required	 for	

insertion	 into	 active	 partitions,	 even	 though	we	 are	 inserting	 three	 times	 the	 number	 of	

records	 per	 node	 with	 a	 replication	 factor	 of	 three.	 This	 lack	 of	 real-time	 transactional	

semantics	means	 that	 there	 is	 no	 need	 to	 check	 for	 concurrent	 operations	 on	 the	 same	

record	and	that	there	will	be	no	contention	due	to	the	lock	manager	being	in	the	write	path	

for	inactive	partitions.		

	

	42	

	

Figure	5.5:	Aggregated	Network	Bandwidth	with	Replication	Factor	2	

Figures	5.5	and	5.6	show	the	total	network	utilization	in	the	cluster	with	Passive	and	Active	

Replication	factors	of	two	and	three	(respectively)	during	ingestion.	This	was	measured	by	

initially	 checking	 the	 total	 number	 of	 received	 and	 transmitted	 bytes	 at	 each	 network	

interface	of	Node	Controllers	after	creating	the	dataset	and	then	again	after	the	ingestion	is	

complete.	The	graph	represents	the	sum	of	transmitted	and	received	bytes	at	the	network	

interface	during	ingestion	from	all	Node	Controllers	in	the	Cluster.		

	

	43	

	

Figure	5.6:	Aggregated	Network	Bandwidth	with	Replication	Factor	3	

During	 ingestion	 of	 1	 and	 5	million	 records,	 there	 are	 no	 flush	 operations	 in	 the	 cluster	

with	 Passive	 Replication	 so	 the	 total	 network	 utilization	 is	 the	 same	 as	 with	 Active	

Replication.	Whenever	there	is	a	flush	operation	in	Passive	Replication,	the	immutable	disk	

components	 are	 transferred	 over	 the	 network	 to	 all	 replicas,	 thus	 consuming	 network	

bandwidth	to	copy	the	components	over	the	network.	However,	 in	Active	Replication,	we	

free	 up	 the	 network	 by	 not	 having	 the	 flushed	 disk	 components	 sent	 over	 the	 network;	

however,	we	still	have	 to	do	a	sequential	write	operation	 locally	on	disk	when	 there	 is	a	

flush	request	from	the	remote	primary	replica	for	that	node.	Additionally,	when	there	are	

merge	 operations,	 the	 merged	 component	 is	 also	 sent	 to	 the	 replicas.	 These	 merge	

operations	become	bigger	during	 the	 lifecycle	 of	 the	 cluster	 if	we	 continue	 the	 ingestion	

	

	44	

processes,	and	the	same	data	(albeit	with	a	different	structure)	will	be	sent	to	the	replicas	

multiple	times	due	to	the	merge	operations.	

5.2.2	Failover	Time	

Active	Replication	maintains	 its	 in-memory	components	 in	order	 to	have	a	near-constant	

time	to	failover	to	a	replica	node	to	resume	processing	of	queries.	 	In	this	experiment,	we	

first	ingest	our	experimental	dataset	and	then	kill	a	single	Node	Controller.	We	record	the	

failover	time	with	Active	Replication	and	compare	it	against	that	of	a	cluster	running	with	

Passive	Replication.	The	timeout	to	allow	a	partitioned	node	to	rejoin	the	cluster	is	set	to	

60	seconds.	After	 this	 timeout,	 the	Cluster	Controller	asks	a	 replica	node	 to	 takeover	 the	

partitions	of	the	failed	node.	We	record	the	time	it	takes	for	the	cluster	to	change	the	status	

to	ACTIVE	again	after	the	timeout.		Figure	5.7	shows	the	results.	

	
Figure	5.7:	Recovery	time	for	a	cluster	with	Active/Passive	Replication	factor	of	2	

	

	45	

The	failover	process	in	Active	Replication	first	empties	the	replay	backlog	by	replaying	any	

pending	operations	and	then	changes	the	failed-over	partition	state	to	Active.	The	constant	

4-second	 failover	 time	 for	 Active	 Replication	 is	 because,	 during	 the	 timeout	 needed	 to	

detect	a	failure,	each	node	controller	can	continue	working	towards	emptying	its	backlog	of	

operations	 and	 manages	 to	 catch	 up	 with	 the	 primary	 replica	 before	 the	 60-second	

timeout;	this	allows	the	replacement	node	to	take	over	instantly.	The	additional	4-second	

delay	after	the	timeout	involves	communication	with	the	Node	Controllers	about	the	state	

of	 the	 partitions	 after	 the	 failure	 of	 a	Node	 Controller	 and	 reestablishing	 connections	 to	

continue	replication	from	the	new	active	partition.	

	

Passive	 Replication	 has	 to	 replay	 the	 transaction	 log	 records	 received	 from	 the	 failed	

remote	primary	before	the	failure	to	first	reconstruct	in-memory	state	of	the	database.	This	

involves	 sequentially	 reading	 through	 the	 transaction	 log	 records	 and	 replaying	 the	

operations	into	a	new	partition.	Since	the	in-memory	components	could	have	different	fill	

factors	at	 the	time	of	a	 failure,	 the	amount	of	work	that	needs	to	be	done	during	 failover	

varies.	 If	 there	 is	 a	 failure	 after	 a	 checkpoint	 where	 the	 disk	 components	 of	 the	 active	

partitions	have	been	copied	over	to	the	replicas,	the	failover	time	can	be	as	low	as	that	of	

Active	Replication.	However,	 if	a	node	fails	when	its	in-memory	component	size	is	almost	

full,	the	recovery	time	will	be	proportional	to	the	size	of	the	in-memory	component	and	the	

time	that	it	takes	to	(re)fill	the	configured	in-memory	component	size.			

	

	

	46	

5.2.3	Failback	Time	

In	 this	 experiment,	 we	 restart	 the	 node	 that	 was	 killed	 in	 the	 previous	 experiment	 and	

record	 the	 time	 that	 it	 takes	 to	 fully	 recover	and	rejoin	 the	cluster.	Figure	5.8	 shows	 the	

time	 for	 failback	 for	different	dataset	 sizes.	The	 time	 to	 recover	 for	20	million	 records	 is	

higher	 for	Active	Replication	because	 the	 replica	node	will	 have	 to	 first	 flush	 its	 indexes	

and	only	then	start	to	copy	the	generated	disk	components,	whereas	in	Passive	Replication,	

the	flush	operation	would	have	already	been	completed	during	the	failover	process.		

	
Figure	5.8:	Failback	Time	for	a	cluster	with	Active/Passive	Replication	Factor	of	2	

	

5.2.4	Query	Response	Time		

In	 this	experiment,	we	first	 ingested	the	20M-record	dataset	using	 file	 feeds	 in	a	cluster	with	

Passive	Replication	and	in	one	with	Active	Replication,	both	with	a	replication	factor	of	two.	We	

	

	47	

then	start	another	insertion	job	that	reads	through	the	ingested	dataset	and	copies	all	records	

into	a	new	dataset	to	generate	update	traffic	requiring	replication	activity.	While	this	happens,	

we	run	the	query	shown	in	Figure	5.9	several	times	on	the	initially	ingested	dataset	and	report	

the	 average	 response	 time.	 Figure	 5.10	 shows	 the	 query	 response	 time	 results.	 In	 Passive	

Replication,	the	index	components	can	occupy	a	larger	fraction	of	memory,	thus	increasing	the	

search	fraction	that	happens	in	memory	since	the	Node	Controllers	have	to	maintain	only	the	

active	 partitions.	 Active	 Replication	 will	 have	 both	 active	 and	 inactive	 partitions	 of	 the	 new	

dataset	in	memory,	with	a	smaller	fraction	of	the	initially	loaded	dataset	in	memory	when	we	

run	the	query,	thus	increasing	the	time	required	to	execute	the	search	query.	(AsterixDB	can	be	

tuned	to	perform	better	on	reads	by	increasing	the	amount	of	buffer	cache	available,	but	in	our	

experiments	here,	the	configuration	has	been	optimized	for	writes,	with	a	comparatively	bigger	

fraction	of	the	memory	being	allocated	to	the	indexes’	in-memory	components.)	

use dataverse Gleambook;
let $count := count(for $record in dataset GleambookUsers
 where $v.id < 100
 and $v.id < 100000000
 return $v)
return $count

Figure	5.9:	Range	Query	used	during	ingestion	

	

	48	

	
Figure	5.10:	Query	Response	Time	during	Ingestion	

	
	 	

	

	49	

Chapter	6		
	

	

Conclusion	and	Future	Work		
	
6.1	Conclusion	

In	this	thesis,	we	have	described	a	new	replication	protocol	that	minimizes	the	downtime	

of	 an	 AsterixDB	 cluster	 by	 eagerly	 replicating	 a	 Node	 Controller’s	 state	 to	 one	 or	 more	

replicas.	We	described	the	new	protocol	and	explained	how	it	asynchronously	replays	the	

operations	on	replicas	without	compromising	AsterixDB’s	existing	record-level	consistency	

model.	We	described	the	index	management	and	other	potential	issues	that	may	arise	from	

the	 remote	management	of	 indexes.	 	We	 followed	 that	by	describing	how	 fault-tolerance	

with	 near-constant	 failover	 time	 can	 be	 achieved	 with	 Active	 Replication.	 Finally,	 we	

presented	 an	 initial	 performance	 evaluation	 aimed	 at	 quantifying	 the	 impact	 of	 Active	

Replication	under	different	 replication	 factors	and	we	compared	 its	performance	 to	both	

that	of	a	cluster	with	Passive	Replication	and	that	of	one	without	replication.	

	

	

	50	

6.2	Future	Work		

6.2.1	Weakly	Consistent	Querying	

The	Active	Replication	protocol	does	not	allow	reads	to	happen	from	inactive	partitions	of	

a	Node	Controller.	This	 is	 because	 the	 inactive	partitions	 shadow	 the	operations	of	 their	

corresponding	 primary	 replica	 partition	 asynchronously,	 and	 allowing	 them	 to	 be	 read	

could	 thus	 lead	 to	 inconsistent	 reads.	 It	 would	 be	 possible	 to	 redirect	 reads	 to	 shadow	

partitions	by	supporting	a	query	extension	where	users	can	explicitly	ask	for	any	true	value	

of	 a	 record	 and	not	 necessarily	 the	 latest	 version	 of	 the	 record.	Additionally,	 it	 could	 be	

possible	to	quantify	the	inconsistency	in	the	response	of	such	queries	based	on	the	size	of	

the	backlog	of	replay	operations	during	execution	of	the	query.	

	

6.2.2	Delta	Recovery	

Recall	 that	during	 failback,	 the	 failback	Node	Controller	 in	Active	Replication	destroys	 its	

local	state	and	recovers	 the	persistent	state	 from	active	NCs	 that	are	hosting	 the	 failback	

node’s	partitions	after	its	failure.	This	can	be	expensive	when	there	are	frequent	failures	of	

a	Node	Controller,	i.e.,	where	it	fails	and	rejoins	shortly	after	failover,	leading	to	the	cluster	

spending	a	 large	amount	of	 time	in	keeping	the	failing-back	Node	Controller	 in	sync	with	

the	failover	node.	The	protocol	could	potentially	be	modified	to	instead	request	transaction	

log	 records	 that	were	 generated	 since	 the	 time	 it	 failed	 in	 order	 to	perform	 recovery	by	

only	replaying	those	operations	that	were	performed	since	its	previous	failure.		

	

	 	

	

	51	

Bibliography	
	
	
[1]		 B.	 Schroeder	 and	 G.	 Gibson,	 "Disk	 failures	 in	 the	 real	 world:	 What	 does	 an	 MTTF	 of	

1,000,000	hours	mean	to	you?,"	FAST,	vol.	VII,	pp.	1-16,	2007.		

[2]		 S.	A.	Moiz,	P.	 Sailaja,	G.	Venkataswamy	and	S.	N.	Pal,	 "Database	 replication:	A	 survey	of	

open	source	and	commercial	tools,"	Database,	vol.	13,	no.	6,	2011.		

[3]		 T.	 Haerder	 and	 A.	 Reuter,	 "Principles	 of	 transaction-oriented	 database	 recovery,"	 ACM	

Computing	Surveys	(CSUR),	vol.	15,	no.	4,	pp.	287-317,	1983.		

[4]		 S.	 B.	Davidson,	H.	Garcia-Molina	 and	D.	 Skeen,	 "Consistency	 in	 a	 partitioned	network:	 A	

Survey,"	ACM	Computing	Surveys	(CSUR),	vol.	17,	no.	3,	pp.	341-370,	1985.		

[5]		 P.	O’Neil,	E.	Cheng,	D.	Gawlick	and	E.	O’Neil,	"The	log-structured	merge-tree	(LSM-tree),"	

Acta	Informatica,	vol.	33,	no.	4,	pp.	351-385,	1996.		

[6]		 N.	Budhiraja,	K.	Marzullo,	 F.	B.	 Schneider	and	S.	 Toueg,	 "The	primary-backup	approach,"	

Distributed	systems,	vol.	2,	pp.	199-216,	1993.		

[7]		 J.	Gray	and	A.	Reuter,	Transaction	processing:	concepts	and	techniques,	Elsevier,	1992.		

[8]		 P.	Bailis,	A.	Davidson,	A.	Fekete,	A.	Ghodsi,	J.	M.	Hellerstein	and	I.	Stoica,	"Highly	available	

transactions:	Virtues	and	limitations,"	in	Proceedings	of	the	VLDB	Endowment,	2013.		

[9]		 M.	 Wiesmann,	 F.	 Pedone,	 A.	 Schiper,	 B.	 Kemme	 and	 G.	 Alonso,	 "Database	 replication	

techniques:	A	three	parameter	classification,"	in	Reliable	Distributed	Systems,	2000.	SRDS-

2000.	Proceedings	The	19th	IEEE	Symposium	on,	2000.		

[10]		D.	DeWitt	and	J.	Gray,	"Parallel	database	systems:	the	future	of	high	performance	database	

systems,"	Communications	of	the	ACM,	vol.	35,	no.	6,	pp.	85-98,	1992.		

[11]		V.	Borkar,	M.	J.	Carey	and	C.	Li,	"Inside	Big	Data	management:	ogres,	onions,	or	parfaits?,"	

in	 Proceedings	 of	 the	 15th	 international	 conference	 on	 extending	 database	 technology,	

2012.		

[12]		E.	A.	Brewer,	"Towards	robust	distributed	systems,"	in	PODC,	2000.		

	

	52	

[13]		P.	 Hunt,	M.	 Konar,	 F.	 P.	 Junqueira	 and	 B.	 Reed,	 "ZooKeeper:	Wait-free	 Coordination	 for	

Internet-scale	Systems,"	in	USENIX	annual	technical	conference,	2010.		

[14]		G.	 DeCandia,	 D.	 Hastorun,	 M.	 Jampani,	 G.	 Kakulapati,	 A.	 Lakshman,	 A.	 Pilchin,	 S.	

Sivasubramanian,	P.	Vosshall	and	W.	Vogels,	"Dynamo:	amazon's	highly	available	key-value	

store,"	ACM	SIGOPS	operating	systems	review,	vol.	41,	no.	6,	pp.	205-220,	2007.		

[15]		"Apache	AsterixDB,"	[Online].	Available:	http://asterixdb.apache.org.	

[16]		V.	Borkar,	M.	Carey,	R.	Grover,	N.	Onose	and	R.	Vernica,	"Hyracks:	A	flexible	and	extensible	

foundation	 for	 data-intensive	 computing,"	 in	 Data	 Engineering	 (ICDE),	 2011	 IEEE	 27th	

International	Conference	on,	2011.		

[17]		K.	W.	Ong,	Y.	Papakonstantinou	and	R.	Vernoux,	"The	SQL++	query	language:	Configurable,	

unifying	and	semi-structured,"	arXiv	preprint	arXiv:1405.3631,	2014.		

[18]		S.	Alsubaiee,	Y.	Altowim,	H.	Altwaijry,	A.	Behm,	V.	Borkar,	Y.	Bu,	M.	Carey,	 I.	Cetindil,	M.	

Cheelangi	 and	K.	 Faraaz,	 "AsterixDB:	A	 scalable,	 open	 source	BDMS,"	Proceedings	 of	 the	

VLDB	Endowment,	vol.	7,	no.	15,	pp.	1905-1916,	2014.		

[19]		"JSON,"	[Online].	Available:	http://www.json.org.	

[20]		S.	Alsubaiee,	A.	Behm,	V.	Borkar,	Z.	Heilbron,	Y.-S.	Kim,	M.	J.	Carey,	M.	Dreseler	and	C.	Li,	

"Storage	Management	in	AsterixDB,"	Proceedings	of	the	VLDB	Endowment,	vol.	7,	no.	10,	

pp.	841-852,	2014.		

[21]		M.	Al	Hubail,	"Data	Replication	and	Fault	Tolerance	in	AsterixDB,"	2016.	

[22]		H.-I.	 Hsiao	 and	 D.	 J.	 DeWitt,	 "Chained	 declustering:	 A	 new	 availability	 strategy	 for	

multiprocessor	 database	 machines,"	 in	 Data	 Engineering,	 1990.	 Proceedings.	 Sixth	

International	Conference	on,	1990.		

[23]		"SocialGen,"	[Online].	Available:	https://github.com/pouriapirz/socialGen.	

[24]		R.	Grover	and	M.	J.	Carey,	"Data	Ingestion	in	AsterixDB,"	in	EDBT,	2015.		

	
	
	

