

UNIVERSITY OF CALIFORNIA,

IRVINE

Hyracks Console:

A Visual UI for Monitoring the Hyracks Runtime Platform

THESIS

submitted in partial satisfaction of the requirements

for the degree of

MASTER OF SCIENCE

in Computer Science

by

Ching-Wei Huang

 Thesis Committee:

 Professor Michael J Carey, Chair

Associate Professor Chen Li

Professor Ramesh Jain

2011

© 2011 Ching-Wei Huang

ii

TABLE OF CONTENTS

Page

1 INTRODUCTION ...1

2 HYRACKS OVERVIEW ..2

2.1 Hyracks Architecture ..3

2.1.1 Cluster Controller (CC) ..3

2.1.2 Node Controller (NC) ..4

2.1.3 Initialize Hyracks ...4

2.2 Hyracks Jobs ...5

2.2.1 Hyracks Job Specification ..7

2.2.2 Hyracks Job Plan ...9

2.2.3 Hyracks Runtime Tasks ... 10

3 CONSOLE DESIGN GOALS ... 12

3.1 Hyracks End Users .. 12

3.2 Hyracks Operator Implementers .. 13

4 HYRACKS CONSOLE ARCHITECTURE .. 14

4.1 Hyracks Console Server (HCS) ... 15

4.2 Hyracks Console Visualization (HCV) .. 17

iii

Page

5 IMPLEMENTATION ... 18

5.1 REST API for Requesting the Hyracks Monitoring Information 19

5.1.1 Hyracks Jobs .. 19

5.1.2 Hyracks Cluster Health .. 20

5.2 Data Representation Mechanism ... 21

5.3 Data Representation Modules .. 22

5.3.1 Hyracks Jobs .. 22

5.3.2 Hyracks Cluster Health .. 38

5.4 Publish/Subscribe API for Server Pushing Method .. 50

6 HYRACKS CONSOLE USER MANUAL .. 53

6.1 Setting up the Hyracks Console ... 53

6.1.1 Hyracks Cluster Installation Prerequisites for Collecting and Storing Data 53

6.1.2 Installing JSP ... 53

6.1.3 Running the Hyracks Console on a Browser ... 54

6.2 Hyracks Console Web UI .. 58

6.2.1 Hyracks Job Browser ... 60

6.2.2 Hyracks Job Profile .. 61

6.2.3 Hyracks Cluster Browser ... 68

iv

Page

6.2.4 Hyracks Node Controller Profile .. 71

7 CONCLUSION ... 73

v

LIST OF FIGURES

 Page

Figure 1 : Hyracks System Architecture ..3

Figure 2: Initialize a Hyracks Cluster ..5

Figure 3: Representations for a Hyracks Job ..6

Figure 4 : Hyracks Job Plan (HAN Graph) ...8

Figure 5 : Hyracks Job Specification (HOD Graph) ...8

Figure 6 : Hyracks Runtime Tasks (HONs Graph) ... 11

Figure 7: Hyracks Console Architecture .. 15

Figure 8 : Hyracks Console Visualization Web Server .. 17

Figure 9 : URL-Request Paths for Hyracks Jobs Execution Information 19

Figure 10 : URL-Request Paths for Monitoring Hyracks Cluster ... 20

Figure 11 : Data Retrieval and Representation ... 21

Figure 12 : Procedure for Generating a Hyracks Job Summary .. 24

Figure 13 : Example Job Specification Graph Node in the DOT Language 26

Figure 14 : Edge of the Job Specification Graph in the DOT Language 27

Figure 15 : The Procedure in Generating the Job Specification Graph 28

Figure 16 : Node of the HAN Graph in DOT Language ... 30

file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006306
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006307
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006308
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006309
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006310
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006311
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006313
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006316
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006317
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006318
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006319
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006320
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006321

vi

 Page

Figure 17 : Sub-graph (Hyracks Stage) of the HAN graph in the DOT Language and Example

Result .. 31

Figure 18 : Example Blocking Edge of the HAN Graph in the DOT Language 32

Figure 19 : Example of the HAN Graph in DOT Language ... 33

Figure 20 : Procedure for Generating Hyracks Activity Node Graphs .. 34

Figure 21 : Job Pie Chart and Job Time Chart (1) .. 36

Figure 22 : Job Pie Chart and Job Time Chart (2) .. 37

Figure 23 : Procedure for Generating the CC Configuration Table... 39

Figure 24 : Example List of Registered Nodes Component .. 41

Figure 25 : Hyracks Jobs Timeglider ... 43

Figure 26 : Procedure in Generating the NC Configuration Table .. 45

Figure 27 : Node Controller Job Summary Module ... 47

Figure 28 : NC Resource Monitoring Module .. 49

Figure 29 : /jobs channel ... 51

Figure 30 : /stages/<job-id> channel .. 52

Figure 31 : /attempts/<job-id> channel .. 52

Figure 32 : Initial Web Page (Job Browser Page) of the Hyracks Console 55

Figure 33 : Setup the Connection between the HCV and the HCS ... 55

file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006322
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006322
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006323
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006324
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006325
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006326
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006327
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006328
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006329
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006330
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006331
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006332
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006333
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006334
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006335
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006336
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006337
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006338

vii

 Page

Figure 34 : Setup the cc-IP and cc-http-port values ... 56

Figure 35 : Example Job Browser Page ... 57

Figure 36 : Hyracks Console Visualization Sitemap .. 59

Figure 37 : Example Result After Deploying a Hyracks Job .. 60

Figure 38: Overview of the Job Profile Page ... 61

Figure 39 : Hyracks Job Specification (left) and Hyracks Activity Node Graph (right) 62

Figure 40 : Hyracks Activity Node Graph of the Completed Hyracks Job 64

Figure 41: Updating the Hyracks Activity Node Graph on the Model Popup Page 64

Figure 42: HAN Profile of the “FileScan” Activity (left) and the “HashBuildActivityNode”

Activity (right) on the Model Popup Page ... 65

Figure 43: Hyracks Activity Node Graph with Data Movement Information on the Popup Page 66

Figure 44 : Performance Pie Chart ... 67

Figure 45 : Performance Time Chart ... 67

Figure 46 : CC Configuration for "vanilla.ics.uci.edu" Hyracks Cluster 68

Figure 47 : Hyracks Jobs Timeglider ... 69

Figure 48 : Only the Failure Jobs in the Hyracks Jobs Timeglider ... 70

Figure 49 : Job’s Description in the Hyracks Jobs Timeguilder ... 70

Figure 50 : Registered NCs (left) and NC's CPU Utilization Legend (right) 71

file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006341
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006347
file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006347

viii

 Page

Figure 51 : Hyracks Node Controller Configuration of the Node-ID “nc2” 72

Figure 52 : Node Controller Jobs Summary ... 72

Figure 53 : Hyracks Machine Resources Consumption .. 73

file:///C:/Users/kym/Desktop/Hyracks_Console_UI_V.1%20(10-10).docx%23_Toc306006356

ix

ACKNOWLEDGMENTS

I would like to express my gratitude to many individuals, as the Hyracks Console could not

have been built without them. I would like to thank my advisor, Michael Carey. Without his help,

suggestion, and encouragement, exploring and mastering the world of the Hyracks console would

have been difficult to achieve.

Through this research, I have discovered a new topic that has fascinated me which is web UI

development. I would also like to thank RaresVernica, Raman Grover, Alexander Bem, Nicola

Onose, and Yingyi Bu, the members of the Hyracks and ASTERIX group at University of California,

Irvine, for their assistance with all the levels of this research project. I also would like to thank

Vinayak Borkar in particular for the direction and feedback that he provided all along.

Last but not least, I must acknowledge my partner and friend, Siripen Pongpaichet, for

always being great company throughout this project, and for our implementation debates, exchanges

of knowledge, skills, and venting of frustration during our research process, all of which helped to

enrich the experience. Like the wise men say, “Education is all the matter of building bridges”, and

now I’m ready to cross.

x

ABSTRACT OF THE THESIS

Hyracks Console:

A Visual UI for Monitoring the Hyracks Runtime Platform

By Ching-Wei Huang

Master of Science in Computer Science

University of California, Irvine, 2011

Professor Michael J Carey Irvine, Chair

High-level programming frameworks for data intensive processing are being increasingly

adopted, as they provide a simple programming interface allowing programmers to create and

run data-intensive applications on commodity hardware. Unfortunately, monitoring and

debugging applications in this framework is far more complicated than for sequential programs,

and often leads to much difficulty and time loss on the part of the programmer. This difficulty

arises not only from the complex global state of data-intensive applications but also from the

nondeterministic nature of parallel systems. The core challenges involved in creating the

Hyracks Console were: to identify the information useful to the users, gathering this data at

runtime, and ultimately, presenting the data in a visual and scalable representation for the user.

This paper covers in detail the design and implementation of the Hyracks Console, and it

explains how the Hyracks Console can be used to monitor and understand not only the parallel

processes of the applications but the Hyracks partitioned-parallel runtime platform itself.

1

1 INTRODUCTION

In recent years, the world has seen an explosion of information due to the growth of the

Internet. At the same time, due to the declining cost of hardware, companies are now able to set

up large clusters of independent computers to store and process the growing data. The emergence

of high-level programming platforms for large-scale distributed systems, such as Apache Hadoop

[1], Google MapReduce [2], and Microsoft Dryad [3], have led to a lot of followers in the

development of the data-intensive applications. The successes of these high-level programming

platforms are due to the fact that they conceal the complexity of the underlying distributed

systems from the programmer by providing a simple interface through which programmers can

parallelize common data-intensive tasks.

Unfortunately, understanding and monitoring these programming platforms is still a

difficult task for most of the programmers. In order to diagnose an application failure, users must

understand the internal structure of their distributed jobs and the mappings between their internal

job’s execution and their platforms distributed architecture. A number of ways to solve this

problem have been proposed, such as a local debugging mode in Pig [4] and DryadLINQ [5], and

a powerful set of monitoring and debugging tools provided in Cloudera [6] and Karmasphere [7].

In addition, Chukwa, a data collection system for monitoring and analyzing large distributed

systems [8] is used to monitor Hadoop clusters. Chukwa also includes a set of powerful toolkits

for displaying, monitoring and analyzing result, in order to make the best use of the collected

data. Hyracks is a new partitioned-parallel software platform designed to run data-intensive

computations on large shared-nothing clusters of the computers [9]. However, it does not have

any existing or in-built tools for debugging and monitoring. Consequently, Hyracks users might

face challenges in understanding and analyzing their Hyracks job execution process. Therefore,

in order to speed up the development process and minimize the effort from the users, an efficient

monitoring tool with visualization support for the Hyracks system has been developed.

In this thesis, we present the design and implementation of a new “Hyracks Web-based

Console”. Our ultimate goal is to build an interactive tool set that can help Hyracks users reduce

the time and effort required for understanding, implementing and optimizing their Hyracks jobs.

2

Since humans are highly visually-sensitive creations, our monitoring system is intended to

present the internal process of the Hyracks jobs’ execution and the status of Hyracks clusters, in

a visual way. All of the source code for this project will be available in a forthcoming release of

Hyracks [10]. The rest of this thesis is organized as follow. Section 2 provides a quick overview

of the Hyracks computational model using a simple example query. Section 3 discusses the goals

and requirements of the Hyracks console. Section 4 presents the system architecture and design.

Section 5 explains the implementation of the Hyracks console. Section 6 provides the Hyracks

console’s user manual including the system installation and the user guide. Finally, Section 7

summarizes the thesis and discusses our ideas for the future improvement.

2 HYRACKS OVERVIEW

Hyracks is a flexible software platform for data-intensive processing tasks that runs on

shared-nothing hardware clusters. Large data computations can be dealt with by partitioning the

data in a parallel fashion. Hyracks is based on a richer model than MapReduce or Dryad because

it extends the limited model of MapReduce and supports a variety of common data

communication patterns and operators. A built-in collection of operators and connectors can be

used to create Hyracks jobs without being limited them to only Map and Reduce functions.

Hyracks also includes a Hadoop compatibility layer that allows the user to execute existing

Hadoop jobs without any changes. This section sets the stage for explaining the Hyracks Console

by reviewing the main features of Hyracks.

The two essential components of the Hyracks architecture are the Node Controller and

Cluster Controller. The main function of the node controller is to manage the processing of tasks

on partitions of overall jobs. Cluster controllers manage the health of the node controllers by

periodically sensing the heartbeat to each node controller. This mechanism can be used to detect

and recover from the failure of a Hyracks job through restarts of the Hyracks task schedule. A

Hyracks job is the basic unit of the Hyracks programming model, and it consists of a graph of

operators and connectors. For a given operator, Hyracks uses one or several activities to carry

out the work. During job processing, an operator’s activity nodes operate in parallel on partitions

of the data. The job’s connectors re-partition the partitions of the output of the operators that are

3

then fed to the next operator. The next section provides a quick introduction to the Hyracks

architecture and provides a simple example to explain the programming model of the Hyracks

platform. A more extensive explanation of Hyracks, along with a first evaluation of its performance,

can be found in [9].

2.1 Hyracks Architecture

 Hyracks runs on a shared-nothing cluster of commodity computers with local CPUs,

memories, and disks. The Hyracks software architecture consists of a cluster controller and a

node controller. The cluster and node controllers work together to perform Hyracks job

scheduling as well as to track and recover from failures of Hyracks jobs. Figure 1 summarizes

the software architecture of Hyracks.

2.1.1 Cluster Controller (CC)

 A cluster controller is used to manage a Hyracks cluster. In order to join a Hyracks

cluster, a node initiates a Node Controller (NC) process by registering it with the Hyracks cluster

controller. In the NC registration request, each NC also sends out information regarding its

machines’ resource configuration. After a successful registration, the CC begins to monitor the

health status of the NC by periodically receiving its heartbeat. The CC is also responsible for

monitoring the status of the entire cluster by keeping track of resource utilization metrics for

each NC.

Client Interface / Job Acceptor

Job Manager

Resource Accountant

Node Manager

Heartbeat Generator

Joblet Manager

Active Joblet Operators

Cluster Controller

Node Controller

Node

Controller

Node

Controller

Node

Controller

Figure 1 : Hyracks System Architecture

Local Disk Local Disk Local Disk Local Disk

Cluster Controller (CC) Node Controller (NC)

4

 Cluster controllers also handle client interactions. When a client submits a Hyracks job,

the cluster controller receives the job specification and internally expands it into an evaluation

strategy. The evaluation strategy determines the parallelization and placement of operators in

each stage of the job. Each stage is separated by a blocking edge, and each operator internally

consists of one or several activities. A schedule will be created by the CC and will determine

which NC will participate in the processing of each of the stages. The CC will then push

messages to those scheduled NCs, in parallel, in order to activate the tasks for the final job.

 Cluster controllers are also responsible for fault handling. For instance, in order to

guarantee a job completion, in the event of a failure, the basic fault recovery response of the

job’s CC will be to re-plan and re-execute some or all of the tasks for this job.

2.1.2 Node Controller (NC)

 For the job execution, each machine that participates in a Hyracks cluster runs one or

more Node Controller processes. NCs are used to evaluate Hyracks jobs and each of the NCs

sends its health status and data resource utilization metrics in a heartbeat signal to the Cluster

Controller. NCs are responsible for accepting job tasks from a CC and executing the job tasks by

using their local resources. At runtime, a given job is divided into one or more stages. The CC

activates the stage by sending messages called “Task Activations” to the set of NCs chosen to

participate in the stage. The CC then waits for the completion of the stage (or a failure event).

 A Joblet is the collection of tasks of a job that is deployed on a particular NC. A joblet

includes a collection of operators that perform processing on this specific NC. During the task

execution on a set of NCs, the unit of data that is being produced by Hyracks tasks is called a

Frame. A frame represents a fixed-sized chunk of contiguous bytes, and it is a serialized data

format used for efficient data movement from sender to receiver.

2.1.3 Initialize Hyracks

 In order to run Hyracks, users first need to start a CC process on a machine that is

assigned to be its cluster controller node. Three optional arguments, port, http-port and profile-

dump-period can be specified by the users when they start the CC process. The “http-port” is a

5

Jetty server port number in the Hyracks system that is used for communicating with the Hyracks

console. By default, the CC listens for communication data from NCs through port 1099. If the

CC does not listen on the default port, an optional port argument is required. Second, each

worker node participating in this Hyracks cluster has to start an NC process. When an NC is

started, it gets three required arguments: node –id (unique node’s ID), cc-host (CC’s IP address)

and data-ip-address (NC’s IP address). Last, a client machine connected to the cluster has to

start a hrackscli process. This client machine is then responsible for deploying applications and

submitting Hyracks jobs to the cluster. Figure 2 summarizes this step sequence.

2.2 Hyracks Jobs

 In order to understand the data representation and Hyracks job visualization needs of the

Hyracks console, this section gives a brief introduction to the logical design and implementation

of Hyracks. We use an example query to detail the steps involved in Hyracks job execution.

 A Hyracks job is submitted by a client as a Hyracks Job Specification that is represented

as a directed acyclic graph (DAG) dataflow. The Hyracks Job Specification consists of a set of

Hyracks Operator Descriptors (HODs) and Connector Descriptors (CDs). Each HOD node in the

DAG represents a partitioned computation operator, and each CD edge connects two HOD nodes

and represents a dataflow path from one operator to another operator. CDs also provide for data

re-distribution by shuffling data from the set of sending operator partitions to the set of

3. Start Client process

2. Start NC process

node-id

cc-hostdata-ip-

address

1. Start CC process

port

http-port

profile-dump-period

hrackscli

1

2

3

Figure 2: Initialize a Hyracks Cluster

6

consuming operator partitions. Note that HODs or CDs in the Hyracks jobs do not provide

logical or semantic information to Hyracks.

 In order to provide Hyracks with the required information about control (scheduling)

dependencies of Hyracks jobs, the CC internally expands each HOD into one or more sub-

activities, or phases, called Hyracks Activity Nodes (HANs). Based on the resulting HAN graph,

the CC then divides a given job into one or several stages and plans in which order the stages

will be executed. At runtime, the CC decides the amount of parallelism for each stage and

expands each HAN into a set of identical Hyracks Operator Nodes (HONs). Essentially, HONs

are clones of a HAN and are responsible for executing the HAN logic on individual data

partitions to produce the results of the HAN. Terminology-wise, the HOD graph is also called

the Hyracks Job Specification, the HAN graph is also called the Job Plan, and the HON graph is

called the Hyracks Runtime Tasks. Figure 3 summarizes these concepts.

 Hyracks includes two broad classes of users: (1) Hyracks end users, who use the Hyracks

library to assemble Hyracks jobs that solve their problems, and (2) Hyracks operator

implementers who create new operators for Hyracks end users. The Hyracks library has a

number of built-in common operators and connectors that are provided with Hyracks for the end

users’ use. Pre-existing operators such as “file scan”, “file writer”, “map”, “sort”, “join”, “group”

and “aggregate” are included in this core library. Connectors such as “1:1”, “M: N Hash-

Partition”, “M: N Hash-Partition-Merge”, “M: N Range-Partition”, and “M: N Replicator”

connectors are also part of the Hyracks core library. Besides the core library, Hyracks provides a

rich API that enables operator implementers to create new operators and/or connectors. For more

details about the Hyracks end user model, operator implementation model, and built-in library,

see the recent Hyracks paper [9] and the Hyracks Google code web pages [10].

HOD Graph

(Hyracks Job Specification)

HAN Graph

(Hyracks Job Plan)

HON Graph

(Hyracks Runtime Tasks)

Figure 3: Representations for a Hyracks Job

7

 In the rest of this section, we will use a simple query to describe how Hyracks internally

executes a job in detailed steps. This sample job is based on querying two files containing

CUSTOMER and ORDERS data from the TPC-H dataset [12]. The sample job computes the

total price of orders placed by customers belonging to the same market segment, and the query

results are sorted by the total amount spent in each market segment. To be more precise, this job

can be summarized by the following equivalent SQL query:

2.2.1 Hyracks Job Specification

A Hyracks Job Specification for our example query can be constructed as shown in

Figure 5. Each of the nodes displays a HOD’s name and arguments, and each edge between two

operators is annotated with the details of the data distribution strategy that is to be used for

directing partitioned data from the set of senders to the intended receivers. The two “File Scan”

operators also have additional metadata that specifies where the files are located. Because

Hyracks partitions and stores data collections locally on different nodes in the cluster, in order to

allow the file scanner operator to access the files, the CC must schedule the file scan runtime

tasks on the machines where the file partitions are available.

select C_MKTSEGMENT, sum (O_TOTALPRICE) as MKTSEGMENT_TOTAL

from CUSTOMER join ORDERS on C_CUSTKEY = O_CUSTKEY

group by C_MKTSEGMENT

order by sum (O_TOTALPRICE) as MKTSEGMENT_TOTAL

8

Sort Run

Output Generator

Hash Aggregate

Hash Probe

Hash Build

File Scan

(ORDER)

File Scan

(CUSTOMER)

Merge

File Writer

In Memory Sort

Hash Join

Group By

Blocking edge

Figure 5: Hyracks Job Plan

(HAN Graph)

For instance, Figure 4 shows that the CUSTOMER data is partitioned into three files

(cust1.tbl, cust2.tbl and cust3.tbl) that are stored locally on nodes NC1, NC3 and NC5,

respectively. The ORDERS data also is partitioned, into two files (ord1.tbl and ord2.tbl), and

each of the ORDERS partitions is two-way replicated. Hence, ord1.tbl can be accessed on either

node NC1 or NC2, and ord2.tbl can be accessed on either node NC1 or NC4. Replication gives

the CC multiple options for scheduling the file scan tasks of ORDERS data.

Each of the “File Scan” HODs in Figure 4 is used to read from a data source

(CUSTOMER or ORDERS) separately and send its stream of data to the “Hash Join” HOD

using an M:N hash-based partition connector. This connector uses a provided hash function to

distribute the data produced by M senders to N receivers. In this case, the number of senders M

is the number of partitioned files in each of data resources, so M=3 for CUSTOMER data and

 [1:1]

File Scan

(CUSTOMER)

File Scan

(ORDER)

Hash Join

(C_CUSTKEY=O_CUSTKEY)

[M: N]

[Hash (C_CUSTKEY)]

[M: N]

 [Hash (O_CUSTKEY)]

Group By (C_MKTSEGMENT)

Aggregate: sum (O_ TotalPrice)

In Memory Sort

File Writer

[M:N]

[Hash (C_MKTSEGMENT)]

{NC1:ord1.tbl, ord2.tbl}

{NC2:ord1.tbl}

{NC4:ord2.tbl}

{NC1:cust1.tbl}

{NC3:cust2.tbl}

{NC5:cust3.tbl}

Figure 4: Hyracks Job Specification

(HOD Graph)

[M: N]

[Hash (C_MKTSEGMENT_TOTAL])]

9

M=2 for ORDERS data. In order to compute the “Hash Join” HOD in a partitioned manner, we

need to ensure that CUSTOMER and ORDERS instances that satisfy the join condition

(C_CUSTKEY = O_CUSTKEY) will be routed to the same join task. Thus, the hash partitioning

of the CUSTOMER and the ORDERS instances is based on C_CUSTKEY and O_CUSTKEY,

correspondingly.

Figure 4 shows that the “Hash Join” HOD receives two streams of data (one with

CUSTOMER instances and one with ORDERS instances) and produces a stream of

CUSTOMER-ORDERS pairs that satisfies the join condition (C_CUSTKEY = O_CUSTKEY).

The result is then re-distributed to a “Group By” HOD using an M:N hash-based partition

connector on the C_MKTSEGMENT field. This ensures that all CUSTOMER-ORDERS pairs

that share a given value for that field will be routed to the same partition for aggregation. The

“Group By” HOD aggregates the result of the join on the C_MKETSEGMENT field and uses a

SUM aggregation function to sum the O_TotalPrice values within a group to compute a

MKTSEGMENT_TOTAL field. An “M:N” hash-based partition connector is then used again to

repartition the output partitions from the “Group By” HOD to the “In Memory Sort” HOD on the

MKTSEGMENT_TOTAL field. Each sort task then sorts its input stream in descending order on

the MKTSEGMENT_TOTAL field. Lastly, the final result of the job will be created as a set of

partitions (with as many partitions as “In Memory Sort” HOD clones being used) by using a 1:1

connector between the “In Memory Sort” HOD and the “File writer” HOD. In the Hyracks

library, a 1:1 connector leads Hyracks to create the same number of partitioned tasks for the

sender HODs and receiver HODs, and to route the results pair-wise without re-distribution.

2.2.2 Hyracks Job Plan

 When Hyracks starts to execute a job, it internally expands each HOD in the job’s

specification into a set of HANs. The results can be represented as a Hyracks Activity Node

graph (also called a Job Plan) that is a somewhat more detailed directed acyclic graph (DAG),

as shown in Figure 5. The expansion of each HOD indicates all sub-phases involved in each

HOD along with the sequencing dependencies among the phases. The figure’s dotted arrows

denote blocking edges between pairs of activities, so each depended-upon activity must finish

before the dependent activity on begin in Figure 5.

10

In the example shown, the “Hash Join” HOD is expanded into two HANs, “Hash Build”

and “Hash Probe”. The “Hash Build” HAN builds a hash table on the input stream (usually the

one with less data). The “Hash Probe” HAN then probes the resulting hash table with the other

input stream in order to produce the result stream of join pairs. Note that the build phase of the

“Hash Join” HOD thus needs to complete before the probe phase can begin in order for this to

work properly. This sequencing constraint is shown as the dotted arrow from the “Hash Build”

HAN to the “Hash Probe” HAN in Figure 5. The hash-based “Group By” HOD is similarly

expanded into two HANs, the “Hash Aggregate” and “Output Generator” HANs. The blocking

edge between these HANs represents the fact that the aggregator cannot begin to produce output

until it has received all of its input data. Likewise, the “In Memory Sort” HOD can be expanded

into a “Sort Run” HAN that precedes a “Merge” HAN. The former HAN generates a set of

sorted runs, and the latter HAN produces the final sorted result by merging all of the sorted runs

generated by its predecessor HAN. No output can be produced by the “Merge” HAN until the

“Sort Run” HAN completes. Lastly, the “File Write” HOD becomes one corresponding HAN

without any sequencing constraints.

2.2.3 Hyracks Runtime Tasks

The reason for having HODs expose their internal HANs to Hyracks in the manner

described is to provide the Hyracks scheduler with insight into the sequencing dependencies of

each part of a Hyracks job in order to facilitate execution planning and coordination. At runtime,

HANs that are transitively connected to other HANs in a job through non-blocking edges can be

grouped together to form a single executable stage. Internally, a stage is a set of connected HANs

that can be co-scheduled (e.g., to be execute in a pipelined manner). A given stage is ready to

execute when all HANs involved in its prior dependencies have been executed completely and

successfully. The Hyracks scheduler decides on the degree of parallelism and the NC allocation

of the various HAN instances based on their node affinities and resource requirements. For

instance, all “File Scan” HAN tasks must be assigned to NCs where the files containing the

partitioned data are located.

11

 When a given stage is scheduled, it is expanded by Hyracks into a set of runnable tasks called

Hyracks Operator Nodes (HONs). In fact, HONs are simply runnable clones of the HANs. Each

HON is created at runtime and is responsible for performing the actual computation for a HAN at

chosen worker node. This is depicted in Figure 6. Each of the dotted boxes in Figure 6 indicates

a group of HONs that belongs to the same stage. Although Figure 6 shows the HONs of all four

stages at one time, in reality Hyracks expands each stage into a set of parallel HONs just prior to

the stage’s execution. At execution time, then, the four stages in our example will be activated in

sequence.

 In the first stage of our example Hyracks job in Figure 6, we assume that the CUSTOMER

data is partitioned into three files and that Hyracks decides to use four nodes to execute the

“Hash Join” HOD. Hyracks will start by running the three “File Scan” HONs of CUSTOMER

data along with the four “Hash Build” HONs to produce hash tables of CUSTOMER data. Once

the first stage is completed, the next stage will be planned and executed. The second stage will

probe the hash table resulted from the first stage using the ORDER data, and will pipeline the

join-pair results into the “Hash Aggregate” HONs. We assume in the second stage that ORDER

B is blocked until A is completed.

A’s output is hash distributed to B.
A’s output is piped to B directly.

1 1 1

3.1
1

3.1
1

3.1
1

3.1
1

 3.2 3.2 3.2 3.2

4.1

3

4.1 4.1

2 2

4.2

3

4.2 4.1

5.1

3

5.1 5.1

5.2

3

5.2 5.2

6

3

6 6

Stage 1

Stage 2

Stage 3

Stage 4

[1] File Scan (CUSTOMER)

[2] File Scan (ORDERS)
[3.1] Hash Build
[3.2] Hash Probe
[4.1] Hash Aggregate
[4.2] Output Generator
[5.1] Sort Run
[5.2] Merge
[6] File Writer

Figure 6 : Hyracks Runtime Tasks (HONs Graph)

B

B
B

A

A

A

12

data is divided into two files with two-way replication and that Hyracks decides to use three

nodes for the “Group By” HOD. Thus, in the second stage of Figure 6, there are two clones of

the “File Scan” HON, four clones of the “Hash Probe” HON, and three clones of the “Hash

Aggregate” HON. When the second stage has been executed completely, Hyracks will begin to

plan the third stage, composed of the “Output Generator” HONs and the “Sort Run” HONs.

Assuming that the Hyracks decides to use three nodes to perform the “In Memory Sort” HOD, so

there are three “Sort Run” HONs. Finally, after completing the third stage, the “Merge” HONs of

the “Sort” HOD along with the “File Writer” HONs will be activated and executed to produce

the final result of this example job. The job’s execution is then successfully completed, and the

result will be located (in partitioned files) at the “File Writer” HON’s nodes.

3 CONSOLE DESIGN GOALS

As briefly mentioned earlier, Hyracks includes two broad classes of users, Hyracks end

users and Hyracks operator implementers. We expect the Hyracks console to be used by both

kinds of Hyracks users. These two different groups have different functional requirements for

our Hyracks console. We designed the Hyracks console based on the results of an informal

survey of Hyracks developers’ functional requirements and performance demands. This section

summarizes the design goals that were identified for the Hyracks console.

3.1 Hyracks End Users

Hyracks end users use the existing Hyracks operators and connectors to assemble Hyracks

jobs for solving their problems. They might encounter the following difficulties when they

execute their Hyracks jobs:

 Failure events: When an error occurs during a job’s execution, users gain limited

information of what caused the problem and failure. Thus, it can be hard and time

consuming for end users to debug their Hyracks jobs and figure out at which stage an

error has occurred.

 Run-time status: After end users deploy a Hyracks job, they might face a difficulty in

observing the current status of their jobs; for instance, which stage is currently running

13

and which stage(s) is completed. End users also may want to know how far along their

jobs are. Besides difficulty in monitoring current job’s status, end users are often not

able to get the complete picture of which nodes participating in Hyracks cluster and

how their jobs’ tasks have been assigned to these nodes.

3.2 Hyracks Operator Implementers

Hyracks Operator Implementers are responsible for creating new Hyracks operators and

connectors for Hyracks end users. The operators and connectors are either implemented in the

system’s core library or in the user’s additional library. This class of Hyracks users are likely to

face the following problems.

 Failure events: Here the Hyracks operator implementers face amount of similar

problems as the Hyracks end users. They have to spend a significant time on testing

and debugging their Hyracks jobs. The time and effort can be extensive if the

developers need to manually find the location of the errors.

 Internal processing: As mentioned earlier, each HOD consists of one or several

HAN(s). When Hyracks operator implementers execute their Hyracks jobs, they need

to ensure that the internal processing of the HODs and/or CDs is correct, e.g., that their

HODs and CDs are expanded and executed correctly, and that the dataflow is

partitioned and distributed nicely across the NCs.

To address all these difficulties of Hyracks users, we set up several goals for our Hyracks

Console. The ultimate goal of the console is to reduce the time and effort required in

understanding, implementing and optimizing Hyracks jobs. Hyracks users should be able to

monitor the health of the Hyracks Clusters and to track the internal processes involved in a

Hyracks job’s execution. In addition, the Hyracks Console should satisfy the following

characteristics:

 Real-time status: It will be very beneficial for programmers, if the Hyracks console is

able to represent the real-time status of a Hyracks cluster and Hyracks jobs (and

whether that status is initial, running, finished, or failed). Hence, we should consider

how and when to update the latest status of the Hyracks system.

14

 Information scalability: Addressing scalability covers two related requirements, the

scalability of the architecture and the scalability of the visualization. We need to

consider cases when the Hyracks system may be running on a cluster with thousands

of machines and executing thousands of Hyracks jobs simultaneous.

 Interactive GUI: Users should be able to access all the information that they need in

the fastest way. The Hyracks console should minimize the effort from its users by

creating an interactive Graphical User Interface (GUI).

4 HYRACKS CONSOLE ARCHITECTURE

This section explains the internal architecture of the Hyracks Console along with related

design decisions and implementation techniques. It is aimed at readers wishing to understand

how the console works inside. The Hyracks Console is based on a Representational State

Transfer (REST) Web-based architecture [13]. The REST architecture is targeted by many

distributed information systems because it provides a set of architectural constraints that

emphasize the scalability of component interactions, simplicity of interfaces, as well as the

independence of client and server deployments.

Resources are the heart of the REST architecture. REST defines the identity of a resource

via a Uniform Resource Identifier (URI) using the http protocol. Interaction with a resource takes

place at its URI. In the Hyracks Console, the resources are separated into two parts: Hyracks

Jobs and Hyracks Clusters. Each part has its own static and dynamic information. Resources are

conceptually independent from their presentations returned to the client. For example, a resource

may involve information stored in a plain text format, but the Web server can return that

resource data in a JavaScript Object Notation (JSON) format [14]. In the Hyracks console, JSON

is used as a data-interchange format to transmit the information between a server and Web

application. For readers not familiar with JSON, it is primarily used as an alternative to the

Extensible Markup Language (XML). JSON has a much smaller grammar than XML and maps

more directly to the data structures used in modern programming languages. JSON objects are

built up from two structures: name/value pairs and ordered lists of values. These are universal

15

data structures found in most programming languages, so the JSON format is compatible with

many modern languages.

Figure 7: Hyracks Console Architecture

Figure 7 provides an overview of the Hyracks Console architecture. Based on the REST

style, the Hyracks Console is conceptually separated into two main components: the Hyracks

Console Server (HCS) and Hyracks Console Visualization (HCV). The first component is

responsible for collecting and transferring the monitoring information from the Hyracks system

to the second component (HCV). The HCV is then responsible for presenting the current state of

the Hyracks system in real-time to users. The Hyracks Console information and control flow

starts from the Hyracks users asking the HCV to send requests for monitoring information of the

Hyracks system to the HCS through a unique URI. The HCS then responds with the requested

information. In this section, we provide further details of each component of the Hyracks

Console architecture.

4.1 Hyracks Console Server (HCS)

The first console component is the Hyracks Console Server (HCS) implemented “inside”

the Hyracks system. The HCS is responsible for collecting and delivering useful information

related to the current state of Hyracks jobs and Hyracks clusters to the second component, the

Hyracks Console Visualization (HCV). Two mechanisms have been used for transmitting the

Hyracks
Console

Visualization
(Client Server
Web-based)

Hyracks

Cluster

Hyracks
Console Server

(Client Pull)

Hyracks
Console Server

(Server Push)

Send
Requests

Send
Responses

Publishes

Subscribes

Call
REST API
Functions

Return
Results

Trigger

Services

“Outside”
Hyracks System”

Hyracks System

“Inside”
Hyracks System

Hyracks System

Hyracks Jobs’ Information,
Cluster’s Health

Time-Series Data of Resources
e.g., CPU, Network, Memory and

Disk Usage.

16

required data: client-pull and server-push. To support these two different techniques, we have

implemented two Web servers within the Hyracks system.

 The first communication technique between client and server is called client-pull [15]. To

produce only the necessary data, a client must initiate a request for transmission of information

from the HCS, and the HCS then receives the request and uses a REST API function to respond

with data in the JSON format. Considering the scalability issue, we decided to use Jetty [17], an

open-source project providing an HTTP server together with the javax.servelet container

for the web server. Monitoring information of the Hyracks cluster is gathered from two main

sources. The first type of data is the Hyracks jobs’ information and the Hyracks cluster’s health,

each of which is collected and temporally stored by the Hyracks Cluster Controller (CC). The

second type of data is time-series data that is collected by the Ganglia system [18, 19] and

archived on the RRDtool (Round-Robin Database) [20]. Ganglia collects data based on the

physical view of the cluster, so there is one and only one set of data for each machine. Unlike

Ganglia, one machine in the Hyracks cluster can install one or more Hyracks Node Controllers

(NCs). To map the logical NC nodes to the real physical nodes of a cluster, we implemented an

extra file which represents and stores this mapping information as pairs of a machine’s IP

address and a location of its RRD table that stores the machine information.

The other communication technique is called the server-push [16] mechanism which is

used to support a real-time monitoring. To provide this service, we use CometD [21], which

supports a scalable HTTP-based push technology known as Comet [22] over a Bayeux protocol

[23]. The Bayeux protocol can transport asynchronous messages with low latency between a web

server and a web client. If any significant event occurs in the Hyracks system, HCS will initiate

the communication and send message to the clients independently without first needy requests

from them. Clients have to “subscribe” or “listen” to a particular “channel” to receive a message.

When any new information is available, the HCS “publishes” that information to that “channel”.

We use this server-push mechanism to deliver any/all dynamic information that should be

presented in advance, such as a notification of a new Hyracks job or a notification of completed

stages and/or failed stages of a given Hyracks job. Further explanation of internal console data

collection issues, together with the set of REST API functions implemented in the Hyracks

console, can be found in [24].

17

4.2 Hyracks Console Visualization (HCV)

To ease analysis of the collected data, we have built a flexible, “portal-style” graphical web

interface in the Hyracks Console Visualization (HCV). This component is on the “outside” of the

Hyracks system and is responsible for representing the Hyracks information to users through a

Web interface. The HCV is independent of the Hyracks clusters. By using the HCV, a Hyracks

user is able to monitor any Hyracks cluster either locally or remotely through any types of Web

browsers, and multiple Hyracks users are able to monitor the same Hyracks cluster at the same

time. The only assumption is that the user’s machine is able to reach a Hyracks Console Server

(HCS) inside the Hyracks clusters of interest.

Since the Hyracks system is written in the Java programming language, Java Server Pages

(JSP) [25] was chosen as the most appropriate technology for implementing the HCV. JSP is a

Java technology that provides developers with a simplified and easy way to create a dynamic

Web content. JSP technology is designed to address the problem that the Java programming

environment does not provide enough support for Web applications. The JSP Java code and

certain pre-defined actions are interleaved with the static Web markup and content, with the

resulting page being compiled and executed on the server to deliver an HTML or XML

document. To deploy and run JSP in HCV, the Apache Tomcat [26] web server is used. Tomcat

implements the Java Servlet and JSP specifications from Sun Microsystems, and provides a

"pure Java" HTTP web server environment for Java code to run in.

<JSP>

Hyracks Console Visualization

(Tomcat Web Server)

HTTP
Requests

HTTP
Responses

Send
Requests

Send
Responses

<JSP>

Servlet

Client

Hyracks

Console

Server

Figure 8 : Hyracks Console Visualization Model

18

The HCV uses the JSP and Servlet technologies to interact with the client. By using a

REST-style architecture, once the client sends request through JSP, the Web server will trigger

the data representation mechanism in the HCV to send an HTTP request to the Hyracks Console

Server (HCS) inside the Hyracks cluster. The HCS then returns an HTTP response containing the

resource information related to the user’s request in mostly JSON format. Finally, the HCV

presents the returned information to the client using an appropriate visualization method. Figure

8 summarizes the above concepts. The data representation mechanism of the HCV will be

explained in more detail in Section 5.2.

The main responsibility of the HCV is to represent the current state of Hyracks clusters and

Hyracks jobs. Humans are a visually-oriented species, which means that they are generally more

sensitive to pictures or diagrams versus plain text. Therefore, the console uses various

visualization methods, including tables, charts, graphs and dataflow diagrams, to represent the

more complicated information in the simplest possible way. Many visual representation tools

have been used in the HCV, including Graphviz [27], TimeGuilder [28], Hightchart [29] and

DataTable [30]. These tools all support the interactive GUI and together present the necessary

Hyracks data in a visualized manner. The Hyracks Console not only represents the high-level

abstraction of the Hyracks cluster, but also allows users to drill down into the internal details of

any Hyracks job.

To provide intuitive and useful visual representations of Hyracks information via Web

pages, there were severed challenges involving the design of a convenient user interface and

interactions between information requests and server responses. The visual composition and

temporal behavior of Graphical User Interface (GUI) should have the ability to scale well (i.e.,

the visualization should be intelligible at the large future scale of Hyracks clusters and Hyracks

jobs) and the ability to be dynamic (the user interface should be updated in real-time when the

current state of the Hyracks system changes).

5 IMPLEMENTATION

In this section, the implementation of the Hyracks Console Visualization (HCV) component

is described in more detail. We first give a quick introduction to the REST API for requesting

19

each type of Hyracks monitoring information. Next, we describe the general mechanism used for

data representation in the HCV. We depict the benefits and usage of each type of monitoring data

along with real example results returned to the HCV component. Some details of the server push

mechanism for updating the current status of the Hyracks are then discussed. Throughout this

section, we assume that the IP address of the master node running the Hyracks Cluster Controller

process is “vanilla.ics.uci.edu” and that its http-port number is “2099”. All of the URI examples

shown here are based on this assumption.

5.1 REST API for Requesting the Hyracks Monitoring Information

Before we can start to monitor the Hyracks, the REST API has to be setup at the Hyracks

Console Server (HCS) for requesting resources via a set of global URLs. The resources are

divided into two main categories: Hyracks job execution information and Hyracks cluster

behavior. The Hyracks Console Visualization (HCV) can navigate through every resource easily

since the “URL-Request” paths are organized based on the tree structure show in Figure 9 and

Figure 10.

5.1.1 Hyracks Jobs

The first goal of the console is to help the Hyracks users understand the internal details of

Hyracks job executions. Therefore, we decided to provide the following information about

Hyracks jobs. (1) A summary of all the jobs in the Hyracks cluster. Each Hyracks job has a (2)

job specification, (3) job plan, (4) job profile, and (5) job stage. Figure 9 shows the URL paths

that the HCV can use for requesting different types of information.

20

Figure 9 : URL-Request Paths for Hyracks Jobs Information

An example of the URL path for requesting a summary of all Hyracks jobs in a given

Hyracks clusters is shown in the box below.

5.1.2 Hyracks Cluster Health

Another kind of useful monitoring data provided by the Hyracks Console is Hyracks

cluster health information. Any Hyracks cluster consists of two types of node: a Hyracks Cluster

Controller (CC) and one or more Hyracks Node Controllers (NCs). In reality, a large distributed

clusters usually consist of hundreds or even thousands of nodes. At that scale, it is inefficient and

almost impossible to monitor the current state of the entire cluster by accessing each physical

node one-by-one. As a result, the URL-Request paths in Figure 10 are generated to request

Hyracks Cluster monitoring information. The information related to the Hyracks cluster includes

(1) CC configuration (2) NC summary, (3) NC configuration, (4) NC jobs summary, and (5) NC

resources.

URL Path

 http://<cc-ip-address>:<http-port>/state/jobs

Example

 http://vanilla.ics.uci.edu:2099/state/jobs

/state /jobs /<job ID>

/spec

/plan

/<attempt>

/stage

/profile

<....…>

Intermediate Stage of the URL

End Stage of the URL

Dynamic Data

21

Figure 10: URL-Request Paths for Hyracks Cluster Health Information

Further details of the implementation of the REST API and the collection of Hyracks

resources at the HCS can be found in [24].

5.2 Data Representation Mechanism

When Hyracks users send a request to the Hyracks Consoler Server (HCS), most of the

data returned from the server is presented in the JSON format. Although data in the JSON format

is fairly easy to read and comprehend, typical users still prefer information represented visually.

Moreover, when such data become large, it is almost impossible for users to gain knowledge by

searching through thousands lines of text. Thus, a data representation mechanism to summarize

and present the JSON data has been implemented in the Hyracks Console Visualization (HCV).

As noted earlier, the HCV is responsible for sending requests to the HCS and representing the

returned results from the HCS visually. The data representation mechanism consists of three

simple steps: First, the HCV sends a request to the HCS via one of the URL-Request paths. Then,

when the HCS receives the request, it returns the JSON data based on the type of the URL-

Request. Second, the HCV loads the JSON data by choosing a selected visualization tool. Third,

this selected visualization tool presents the Hyracks information in an appropriate format, such as

a diagram, a table or a chart, to the Hyracks user. Figure 11 summaries these steps.

<....…>

Intermediate Stage of the URL

Dynamic Data

/console

/cluster

/<nodeid>

End Stage of the URL

/node /jobs

/config

/<end> /<start> /<step> /<type> /resources

22

5.3 Data Representation Modules

As we mentioned earlier, Hyracks monitoring information is divided into two main

categories: Hyracks job information and Hyracks cluster health information. In the next section,

we describe in more detail, of the data representation in each category based on real examples.

5.3.1 Hyracks Jobs

The Hyracks Cluster Visualization (HCV) provides a Hyracks Job Summary component to

present information about all Hyracks jobs that have been submitted to a given Hyracks cluster.

The HCV presents the information about each Hyracks Job by separating into several modules,

including a Hyracks Job Specification, Hyracks Activity Node Graph, Hyracks Job Pie Chart,

and Hyracks Job Time Chart.

 Hyracks Job Summary

The Hyracks Job Summary module summarizes all of the Hyracks jobs that have been

submitted to a given Hyracks cluster. There are five attributes presented about each Hyracks job:

the Job Name, Application Name, Start Time, Duration, and job Attempt times. Each Hyracks job

has a unique job-id (UUID) [31]which is generated by the Hyracks system and used in

communications between the HCV and the HCS. However, as this job-id is not friendly to read

and understand, the job’s display name (generated by the HCS based on the start time of each job)

is presented instead. This name starts from “job_000000001” and increases by one value at a

time.

Request JSON data Visualization Tools Data Representation

Load JSON data using an

HTTP GET request

 Graphviz
 Highcharts JS
 Timeglider JS
 Datatables

Figure 11: Data Retrieval and Representation

23

To implement the Hyracks Job Summary component, the HCV follows the data

representation procedure shown in Figure 11. The visualization tool for representing the Hyracks

jobs summary is DataTables [30]. DataTables, a plug-in for the jQuery JavaScript library, is an

open sources tool for adding interaction controls to any HTML table, including sorting,

searching and paging. The HCV sends a request to the HCS through the “Jobs-Summary” URL

and represents the returned data in the tables using the DataTables jQuery tool. The data for each

job is categorized into one of four independent tables based on the real-time status of the

Hyracks job (i.e., running, failed, completed, or initialized). The maximum number of Hyracks

jobs in each page in each table is ten by default.

In our example, the HCV first sends a request to the HCS through the

http://vanilla.ics.uci.edu:2099/state/jobs URL. The HCS returns Hyracks job summary data in

a JSONArray format. The HCV then uses the DataTables tool to present and distribute

information about each Hyracks job in the received JSONArray into one of the four job tables

based on the current job’s status. In addition, the jQuery Toggle class is added to each table to

allow users to hide or show the tables content. To achieve the scalability issue of the table

content, users can search for their jobs within the table’s contents by putting a keyword in search

box. By default, job information in each table is sorted by the job name field; however, users can

choose to sort a job table based on other attributes such as an application’s name, start time, or

duration time. This Hyracks Job Summary component allows users to easily browse all of the

Hyracks jobs belonging to a particular Hyracks cluster in one place, as well as to search for a

particular job that they want to monitor. Figure 12 summarizes the steps involved in generating

the Job Browser using Hyracks job “job00000002” as an example.

24

Job-Summary URL

URL Path

http://<cc-ip-address>:<http-port>/state/jobs
Example

http://vanilla.ics.uci.edu:2099/state/jobs

Job Lists from DataTables

Job Summary JSONArray

{
 result: [{
 id: "5be03555-cbe0-4d30-808f-91d4e92659c3"
 application: "btree"
 display-name: "job00000002"
 status: "TERMINATED"
 events: [
 {
 status: "RUNNING"
 system-time: 1305922465621
 date: "2011-05-20 13:14:25.621"
 }
 {
 status: "INITIALIZED"
 system-time: 1305922465616
 date: "2011-05-20 13:14:25.616"
 }
 {
 status: "TERMINATED"
 system-time: 1305922466929
 date: "2011-05-20 13:14:26.929"
 }
]
 attempts: 1
 type: "job-summary"
 }]
}

Figure 12 : Procedure for Generating a Hyracks Job Summary

25

 Hyracks Job Specification

The Hyracks Job Specification is a DAG dataflow diagram which consists of a set of

Hyracks Operator Descriptions (HODs) and Hyracks Connector Descriptions (CDs). The HCV

sends a request to the HCS via the “Job-Spec” URL for gathering the Hyracks job specification

for a particular job. The result returned is a JSONArray containing a set of HODs and a set of

CDs. Based onto that information, the HCV is able to create a Hyracks job specification diagram

by using Graphviz [27]. Graphviz is a package of open source tools initiated by AT&T Labs

Research for drawing graphs that are specified in the DOT language [32]. To generate a Hyracks

job specification diagram, we use the layout tool in the Graphviz software called dot [33], this

tool will draw a directed graph as a graph file or a graphic format such as GIF, PNG, SVG or

PostScript (which can be converted to PDF). The dot tool accepts DOT language scripts as an

input and processes the scripts to generate graphics. The DOT language consists of three kinds of

objects: graphs, nodes, and edges. The main (outermost) graph can be a directed (digraph) or

undirected graph. The HCV uses the Graphviz Java API to generate a DOT script for the

Hyracks Job Specification.

In the HCV, a servlet page named JobSpecServlet is implemented to produce the DOT

script of the Hyracks Job Specification and then call the dot tool to draw the DAG diagram.

JobSpecServlet requests Job Specification JSONArray from the HCS via the Job-Spec URL. The

returned data is divided into two sets: a set of HODs and a set of CDs. Each HOD is then

assigned as a node object in the DOT script. The node’s ID is the HOD’s ID and the node’s label

is the HOD’s Java class name. An example of the node object in the DOT language script is

shown in Figure 13.

26

The next step is to generate the edge objects in the DOT script from the in-operator-id

and out-operator-id fields of each CD and to use the Java class name of each CD as the edge’s

label. An example of an edge object in the DOT language script that connects between two nodes

(Figure 13) is shown in Figure 14.

Figure 13 : Example Node of the Job Specification Graph in the DOT Language

Figure 14 : Edge of the Job Specification Graph in the DOT Language

Edgeof the Job Specification Graph in the DOT language:

 “input-operator-id” - > “output-operator-id” [label= “connector-class”]
Example:

"4e53dd1c-c169-476c-ac80-245c818c3206" -> "92b74c8c-66f1-4a80-a5c2-a9c92e9abc46" [label="1:1"];

Node of the Job Specification Graph in the DOT language:

“operator-id” [label= “<operator-class>”]
Example:

"4e53dd1c-c169-476c-ac80-245c818c3206" [label="ExternalSort"]

Node of the Job Specification Graph in the DOT language:

“operator-id” [label= “<operator-class>”]
Example:

"92b74c8c-66f1-4a80-a5c2-a9c92e9abc46" [label="BTreeBulkLoad"]

27

As the last step, the JobSpecServlet submits the generated DOT script to the dot tool. If

the Job Specification Graph is created successfully, the JobSpecServlet will return the DAG in

the Scalable Vector Graphics (SVG) format [33]. Figure 15 summarizes the procedure in

generating the Job Specification Graph by using a simple Hyracks BTree-related job as an

example.

28

JobSpecServlet Requests JSON data

URL Path http://<cc-ip-address>:<http-port>/state/jobs/<job-id>/spec

Example http://vanilla.ics.uci.edu:2099/state/jobs/5be03555-cbe0-4d30-808f-91d4e92659c3/spec

Job Specification Graph from Graphviz

Figure 15 : The Procedure in Generating the Job Specification Graph

digraph hyracks_job {
"92b74c8c-66f1-4a80-a5c2-a9c92e9abc46" [label="BTreeBulkLoad"];
"4c8dfe24-880b-427e-bbd5-f5d290c1db66" [label="DataGen"];
"4e53dd1c-c169-476c-ac80-245c818c3206" [label="ExternalSort"];
"4c8dfe24-880b-427e-bbd5-f5d290c1db66" -> "4e53dd1c-c169-476c-ac80-245c818c3206" [label="M:N Hash"];
"4e53dd1c-c169-476c-ac80-245c818c3206" -> "92b74c8c-66f1-4a80-a5c2-a9c92e9abc46" [label="1:1"];

}

Parse to DOT Language

{
result: {
connectors: [
 {in-operator-id: "ODID:4c8dfe24-880b-427e-bbd5-f5d290c1db66"
 connector: {id: "f4ec1ecc-2b73-4fae-abb2-061c29f3daca"
 java-class:
"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConnectorDescriptor"}
 out-operator-id: "ODID:4e53dd1c-c169-476c-ac80-245c818c3206"}
 {in-operator-id: "ODID:4e53dd1c-c169-476c-ac80-245c818c3206"
 connector: {id: "cb473b23-bac4-4192-9a1a-f7c9008539d5"
 java-class: "edu.uci.ics.hyracks.dataflow.std.connectors.OneToOneConnectorDescriptor"}
 out-operator-id: "ODID:92b74c8c-66f1-4a80-a5c2-a9c92e9abc46"}
]
operators: [
 {id: "92b74c8c-66f1-4a80-a5c2-a9c92e9abc46"
 java-class: "edu.uci.ics.hyracks.storage.am.btree.dataflow.BTreeBulkLoadOperatorDescriptor"}
 {id: "4c8dfe24-880b-427e-bbd5-f5d290c1db66"
 java-class: "edu.uci.ics.hyracks.examples.btree.helper.DataGenOperatorDescriptor"}
 {id: "4e53dd1c-c169-476c-ac80-245c818c3206"
 java-class: "edu.uci.ics.hyracks.dataflow.std.sort.ExternalSortOperatorDescriptor"}
]
}}

Job Specification JSONArray

29

 Hyracks Activity Node Graph (Job Plan)

As mentioned before, one of the main goals of the Hyracks Console is offering an easy

way to understand the internal execution process of the Hyracks job. To accomplish this goal, the

console supports an interactive Hyracks Activity Node Graph (HAN graph or Job Plan) that

provides insight of the Hyracks job’s execution process. Recall that when the Hyracks system

receives the Job Specification from the users, it internally expands each Hyracks Operator

Descriptor (HOD) into a set of Hyracks Activity Nodes (HANs) and each of HANs has a set of

input and /or output Hyracks connectors. All HANs that connect to each other with non-blocking

edges are grouped together to form a stage. A Hyracks Job is divided into one or several stages,

and every stage is executed in its order.

The procedure for generating the Job Plan diagram is based on the same approach as for

the Job Specification diagram. To generate the DOT language script for the HAN Graph, the

JobPlanServlet is used to load two JSON streams: the Job Plan and Job Stage JSONArray. The

Job Plan JSONArray consists of all HANs expanded from the set of HODs from a Job

Specification. Each HAN has a set of input and/or output CDs. In addition, the “depends-on”

field in the Job Plan JSONArray shows the “ID” of the blocking activities to specify the

dataflow constraints (blocking edges). Unlike the Job Plan or Job Specification JSONArray,

which is static information, when the HCV requests the Job-Stage URL, it gets runtime data

about the progress of the job’s execution stage by stage. The Job Stage JSONArray is composed

of several important entities; for example, the current status of each stage, the set of activities in

each stage, the list of nodes assigned to process each activity, and the timestamp of the stage’s

events (e.g., init-time, finish-time, and fail-time). When the JobPlanServlet

loads the Job Plan and the Job Stage JSONArray, it first converts each of HANs into node

objects in the DOT language script. As we mentioned in the Hyracks overview, each activity is

cloned into a set of Hyracks Operator Nodes (HONs) that are scheduled to run on a set of

Hyracks Node Controllers (NCs). The number of nodes at each HAN indicates the degree of

parallelism decided by the Hyracks system. To provide better insight regarding the HON level at

each HAN, a JavaScript function called showNC is embedded on each node of the HAN graph.

This function displays the HAN’s class name, the number of partitions, and the partition nodes

30

when the user clicks on a particular node of the HAN graph. An example node in the HAN graph

with its showNC function in the DOT language is shown in Figure 16.

The JobPlanServlet groups a set of HANs that are connected to each other with non-

blocking edges into a sub-graph to form a Hyracks stage. In this step, the JobPlanServlet

identifies the current status of the given stage and assigns the associated reference color to the

sub-graph based on the stage’s status. For example, a light blue color represents a finished stage,

a light green color represents a running stage, a gray color represents a pending stage, and a

salmon color represents a failed stage. The JobPlanServlet organizes the order of the HANs

inside each stage (sub-graph) by using the information from the Hyracks connectors. Each

connector has the IDs of its input HAN and/or output HAN and these are used to construct the

diagram.

In addition to process data, each connector between a sender and receiver HAN contains

data movement information at the task-execution level from where each HAN has been cloned

into Hyracks Operator Nodes (HONs). The unit of data produced and consumed by HONs is

called a “Frame”. HCS provides a URL path that allows the HCV to request data movement

information from each connector as a graphical image of a matrix representing data flow

between senders and receivers, as shown in Figure 17. In this example, there is one HON on the

sender side running on the node-id “nc1”, and four HONs on the receiver side running on the

node-ids “nc1”, “nc2”, “nc3” and “nc4”. The number of frames sent from the sender “nc1” to the

receivers “nc1”, “nc2”, “nc3”, and “nc4” are 33, 92, 101, and 190 respectively. The total number

Figure 16 : Example Node of the HAN Graph in DOTLanguage

Node of the HAN Graph in the DOT Language:

“HAN-id”

[id= “HAN-id” label= “HAN’sjava class”

URL= “javascript:showNC(HAN class, partition number, partition nodes)”];

Example:

"ANID:c4de682b-30d3-42aa-b138-b9987d90863c"

[id="ANID:c4de682b-30d3-42aa-b138-b9987d90863c" label="ExternalSort\n(SortActivity)"

URL="javascript:showNC('ExternalSort\n(SortActivity)',4,'[nc1,nc2,nc3,nc4]')"];

31

of frames is 416. The JobPlanServlet embeds a Javascript function called showConnector() into

each connector (each edge in the Job Plan Graph) to request the communication matrix image. A

detailed description of this matrix can be found in [24]. An example HAN sub-graph in the DOT

langue is shown in Figure 17.

The JobPlanServlet will connect each stage (sub-graph) together with blocking edges. A

blocking edge displays as a dotted red edge in the HAN graph. The input HAN-id of the blocking

edge is the HAN-id of the last HAN node of the former stage, and the output HAN-id is the

Communication Matrix Image Subgraph Cluster_1

Figure 17 : Example Sub-graph (a Hyracks Stage) of the HAN graph in the DOT Language

and Communication Matrix Image

Click at the connector to

display the communication

matrix image

Sub-graph (a Hyracks Stage) of the HAN Graph in DOT Language:

subgraph cluster_number {
id="stage-id" color=”stage-status-color”;
["input-HAN-id" -> “output-HAN-id"

[label=”connector-class"
URL="javascript:showConnector(‘connectorworkflow-url’, 'connector-class')",];

]
}
Example:

subgraph cluster_1 {
id="sid_f0fafa9d10a64347a240cb9f954c8542" color=lightblue;
["ANID:2f56ac5f-2cc4-42b7-bd45-3cbba572d919" ->
 "ANID:c4de682b-30d3-42aa-b138-b9987d90863c"

[label="M:N Hash"
URL="javascript:showConnector('http://vanilla.ics.uci.edu:2099/profile/5be03555-cbe0-
4d30-808f-91d4e92659c3/0/f4ec1ecc-2b73-4fae-abb2-061c29f3daca', 'M:N Hash')"];

]
}

32

HAN-id of the first HAN node of the latter stage. An example HAN blocking edge in the DOT

language is shown in the middle of Figure 18.

A complete example of DOT language scrip for a HAN Graph is shown in Figure 19.The

JavaScript functions of the Hyracks Activity Node Graph will be explained in more detail in

Section 6.2. Figure 20 summarizes the procedure for generating the interactive HAN Graph.

Blocking Edge of the HAN Graph in DOT Language:

“input-HAN-id" -> "output-HAN-id" [style=dotted,arrowhead=vee, arrowsize=2,color=red]
Example:

ANID:2df02bc7-d6ef-4d61-aa5f-2ae45f1ed6e2" -> "ANID:22c232fb-b785-4839-aa19-de4c1952c115"
[style=dotted,arrowhead=vee,arrowsize=2,color=red];

Figure 18 : Example Blocking Edge of the HAN Graph in the DOT Language

33

digraph hyracks_job {
size = "20,20"; rankdir = "TB";

"ANID:22c232fb-b785-4839-aa19-de4c1952c115" [id="ANID:22c232fb-b785-4839-aa19-de4c1952c115"
label="HashGroup\n(OutputActivity)"
URL="javascript:showNC('HashGroup\n(OutputActivity)',2,'[nc1,nc2]')"];

"ANID:f37cdbb0-2947-4a8b-a5b7-aa888b9db4ad" [id="ANID:f37cdbb0-2947-4a8b-a5b7-aa888b9db4ad"
label="InMemoryHashJoin\n(HashBuildActivityNode)"
URL="javascript:showNC('InMemoryHashJoin\n(HashBuildActivityNode)',1,'[nc1]')"];

"ANID:7f72f554-89a6-4525-a63a-68e84af65284" [id="ANID:7f72f554-89a6-4525-a63a-68e84af65284"
label="FileScan" URL="javascript:showNC('FileScan',2,'[nc1,nc2]')"];

"ANID:e9f4aebd-b04b-4eb6-8aef-f8699e557e1d" [id="ANID:e9f4aebd-b04b-4eb6-8aef-f8699e557e1d"
label="FileScan" URL="javascript:showNC('FileScan',2,'[nc1,nc2]')"];

"ANID:e95df9e1-a8db-46e3-8609-d84a2cad587a" [id="ANID:e95df9e1-a8db-46e3-8609-d84a2cad587a"
label="InMemoryHashJoin\n(HashProbeActivityNode)"
URL="javascript:showNC('InMemoryHashJoin\n(HashProbeActivityNode)',1,'[nc1]')"];

"ANID:2df02bc7-d6ef-4d61-aa5f-2ae45f1ed6e2" [id="ANID:2df02bc7-d6ef-4d61-aa5f-2ae45f1ed6e2"
label="HashGroup\n(HashBuildActivity)"
URL="javascript:showNC('HashGroup\n(HashBuildActivity)',2,'[nc1,nc2]')"];

"ANID:218446b2-ebea-415e-b279-f565db1fabd0" [id="ANID:218446b2-ebea-415e-b279-f565db1fabd0"
label="FrameFileWriter" URL="javascript:showNC('FrameFileWriter',2,'[nc1,nc2]')"];

subgraph cluster_0 { id="sid_38b8589bd0584564951d53c8eae0873c" style="filled,rounded"; node
[style=filled, fillcolor=white]; label = "";
 color=lightblue;
["ANID:e9f4aebd-b04b-4eb6-8aef-f8699e557e1d" -> "ANID:f37cdbb0-2947-4a8b-a5b7-aa888b9db4ad"
[label="M:N Hash" URL="javascript:showConnector('http://vanilla.ics.uci.edu:2099/profile/a965fe5a-ba0b-
4a01-a13d-1b4dcc57adc1/0/0f641b5b-1624-4e59-8ff4-ad1e2bdd0e9a', 'M:N Hash')",];
]}

subgraph cluster_1 { id="sid_56081892010f4507ba4cdb3bdcefb009" style="filled,rounded"; node
[style=filled, fillcolor=white]; label = "";
 color=lightgrey;
[]}

subgraph cluster_2 { id="sid_0689036c64124484a024c535e29d993a" style="filled,rounded"; node
[style=filled, fillcolor=white]; label = "";
 color=lightblue;
["ANID:22c232fb-b785-4839-aa19-de4c1952c115" -> "ANID:218446b2-ebea-415e-b279-f565db1fabd0"
[label="1:1" URL="javascript:showConnector('http://vanilla.ics.uci.edu:2099/profile/a965fe5a-ba0b-4a01-
a13d-1b4dcc57adc1/0/7f0c5be7-cb19-4bc2-90e5-30b436272826', '1:1')",];
]}

subgraph cluster_3 { id="sid_37ceb645c042480b8a30c6b425f396ea" style="filled,rounded"; node
[style=filled, fillcolor=white]; label = "";
 color=lightblue;
["ANID:7f72f554-89a6-4525-a63a-68e84af65284" -> "ANID:e95df9e1-a8db-46e3-8609-d84a2cad587a"
[label="M:N Hash" URL="javascript:showConnector('http://vanilla.ics.uci.edu:2099/profile/a965fe5a-ba0b-
4a01-a13d-1b4dcc57adc1/0/af0852fc-4123-4b61-9723-a0d645361230', 'M:N Hash')",];
, "ANID:e95df9e1-a8db-46e3-8609-d84a2cad587a" -> "ANID:2df02bc7-d6ef-4d61-aa5f-2ae45f1ed6e2"
[label="M:N Hash" URL="javascript:showConnector('http://vanilla.ics.uci.edu:2099/profile/a965fe5a-ba0b-
4a01-a13d-1b4dcc57adc1/0/50917f45-f3c2-47ba-8e15-a4bec7556be8', 'M:N Hash')",];
]}

"ANID:2df02bc7-d6ef-4d61-aa5f-2ae45f1ed6e2" -> "ANID:22c232fb-b785-4839-aa19-de4c1952c115"
[label="",style=dotted,arrowhead=vee,arrowsize=2,color=red];

"ANID:f37cdbb0-2947-4a8b-a5b7-aa888b9db4ad" -> "ANID:e95df9e1-a8db-46e3-8609-d84a2cad587a"
[label="",style=dotted,arrowhead=vee,arrowsize=2,color=red];
}

Figure 19 : Example of the HAN Graph in DOT Language

34

JobPlanServlet Requests JSON data ()

URL Pathhttp://<cc-ip-address>:<http-port>/state/jobs/<job-id>/<attempts>/stage
 http://<cc-ip-address>:<http-port>/state/jobs/<job-id>/<attempts>/plan

Examplehttp://vanilla.ics.uci.edu:2099/state/jobs/5be03555-cbe0-4d30-808f-91d4e92659c3/0/stage
http://vanilla.ics.uci.edu:2099/state/jobs/5be03555-cbe0-4d30-808f-91d4e92659c3/0/plan

Data Representation (Hyracks Activity Node Graph)

Submit the DOT language script to the dot

tool (Graphviz) to draw the HAN Graph

Process Job Plan and Job Stage JSONArray

Phrase the received Job Plan and Job

Stage JSONArray to the DOT language

Figure 20 : Procedure for Generating Hyracks Activity Node Graphs

35

 Hyracks Job Pie Chart and Hyracks Job Time Chart

The Hyracks Console includes two additional features, the Hyracks Job Pie Chart and the

Hyracks Job Time Chart, to allow users to examine the performance of their Hyracks jobs. The

Job Pie Chart displays the time usage of each Hyracks job stage using a pie graph, and the Job

Time Chart shows the relation between the time and the parallelism degree of each job stage by

using a line graph.

For generating these two components, we choose the Highchart tool [29] to present

information returned from the HCS. The Hightchart library written in pure JavaScript offers an

easy way to add interactive charts in the web application. Currently, the Highchart library

supports several types of chart such as line, spline, area, area spline, column, bar, pie and scatter

chart. This tool not only allows the users to export the chart into many formats including PNG,

JPG, PDF or SVG format, but also lets them to print the chart directly from the web pages.

To implement the Hyracks Job Pie Chart and the Hyracks Job Time Chart components,

the HCV follows the mechanism as shown in Figure 11 to generate the data representation. Both

components require the same Job Stage JSONArray data as an input. The HCV first sends the

request to the HCS through the “Job-Stage” URL. The Highchart tool then parses the

JSONArray of the Job Stage returned from the HCS and generates either a pie chart or a line

chart in the SVG format. When the Hightchart tool generates the chart successfully, the

graphic/chart in the SVG format is ready for the HCV to load and present it on the web page. In

Figure 21, a simple process in generating the Job Pie Chart and the Job Time Chart is presented.

This example Hyracks job consists of two job’s stages. Most of the time spends on the first stage

(61%) comparing to the second stage (39%). The numbers of the parallelism degree on Y axis

(Node Partition) at stage 1 and stage 2 are both equal to four partitions.

36

result: {
stages: [{
 stage-id: "f0fafa9d-10a6-4347-a240-cb9f954c8542"
 stage-finish-time: 1305922466420
 stage-name: "stage_1"
 activities: [{
 java-class: "edu.uci.ics.hyracks.examples.btree.helper.DataGenOperatorDescriptor"
 operator-id: "ODID:4c8dfe24-880b-427e-bbd5-f5d290c1db66"
 activity-id: "ANID:2f56ac5f-2cc4-42b7-bd45-3cbba572d919"}
 {
 java-class:
"edu.uci.ics.hyracks.dataflow.std.sort.ExternalSortOperatorDescriptor$SortActivity"
 operator-id: "ODID:4e53dd1c-c169-476c-ac80-245c818c3206"
 activity-id: "ANID:c4de682b-30d3-42aa-b138-b9987d90863c"
 }]
 stage-status: "completed"
 stage-init-time: 1305922465627
 }
 {
 stage-id: "d38b4688-1c0d-4a55-ace0-bc6e823abbac"
 stage-finish-time: 1305922466923
 stage-name: "stage_2"
 activities: [{
 java-class:
"edu.uci.ics.hyracks.storage.am.btree.dataflow.BTreeBulkLoadOperatorDescriptor"
 operator-id: "ODID:92b74c8c-66f1-4a80-a5c2-a9c92e9abc46"
 activity-id: "ANID:eee84c15-b948-47fa-80f4-de5eb225fdd0"
 }
 {
 java-class:
"edu.uci.ics.hyracks.dataflow.std.sort.ExternalSortOperatorDescriptor$MergeActivity"
 operator-id: "ODID:4e53dd1c-c169-476c-ac80-245c818c3206"
 activity-id: "ANID:aa663d5c-be08-4ea4-a271-1ad98c225366"
 }]
 stage-status: "completed"
 stage-init-time: 1305922466421
 }]
 }

JSONArrayVisualization Tools

(Highchart JS)Job-Stage JSONArray

(Continue with next page)

Request JSON data

URL Pathhttp://<cc-ip-address>:<http-port>/state/jobs/<job-id>/<attempts>/stage

Example http://vanilla.ics.uci.edu:2099/state/jobs/5be03555-cbe0-4d30-808f-91d4e92659c3/0/stage

Figure 21 : Job Pie Chart and Job Time Chart (1)

37

Data Representation (Job Time & Job Pie)

Figure 22 : Job Pie Chart and Job Time Chart (2)

38

5.3.2 Hyracks Cluster Health

Every Hyracks cluster consists of two types of nodes: Hyracks Cluster Controller (CC) and

Hyracks Node Controllers (NCs). For information related to the CC, the HCV provides

following information: the CC configuration parameters, a list of Registered Nodes, and a Job

Time Guilder. For each NC, the HCV offers: NC configuration parameters, a list of running and

completed jobs, and Node Resources Monitoring information.

 CC Configuration

The Hyracks Console provides read access to the CC Configuration as static information

that consists of the CC’s configuration variables, i.e., “cc-port”, “http-port”, “heartbeat-period”,

“max-heartbeat-lapse-period”, “default-max-job-attempts”, and “profile-dump-period”. In

addition, this feature displays a list of the Hyracks applications deployed in a given Hyracks

cluster. Note that these configuration values cannot be changed unless users restart the CC

process. The data visualization for this static information is simple. The HCV requests the CC

configuration data from the HCS via the CC configuration URL path. The HCV then displays the

returned results in an HTML table. An example result is shown in Figure 23.

39

Data Representation (CC Configuration)

Representation (Job Summary)

Request JSON

dataRequest JSON

data

URL Pathhttp://<cc-ip-address>:<http-port>/console/cluster
Example http://vanilla.ics.uci.edu:2099/console/cluster

{
 result: {

 cc-config: {
 heartbeat-period: 10000
 default-max-job-attempts: 5
 profile-dump-period: 100

max-heartbeat-lapse-periods: 5
cc-port: 1099
type: "cc-config"
http-port: 2099

 }
app-name: [

"tpch"
"btree"
"fuzzyjoin"

]
applications: [

{
 application-root-dir: "edu.uci.ics.hyracks.control.cc. ClusterControllerService/applications/tpch"
 application-name: "tpch"
 created-at: "2011-05-20 13:12:06.425"
 initialized-at: "2011-05-20 13:12:09.799"
}
{
 application-root-dir: "edu.uci.ics.hyracks.control.cc. ClusterControllerService/applications/btree"
 application-name: "btree"
 created-at: "2011-05-20 13:13:48.735"
 initialized-at: "2011-05-20 13:13:48.881"
}
{
 application-root-dir: "edu.uci.ics.hyracks.control.cc. ClusterControllerService/applications/fuzzyjoin"
 application-name: "fuzzyjoin"
 created-at: "2011-05-20 13:12:59.933"
 initialized-at: "2011-05-20 13:13:00.580"
}

]}
}

CC Configuration JSONArray

Figure 23 : Procedure for Generating the CC Configuration Table

40

 Registered Nodes

Another component related to the Hyracks Cluster Controller is a list of registered NCs. The

NC nodes are managed by the CC and used to execute the partitions of tasks as schedulable by

the CC. This component provides an overall picture of the health status of each registered NC

node.

To generate this information, the HCV needs to fetch the Node Controllers Summary JSON data

from the HCS and present the returned results in a table using the DataTables jQuery tool. An

example result is shown in Figure 24. DataTables was selected to be the data presenter because it

has nice scalability characteristics. Although our example shows only four registered nodes, in

reality, this component is able to support thousands of nodes.

41

 Hyracks Jobs Timeglider

 This module displays all of the Hyracks jobs that have been submitted to the monitored

cluster over time. The information shown in this module is actually comes from the same Job

Summary JSONArray that was discussed in the Hyracks Job Summary component. While the

Job Summary component divides up the Hyracks jobs based on the jobs’ status, the Hyracks Jobs

Timeglider offers another perspective by using a timeline to present all Hyracks jobs. The

Timeglider tool [28] is a data-driven interactive timeline component which is excellent for

historical projects and project planning information. It is an open-source JavaScript/jQuery plug-

URL Path http://<cc-ip-address>:<http-port>/console/nodes

Example http://vanilla.ics.uci.edu:2099/console/nodes

{
 result: [
 {
 id: "nc1"
 host: 6
 load_one: "4.3111111111e-01"
 type: "node-summary"
 }
 {
 id: "nc2"
 host: 1
 load_one: "6.0500000000e-01"
 type: "node-summary"
 }
 {
 id: "nc3"
 host: 2
 load_one: "3.1905555556e+00"
 type: "node-summary"
 }
 {
 id: "nc4"
 host: 6
 load_one: "3.8733333333e-01"
 type: "node-summary"
 }
]

 }

Figure 24 : Example List of Registered Nodes Component

Request JSON

dataRequest JSON

data

Nodes Summary

42

in with an MIT license. The current version of the Timeglider component is fed time-series data

from a JSON file; hence, the original data that is received in the console from the Job Summary

URL has to be reorganized into another structure to accomplish the Timeglider tool’s

requirement. After the HCV requests and receives the Job Summary JSONArray from the HCS,

it uses the TimelineSeverlet to propose the format for showing the data received. The Timeglider

tool then loads the resulting JSON data and presents the interactive timeline in a Web page.

Figure 25 shows the partial data of the JobTimegliderServlet.json file generated by

TimelineServlet and the resulting screenshot of the Timeglider visualization that represents one

Hyracks Job, “job00000005”.

43

Request JSON

URL Path http://<cc-ip-address>:<http-port>/state/jobs

Example http://vanilla.ics.uci.edu:2099/state/jobs

[{

id: "ccjobhistory",

initial_zoom: "5"

title: "TimeLine of Jobs in vanilla.ics.uci.edu:2099"

events: [{

id: "eb444563-311f-469f-9874-2705cf3bccda"

icon: "TERMINATED.png"

title: "job00000005"

startdate: "2011-05-20 13:15:50"

importance: 10

description: "Status: TERMINATED, Application: btree ,start:2011-05-20 13:15:50 end:2011-05-20

13:15:51"

link: "JobProfile.jsp?jobid=eb444563-311f-469f-9874-

2705cf3bccda&jobName=job00000005&attempts=1&status=TERMINATED"

enddate: "2011-05-20 13:15:51"

}]

description: "This is the history of jobs in vanilla.ics.uci.edu:2099"

focus_date: "2011-05-20 13:13:15"

}

]

JobTimegliderServlet.json

Figure 25 : Hyracks Jobs Timeglider

44

 Node Controller configuration (NC-config)

 Similar to the CC configuration module, this NC-config module displays all

configuration variables and then values for a given node controller i.e., “node-id”, “frame-size”,

“cc-host”, “cc-port”, “dcache-client-path”, “io-devices”, “data-ip-address”, and “dcache-

client-servers”. The NC configuration cannot be changed unless the users restart the NC process.

The data representation mechanism of the NC Configuration is similar to the CC configuration as

shown in Figure 26. The HCV requests the NC Configuration URL from the HCS and presents

the returned data in the HTML table.

45

Figure 26 : Procedure in Generating the NC Configuration Table

{
 result: {
 id: "nc1"
 frame-size: 32768
 cc-host: "127.0.0.1"

dcache-client-path: "/tmp/dcache-client"
io-devices: "/tmp"
data-ip-address: "127.0.0.1"
cc-port: 1099
type: "node-config"
dcache-client-servers: "localhost:54583"

 }
 }

Request JSON

URL Pathhttp://<cc-ip-address>:<http-port>/console/nodes/<node-id>/config

Example http://vanilla.ics.uci.edu:2099/console/nodes/nc1/config

NC Configuration JSONArray

Data Representation (NC Configuration)

Representation (Job Summary)

46

 Node Controller Jobs Summary

 For each of the NCs in the cluster, the HCV provides a Node Controller Jobs Summary

(NC Jobs Summary) module. This module consists of a list of all Hyracks jobs that a given node

is participated in. All executed jobs are classified into four categories based on their current

status i.e., INITIALIZED, RUNNING, TERMINATED, and FAILURE. This information

allows users to understand the performance and workload of each NC. To generate this module,

the HCV uses the Node Controller Jobs Summary URL-Request provided by the HCS and the

DataTables jQuery tool. The procedure for generating the NC Jobs Summary module is

illustrated in Figure 27. There are two finished jobs (“job00000001” and “job00000005”) and

one failed job (“job00000010”) that the node “nc1” is participated in.

47

URL Path http://<cc-ip-address>:<http-port>/console/nodes/<node-id>/jobs
Example http://vanilla.ics.uci.edu:2099/console/nodes/nc1/jobs

Request JSON

{
 result: {
 failed-jobs: {

job-id: "54d395c4-289f-4de9-ab54-c429b006a968"
application: "btree"
display-name: "job00000010"
status: "FAILURE"
attempts: 6

 start-time: "2011-05-20 13:56:15.041"
 end-time: "2011-05-20 14:07:08.659"
 }
 finish-jobs: [
 {

job-id: "eb444563-311f-469f-9874-2705cf3bccda"
application: "btree"
display-name: "job00000005"
status: "TERMINATED"
attempts: 1
start-time: "2011-05-20 13:15:50.536"
end-time: "2011-05-20 13:15:51.045"

 }
 {

job-id: "17159a0c-0ae9-414d-9553-928a9b42a12d"
application: "fuzzyjoin"
display-name: "job00000001"
status: "TERMINATED"
attempts: 1
start-time: "2011-05-20 13:13:26.969"
end-time: "2011-05-20 13:13:27.962"

 }
]
 }
}

Figure 27 : Node Controller Job Summary Module

48

 Node Controller Resource Monitoring

In the Hyracks system, the resource usage of each worker machine is beneficial for the Hyracks

users to monitor as a measure of the Hyracks cluster’s health and to help detect any job execution

failures caused by regarding node failures. The NC Resource Monitoring module presents a line chart

of time-series data of the resource consumption on a given worker machine. This resource

consumption data is actually collected by the Ganglia software and stored in the RRD database. The

HCS is responsible for fetching this time-series data from the RRD database and sending that data in

the JSON format to the HCV when the HCV requests it via the NC-Resource URL. The HCV can

specific the type of requested resource in the NC-Resource URL from the following five main

categories: CPU (cpu_idle, cpu_nice, cpu_system, cpu_user and cpu_wio), DISK (disk_free and

disk_total), LOAD (load_one, cpu_num, proc_run and proc_total), NETWORK (bytes_in, bytes_out,

pkts_in and pkts_out), and MEM (mem_bufferes, mem_cached, mem_free, mem_shared and

mem_total). For the NC-Resource URL, the time resolution <step> for the resource data is every

15 seconds, and the <end-time> is the current time by default. To minimize the data loading time,

the number of records returned to the HCV is about 30 records per type of resource. To be more

precise, the default resource monitoring URL returns resource usage data in the last 450 (=15*30)

seconds. Sample memory usage for the node “nc1” is shown in Figure 28.

For visualizing the time-series resource data, we use the Highchart tool to display a data in

an interactive line chart. The horizontal axis is time and the vertical axis is a resource

consumption value. The result is presented in five tabs, i.e., “all”, “mem”, “cpu”, “disk”, and

“network”. Each tab represents a resource category. This interactive line chart not only gives a

visual overview of resource usage, but it also allows users to check the actual values at each

point in the chart by using a mouse-over action. In addition, users can filter the content of the

line chart by selecting the sub-types or resource of interest. They also are able to zoom in/out in

time by dragging their mouse over the line chart.

49

URL Path
http://<cc-ip-address>:<http-port>/console/nodes/ <node-id>/resources/<type>/ (<step>)/(<start-time>)/(<end-
time>)

Example
http://vanilla.ics.uci.edu:2099/console/nodes/nc1/resources/mem

Data Representation(Resources Monitoring)

{
 result: [
 {
 type: "mem"

 sub-type: "mem_buffers"
 count: 30

 data: [
{

num: "1.0000000000e+00"
time: "06:51:45 PM"
value: "2.4786666667e+03"

}
{

num: "1.0000000000e+00"
time: "06:52:00 PM"
value: "2.5160000000e+03"

}
{

num: "1.0000000000e+00"
time: "06:52:15 PM"
value: "2.5160000000e+03"

}
…
…
…

]
 }

(continue on the right figure)

(continue from the left figure)
 {
 type: "mem"
 sub-type: "mem_cached"
 count: 30
 data: [

 {
 num: "1.0000000000e+00"

 time: "06:51:45 PM"
 value: "6.1557333333e+04"

 }
 {
 num: "1.0000000000e+00"
 time: "06:52:00 PM"
 value: "6.1560000000e+04"
 }
 {
 num: "1.0000000000e+00"
 time: "06:52:15 PM"
 value: "6.1560000000e+04"
 }

 …
 …
 …
]
 }
]
}
 (Note: this picture includes only part of

data)

Figure 28 : NC Resource Monitoring Module

Request JSON

50

5.4 Publish/Subscribe API for Server Pushing Method

 One of our design goals of the Hyracks Console is to monitor the Hyracks system in

“real-time”. Many real-time web-based monitoring systems set up a timer to update their sites

automatically on a periodic basis. However, if we stand on the user’s side, they might not want

their Webpage to keep refreshing periodically without any change of the content. To be more

precise, a user’s web page should be updated only when any new resource information in related

to that particular web page is generated. To support this feature, an additional web-server is

implemented in the console to support a server-push mechanism that intelligently responds to

significant events in the Hyracks system at runtime.

 Instead of having the Hyracks Console Visualization (HCV) periodically pull for the data

from the Hyracks Console Server (HCS), a web-server on the HCS side initiates the

communication and publishes a message to the HCV via a specific “channel” when any

significant event occurs in the Hyracks system. To receive the message, the HCV has to

subscribe/listen to that particular channel. Thus, when a user opens a Hyracks Console web page

that requires this feature, the HCV automatically subscribes to the related channel using the

CometD service. When the HCV receives a message from the HCS, it will update the visual

modules that are relevant to this message. In the HCS, there are three such channels implemented

to interact with different types of events as shown below.

 The /jobs channel is responsible for transmitting the event messages when there is an event

related to the set of Hyracks jobs, such as JobCreateEvent, JobStartEvent, JobAbortEvent,

JobAttemptStartEvent, and JobCleanupEvent. For example, when a new job is submitted to

the Hyracks cluster, the HCS-Push method publishes a “job” message to the /job’s channel

to trigger the HCV server to reload the Job Browser
1
 page by requesting Job Summary data

from the HCS-Pull method through the REST API. The HCV then updates the Job Browser

page by using the new Job Summary JSON data. Figure 29 summaries this concept.

1 The Job Browser page displays the tables of all Hyracks jobs that have been submitted to a particular Hyracks

cluster. An example of this page can be found in Section 6.2.1.

51

 The /stages/<job-id> channel is responsible for transmitting event messages that are

related to the stage of a particular monitored Hyracks job, such as

ScheduleRunableStagesEvent, StageletFailureEvent, JobAttemptStartEvent, JobAbortEvent,

and JobCleanupEvent. When the stage of a monitored job is updated, the HCS sends a

message through this channel to the HCV server. This “stage” message includes several

information units such as the job’s ID, attempt number, list of completed/ progressing/

pending/ failed stages’ ID, and current job’s status. Furthermore, the HCV web-server uses

a JavaScript function to assign the color of each stage in the Job Activity Node Graph

module as shown in Figure 23.The “light blue”, “light green”, “gray” and “salmon” colors

represent a completed stage, progressing stage, pending stage, and failed stage respectively.

With this server push mechanism, the Hyracks user can see a real-time animation of the Job

Activity Node Graph via the web interface.

Hyracks Console

Server

(Pushing Method)
Hyracks

Console

Visualization

(Web-Server)

Push job message through “Channel”: /jobs

Request Job Summary through REST API

“Response”: Job Summary JSON data

1

2

3

Hyracks Console

Server

(Pulling Method)

Figure 29 : /jobs channel

52

 The /attempts/<job-id> channel is used when the monitored job starts a new attempt for

its execution (JobAttempStartEvent). As was mentioned in the Hyracks overview, if an

error occurs during a job’s execution, the Hyracks system will try to restart the process

again until reaching the maximum number of attempts. The push mechanism of the

/attempt/<job-id> channel is similar to the /jobs channel. The “attempt” message from the

HCS-push will trigger the HCV sever to request the JobPlan and JobStage JSON data via

the HCS-Pull API and then reload the Job Profile
2
 page. This is shown in Figure 31.

2 The Job Profile page presents several modules related to a particular Hyracks job such as its Job Specification, Job

Plan, Job Pie Chart, and Job Time Chart modules. An example of this page can be found in Section 6.2.2

Hyracks

Console

Server

(Pushing

Method)

Hyracks

Console

Visualization

(Web Server)

Push stage message through

“Channel”: /stages/<job-id>

Message includes the stages’ status in JSON format

1

For example:
data{
 name: “stages”,
 jobid: “54d395c4-289f-4de9-ab54-c429b006a968”,
 attempt: 0
 complete: ["5f2a92e5-099f-4a51-978b-54985ab551ee"],
 progress: ["079046ee-0e2f-435c-a7ce-578aedfc5bb6"],
 pending: [],
 fail: [],
 jobstatus: “RUNNING”
}

Figure 30 : /stages/<job-id> channel

Hyracks Console
Server

(Pushing Method)

Hyracks

Console

Visualization

(Web Server)

Push attempt message through

“Channel”:/attempts/<job-id>

“Response”: JobPlan, JobStage JSON data

1

2

3
Hyracks Console

Server

(Pulling Method)

Reload the Job Profile page through REST API

Figure 31 : /attempts/<job-id> channel

53

6 HYRACKS CONSOLE USER MANUAL

This section explains in detail of how to install and run the Hyracks Console. In addition, we

demonstrate how to use the Hyracks Console to monitor the behavior of the Hyracks Cluster

based on the real example throughout the section. This section is aimed at readers using to

understand how to use the Hyracks Console.

6.1 Setting up the Hyracks Console

 The Hyracks Console is made up of two parts, the Hyracks Console Visualization (HCV)

and the Hyracks Console Server (HCS) components. The HCV is used for remotely viewing live

and historical statistics (such as CPU load averages or network utilization) of the Hyracks cluster.

The HCS source code is included in the Hyracks system package. The HCS component of the

Hyracks system is activated automatically after the Hyracks Cluster Controller process is started.

For using the Hyracks Console, the only requirement is the users need to install and run the

console on the machine that is able to connect to a machine which is running the Hyracks Cluster

Controller process of the monitored Hyracks cluster.

6.1.1 Hyracks Cluster Installation Prerequisites for Collecting and Storing Data

Before starting the Hyracks Console, the Ganglia software should be installed and be

runnable on every machine in the Hyracks cluster to collect the time-series data for the resource

consumption (i.e., CPU, disk, network, and load) of each machine. This data is required for

generating the Node Controller Resource Monitoring module. However, if the user chooses not

to install Ganglia, the Hyracks console will notify them by annotate “the Ganglia software is

missing” on that visual module. The process of collecting resource usage data is independent of

the Hyracks job’s execution, so the user will still be able to monitor all other aspects of the

Hyracks jobs without installing Ganglia.

6.1.2 Installing JSP

 In order to run Java Server Pages, to deploy and run, a compatible web server with servlet

container is required. There are a number of JSP technology implementations for different web

54

servers. The latest information on officially-announced support can be found at

http://java.sun.com/products/jsp/industry.html. In this implementation, the Hyracks Console

chooses the Apache Tomcat server to support JSP.

6.1.3 Running the Hyracks Console on a Web Browser

The Hyracks Console Visualization (HCV) is a client-server web application that is

accessible over a network. HCV is implemented using a browser-support language which is

reliant on a common web browser to render the application executable. This section helps

Hyracks users to start the Hyracks Console and setup the connection between HCV and HCS.

Prerequisites

 Google Chrome web browser (or equivalent, e.g., Firefox)

Steps

1) Open a web browser

2) Load this following URL: “http://localhost:<webserver-port>/HyracksConsole/web”

where the <web server port> is the network port running the Tomcat Server

When the Hyracks Console Visualization (HCV) is loaded successfully, the user should

see an initial web page (Job Browser Page) as shown in Figure 32. Notice that the content

in the table is empty since the connection between the HCV and the HCS is not setup yet.

Figure 32 : Initial Web Page (Job Browser Page) of the Hyracks Console

http://java.sun.com/products/jsp/industry.html
http://localhost:%3cwebserver-port%3e/HyracksConsole/web

55

3) Setup the connection between the HCV and the HCS

We assume that the IP address of the master node running the Hyracks Cluster Controller

of the monitored Hyracks system is “vanilla.ics.uci.edu” and the http-port number is

“2099”. Users can setup the HCV/HCS connection by following these steps.

a. Click on “Monitoring Setting” button on the top right as shown in Figure 33

b. Fill the cc-IP as vanillia.ics.uci.edu and cc-http-port as 2099 as shown in Figure

34.

c. Click on “Save”

Figure 34 : Setup the cc-IP and cc-http-port values

Figure 33 : Setup the Connection between the HCV and the HCS

56

Figure 35 : Example Job Browser Page

Figure 35 depicts an example of the Job Browser Page when the HCV successfully

creates a connection to the HCS of a given Hyracks System. There is no running or

initialized Hyracks job in the figure, but there are twelve completed Hyracks jobs and

two failed Hyracks jobs.

57

6.2 Hyracks Console Web UI

The HCV generates dynamic web content by using Java Server Pages (JSP) technology.

The entire sitemap of the HCV is presented in Figure 36. There are four main pages: Hyracks

Cluster Browser, Hyracks Node Controller Profile, Hyracks Job Browser and Hyracks Job

Profile. The top level of the Hyracks console is conceptually divided into two parts, Hyracks

Cluster Browser and Hyracks Job Browser. Users can navigate from the Hyracks Cluster

Browser page to the Hyracks Node Controller Profile page and from the Hyracks Job Browser

page to the Hyracks Job Profile page. Moreover, they can navigate back and forth between the

Hyracks Node Controller Profile page and the Hyracks Job Profile page. Table 1 shows the list

of contents or modules presented on each web page. Throughout this section, a simple Hyracks

job is used as an example to demonstrate how the Hyracks Console monitors the behavior of the

Hyracks system. We assume that the cc-IP is vanilla.ics.uci.edu and the cc-http-port is 2099.

Table 1: Hyracks Console Web Pages Description

Page Name Description Contents/ Modules

Hyracks Job Browser Presents all Hyracks Jobs that have been

submitted to a particular Hyracks cluster.

 Running Jobs

 Finished Jobs

 Initialized Jobs

 Failed Jobs

Hyracks Job Profile Presents more detail for a particular

Hyracks job.

 Hyracks Job Specification Graph

 Hyracks Activity Node Graph

 Time Usage Report in Pie-Chart

 # of Partitions in Timeline

 Resources Consumption

Hyracks Cluster Browser Presents an overview for a particular

Hyracks Cluster including both Hyracks

nodes view and Hyracks jobs view.

 Cluster Controller Configuration

 Registered Node Controllers &

Node Health

 Hyracks Job Execution Timeline

Hyracks Node Controller

Profile

Presents information related to a particular

Hyracks Node Controller.

 Node Controller Configuration

 Running Jobs

 Finished Jobs

 Initialized Jobs

 Failed Jobs

 Machine Resource Consumption

58

Hyracks Node Controller

Profile

Hyracks Cluster Browser

Hyracks Console Sitemap

Hyracks Console Sitemap

Hyracks Job Browser

Hyracks Job Profile

Figure 36 : Hyracks Console Visualization Sitemap

59

6.2.1 Hyracks Job Browser

The Hyracks Job Browser page displays a summary of all of the Hyracks jobs that are

deployed in the given Hyracks cluster. There are four tables included in this page to present each

category of a job’s status, i.e., initialized, running, completed, and failed. An example of the Job

Browser page is shown in Figure 35. There we see no jobs in the RUNNING or INITIALIZED

JOB LIST tables, twelve jobs in the COMPLETED JOB LIST table, and two jobs in the

FAILED JOB LIST table. For each job, the following data is presented: Job Name, Application

Name, Start time, Duration, and number of job Attempt times.

 To support real-time monitoring, the Job Browser page embeds a CometD Client

JavaScript to subscribe the HCV client to the “/jobs” channel in order to receive messages

pushed from the HCS whenever the events related to the Hyracks cluster’s job occur. For

example, when a new Hyracks job of the “tpch” application is deployed in the

“vanilla.ics.uci.edu” Hyracks cluster, the HCS pushes a message through the “/jobs” channel and

there by triggers the HCV to update the Job Browser page with low latency. Assuming that the

new job is running immediately after being submitted to the cluster, the Hyracks Console user

will observe a new entry in the “RUNNING JOB LIST” table as shown in Figure 37. In this

example, the new entry is “job00000015” and the start time is “2011-06-30 13:14:25.616”. In

addition, there is a link at the job’s name that allows the user to click and navigate to its Hyracks

Job Profile page to see more details related to that job. Let’s click on the “job00000015” link and

navigate to its profile page as described in the next section.

Figure 37 : Example Result of RUNNING JOB LIST Table after Deploying a Hyracks Job

60

6.2.2 Hyracks Job Profile

The Hyracks Job Profile page consists of four visualization modules, (1) Hyracks Job

Specification, (2) Hyracks Activity Node Graph, (3) Hyracks Job Pie Chart, and (4) Hyracks Job

Time Chart. Figure 38 is an overview of the Hyracks Job “job00000015” Profile page.

Figure 38: Overview of the Job Profile Page

61

The top two boxes present the Hyracks Job Specification (called JobSpec) and the corresponding

Hyracks Activity Node Graph (called JobPlan) of a particular Hyracks job. The Hyracks Job

Specification provides users with an overview of how their jobs are structured, while the

Hyracks Activity Node Graph explains how each HOD internally expands into a set of

corresponding HANs. These two diagrams are offering an easy way for the users to understand

the design and execution process of their job. Figure 39 shows these two visual modules. Note

that the complete Job Specification and Job Plan JSONArray along with the DOT script of this

example can be found in the appendix section.

When the users are interested in greater details, they can click on the button. Then, a

model-box is popped up to display the moveable and zoomable diagram (: zoom out and :

zoom in). Each box in the Hyracks Job Specification component represents a HOD and the

description inside the box indicates the class of this HOD. Each arrow that connects a pair of

HODs represents a CD and the annotation of the arrow indicates the class of this CD. For

example, from the Hyracks Job Specification of the Hyracks job “job00000015” shown in Figure

39 (left), there are five HODs assembled to perform this job: two “FileScan”, one

“InMemoryHashJoin”, “HashGroup”, and “FrameFileWriter”. Each “FileScan” HOD connects

to the “InMemoryHashJoin” HOD by an “M:N Hash Partition” connector. The

“InMemoryHashJoin” and “HashGroup” HODs are also connected by an “M:N Hash Partition”

connector. Last, the “HashGroup” and “FramFileWriter” HODs are connected by a “1:1”

connector.

62

Figure 39 : Hyracks Job Specification (left) and Hyracks Activity Node Graph (right)

 When the Hyracks system starts to execute a job, internally, it expands each HOD in the

job’s specification into a set of HANs which can be presented in the Hyracks Activity Node

Graph. The expansion of each HOD indicates all sub-phases involving in each HOD along with

the sequence dependencies among phases. In Figure 39 (right), the Hyracks Activity Node

graphical view uses red dotted arrows to denote the blocking edges between pairs of HANs,

which means that the sender HAN must finish before the receiver HAN can begin. In our

example job, the “InMemoryHashJoin” HOD in the Hyracks Job Specification is expanded into

“HashBuildAcitvityNode” and “HashProbeAcitvityNode” HANs. The “HashBuildAcitvityNode”

HAN must finish before the “HashProbeAcitvityNode” HAN can begin, so there is a blocking

edge (red arrow) between these two activities. Each colored box that contains one or several

HANs is represented as a stage. The first stage in Figure 39 (right) consists of “FileScan” and

“InMemoryHashJoin” HANs which can be executed in a pipelined manner. The different colors

denote the runtime status of each stage (i.e., light blue – Completed, light green – Progressing,

gray – Pending, red – Failure). Therefore, from the Activity Node Graph, users can recognize

easily that the first stage is already completed, the second stage is still progressing, and the third

stage is pending.

63

In addition, the Job Profile page embeds the CometD Client JavaScript to listen to the

“/stages/<job-id>” channel. When the current status of any stages of the monitored job is

changed, the HCS pushes a message through the “/stages/<job-id>” channel to trigger the HCV

to update the color of the stages in the Activity Node Graph. For instance, when our example job

finishes the execution, the color of all stages in the Activity Node Graphic will be changed to be

the light blue color as shown in Figure 40. This technique represents the current status of each

stage by calling JavaScript function to update only the color of each box in the diagram without

refreshing the entire page. Thus, the users can stay wherever they are on the page without being

perturbed by status color update. For example, if a user opens the model popup page and enlarge

the diagram to 200%, then the last stage fails, a user will still be able to observe this change on

the last stage as shown in Figure 41.

Figure 40 : Hyracks Activity Node Graph of the Completed Hyracks Job

64

Figure 41: Updating the Hyracks Activity Node Graph on the Model Popup Page

 As briefly mentioned earlier, each HAN actually represents a set of parallel tasks

scheduled to execute on the machines in the Hyracks cluster. To observe the job’s task

information, users can interact with the Activity Node Graph. For instance, when a user click on

the first “FileScan” HAN, extra HAN’s information will be presented on the right panel

including the number of partitions and the list of participated NCs, which for example are equal

to “3” and “nc1, nc2, nc3” respectively in Figure 41 (left). This means the “FileScan” HAN has

three parallel tasks which are scheduled to run on the“nc1”, “nc2” and “nc3”. Continuing with

Figure 41 (right), when the user clicks on the “HashBuildAcitvityNode” HAN in the first stage,

the number of partitions is changed to “4” and the list of participated NCs is changed to “nc1,

nc2, nc3, nc4”, which means the “HashBuildAcitvityNode” HAN has four tasks which is

scheduled on the node-id “nc1”, “nc2”, “nc3” and “nc4”.

65

In addition, the graphical view of each connector of the Activity Node Graph embeds a

communication matrix image presenting the volume of data movement at runtime between the

senders and receivers HANs. From the previous “tpch” Hyracks job example, the communication

matrix of the “M:N Hash” connector between the “FileScan” HAN and the

“HashBuildActivityNode” HAN in the first stage is presented in Figure 43. There are three

instances of the “FileScan” HAN and four instances of the “HashBuildActivityNode” HAN.

Note that this matrix graph visualization will allow the users to view the data movement on each

connector even if the data is shuffled among hundreds or perhaps thousands of nodes.

Figure 42: HAN Profile of the “FileScan” Activity (left) and

the “HashBuildActivityNode” Activity (right) on the Model Popup Page

66

Figure 43: Hyracks Activity Node Graph with Data Movement Information on the Popup Page

 The Next two modules are the job’s performance Pie Chart and Time Chart. The Pie

Chart summarizes the percentage of time usage for each job’s stages. Each slice of the pie

represents a different job stage. If a user moves the mouse over a slice, it will pop out a bubble to

indicate the set of HANs that belongs to the selected stage. Figure 44 shows a screen of the Pie

Chart when the user has moved his/her mouse over the second stage which consumed 42% of the

total execution time, and which consists of three HANs: “HashBuildActivity”, “FileScan”, and

“HashProbeActivityNode”. The Time Chart depicts the parallelism of each stage based on the

timeline. The X-axis of this chart is time, which begins at the job’s start time and ends at the

job’s finish time. If the job is currently running, the end time is the current time. The Y-axis is

the number of partition nodes in each stage. In Figure 45, the number of partitions of the first and

the third stages are both four, while the second stage has five partitions. When the user moves

the mouse over the second stage in the Time chart, the popup bubble denotes that this stage

consists of three HANs (“HashBuildActivity”, “FileScan”, and “HashProbeAcitvityNode”).

67

Figure 44 : Performance Pie Chart

Figure 45 : Performance Time Chart

68

6.2.3 Hyracks Cluster Browser

The Hyracks Cluster Browser page displays an overview of the entire Hyracks clusters. It

consists of three visualization modules, (1) Hyracks Cluster Controller Configuration, (2)

Registered Hyracks Node Controllers, and (3) Hyracks Job Timeglider. Continuing with our

example server, let’s click on the Cluster Browser menu to open the Hyracks Cluster Browser

page. The first module, the Hyracks Cluster Controller (CC) Configuration, shows configuration

information. The CC configuration of our example server, “vanilla.ics.uci.edu”, is shown in

Figure 46. There are seven variables included in the CC configuration including: list of

applications, heartbeat-period, default-max-job-attempts, profile-dump-period, max-heartbeat-

lapse-periods, cc-port, and http-port. The list of applications in the figure shows that there are

three applications deployed on the Hyracks system, which are “tpch”, “btree”, and “fuzzyjoin”.

The heartbeat-period is the duration between two heartbeats of each node controller in

milliseconds. The default-max-job-attempts number is the maximum numbers of times that the

CC will restart a job’s execution if any error occurs. The profile-dump-period is the time

duration between two profile dumps from each node controller, in milliseconds, and the default

value is 0 which means it is disabled. In this example, we assigned the profile-dump-period is set

to be every 100 milliseconds. The max-heartbeat-lapse-period is the maximum number of

missed heartbeats before a node is marked as dead. In this example it is unassigned, so it shows

“5” as the default. Also, we can see the cc-port that was setup for listening for connections from

node controllers. Lastly, the http-port is a network port number specified for communicating

between the HCS and the HCV.

Figure 46 : CC Configuration for "vanilla.ics.uci.edu" Hyracks Cluster

5

69

 The second module is the Hyracks Jobs Timegulider that represents the history of jobs

executions on the monitored Hyracks Cluster. The timeline runs from the first deployed job to

the last deployed job. The users can see the status of the jobs from the symbols. An example

Hyracks Jobs Timeglider is shown in Figure 47.

Figure 47 : Hyracks Jobs Timeglider

 The legend of the Hyracks Jobs Timegulider explains the symbols and the referred job’s

status. Each symbol can also be used as a button to toggle the associated jobs from the screen;

for instance, after clicking on the failure icon, the screen only displays the failure jobs and hides

uninterested jobs as shown in Figure 48.

70

Figure 48 : Only the Failure Jobs in the Hyracks Jobs Timeglider

In addition, each job’s name on the Timeglider is a clickable link that invokes a detailed

description box. In Figure 49, the detail box of the “job00000015” indicates that the job’s status

is “TERMINATED”, its application is “tpch”, and its execution started at “2011-06-30

13:14:25.616” and ended at“2011-06-30 13:19:25.44”. The hyperlink “link” in the job’s detail

box navigates to its Hyracks Job Profile page.

Figure 49 : Job’s Description in the Hyracks Jobs Timeguilder

INITIALIZED

71

 The last page, the Registered NCs module summarizes all of the NCs that have been

registered to the CC. The color of each NC’s heart image indicates the CPU utilization of the

given NC as per the legend shown in Figure 50. In this example, there are seven nodes in the

Hyracks cluster. As the gray hearts indicate in the figure, node “nc1” and “nc4” are dead. Node

“nc2” has a red heart, which means that its CPU utilization is close to 100%. By using this

module, users can get an overview of the workload of their Hyracks cluster and know which

resources are available for their future Hyracks jobs. A user can click on the node-id hyperlink to

navigate to the Hyracks Node Controller Profile page. Let’s indeed click on the node “nc2” and

drill down to its profile page.

Figure 50 : Registered NCs (left) and NC's CPU Utilization Legend (right)

6.2.4 Hyracks Node Controller Profile

The Hyracks Node Controller Profile page is a child page of the Hyracks Cluster Browser

page. The first module in this page is the Node Controller Configuration, as shown in Figure 51.

All node configuration variables and their values for a given node controller are included in its

profile page. The configuration variables include: node-id, frame-size, cc-host, dcache-client-

path, io-devices, data-ip-address, cc-port, and dcache-HCVs.

72

The second visualization module is the Node Controller Jobs Summary, which presents

the list of Hyracks jobs executed on a given node. Each job is classified into one of four

categories based on their current status: INITIALIZED, RUNNING, TERMINATED, or

FAILURE. This information helps users to understand the performance and workload of each

node. For instance, Figure 52 shows an example Node Jobs Summary for the node “nc2”. The

user can see that the job “job00000015” exists on the completed jobs list, for example, meaning

that this job was executed on node “nc2” and is already finished.

Figure 52 : Node Controller Jobs Summary

 The last visualization module is the Node Controller Resource Monitoring. Information

about the resource consumption of each worker machine is beneficial in order to monitor the

cluster’s health and detect any job execution failures caused by node failures. There are six types

of resources views (e.g., “mem” for memory, “cpu”, “disk”, “load”, “network” and “all”)

represented in different tabs. By default, users are able to monitor the current resources usage of

the given node in the last 450 seconds. Figure 53 is an example of the CPU resource usage for

Figure 51 : Hyracks Node Controller Configuration of the Node-ID “nc2”

73

machine “nc2”. When the mouse is moved over specific points in the line graph, a bubble box is

popped out to show the exact value at that point. In Figure 53, the pop-out bubble denotes that at

“11:00:30 PM” the value of “cpu-user” is “39.4%”.

Figure 53 : Hyracks Machine Resources Consumption

7 CONCLUSION

 The Hyracks partitioned-parallel platform has been developed at UCI to support data-

intensive processing and analysis on large-scale distributed clusters. The Hyracks system allows

the programmers to execute dataflow applications from a simple interface and conceals the

complexity of their internal processes. However, when a failure occurs, in their Hyracks system,

or performance is not as expected, it will be beneficial for users if they can understand and

analyze the intermediate steps or individual execution processes for their Hyracks jobs. For this

purpose, the Hyracks Console has been developed to accelerate the development process of

large-scale data processing application and provide better insights into the Hyracks platform in

real-time. This thesis has described the design and client-side visualization implementation of the

Hyracks Console.

The Hyracks Console has been designed to support two main types of users, Hyracks End

Users and Hyracks Operator Implementers, in monitoring the Hyracks system and its jobs. The

74

Hyracks Console system architecture is conceptually divided into two main components,

Hyracks Console Server (HCS) and Hyracks Console Visualization (HCV), which are

independent of one another.

The first component, the Hyracks Console Server (HCS), runs inside the Hyracks system

and is responsible for collecting, storing, and delivering the information related to the Hyracks

cluster and its jobs at runtime. To efficiently provide the necessary data, two communication

techniques between the client (HCV) and the server (HCS) have been implemented. The first

technique is called client-pull, where the HCV sends a request to the HCS through the REST API

and the HCS then responds with required data in the JSON format. The second technique,

server-push, is implemented to support real-time monitoring. When significant events happen in

the Hyracks system, the HCS initiates the communication and sends a message to the HCV

without first reading a request from it. This is used for event notification purposes and triggers

page refreshes if/as needed.

The second component, the Hyracks Console Visualization (HCV), receives and converts

the plain JSON data into a visual representation. The implementation of the visualization, the

data representation mechanism, and chosen data presentation tools have all been discussed in this

thesis. The HCV also provides a Graphical User Interface (GUI) that allows users to interact

freely with the Hyracks Console. The HCV minimizes the Hyracks users’ effort in monitoring

the Hyracks system by parsing the JSONArray data into dataflow diagrams, pie charts, timeline

charts or tables. We expect the resulting Hyracks Console will facilitate existing users in their

understanding of the logical construction and the internal execution of their Hyracks jobs, as well

as reducing the time needed for the new Hyracks users to learn about the programming using

Hyracks on large clusters.

75

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.

In Proceedings of the 6th Symposium on Operating Systems Design and Implementation

2004 (OSDI ’04), pages 137–150, San Francisco, California, USA, December 2004.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed Data-Parallel

Programs from Sequential Building Blocks. In Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007, pages 59–72,

Lisbon, Portugal, March 2007.

[4] Pig. http://hadoop.apache.org/pig.

[5] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey.

DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a

High-Level Language. In the 8th Symposium on Operating Systems Design and

Implementation 2008 (OSDI ’08), San Diego, California, USA, December 2008.

[6] Cloudera. http://www.cloudera.com/products-services/tools.

[7] Karmasphere Studio. http://www.karmasphere.com.

[8] J.Boulon A.Konwinski, R.Qi,A. Rabkin E. Yang, and M.Yang. Chukwa: A Large-Scale

Monitoring System. In the 5th International Conference on Computability and Complexity in

Anaysis (CCA 2008), Hagen, Germany, August 2008.

[9] V. Borkar, M. J. Carey, R. Grover, N. Onose, R. Vernica. Hyracks: A Flexible and

Extensible Foundation for Data-Intensive Computing. In IEEE International Conference on

Data Engineering 2011 (ICDE 2011), Hanover, Germany, April 2011.

[10] Hyracks. http://code.google.com/p/hyracks.

[11] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li, N. Onose, R. Vernica, A. Deutsch,

Y. Papakonstantinou and V. J. Tsotras. ASTERIX: Towards a Scalable, Semistructured

Data Platform for Evolving-world Models. In Distributed and Parallel Databases, Vol.

29, pages 185-216, 2011.

76

[12] TPC-H. http://www.tpch.org/tpch.

[13] R. T. Fielding and R. N. Taylor. Principled Design of the Modern Web Architecture. In

Proceedings of the 2000 International Conference on Software Engineering (ICSE 2000),

pages 407–416, Limerick, Ireland, June 2000.

[14] JSON (JavaScript Object Notation). http://www.json.org.

[15] "Pull Technology." Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. 6

February 2011. Web. 26 June. 2011.

[16] "Push Technology." Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. 17

June 2011. Web. 26 June. 2011.

[17] Jetty. http://www.eclipse.org/jetty.

[18] Ganglia Monitoring System. http://ganglia.sourceforge.net

[19] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia Distributed Monitoring System:

Design, Implementation, and Experience. In Parallel Computing, 30(7), pages 817-840,

2004

[20] RRDtool. http://www.mrtg.org/rrdtool/tut/rrdtutorial.en.html.

[21] CometD. http://cometd.org.

[22] "Comet (programming)." Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc.

11 June 2011. Web. 26 June. 2011.

[23] Bayeux Protocol. http://svn.cometd.com/trunk/bayeux/bayeux.html.

[24] S. Pongpaichet. Hyracks Console: Monitoring the Hyracks Partitioned-Parallel Runtime

Platform. Master’s thesis, Department of Computer Science, UC Irvine, August 2011.

[25] JavaServer Pages Technology.

http://www.oracle.com/technetwork/java/javaee/jsp/index.html.

[26] Apache Tomcat. http://tomcat.apache.org.

[27] Graphviz: Graph Visualization Software. http://www.graphviz.org.

[28] TimeGlider. http://timeglider.com.

[29] Highcharts JS. http://www.highcharts.com.

77

[30] DataTables. http://www.datatables.net.

[31] Java Class UUID.http://download.oracle.com/javase/6/docs/api/java/util/UUID.html.

[32] The DOT Language.http://www.graphviz.org/doc/info/lang.html.

[33] E. Gansner, E. Koutsofios, and S. North.Drawing Graphs with

dot.http://www.graphviz.org/Documentation/dotguide.pdf.

[34] Scalable Vector Graphics (SVG).http://www.w3.org/Graphics/SVG.

78

APPENDIX

In this section, we provide the complete results of the “Job Specification” and “Job Plan”

JSONArray of the “tpch” example job (“job_00000015”) presented in Section 6 along with their

DOT Scripts used for generating interactive graphical view. In addition, we summarize the URL-

Request paths patterns and their usage.

A. JSONArray : “Job Specification” of the “tpch” Example Job

{

result: {
connectors: [{

in-operator-port: 0

in-operator-id: "ODID:73c64eb3-079e-46e2-bc97-19bee4089832"

connector: {

id: "a08f8b12-f793-4348-8986-d671afd2691b"

java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.OneToOneConnectorDescrip

tor

type: "connector"

}

type: "connector-info"

out-operator-port: 0

out-operator-id: "ODID:59260ba1-8777-4f58-9710-a3db96b1788d"

}

{

in-operator-port: 0

in-operator-id: "ODID:6ed0a038-2558-4fed-ae40-f602877bea02"

-

connector: {

id: "4813880e-89cb-410f-bc60-96b10a8b6d21"

java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConn

ectorDescriptor"

type: "connector"

}

type: "connector-info"

out-operator-port: 0

out-operator-id: "ODID:616ebe36-317f-466e-8677-ea2db022e3dd"

}

{

in-operator-port: 0

in-operator-id: "ODID:c5f3312e-e9c7-49d2-8d01-f3a6a4d0eb37"

-

connector: {

id: "05903646-df96-4165-bdc1-07ed48eb988b"

java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitio

ningConnectorDescriptor"

type: "connector"

}

type: "connector-info"

out-operator-port: 1

out-operator-id: "ODID:616ebe36-317f-466e-8677-ea2db022e3dd"

}

(Continue on the next page)

79

{

in-operator-port: 0

in-operator-id: "ODID:616ebe36-317f-466e-8677-ea2db022e3dd"

connector: {

id: "3fa6003f-060a-4fc6-8da6-2468ff838699"

java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHash

PartitioningConnectorDescriptor"

type: "connector"

}

type: "connector-info"

out-operator-port: 0

out-operator-id: "ODID:73c64eb3-079e-46e2-bc97-19bee4089832"

}

]
operators: [

{

id: "6ed0a038-2558-4fed-ae40-f602877bea02"

in-arity: 0

java-class:

"edu.uci.ics.hyracks.dataflow.std.file.FileScanOperatorDescriptor"

out-arity: 1

type: "operator"

}

{

id: "73c64eb3-079e-46e2-bc97-19bee4089832"

in-arity: 1

java-class:

"edu.uci.ics.hyracks.dataflow.std.group.HashGroupOperatorDescriptor

"

out-arity: 1

type: "operator"

}

{

id: "59260ba1-8777-4f58-9710-a3db96b1788d"

in-arity: 1

java-class:

"edu.uci.ics.hyracks.dataflow.std.file.FrameFileWriterOperatorDescr

iptor"

out-arity: 0

type: "operator"

}

{

id: "616ebe36-317f-466e-8677-ea2db022e3dd"

in-arity: 2

java-class:

"edu.uci.ics.hyracks.dataflow.std.join.InMemoryHashJoinOperatorDesc

riptor"

out-arity: 1

type: "operator"

}

{

id: "c5f3312e-e9c7-49d2-8d01-f3a6a4d0eb37"

in-arity: 0

java-class:

"edu.uci.ics.hyracks.dataflow.std.file.FileScanOperatorDescriptor"

out-arity: 1

type: "operator"

}

]

type: "job"

}

}

80

B. JSONArray: “Job Plan” of the “tpch” Example Job

{result: {

id: "f196e2ba-a236-41c3-a2ee-3881157b0fd9"

flags: "[PROFILE_RUNTIME]"

activities: [

{

id: "ANID:8494ccfe-f5c2-4e25-9d71-2dad14daf01e"

owner-id: "ODID:6ed0a038-2558-4fed-ae40-f602877bea02"

java-class: "edu.uci.ics.hyracks.dataflow.std.file.FileScanOperatorDescriptor"

outputs: [

{

connector-id: "CDID:4813880e-89cb-410f-bc60-96b10a8b6d21"

type: "activity-output"

connector-java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConnectorDescriptor"

output-port: 0

}

]

type: "activity"

}

{

id: "ANID:637582c0-3d09-41e9-95ce-4d6038f1d562"

owner-id: "ODID:73c64eb3-079e-46e2-bc97-19bee4089832"

inputs: [

{

input-port: 0

connector: {

id: "3fa6003f-060a-4fc6-8da6-2468ff838699"

java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConnectorDescriptor"

type: "connector"

}

connector-id: "CDID:3fa6003f-060a-4fc6-8da6-2468ff838699"

type: "activity-input"

connector-java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConnectorDescriptor"

}

]

java-class: "edu.uci.ics.hyracks.dataflow.std.group.HashGroupOperatorDescriptor$HashBuildActivity"

type: "activity"

}

{

id: "ANID:061df810-5121-4c6c-86e7-fad70146541a"

owner-id: "ODID:616ebe36-317f-466e-8677-ea2db022e3dd"

inputs: [

{

input-port: 0

connector: {

id: "4813880e-89cb-410f-bc60-96b10a8b6d21"

java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConnectorDescriptor"

type: "connector"

}

connector-id: "CDID:4813880e-89cb-410f-bc60-96b10a8b6d21"

type: "activity-input"

connector-java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConnectorDescriptor"

}

]

java-class:

"edu.uci.ics.hyracks.dataflow.std.join.InMemoryHashJoinOperatorDescriptor$HashBuildActivityNode"

type: "activity"

}

{

id: "ANID:41bcb50f-0891-4e68-8e57-4511e402dbee"

owner-id: "ODID:c5f3312e-e9c7-49d2-8d01-f3a6a4d0eb37"

java-class: "edu.uci.ics.hyracks.dataflow.std.file.FileScanOperatorDescriptor"

outputs: [

-

{

connector-id: "CDID:05903646-df96-4165-bdc1-07ed48eb988b"

type: "activity-output"

connector-java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConnectorDescriptor"

output-port: 0

}]

type: "activity"

}

(Continue on the next page)

81

{

id: "ANID:ab78cb09-a1b6-440f-aa92-9ed64064cbf9"

owner-id: "ODID:616ebe36-317f-466e-8677-ea2db022e3dd"

inputs: [{

nput-port: 0

connector: {

id: "05903646-df96-4165-bdc1-07ed48eb988b"

java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConnectorDescriptor"

type: "connector"

}

connector-id: "CDID:05903646-df96-4165-bdc1-07ed48eb988b"

type: "activity-input"

connector-java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConnectorDescriptor"

}]

java-class:

"edu.uci.ics.hyracks.dataflow.std.join.InMemoryHashJoinOperatorDescriptor$HashProbeActivityNode"

outputs: [

{

connector-id: "CDID:3fa6003f-060a-4fc6-8da6-2468ff838699"

type: "activity-output"

connector-java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConnectorDescriptor"

output-port: 0

}

]

type: "activity"

depends-on: [

"ANID:061df810-5121-4c6c-86e7-fad70146541a"

]}

{

id: "ANID:c21d2a96-8d19-41fc-a1e3-4430adeed1dd"

owner-id: "ODID:59260ba1-8777-4f58-9710-a3db96b1788d"

inputs: [

{

input-port: 0

connector: {

id: "a08f8b12-f793-4348-8986-d671afd2691b"

java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.OneToOneConnectorDescriptor"

type: "connector"

}

connector-id: "CDID:a08f8b12-f793-4348-8986-d671afd2691b"

type: "activity-input"

connector-java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.OneToOneConnectorDescriptor"

}

]

java-class:

"edu.uci.ics.hyracks.dataflow.std.file.FrameFileWriterOperatorDescriptor"

type: "activity"

}

{

id: "ANID:a0da67cd-e36d-433c-803f-cc70f1e86e96"

owner-id: "ODID:73c64eb3-079e-46e2-bc97-19bee4089832"

java-class:

"edu.uci.ics.hyracks.dataflow.std.group.HashGroupOperatorDescriptor$OutputActivity"

outputs: [

{

connector-id: "CDID:a08f8b12-f793-4348-8986-d671afd2691b"

type: "activity-output"

connector-java-class:

"edu.uci.ics.hyracks.dataflow.std.connectors.OneToOneConnectorDescriptor"

output-port: 0

}

]

type: "activity"

-

depends-on: [

"ANID:637582c0-3d09-41e9-95ce-4d6038f1d562"

]

}

]

type: "plan"

}

}

82

C. DOT Language Script: “Job Specification” of the “tpch” Example Job

digraph hyracks_job {

size = "20,20"; rankdir = "TB"; // initialize the size of the node box

//initialize the node of the HAN graph

"fbb74415-c6ea-404a-9788-5affab4e4fd5" [label="FrameFileWriter"];

"8abbfff4-8b39-4469-9551-7ccf3ce27cef" [label="FileScan"];

"afe0ba86-efc9-4249-8f6b-2b1e5229c000" [label="FileScan”];

"7ad96b95-2c02-47e6-833e-3d454263be5b" [label="HashGroup"];

"da2c467a-ed31-4166-b9bb-0a9bcfcae0e5" [label="InMemoryHashJoin"];

//give the order of the every two connected nodes.

"8abbfff4-8b39-4469-9551-7ccf3ce27cef"->"da2c467a-ed31-4166-b9bb-0a9bcfcae0e5" [label="M:N Hash"];

"afe0ba86-efc9-4249-8f6b-2b1e5229c000"->"da2c467a-ed31-4166-b9bb-0a9bcfcae0e5" [label="M:N Hash"];

"da2c467a-ed31-4166-b9bb-0a9bcfcae0e5"->"7ad96b95-2c02-47e6-833e-3d454263be5b" [label="M:N Hash"];

"7ad96b95-2c02-47e6-833e-3d454263be5b"->"fbb74415-c6ea-404a-9788-5affab4e4fd5" [label="1:1"];

}

83

D. DOT Language Script: “Job Plan” of the “tpch” Example Job

digraph hyracks_job {

//initialize the size of the node box

size = "20,20";rankdir = "TB";

//initialize the node of the HAN graph(JobPlan)

"ANID:22c232fb-b785-4839-aa19-de4c1952c115"[id="ANID:22c232fb-b785-4839-aa19-de4c1952c115"
label="HashGroup\n(OutputActivity)"
URL="javascript:showNC('HashGroup\n(OutputActivity)',2,'[nc1,nc2]')"];

"ANID:f37cdbb0-2947-4a8b-a5b7-aa888b9db4ad"[id="ANID:f37cdbb0-2947-4a8b-a5b7-aa888b9db4ad"
label="InMemoryHashJoin\n(HashBuildActivityNode)"
URL="javascript:showNC('InMemoryHashJoin\n(HashBuildActivityNode)',1,'[nc1]')"];

"ANID:7f72f554-89a6-4525-a63a-68e84af65284" [id="ANID:7f72f554-89a6-4525-a63a-68e84af65284"
label="FileScan" URL="javascript:showNC('FileScan',2,'[nc1,nc2]')"];

"ANID:e9f4aebd-b04b-4eb6-8aef-f8699e557e1d" [id="ANID:e9f4aebd-b04b-4eb6-8aef-f8699e557e1d"
label="FileScan"URL="javascript:showNC('FileScan',2,'[nc1,nc2]')"];

"ANID:e95df9e1-a8db-46e3-8609-d84a2cad587a" [id="ANID:e95df9e1-a8db-46e3-8609-d84a2cad587a"
label="InMemoryHashJoin\n(HashProbeActivityNode)"
URL="javascript:showNC('InMemoryHashJoin\n(HashProbeActivityNode)',1,'[nc1]')"];

"ANID:2df02bc7-d6ef-4d61-aa5f-2ae45f1ed6e2" [id="ANID:2df02bc7-d6ef-4d61-aa5f-2ae45f1ed6e2"
label="HashGroup\n(HashBuildActivity)"
URL="javascript:showNC('HashGroup\n(HashBuildActivity)',2,'[nc1,nc2]')"];

"ANID:218446b2-ebea-415e-b279-f565db1fabd0" [id="ANID:218446b2-ebea-415e-b279-f565db1fabd0"
label="FrameFileWriter" URL="javascript:showNC('FrameFileWriter',2,'[nc1,nc2]')"];

//Group a set of HANs into different stage s and also give the order of nodes in each stage.

subgraph cluster_0 {

 id="sid_38b8589bd0584564951d53c8eae0873c" style="filled,rounded";

node [style=filled, fillcolor=white]; color=lightblue;

 [

 "ANID:e9f4aebd-b04b-4eb6-8aef-f8699e557e1d" -> "ANID:f37cdbb0-2947-4a8b-a5b7-
aa888b9db4ad" [label="M:N Hash"
 URL="javascript:showConnector('http://vanilla.ics.uci.edu:2099/profile/a965fe5a-ba0b-4a01-
a13d-1b4dcc57adc1/0/0f641b5b-1624-4e59-8ff4-ad1e2bdd0e9a', 'M:N Hash')",];

]

 }

(Continue on the next page)

84

subgraph cluster_1 {

id="sid_0689036c64124484a024c535e29d993a" style="filled,rounded";

node [style=filled, fillcolor=white]; color=lightblue;

 [

 "ANID:22c232fb-b785-4839-aa19-de4c1952c115" -> "ANID:218446b2-ebea-415e-b279-
f565db1fabd0" [label="1:1"
 URL="javascript:showConnector('http://vanilla.ics.uci.edu:2099/profile/a965fe5a-ba0b-
4a01-a13d-1b4dcc57adc1/0/7f0c5be7-cb19- 4bc2-90e5-30b436272826', '1:1')",];

]

}

subgraph cluster_2 {

id="sid_37ceb645c042480b8a30c6b425f396ea" style="filled,rounded";

node [style=filled, fillcolor=white]; color=lightblue;

 [

 "ANID:7f72f554-89a6-4525-a63a-68e84af65284" -> "ANID:e95df9e1-a8db-46e3-8609-
d84a2cad587a" [label="M:N Hash"
 URL="javascript:showConnector('http://vanilla.ics.uci.edu:2099/profile/a965fe5a-ba0b-
4a01-a13d-1b4dcc57adc1/0/af0852fc-4123- 4b61-9723-a0d645361230', 'M:N Hash')",];,

 "ANID:e95df9e1-a8db-46e3-8609-d84a2cad587a" ->"ANID:2df02bc7-d6ef-4d61-aa5f-
2ae45f1ed6e2" [label="M:N Hash"
 URL="javascript:showConnector('http://vanilla.ics.uci.edu:2099/profile/a965fe5a-ba0b-
4a01-a13d-1b4dcc57adc1/0/50917f45-f3c2- 47ba-8e15-a4bec7556be8', 'M:N Hash')",];

]

 }

//use the blocking edges to connect the subgraphs together

"ANID:2df02bc7-d6ef-4d61-aa5f-2ae45f1ed6e2" -> "ANID:22c232fb-b785-4839-aa19-de4c1952c115"
[style=dotted ,arrowhead=vee, arrowsize=2,color=red];

"ANID:f37cdbb0-2947-4a8b-a5b7-aa888b9db4ad"-> "ANID:e95df9e1-a8db-46e3-8609-
d84a2cad587a"[style=dotted,arrowhead=vee,arrowsize=2,color=red];

}

85

E. Summary of the URL-Requests

URL-Request Path Usage Console Page/Feature

/state/jobs
Get list of Hyracks jobs that have been submitted to the

Hyracks cluster
Job Browser/Job List

/state/jobs/<job-id>/spec Get for a particular Hyracks job’s specification Job Profile/HOD graph

/state/jobs/<job-id>/plan
Get for a particular Hyracks job’s plan (activity node

graph)
Job Profile/HAN graph

/state/jobs/<job-

id>/<attempts>/stage
Get progress of a Hyracks job in stage-by-stage basis Job Profile/HAN graph

/state/jobs/<job-

id>/<attempts>/profile
Get profile counter of a particular Hyracks job Job Profile/HAN graph

/profile/<job-

id>/<attempts>/<connector-

id>/(number)

Get dataflow matrix image of a particular Hyracks

connector in a specific Hyracks job. Optional “number” at

the end of the URL is used when users want to show the

actual number data frames moving at the Hyracks

connector.

Job Profile/HAN graph

/console/cluster Get Cluster Controller Configuration
Cluster Browser/CC

configuration

/console/nodes/<node-

id>/config
Get Node Controller Configuration

NC Profile/NC

configuration

/console/nodes
Get list of all nodes associated with the interested Cluster

Controller

Cluster

Browser/Registered NC

/console/nodes/<node-

id>/jobs
Get list of Hyracks jobs on a given node

NC Profile/NC Job

Summary

/console/nodes/<node-

id>/resources/<type>/

(<step>)/(<start-

time>)/(<end-time>)

Get physical resource consumption at a given Node

Controller

NC Profile/Machine

Resource Consumption

Note: every URL-Request path starts with “http://<cc-ip-address>:<http-port>”

