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ABSTRACT OF THE DISSERTATION

Query Processing and Cardinality Estimation in Modern Database Systems

by

Ildar Absalyamov

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2018

Dr. Vassilis J. Tsotras, Chairperson

The past decade has witnessed the proliferation of new ways to ingest, store, index, and

query data. This explosion was driven by the needs of the modern applications, including social

media, popular web services, and IoT sensors, characterized by high volumes and a rapid rate of

incoming data. To cope with such high arrival rates, modern systems rely on the Log-Structured

Merge Tree (LSM) storage model that uses sequential I/O instead of in-place updates. In addition

to handling incoming data, LSM-based systems should provide useful analytics for their users, which

in turn requires accurate statistics.

The first contribution of this thesis is developing a lightweight approach to collect and

maintain concise statistical representations of the data in LSM-based systems so that it can be later

used to drive cost-based optimizer decisions. In particular, we consider two problems, collecting

statistics on indexed columns (which orders the stream of records based on the index key), as

well as on non-indexed (unordered) columns. For each case, appropriate statistical summaries are

considered so that the overall overhead on the system’s critical path remains low, thus not affecting

the ingestion process.

Recent hardware trends such as growing main memory capacity, stagnating CPU speeds,

and increasing usage of parallel architectures have also influenced the design of data processing sys-

tems. These advances in hardware allow analyzing large datasets entirely in memory, which requires

vii



specialized algorithms to process memory-resident data. Apart from the algorithms implemented on

traditional CPU architectures, implementations leveraging fine-grained hardware multithreading on

FPGAs have been recently proposed. However, up to this moment, there has been a lack of studies

directly comparing the performance of these two approaches.

The second part of the thesis is devoted to a comparative study of common analytical

operations (joins, aggregations, selections) for in-memory workloads using both multicore CPU and

hardware multithreading approaches. We present a thorough experimental evaluation and show

that implementations that use hardware multithreading outperform state-of-the-art CPU-based al-

gorithms in terms of raw throughput in many cases while achieving much better memory bandwidth

utilization.
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Chapter 1

Introduction & Motivation

The sheer number of data sources producing data at ever-increasing volumes creates an

unprecedented challenge for modern analytical data-processing systems. The problem is exacerbated

by the high rate at which producers generate new records. As a result database systems designed for

such workloads must be able to ingest large amounts of rapidly incoming data while still allowing

users to run complex analytical queries on top of this data. However, traditional database storage

uses in-place updating, which implies random I/Os, and thus cannot cope with the high ingestion

rates required in this environment. A popular design that has gained popularity in recent years

addresses this issue by using log-structured merge trees (LSM-trees) [88] as a storage backend. The

main idea of the LSM-based storage is to substitute slow in-place updates with sequential writes. For

example, instead of performing a random I/O to find and delete a record, a deletion is represented

as appending a special anti-matter (tombstone) record that contains information about the deleted

entry. Similarly, a record update is not performed in place; rather, it is implemented as an insertion

of the updated version of the record. While this allows modifications to be handled as sequential

writes, it complicates query processing.

In the LSM model ingested records are first accumulated into an in-memory component,

amortizing the cost of a single insert. Whenever the memory buffer fills up, this component gets

1



persisted (flushed) to disk sequentially and becomes an immutable disk component. For a contin-

uous ingestion workload, the number of disk components will keep growing, which will eventually

affect the query latency. Thus, LSM-based systems also periodically trigger a merge operation

that consolidates multiple components (based on some merge policy) into a single file. During this

merge, the system also reconciles deleted and updated entries, eliminating any matching anti-matter

records.

Within this environment, we still need to support queries efficiently. Numerous research

works have shown that the quality of the execution plan plays a crucial role in decreasing the

total execution time for analytical query processing. A query optimizer estimates the cardinality

of intermediate results and feeds them to a cost model so as to pick a plan with a smaller running

time. Recent research [79] showed that producing an accurate cardinality estimate provides more

substantial benefits in comparison to fine-tuning the optimizer’s cost model. However, the way

to obtain such statistics has largely remained the same since the early days of relational database

systems [99] and has not taken into consideration the peculiarities of an LSM-based storage. The

first part of this thesis is thus inspired by the following question:

How can accurate statistics be collected efficiently in modern database systems that use
the LSM storage model?

Motivated by this question, in Chapter 3 we propose a lightweight statistics-collection

framework that exploits the properties of LSM storage. Our approach is designed to piggyback on

major events (flush, merge and bulkload) in the LSM lifecycle. This allows us to easily create initial

statistics and keep them in sync with rapidly changing data while minimizing the overhead to the

existing system. We first concentrate on collecting statistics for indexed attributes, utilizing the

sorted order provided by the LSM tree data structure during flush and merge operations. We have

implemented and adapted well-known algorithms to produce various types of statistical synopses,

including equi-width histograms [76], equi-height histograms [89], and wavelets [83]. We performed

an in-depth empirical evaluation that considers both the cardinality estimation accuracy and runtime

2



overheads of collecting and using statistics. The experiments were conducted by prototyping our

approach on top of Apache AsterixDB [16].

In Chapter 4, we lift the prior restriction of computing synopses for indexed attributes

through the use of sketch-based algorithms [44], which sacrifice the estimation accuracy by providing

probabilistic guarantees on computed statistics. Moreover, use of the Greenwald-Khanna sketch

[67] enables us to maintain statistics on multiple attributes of the incoming data. We measure the

overhead of computing such statistics on unordered fields and study the tradeoff between the number

of such fields and the accuracy of the computed synopses. We compare the synopsis produced by

the approximate sketch-based method to the exact indexed-based algorithm and show that the

Greenwald-Khanna sketch provides comparable accuracy for range query cardinality estimates.

Another important factor driving changes in database systems over the last decade is

the rapid drop of main memory prices. The amount of memory available on a typical server has

increased significantly, thus creating a niche for new systems storing data entirely in memory [52].

In this setting, fetching records from secondary storage is no longer a predominant cost in the query

execution pipeline. Instead, main memory databases heavily rely on architectural properties of

modern multicore CPUs to process the given query at bare metal speed. However, at the same time

memory bandwidth has not been growing fast enough to match the increased memory capacity. This

growing gap between the memory bandwidth and the processing capabilities of the CPU is known as

the memory wall. Multicore architectures have traditionally addressed this problem by introducing

large cache hierarchies that rely on data locality (spatial and/or temporal). An alternative approach

to mask the memory latency is to use multithreading at the hardware level [55]. Multicore CPUs are

leveraging hardware multithreading, but they support relatively small (dozens) numbers of threads,

whereas custom architectures (ASICs or FPGAs) have a much smaller thread context and thus can

launch thousands of outstanding threads, effectively masking long memory latency.

Given the variety of operators used in relational query execution, it is an important open

problem to experimentally compare the best CPU multicore implementations of such operators

3



with their FPGA multithreading counterparts and identify which approach should be used and

when. Such a comparison can be thought of as a first step towards the goal of building a next

generation hybrid database system that relies on a combination of CPUs, GPUs, and FPGAs.

In Chapter 5, we implement state-of-the-art hash join, hash group-by-aggregation, and selection

algorithms, tailored to exploit features of modern CPU processors, such as large caches (data, TLB),

multiple cores, and SIMD instructions. We compare these CPU-based methods to their hardware

multithreaded implementation prototyped on FPGAs. For all implementations, we study various

aspects of performance, including throughput, scalability, memory bandwidth usage, and power

efficiency.

4



Chapter 2

Background

This chapter first gives a short overview of the Log-Structured storage model, which serves

as a foundation of our statistics-collection methods described in Chapters 3 and 4. Then we provide

a brief explanation of the Haar wavelet decomposition algorithm, used to maintain statistics over

indexed attributes (Chapter 3). Finally, we describe the Greenwald-Khanna [67] approximate quan-

tile algorithm, which creates a basis for our approach to collecting statistics on unordered fields in

Chapter 4.

2.1 The LSM Storage Model

The traditional way of organizing storage and indexing subsystems in relational databases

has involved performing in-place updates of a particular disk-resident data structure (i.e., B-Tree,

R-Tree or heap file). Thus, modifications result in performing random writes to the disk. Techniques

like pinning disk pages in the buffer cache were introduced to alleviate the problem, but performing

structural updates in tree-like index structures still imposed significant per-update write overhead.

Modern data-intensive workloads require data management systems to be able to ingest

significant numbers of records/second while providing the ability to run analytical queries on them.
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Figure 2.1: Typical operations in the LSM-based storage model. (a) State prior to flush in which
there already exists a disk component DC1 with some record 〈A〉 and an in-memory component
MC1 with the result of deleting this record — an anti-matter record 〈Ā〉. (b) LSM components
after a flush operation has persisted the in-memory component and created a new disk component
DC2. (c) Result of a merge operation that combined the contents of components DC1 and DC2.
Resulting component DC3 does not contain any 〈A〉 records because they were reconciled during
the merge.

To achieve a high ingestion rate, they perform operations in a log-structured way to avoid the

prohibitive cost of random I/O and substitute it with sequential writes.

Instead of periodically performing an I/O operation for each input entry, LSM-based sys-

tems operate on batches of records called components. At each point in time, there exists a single

in-memory component, which accumulates the records into a current batch. Because it resides in

main memory, its contents are inherently mutable, i.e. all modification operations are performed

within this component in-place. To allow fast modifications, the in-memory component keeps indi-

vidual records in an order-preserving data structure (e.g. B-Tree or Skip List). Once its size crosses

a certain threshold, the contents of an in-memory component are flushed to disk, creating a new

disk component, while the in-memory component’s content is reset. To further leverage sequential

I/O, contents of disk components are immutable, i.e. changes to records which have already made

their way to disk should only happen within the in-memory component, creating a new version of

the record in the case of an update, or a special anti-matter record in the case of a delete.

Relying on a log-structured model to perform writes, however, increases the complexity

of a read operation. In order to lookup a single record, an LSM-based system needs to read the
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contents of all disk components, as well as current in-memory components, perform a binary search

in each component, and possibly reconcile anti-matter entries along the way. It is obvious that

a large number of disk components will quickly deteriorate the read performance, so the database

schedules a periodic merge operation that combines several disk components, creating a single merged

component. The frequency of merges and the number of components deemed to be combined is

determined by the merge policy. Figure 2.1 illustrates the typical operations of the LSM-based

storage model.

Because the LSM-framework is usually implemented on top of some order-preserving index

data structure, all events of the LSM lifecycle operate on streams of records sorted by a particular

key (primary or secondary). In the case of the LSM-flush operation, the sorted order is directly

imposed by the index structure of the in-memory component; for the LSM-merge operation, the

order is obtained by merging pre-sorted input components. This allows defining both LSM-events as

an index bulkloading operation, i.e., creating a new index from the pre-sorted data, and considering

bulkload as another event in the LSM-ified index lifecycle.

2.2 Haar Wavelet Decomposition

Wavelets are a mathematical tool for multi-resolution analysis based on hierarchical func-

tion decomposition. They are heavily used for compression in image processing, signal analysis, and

other domains. The process of converting an original function signal into the wavelet domain, called

wavelet decomposition, is a transformation which “breaks up” the original data into a coarse-grained

base function and a number of detail coefficients that add more fine-level details to the high-level

representation. Wavelet decomposition provides a function-agnostic method for the space-efficient

representation of an underlying signal.

As a wavelet basis we have chosen the Haar basis because it provides a simple and efficient

decomposition algorithm. Moreover, Haar wavelets provide a natural way of compressing the initial
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Figure 2.2: Structure of error tree. Nodes on the lowest level l0 are comprised of the elements of

prefix sum vector F+. Other nodes from the upper levels of the binary tree have the structure
x
y

where x is an average coefficient and y is a detail coefficient of the wavelet transformation on the
appropriate decomposition level.

signal (a process called thresholding). Finally, because Haar decomposition is a linear transformation,

it provides an easy way of combining different synopses once they are converted into the wavelet

domain by summing up appropriate wavelet coefficients.

Consider the problem of estimating the frequency of the records in some dataset R =

(r1, ..., rn). Suppose that each record’s key is defined on some bounded domain D = 1, ...,M, where

M is some power of 2. The frequency of each domain key Di is defined as the number of records

with an ID Di:

fi = |rj |,∀j ∈ {1, ..., n},∃i ∈ {1, ...,M}, where rj .ID = Di.

All of these frequencies define a frequency vector F = f1, ..., fM. After that, we apply the Haar

decomposition algorithm to convert the frequency vector into the wavelet domain. Once the decom-

position is computed, a cardinality estimate for a particular key range can be obtained by issuing a

range-sum query over the wavelet.

To illustrate the Discrete Haar wavelet decomposition, consider a simple example. Suppose

we have a small dataset whose domain D has M = 8 values and the following frequency vector

F = [1 0 1 0 0 2 1 4]. As a first preprocessing step we generate a prefix sum of the frequency vector
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F+ = [1 1 2 2 2 4 5 9]. This step is an optimization to convert the original frequency function

into a dense signal which is known to be approximated more accurately by wavelets [83]. The

Haar decomposition algorithm involves a recursive process of pairwise averaging and calculating

the average differences of the input vector items, which produces average coefficients and detail

coefficients respectively. Given two inputs A and B, the average and the detail coefficients are

calculated as B+A
2 and B−A

2 respectively. The recursive nature of Haar decomposition algorithm

can be depicted as a binary tree-like data structure called the error tree [83] illustrated in Figure

2.2. Each level in that binary tree represents a recursive invocation of the algorithm. For a given

example, on the level l1 averaging produces a vector [ 1+1
2

2+2
2

4+2
2

9+5
2 ] = [1 2 3 7]. To recover the

information that was lost during averaging on the level l1, we compute a detail coefficients vector

[ 1−1
2

2−2
2

4−2
2

9−5
2 ] = [0 0 1 2]. This process is repeated recursively for all levels 1, ..., logM = 3

such that the average obtained on the level li becomes an input vector of the next level li+1. The

final wavelet coefficients consist of the main average and all detail coefficients produced during the

decomposition process: [3.25 1.75 0.5 2 0 0 1 2] sorted by their level in the decomposition.

Note that the decomposition process is lossless, i.e., the number of values in the original

signal is the same as the number of final coefficients. To subsequently compress the wavelet, we first

normalize the original signal by dividing the coefficients by
√

2logM−l, where l is the coefficient’s

level. Thus, coefficients on lower resolution levels are considered more important than the similar

coefficients on higher levels. Given a predefined budget K, we pick the top-K coefficients with the

greatest normalized absolute values and create a wavelet synopsis, which has a provably optimal

error under the L2-metric [105].

To reconstruct the original data back from the wavelet domain, we reverse the decomposi-

tion process and consider all non-significant coefficients to be 0. The intuition behind this approach

to compression is that many of the detail coefficients by themselves are equal or close to 0, so

removing them does not introduce significant changes to the reconstructed signal.
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The wavelet decomposition algorithm extends naturally to the multi-dimensional case.

Moreover, unlike histogram-based methods, it does not suffer from the “curse of dimensionality”[113].

2.3 Greenwald-Khanna Approximate Quantile Algorithm

The problem of ordered statistics has been attracting attention ever since the seminal work

on linear selection [28]. A generalization of the ordered statistics problem for some multiset V

consisting of n elements is a φ-quantile that can be defined as an element with rank (i.e. position

in a sorted multiset V ′) r = bφnc for some 0 < φ < 1. Note that quantiles effectively describe

a CDF of a distribution, and a set of φi-quantiles, where φi = i
k for i = 1, k, represent borders

of the equi-height histogram with k buckets. An ε-approximate quantile must satisfy the following

condition for some 0 < ε < 1:

b(φ− ε)nc ≤ r ≤ b(φ+ ε)nc. (2.1)

Greenwald and Khanna [67] proposed the current best-known deterministic comparison-

based algorithm, which can compute the ε-approximate quantile in O(log 1
ε + log(log(εn))) time per

inserted element. The gist of the algorithm is to keep a bounded sample S of entries sorted by

their natural order and use them to answer φ-quantile queries. By bounding the sample’s size to

O( 1
ε log(εn)), the algorithm achieves the aforementioned logarithmic update time.

The sample S consists of triplets 〈vi, gi,∆i〉, such that vi ≤ vj for i < j where vi, vj ∈ V,

while gi and ∆i satisfy the following conditions:

rmin(vi) =
∑
j≤i

gj (2.2)

rmax(vi) =
∑
j≤i

gj + ∆i (2.3)

gi + ∆i ≤ b2εnc (2.4)
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where rmin(vi) and rmax(vi) represent the minimum and maximum possible values for the rank of

the element vi.

By bounding r(vi) with Equations 2.2 and 2.3 and gi with Equation 2.4 we obtain an

ε-approximation of the exact rank r(vi). The answer for the φ-quantile query is an element vi−1

that satisfies
∑
j≤i

gj + ∆i > 1 + dφne + max(gk+∆k)
2 for the smallest possible i. Also, note that two

neighboring elements 〈vi, gi,∆i〉 and 〈vi+1, gi+1,∆i+1〉 from the sample S can be merged together

into 〈vi+1, gi + gi+1,∆i+1〉 without violating inequalities 2.2 and 2.3 if the following is satisfied (to

comply with 2.4):

gi + gi+1 + ∆i+1 ≤ b2εnc (2.5)

This is the key property we will use to bound the sample’s size.

In order to track entries that could be removed the original GK-paper proposes a complex

COMPRESS procedure. However, Wang et al. [116] presented a modified version (termed GKAdaptive)

that simplifies the algorithm while attaining similar performance (and even better in certain cases)

when compared to the original. To construct a sketch, the GKAdaptive algorithm keeps sample

entries in a sorted list S and allocates an auxiliary min-heapM which stores values gi+gi+1 +∆i+1

for each element in the sample. Upon inserting a single input entry vi into a sketch, the GKAdaptive

executes the following operations:

1. Perform a binary search in S and locate the successor entry 〈vj , gj ,∆j〉, i.e. an entry with

minimum j such that vi ≤ vj

2. If gj + ∆j ≤ b2εnc then update the successor entry to 〈vj , gj + 1,∆j〉 (this is equivalent to

inserting a new entry and merging it into successor right after)

3. Otherwise, insert the new triple 〈vi, 1, gj + ∆j − 1〉 into S

4. Insert the new value gj + ∆j + 1 into M
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5. Pick a top element from the min-heap M and check if it satisfies the inequality 2.5. If yes,

merge this element into its successor. If not, none of the entries in the sample can be merged,

so the sample size is increased.

Maintaining an additional min-heapM while performing an insert operation has the same

O(log|M|) = O(log|S|) complexity as maintaining original sample S.
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Chapter 3

Lightweight Statistics for Indexed

Attributes

3.1 Introduction

Despite the rapid growth in data volumes, the approaches to collecting statistics in database

systems have not significantly changed over the past decades. The common way to obtain data

synopses in most commercial DBMSs, as well as research prototypes, is to launch a background job

that will rescan all disk-resident datasets and produce appropriate data summaries. However, this

näıve approach has multiple drawbacks. Firstly, it suffers from the high I/O introduced by repeated

data scanning. This overhead is further exacerbated by the data volume in Big Data analytics

systems. Moreover, scheduling such heavy-weight bulk operations becomes a problem itself because

it could easily detract from the performance of currently executing user queries. This is especially

perceptible in the context of multi-tenant elastic cloud deployments, where such “noisy-neighbor”

interference might cause significant spikes in query latency.
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The problem of prohibitive I/O costs is often mitigated by sampling, which considers only

a portion of records from each disk page and skips some pages altogether. Once obtained, samples

can be used as a data summary on their own [59], or they can serve as inputs to regular synopsis-

building algorithms [37]. Nevertheless, the accuracy of sampling-based methods is bounded by the

fact that they do not see all the records and could miss important items that “fly under the radar”

for a given query predicate. Sophisticated stratified estimators have been proposed to overcome the

problem of biased sampling [69, 38], but they heavily depend on the ability to identify appropriate

strata in the whole dataset, which often relies on knowing the query workload profiles. Moreover in

LSM-based systems, collecting the sample is further exacerbated by the fact that physical records

in the sample might not represent the most recent version of a corresponding logical record. Despite

the considerable progress in calculating samples in partitioned distributed systems [57, 31] we are

not aware of algorithms which allow unbiased estimates to be obtained in the LSM setting where

deleted and inserted records can appear in any component.

Regardless of the use of sampling, data synopses produced by an offline statistics compu-

tation can pretty quickly grow out-of-date, especially for continuous ingestion workloads. An ideal

solution would require an incremental synopsis maintenance in combination with identifying which

records were updated since the last time statistics were collected. Unfortunately, such synopsis

maintenance algorithms inevitably introduce errors that, over time, lead to decreasing accuracy and

require periodically recalculating statistics from the scratch depending on some heuristic. Designing

a robust policy that specifies when such a recomputation should take place is on its own a difficult

problem [59].

In this chapter, we propose a lightweight approach to collecting statistics in data-intensive

systems that does not suffer from the aforementioned problems. Our solution is based on the LSM

storage model and avoids doing unnecessary I/O operations by computing synopses on-the-fly. The

nature of the LSM component lifecycle implies that at some point in time each record is an input to

some LSM-event (flush, merge). Because the data summary generation is bound to these events, our
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statistics collection algorithms observe all of the data items, in contrast to sampling-based methods.

Finally, in the LSM storage model, new data is periodically persisted by flushing contents of in-

memory components to the disk. This allows our synopsis-gathering algorithms to keep statistics

up-to-date with dynamically changing datasets. Furthermore, this piggybacking also eliminates the

need for a specific mechanism to identify newly updated records.

The proposed statistics collection framework operates on the data storage critical path;

hence building the data summary with a low runtime overhead is an essential property. This

would effectively eliminate synopses-collecting algorithms with high asymptotic complexity (like V-

optimal histograms [73]). Instead, in this chapter, we generate synopses only on indexed (primary

or secondary) attributes and hence use the sorted order provided by the indexes to devise efficient

synopsis-gathering algorithms. Calculating statistics for unsorted attributes is discussed in Chapter

4.

Since the statistics are generated for each LSM component individually, all component syn-

opses must be queried to obtain the overall cardinality estimate. For a large number of components,

this might incur significant query time overhead. An alternative is to combine individual synopses

into a single statistical summary that is kept in addition to the individual synopses. An incoming

query will be served by the merged synopsis; the merged synopsis is re-calculated from the individual

ones as new components are flushed or existing components are merged. This, however, requires the

synopsis data structure to be inherently mergeable. Synopsis mergeability is also critical in shared-

nothing setups where datasets are partitioned across distributed nodes in a cluster. Among the

implemented statistical synopses, equi-width histograms and wavelets support merging while equi-

height histograms do not. We show experimentally how the synopsis mergeability property directly

influences the trade-offs in accuracy, query time overhead, and space allocated to the synopses.

We prototyped and evaluated our design on Apache AsterixDB [7], an open source system

that uses LSM-based storage [16]. Currently, AsterixDB relies on a heuristic-based optimizer, so

15



introducing statistics into that system could be first step towards building a full-fledged cost-based

optimizer. Key contributions of this chapter can be summarized as:

• We propose a lightweight statistics collection approach that alleviates the high cost of building

synopses on disk-resident data by incorporating the statistics accumulation into the common

LSM-based database storage layer lifecycle events.

• We implement streaming algorithms for building equi-width and equi-height histograms and

introduce a streaming version of the prefix-sum wavelet decomposition algorithm.

• We prototype our solution on top of Apache AsterixDB, a fully open source Big Data manage-

ment system, and carefully assess the overheads introduced by the proposed framework, both

while collecting statistics during ingestion and when using them during query optimization.

• Through extensive experimental evaluation, we examine the accuracy of cardinality estimation

for different types of synopses, parameters, and workloads.

• We explore how synopsis mergeability influences the trade-offs between accuracy, query time

overhead, and space allocated for synopses.

The remainder of the chapter is structured as follows: Section 3.2 discusses related work

and emphasizes how our approach is different from earlier research. Section 3.3 outlines the design of

our statistics collection framework. Section 3.4 presents the experimental evaluation of the proposed

methods. Finally, Section 3.5 provides the conclusions.

3.2 Related Work

Determining query cardinality is a classic problem in relational database systems. The

seminal work on query optimization [99] describes how statistics can be used by the optimizer to

estimate predicate selectivity, which, in turn, allows an optimizer to estimate the total query car-

dinality and choose an appropriate execution plan. In contrast to the query optimization problem,
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where statistical synopses are only used as an auxiliary structure, approximate query processing

(AQP) systems [12, 95, 11] are using data summaries as a primary data source to provide approx-

imate answers to ad-hoc exploratory queries. Cormode et al. [44] thoroughly survey cardinality

estimation methods and their application to the problems of query optimization and approximate

query processing.

While calculating cardinality estimates, early systems made a number of assumptions (e.g.,

data uniformity, attribute independence) that were introduced to simplify the cost models. These

strong assumptions, however, often led to approximation errors. Ioannidis et al. [72] showed that

even slight estimation errors may lead to severe (several orders of magnitude) performance degra-

dation, thus emphasizing the importance of estimation accuracy.

Poosala et al. [93] studied various types of histograms and provided a taxonomy and

evaluation framework for different types of histogram-based synopses. They identified that the V-

optimal and MaxDiff histograms provide superior accuracy compared to canonical equi-width or

equi-height synopses. However, the increased accuracy comes at a price. The algorithms creating

these more specialized histograms either are based on dynamic programming (V-optimal), and hence

have increased time complexity or require multiple passes over the sorted data (MaxDiff), which can

not be achieved in a streaming environment.

Matias et al. [83] proposed the first work that used wavelet-based synopsis for query

cardinality estimation. Their approach relied on performing a wavelet decomposition over the in-

put dataset and choosing the most significant coefficients to form a wavelet synopsis. Wavelet-based

methods demonstrated substantial accuracy improvements while having other significant advantages

over histograms like alleviating the curse of dimensionality and allowing for synopsis mergeability.

Wavelets have been also successfully applied in dynamic synopsis maintenance [84], computing statis-

tics over data streams [45] and approximate query processing [34].

Arguably the most popular approach to AQP is to sample the input data. Sampling is very

robust and applies to a wide variety of queries. An approximate answer is obtained by applying a
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specifically designed estimator that evaluates the query over a sample and “scales up” the result in

an unbiased manner to return a final answer. The simplest way of producing a uniform sample is a

sequential scan, which has prohibitively large I/O. Alternatively one can pick only a subset of disk

pages and then perform page-level sampling within those. This design needs careful tuning between

keeping a sample uniform and the amount of random I/O required to produce it [37]. Gibbons et

al.[59] proposed a way to maintain a sample for a dynamically evolving (in time) dataset. However,

this mechanism requires allocating additional memory for a backing sample, which builds up memory

pressure on local nodes that must simultaneously perform memory-intensive processing. Brown and

Haas [31] introduced a sampling algorithm that can obtain samples in a partitioned environment,

whereas Gemulla et al. [57] generalized it to process streams with insertions and deletions. However,

both of these approaches consider the case when partitions contain records with non-overlapping

keys, which does not hold for systems based on the LSM storage abstraction. To the best of our

knowledge, there is no algorithm that solves the problem of producing unbiased samples in a setting

similar to the LSM storage.

Traditionally, databases rely on DBAs to manually launch a special RUN ANALYZE job

that collects statistical data summaries. This approach remains still popular in various Big Data

analytics systems, including Impala [25], HAWQ [35] and Hive [110]. Since these systems are target-

ing OLAP workloads, which tend to read all or a large part of the data, their statistics collection is

based on sequential scanning and producing histogram-based synopses. On the other hand, systems

that focus on a broader set of use cases tend to rely on sampling and choose uniform samples as a

statistical data summary [78, 33]. Some warehousing systems provide optimizations on top of their

regular statistics-gathering method, such as automatically triggering the recomputation of statistics

[8] or skipping recomputation if a non-significant number of records were modified [6]. To the best

of our knowledge, there are no systems that use the specific properties of the LSM storage to do any

kind of statistics computation.
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An alternative, self-tuning workload-based approach that does not involve I/O operations

to create a statistical summary has been followed by [10, 32, 104, 103]. These methods are based on

analyzing the result cardinality of a given query workload and building histograms that rely solely on

that feedback information. Histograms are consecutively refined as more queries are issued against

a particular range of the dataset. While this approach introduces a low-overhead way of computing

histograms, it heavily depends on the properties of the query workload and makes strong uniformity

assumptions about “unexplored” ranges of the dataset.

The idea of using indexes for creating statistical synopses was first introduced by Barbara

et al. [23] and is based on the observation that the upper levels of balanced indexes like B-Trees

produce a bucketization of the value domain, thus essentially creating a hierarchical equi-height

histogram. However, it was noted [18] that adopting an index for selectivity estimation would require

storing additional entries in the index nodes. From a software engineering perspective, decoupling

the synopsis data structure from the information stored in index pages allows statistics to be more

easily serialized and transported to a place where they can be consumed, which in a shared-nothing

cluster-based environment is often a remote machine.

To summarize, our distinction from the existing related work lies in the fact that we are

re-using the already-existing LSM data lifecycle to collect statistical summaries instead of building

a separate I/O-intensive statistics collection pipeline. This allows us to cut back on additional I/O

operations, yet without relying on a query workload as is typical in self-tuning approaches. However,

this design restricts us to using only linear-time synopsis-collecting algorithms. We implemented

histogram-based synopses and wavelets, but we chose not to use sampling-based summaries because

of the high memory costs associated with maintaining samples. Although our approach is based

on using indexes, we are not altering their data structures; we instead keep synopses separate to

mitigate the distributed workflow of collecting, storing, and consuming statistics.
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3.3 An LSM-based Statistics Collection Framework

We proceed with the design of the statistics collection framework. The main idea behind

this design is to compute statistical synopses on-the-fly, piggybacking on the events of the LSM-

framework. In our framework, statistics are always in sync with the underlying data because their

computation is an ongoing part of the storage lifecycle. While doing this we ignore the statistics

on the in-memory component because its size is relatively small with respect to an overall persisted

dataset. Eliminating the need for statistics recomputation also lifts the burden of determining

statistics staleness and creates an “always on” user experience.

In our prototype implementation, we adopted Apache AsterixDB since it uses the LSM

model for storing both its main records as well as secondary indexes [17]. Its LSM-framework is

created as a layer around the conventional implementations of various indexes, and it thus provides

a unified LSM-ified abstraction for all index types supported by the system (B-Tree, R-Tree, and

inverted indexes).

3.3.1 Local Statistics Collection

In order to achieve on-the-fly statistics-gathering, our approach should incur low overhead

during data ingestion. The time complexity of synopsis-building algorithms is often dominated by

sorting the records on attributes for which the statistics are to be computed. Given a tight latency

budget, we first restrict ourselves to only building synopses on primary keys (PK) or on secondary

keys (SK) of index components. Disk operations in the LSM-framework can be generalized by a

single bulkload() routine [17] that receives a stream of records R = r1, ..., rn ordered by 〈PK〉 in

case of primary index components, or pairs 〈SK,PK〉 for secondary index components. We define

our synopsis-computing algorithm as a function S(R) that computes a statistical summary of the

aforementioned stream of records. While algorithms that compute comparison-based synopses (i.e.

histograms) can operate on any totally ordered record stream, approaches based on hierarchical
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transformations (i.e. wavelets) require stream entries to be drawn from a fixed-size universe whose

size is a power of 2. To provide a common ground for various synopsis-building algorithms we define

the function S only over arguments of fixed-length integer numeric types (int8, int16, int32, and

int64) supported by the AsterixDB data model [16]. Note that any value from a fixed-length domain

could be padded with 0’s to the length of the nearest power of 2, while variable-length types, e.g.

strings, can leverage dictionary-encoding to reduce them to the former problem.

To validate our framework, in this chapter we concentrate on one-dimensional synopses,

thus calculating statistics only on B-Tree indexes with non-composite keys. However, all of the

synopses-constructing algorithms that we implement could be extended to multiple dimensions [117,

114]; we leave computing statistics on composite keys and spatial data for future work.

3.3.2 Streaming Synopsis-building Algorithms

In the context of this chapter we describe implementations of the following synopses:

• Equi-width histograms

• Equi-height (aka equi-depth) histograms

• Wavelets

The construction algorithms each produce a synopsis with a predefined number of elements (bucket-

s/coefficients) that is specified in the system’s configuration file. An individual synopsis element is

a single bucket, defined by its right border and the number of records that fell into that bucket, for

histograms; it is a normalized wavelet decomposition coefficient, defined by the index in the error

tree and its value, for the wavelet-based synopsis. In both cases a synopsis element occupies the

same amount of space, so we can directly and fairly compare the storage cost for different synopsis

types.

The algorithm for creating an equi-width histogram is straightforward: first, we calculate

the histogram invariant — bucket width, depending on the total bucket budget and domain size
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of the indexed field. After that buckets can be populated left-to-right as the records are received

from the sorted input stream. Building an equi-height histogram is done in a similar manner, but

with the exception that it is parameterized with the total number of records in the input stream

to calculate its invariant — bucket height. In case of the LSM-flush operations, the total number

can be easily obtained by keeping a counter for the records in the flushing component. For the

LSM-merge it is composed of the number of records in the merged components, while a bulkload

receives this information from a sort operator at the bottom of the execution plan.

Unlike the trivial algorithms that compute histogram-based synopses, producing a wavelet

requires performing a wavelet decomposition on the input data as it has been previously discussed in

Section 2.2. The classical version of this algorithm requires allocating large arrays containing partial

results of the decomposition process. This overhead is often neglected when wavelets are used for

image or signal processing, as the maximum resolution of the images or signals is on the order of

thousands. In contrast, when used for tuple frequency estimation for a large domain, e.g., 64-bit

wide integers, this approach will quickly run into space problems. On top of that, in cardinality

estimation the input frequency signal is often sparse, so the allocated arrays will largely consist of

zeros; this results in wasted CPU-cycles during the decomposition process. Both of these issues

presented an opportunity to optimize the computation of wavelet decomposition in our setting.

To avoid sparsity in the incoming data, instead of using “raw” tuple frequencies we compute

on-the-fly prefix sum of the input signal (i.e. convert it to a one-dimensional datacube [113]).

Our preliminary experiments showed that using a “dense” prefix sum as an input for the wavelet

decomposition significantly improves the accuracy of range-sum queries. A streaming version of the

discrete Haar wavelet decomposition algorithm that avoids excessive memory allocation was first

proposed by Gilbert et al. [63]. The algorithm uses a priority queue to store the B most significant

coefficients and an auxiliary array of logN straddling coefficients that are used to track the current

root-to-leaf path in the error tree. However, this algorithm is restricted to work only on “raw”
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Algorithm 1 Streaming wavelet decomposition algorithm

1: procedure waveletTransform(stream)
2: prefix ← 0, tuplePos ← 0, avgStack ← ∅, priorityQueue ← ∅
3: for all tuple in stream do
4: transformTuple(tuple.pos,prefix,tuple.value)
5: prefix ← prefix + tuple.value

6: if lastTuple.pos 6= domainEnd then transformTuple(domainEnd,prefix,0)

7: priorityQueue.add(avgStack.pop())
8: waveletSynopsis ← priorityQueue.items
9: return createBinaryPreOrder(waveletSynopsis)

10:

11: procedure transformTuple(tuplePos,prefix,tupleVal)
12: transPos ← getTransformPos(avgStack.peek())
13: calcDyadicIntervals(tuplePos,transPos,prefix)
14: pushToStack(newCoeff(tuplePos,0,prefix + tupleVal))

15:

16: function getTransformPos(coeff)
17: if coeff.level < 0 then return domainStart
18: else if coeff.level == 0 then return coeff.key + 1
19: else
20: return ((coeff.key + 1) << (coeff.level))− 1 << (maxLevel − 1)

21:

22: procedure calcDyadicIntervals(tuplePos, transPos, prefix)
23: while tuplePos != transPos do
24: topCoeff ← avgStack.peek()
25: dyadicCoeff ← newCoeff(topCoeff.key + 1,topCoeff.level,prefix)
26: while dyadicCoeff.covers(tuplePos) do
27: dyadicCoeff ← newCoeff(topCoeff.key * 2 + 1,dyadicCoeff.level - 1,prefix)

pushToStack(dyadicCoeff)
28: transPos ← getTransformPos(dyadicCoeff)

29:

30: procedure pushToStack(newCoeff)
31: while !avgStack.isEmpty && avgStack.peek().level == newCoeff.level do
32: topCoeff ← avgStack.pop()
33: newCoeff ← average(newCoeff,topCoeff)

34: avgStack.push(newCoeff)

35:

36: function average(coeff1,coeff2)
37: avgCoeff.key ← coeff1.key >> 1
38: avgCoeff.level← coeff1.level + 1
39: avgCoeff.value← (coeff1.value + coeff2.value)/2
40: detailCoeff ← avgCoeff
41: detailCoeff.value← (coeff1.value - coeff2.value)/2
42: priorityQueue.add(detailCoeff)
43: return avgCoeff
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data or requires an additional pass to precompute a prefix sum. Note that in the latter case a

significant overhead will be caused not only by scanning the input twice but by running the wavelet

decomposition for each entry in the prefix sum, which is proportional to the domain length.

Algorithm 1 builds on the approach by Gilbert et al. [63] and is a streaming version of

the discrete Haar wavelet decomposition algorithm that encodes a “dense” prefix sum signal. For

simplicity, the figure omits the coefficient normalization, but we perform all appropriate transforma-

tions in our implementation. The algorithm keeps a bounded priority queue but replaces a fixed-size

array of straddling coefficients with a stack to store the average coefficients on different levels. The

main loop of the algorithm repeatedly calls the transformTuple procedure for each tuple from

the incoming stream while simultaneously calculating a prefix sum of tuple values. After the whole

stream is consumed this procedure is called once more to compute the total average unless the last

processed tuple’s position is the end of the value domain (line 6). Because the main average is also

a valid wavelet coefficient, it is added to the priority queue along with all detail coefficients. Finally,

we create a wavelet synopsis based on all coefficients left in the priority queue and reorder them

using a binary tree pre-order that allows us to efficiently answer range-sum queries.

The gist of the streaming transform algorithm lies in its transformTuple procedure

(line 11) that performs an individual step of the transform. The procedure first calls the function

getTransfromPos to determine the point in the domain where the wavelet transform has currently

stopped. This position is determined by examining the top coefficient on the stack and saved into

transPos (line 12).

Due to the sparsity of the incoming signal, there can be a “gap” between the current

transform position transPos and the position of the processed tuple tuplePos. Figure 3.1 shows

an example of processing the gap between tuples x2 = 2 and x6 = 1 from the input sequence

X = [0 0 2 0 0 0 1 0]. Because we are performing a transform over the prefix sum of the signal (i.e.

X = [0 0 2 2 2 2 3 3]), this gap must be “filled” with appropriate wavelet coefficients so that the sum
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Figure 3.1: Example of the Algorithm 1 executing on the input X = [0 0 2 0 0 0 1 0]. The Figure
shows intermediate steps in filling the gap between tuples x2 = 2 and x6 = 1 (i.e. adding tuples
x3 = x4 = x5 = 2 and x6 = 3 to the prefix sum transform). (a) illustrates the state after entry
x3 = 2 is pushed onto the stack; (b) shows the result of averaging, triggered by pushing coefficient
onto the stack; (c) depicts the step after covering interval [x4;x5] with coefficient a6 = 2 and adding
final tuple x6 = 3.

of the subtree values under these coefficients adds up to a current prefix (i.e. x2 = 2). In the wavelet

transform each coefficient represents a dyadic interval (i.e., interval [k∗2(logD)−l; (k+1)∗2(logD)−l−1]

for k = 0, ..., 2l − 1) on some resolution level l = 0, ..., logD in the value domain, where D is the

length of the domain. The process of filling the gap is analogous to representing it as a series of

non-overlapping dyadic intervals where the beginning of one interval is the end of the previous. The

procedure calcDyadicIntervals computes this set of intervals in a greedy approach: it starts

with dyadicCoeff, which is a sibling (i.e., has the same level, but the coefficient’s key is incremented

by 1) of the current top of the avgStack. We repeatedly try a smaller dyadicCoeff until its support

interval stops covering the current tuple’s position tuplePos. This process is pictured in Figure 3.1c,

where a newly added sibling coefficient is converted to a6 = 2 (blue arrow). On each iteration of the
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loop (line 26) the sibling coefficient’s support interval is decreased by 2 while its value is multiplied

by 2. After that, the calculated dyadicCoeff is pushed onto the avgStack and the position transPos

is “advanced” according to the new coefficient on the top of the stack (line 28).

Note that the avgStack has an important property: its coefficients appear in strictly de-

scending order of their levels because they represent current averages on each level of the transform.

Pushing a new coefficient might violate this invariant. When this happens, the algorithm pops the

current top of the stack topCoeff, and calculates the average between topCoeff and a new coefficient

newCoeff. The process is repeated until the stack constraint is no longer violated, possibly triggering

a “domino” effect. In the end, the averaged coefficient is pushed onto the stack. Figures 3.1a and

3.1b depict exactly this situation, where pushing tuple x3 = 2 onto the stack leads to a series of

averaging operations (showed as red arrows) and puts the final average a2 = 1 on the top of the

avgStack. The average procedure calculates and returns an average between two input coefficients

while saving a detail coefficient in a priority queue. The input coefficients should always have the

same level and the calculated average coefficient’s level is the children’s level + 1.

After the gap is filled with dyadic intervals and transPos is equal to tuplePos, a new

coefficient is pushed onto the top of the avgStack (line 14 and Figure 3.1c). Because this new

coefficient represents a new item on the bottommost level of the error tree it has level = 0 and value

prefix+tupleVal.

3.3.3 Incorporating Anti-matter into Statistics

A distinctive characteristic of the LSM-based storage is that newer components can po-

tentially have anti-matter records that offset records in earlier immutable disk components. While

there is work on dynamically maintaining histogram and wavelet synopses [59, 84], we chose to

address this issue in a synopsis-agnostic way by keeping a separate and explicit “anti”-synopsis.

This data summary contains statistics on all anti-matter records that were encountered in the input
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stream. Moreover, this generic approach allows us to better handle the case when a distribution of

anti-matter records is significantly different from the distribution of regular entries.

When computing the total estimate E, we issue a query to both the regular synopsis S

and its “anti”-twin S, which give estimates ES and ES respectively. The total cardinality is then

reported as ES − ES .

3.3.4 Collecting Statistics in a Distributed Cluster

Zooming out from the local statistics computed at each node, we now consider the process

of obtaining statistics in a distributed cluster. AsterixDB uses the popular shared-nothing design

[48], where a master node coordinates job scheduling and orchestrates the execution of queries on a

set of slave nodes. Each LSM-framework event creates a local synopsis which is sent over the network

to the master node; the synopsis is persisted in the system catalog so that it can be used during

query optimization. In order to prevent rapid catalog growth, statistics from different nodes could be

merged together; however, as Section 3.3.5 discusses, not every synopsis type can be combined and,

moreover, there is an inherent trade-off between the space occupied by a synopsis and its accuracy.

3.3.5 Synopsis Mergeability

The proposed statistics-collection framework benefits greatly from piggybacking on LSM

lifecycle events, but this also creates an additional challenge when it comes to extracting estimates

from statistical synopses. In this design, each individual synopsis captures the statistics only for

the records in a particular flushed/merged/bulkloaded component. So, after some ingestion, the

algorithm ends up creating multiple synopses, each summarizing only a part of the overall data dis-

tribution. Moreover, this partialness is exacerbated by the fact that statistics-gathering is executed

in a distributed system where each node computes statistics only for the subset of data stored on a

particular machine. Thus, estimates from various synopses need to be combined together to get the
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overall result. Alternatively, querying each synopsis separately will create an overhead during query

optimization, which could take a significant portion of the total runtime for short queries.

Given these restrictions, it seems more desirable to combine separate statistics into a single

synopsis and use it later for cardinality estimation. However, not all types of synopses presented in

Section 3.3.2 can be easily merged. For example, equi-height histograms cannot be combined due

to their varying bucket borders. At the same time, wavelets allow merging but lose some accuracy

along the way due to the thresholding process. Finally, equi-width histograms can naturally be

combined.

Since statistics are saved in the system catalog, the amount of space occupied by the

metadata can become another factor that we should consider while building the statistics collecting

framework. Because of the approximate nature of creating synopses, there is an inherent data loss

associated with this process. If we consider two synopses A and B, in the general case an estimate

EA+EB calculated from treating these synopses separately has a greater accuracy than an estimate

EA⊕B obtained from a combined synopsis (where ⊕ designates a synopsis merge operation). Thus,

there is a natural trade-off between the total space allocated for statistics on a particular dataset and

the estimation accuracy. Since we are primarily focused on using statistics for query optimization,

where a slight mis-estimation could lead to significant errors [72], we choose to keep all statistics,

even mergeable ones, as separate entries in the catalog.

Maintaining synopses separately is a valid approach to manage statistics on the master

node when we want to obtain an aggregate cardinality estimate. However, when computing local

statistics during LSM-merges, we choose to create new synopses from the scratch directly on the

newly merged component, discarding earlier statistics altogether. This alleviates the propagation

of estimation errors during a long chain of merge operations, where a multiplier effect could be

triggered. In addition, this decision does not change any of our streaming algorithms, as the input

stream created by a merge cursor provides a unified sorted record stream abstraction over the

individual record streams of merged components. Lastly, this enables a universal method of creating
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statistics during the LSM-merge, given that not all synopsis types are inherently mergeable (e.g.,

equi-height histograms).

To amortize the cost of computing estimates during query optimization, we periodically

merge appropriate synopses (i.e., wavelets and equi-width histograms) and cache the produced syn-

opsis on the master node where the query rewriter can access them. Similar to the case when merging

components, we recompute a whole combined synopsis whenever a new piece of statistics is received

from a storage node rather than maintaining it incrementally, and we invalidate the previous merged

version at that time.

3.3.6 Estimating Query Cardinality

Once the synopses are computed, transferred over the network, and persisted in the catalog,

they are available to drive query optimizer decisions. Since our statistics-collection algorithm relies

on having a B-Tree index on a particular field f , we focus here on estimating the cardinality of range

queries which could potentially use this index, i.e. queries Q like:

SELECT * FROM T

WHERE T.f >= x AND T.f <= y

Cardinality information and computed estimates could be used in the following scenarios during the

query optimization process:

1. Skipping low selectivity index probes

2. Deciding whether to use an indexed nested-loop join

Algorithm 2 describes how we compute the total cardinality estimate for a given range

query. Procedure getSynopses retrieves all synopses for a particular query attribute from a system

catalog (line 11). The main loop of the algorithm uses these synopses to compute the total estimate

by combining estimates of each individual component. An estimate produced by a component’s

synopsis is simply added to the total estimate unless it comes from an anti-matter synopsis, in
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Algorithm 2 Algorithm for computing total cardinality estimate of a range query for a particular
attribute

1: function rangeQueryEstimate(queryAttribute,range)
2: total estimate← 0
3: if mergeable then
4: merged synopsis← retrieveFromCache()
5: merged anti synopsis← retrieveFromCache()
6: if isStale(merged synopsis) && isStale(merged anti synopsis) then
7: merged synopsis← NULL
8: merged anti synopsis← NULL
9: else

10: return getEstimate(merged synopsis,range) - getEsti-
mate(merged antimatter synopsis,range)

11: for all synopsis in getSynopses(queryAttribute) do
12: estimate← getEstimate(synopsis,range)
13: if synopsis is anti-matter then
14: estimate← estimate ∗ (−1)

15: total estimate← total estimate+ estimate
16: if mergeable then
17: if synopsis is anti-matter then
18: Merge(merged anti synopsis, synopsis)
19: else
20: Merge(merged synopsis, synopsis)

21: if mergeable then
22: Cache(merged synopsis)
23: Cache(merged anti synopsis)

24: return total estimate

which case it is subtracted. While calculating the total estimate, the algorithm also computes a

merged synopsis for equi-width histograms and wavelets (line 16). In the end, procedure Cache

saves a merged version of the synopsis on the master node. Queries being optimized can then

obtain it from the cache using procedure retrieveFromCache (line 4) and can thus skip fetching

statistics from the catalog. Procedure isStale compares timestamps of retrieved synopses (both

regular and anti-matter) and invalidates them if they are stale; otherwise it obtains the estimate

directly from the merged synopsis (line 10).

For histogram-based synopses, the getEstimate() trivially returns the sum of all buckets

that are located between borders [x; y] of the range. For partially overlapped buckets we use a

continuous-value assumption which expects that the values within a bucket have a uniform distri-

bution. For a wavelet-based synopsis, getEstimate() obtains a cardinality estimate for query Q by
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reconstructing the wavelet’s value at two border points: EQ = Wy −Wx. Due to construction the

wavelet signal at a given point p stores a prefix sum of the records’ frequencies rather than their raw

frequencies: Wp =
∑p
i=0 f(i), where f(i) is a raw tuple frequency. Reconstructing value Wp does

not require performing a full wavelet decomposition in reverse order, but instead it is computed by

a single root-to-leaf path traversal in the error tree corresponding to this wavelet.

3.4 Experimental Evaluation

In the following section, we experimentally evaluate the implementation of our statistics

framework from the perspectives of (i) the overhead caused by the statistics collection algorithms,

and (ii) the accuracy of the produced statistics.

3.4.1 Experimental Setup

We ran all experiments using a modified version of AsterixDB v0.9.1 on a small cluster

with 4+1 nodes (slaves+master), connected by a Gigabit Ethernet network, each running CentOS

Linux. Each machine is equipped with a dual-core AMD Opteron CPU, 8 GB of main memory,

and two 1 TB drives. All NCs have two data partitions to leverage I/O parallelism, thus creating a

cluster with 8 partitions.

The experimental pipeline consists of several disjoint stages:

• Preparatory data definition language (DDL) statements for creating types, datasets, and in-

dexes.

• Data ingestion, during which data is loaded into the system and statistics are collected as a

by-product of the LSM-based loading process.

• Querying the loaded data and measuring the accuracy of the resulting cardinality estimates.
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3.4.1.1 Datasets

To evaluate various data distributions we adopted the experimental framework proposed by

Poosala et al. [93]. This framework describes a synthetic data distribution used for query cardinality

evaluation in terms of two independent parameters:

• Frequency set: a set of numbers, where each defines the number of records having a particular

value of the secondary key.

• Value set: a set of numbers, where each defines the position of secondary keys in the key

domain (e.g., 32-bit wide integers). The domain distance between two neighboring values is

called the value set’s spread.

In our experimental evaluation we considered several synthetic spread distributions, which

in turn define value sets for our datasets:

• Uniform: All spreads have the same length, calculated from the total domain length and the

number of generated values.

• Zipf: Spreads have skewed lengths drawn from a Zipfian distribution with skew coefficient

α = 1 and ordered in a decreasing manner.

• ZipfIncreasing: Same as above, but ordered from shortest to largest spread.

• ZipfRandom: Same as above, but randomly ordered.

• CuspMin: Two-sided skewed distribution where the first half of the values follow a Zipf distri-

bution and the second half follow a Zipf Increasing distribution.

• CuspMax: Same as above, but the first half obeys a Zipf Increasing distribution, while the

second half follows a regular Zipf distribution.

The values for the frequency set were obtained similarly from the Uniform, Zipf and

ZipfRandom distributions.
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Note that since the contents of the frequency and value sets are independent, one could

consider all possible correlations between them, e.g., positive (the first record in the value set corre-

sponds to the first entry in the frequency set), negative, and random. However, given that some of

the value set distributions are inherently symmetric (Uniform, CuspMax, CuspMin) and some are a

mirror image of each other (Zipf and ZipfIncreasing) we did not find a significant difference between

positive and negative correlations. On the other hand, random correlation (irrespectively from value

set distribution) produces results similar to positively correlated ZipfRandom. Given the similarity

of these results, we present data only for the experiments involving positive correlation between the

frequency and value sets.

To evaluate the performance of data ingestion, we used a built-in feature of AsterixDB

called data feeds [68] that allowed us to create a continuous channel through which records are

inserted into the system. In the synthetic experiments, we emulated a Twitter Firehose-like external

data source to ingest generated records resembling real Tweets. We utilized two types of data feed

sources: a push-based feed that uses a TCP socket and a file feed with a pull-based model that

reads records from local files. The size of each generated record was around 1 KB, while each of

the generated datasets contained 50 million records. In addition to the regular tweet fields (such

as username, message, location, etc) each record was augmented with a special integer field with a

value that was drawn randomly from the synthetic distributions described above. To enable statistics

gathering for this field, we have defined a secondary B-Tree index on it.

Finally, in addition to synthetically generated data, we experimented with a real-life dataset

consisting of web server log entries collected during World Cup 1998 [19]. The dataset contains 1.35

billion preprocessed 20-byte records, each containing four 32-bit integer fields and four 8-bit byte

fields. After excluding fields where almost all the values are duplicates (i.e. fields method and type),

we created a secondary index for each of the remaining fields.
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3.4.1.2 Query Workload

To evaluate the accuracy of the proposed framework we experimented with several types

of range queries:

• Fixed length: These are range queries with a predefined distance between the starting and

ending points. The starting point position is drawn randomly from the value domain.

• Half open: Range queries where one of the borders of the range, e.g., the starting point

(ending point respectively), is drawn randomly, while the other is the maximum (minimum

respectively) point in the domain.

• Random: Range queries where both the starting point and the ending point are drawn ran-

domly from the domain.

• Point: Degenerate range queries where the starting and ending points are the same randomly

drawn domain point.

For the accuracy experiments, we executed 1000 queries of a particular type, recorded

their true cardinality C, and computed the statistical estimate Ĉ. For each query, we calculated

the absolute error and normalized it by dividing it by the total number of records in the dataset

N = 50M : eabs = |C−Ĉ|
N . To compute the final accuracy across all queries we used the L1 (average)

metric:
∑1000
i=1

eabs
i

1000 .

3.4.2 Overhead Evaluation

To determine the overhead introduced by collecting and storing the statistics, we have

measured the execution time of the ingestion stage of the experimental pipeline for all three statistical

synopses types and, as a control case, for a configuration where no statistics are captured. Each

measurement was repeated 3 times and the average value is reported.
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Figure 3.2: Total execution time of ingesting 50M records (a) using a bulkload operation, which pro-
duces a single component, and (b) through a continuous data feed channel, which creates multiple
LSM components. Both experiments are performed for 3 types of synopses (equi-width histograms,
equi-height histograms, and wavelets) and for a baseline case when the statistics collection is turned
off (NoStats).

In AsterixDB data can be persisted in two different ways: by bulkloading a dataset upfront

or by performing DML insert/update/delete statements. Figure 3.2a presents the bulkloading exe-

cution times for the case when equi-height, equi-width histograms or wavelets synopses are produced

as the bulkloading is performed, and for the baseline case when no synopses are calculated. During

bulkload the dataset is populated in a bottom-up fashion, producing a single large LSM component,

so it does not utilize all the possible events of the LSM lifecycle. To isolate the effect of statistics-

gathering in this experiment we were using pre-sorted datasets, so the bulkloading process included

only partitioning and building an upper level of a B-Tree index (thus excluding expensive external

sorting which is not involved in computing statistics). Bulkloading was done in a partitioned parallel

manner on all 4 cluster nodes to minimize the load time.

Figure 3.2b shows the case when a data feed is used to populate the dataset. A feed

populates the dataset’s storage structure incrementally, in a top-down manner, thus triggering the

full spectrum of LSM lifecycle events. We experimented with 2 different types of feeds that are

available in AsterixDB: a socket-based feed, where the records were received via a network socket

from an external source, and a file-based feed, where the source of the records were local files.

For both graphs in Figure 3.2, the values for different synopsis types vary slightly due to

measurement error; however, there is no significant overhead introduced by any of the statistics-
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gathering algorithms, as compared to the baseline case when synopses are not produced. The same

results were observed with the real-world WorldCup dataset (not shown). This allows us to affirm

that the proposed statistics-collection framework indeed does not interfere with the normal LSM-

based storage workflow in AsterixDB.

3.4.3 Accuracy Evaluation

Due to the large size of the parameter space, we began our evaluation by fixing some of

the variables for the experimental procedure.

3.4.3.1 Varying the Synopsis Size

Figure 3.3 depicts the accuracy results while we increase the size of the synopsis for a

FixedLength query workload with range length of 128. In the case of the histogram synopses, we

vary the number of histogram buckets, whereas for wavelets the number of wavelet coefficients is

increased. Note that the amount of storage allocated to synopses is the same in both cases because

the space taken by one histogram bucket is the same as the space allocated for a single wavelet

coefficient. In this experiment, we have increased the size of synopses from 16 to 1024 elements

(buckets or wavelet coefficients).

Figure 3.3a shows that estimation errors for datasets with Uniform frequencies are close to

0 in all of the cases except for the ZipfRandom spread distribution. The same result can be seen for

Uniform spreads in Figure 3.3b. In all of these cases, the data distribution creates a smooth CDF

that can be easily estimated even with a small number of synopsis elements.

In contrast, in all the other cases in Figures 3.3b and 3.3c, as well as the ZipfRandom

spread distribution in Figure 3.3a, the random permutation of spreads creates distributions with

much more complex CDFs and makes estimation more complicated. Generally, for these we see a

common trend that the cardinality estimation error is negatively correlated with the synopsis size.
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Figure 3.3: Estimation accuracy results, while varying the size of the synopsis for datasets with
(a) Uniform, (b) Zipf and (c) ZipfRandom frequency distributions. Submitted queries have a fixed
range length of 128. The sizes of synopses are increased from 16 to 1024 elements.
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However, there are few exceptions for the histogram-based synopses, namely the Zipf, ZipfIncreasing,

CuspMin and CuspMax datasets, where increasing the synopsis size does not significantly improve

their accuracy. The poor histogram accuracy on these datasets can be explained by the fact that

the dataset is skewed: in the Zipf distribution, some of the frequencies are so large that they exceed

the height of the equi-height’s histogram bucket. In contrast, wavelets demonstrate the expected

behavior, supporting previous research findings that wavelets on average provide better accuracy

[83].

Among these results, the synopsis with 256 elements provides excellent accuracy, so we will

fix this parameter throughout the rest of the evaluation section.

3.4.3.2 Varying the Query Type
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Figure 3.4: Estimation accuracy results for 4 different types of queries and a dataset with Zipf
frequencies.
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We proceed with exploring how the properties of the query workload influence estimation

accuracy. Again, we present the datasets with Zipfian frequencies here, but the data drawn from

other distributions behaved similarly.

Figure 3.4 shows the accuracy for all query types mentioned in Section 3.4.1.2. We can

see that, for all distributions, Point queries produce smaller errors than FixedLength queries, which

in turn are smaller than HalfOpen and Random queries. Note that the error scale on this graph is

logarithmic to emphasize that larger queries introduce noticeably larger errors than those elsewhere

in our results. This can be explained by the fact that the number of tuples that fall into a wider

range now represent a larger fraction of the total dataset and the L1 absolute error metric emphasizes

that difference.
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Figure 3.5: Estimation accuracy results for FixedLength queries and a dataset with Zipf frequencies
for varying query sizes.

Figure 3.5 presents similar measurements, but specifically for fixed-length queries with the

length parameter varied from 8 to 256. We can see that the trend is preserved in this experiment,
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as the error keeps growing as the query range is increasing. Because fixed-length queries allow us to

increase the number of returned tuples in a controllable manner, we will use them with the range

size of 128 as the query type of choice for the following experiments.

3.4.3.3 Varying the Number of LSM Components

To study how the number of individual synopses affects the overall estimation accuracy, we

now control the number of LSM components produced during the data insertion stage by utilizing

the Constant LSM merge policy that is available in AsterixDB. As its name implies, this merge

policy allows one to have only a predefined number of LSM disk components per partition across

a cluster. We also alter the individual synopsis size here, with respect to the increasing number of

produced components, so that the total space allocated for statistics remains the same.

Figure 3.6a depicts the accuracy measurements, while Figure 3.6b considers the overhead

during the querying stage of the experiment for various synopses types, spread distributions, and

component numbers. As we can see, increasing the total number of components does slightly increase

the estimation error, as each component’s synopsis contains fewer elements, inevitably deteriorating

the estimation performance. At the same time, the overhead during query optimization increases,

but not significantly.

3.4.3.4 Workload with Varying Percentage of Anti-matter

In all previous experiments, we considered cases where the input data workload was insert-

only. In the next set of graphs, we study how the estimation accuracy changes if we add updates and

deletes into the ingested mix to trigger anti-matter records. For this purpose, we used a special kind

of AsterixDB data feed, called a changeable feed, which allowed us to mark incoming data records so

that they will perform a regular insert, update an already inserted record, or delete an existing record.

To make sure that the updates and deletes do actually generate anti-matter, as opposed to their just

being silently deleted (from the perspective of statistics) within in-memory components, we broke
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(a) Accuracy for varying number of LSM components
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(b) Query time overhead for varying number of LSM components

Figure 3.6: Experiments for 3 types of synopses, while varying the total number of LSM components
for a dataset with Uniform frequency distribution. The number of components is increased from
8 to 128. (a) depicts the normalized L1 absolute error, whereas (b) shows the query optimization
overhead of obtaining statistics during the same experiment.
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Figure 3.7: Estimation accuracy results for the workload with varying ratio of updates and inserts.
Results obtained for various types of synopses on a dataset with ZipfRandom frequency distribution.
The ratio of updates (U) and deletes (D) is scaled from 0 to 0.3.

the ingestion process up into stages. As each stage is processed, we forced a flush operation, which

puts all previously ingested records on disk. After that, all updates and deletes that reference records

in the previously processed stages will generate anti-matter records. Note that because AsterixDB

enforces update and delete constraints (i.e., it does not allow updating or deleting a record unless it

already exists), the maximum ratio of each operation type in the insert/update/delete mix cannot

exceed 0.33 (assuming that each record is updated only once).

Figure 3.7 illustrates the accuracy measurements for the dataset with ZipfRandom frequen-

cies as the ratio of the updates and deletes in the data workload is gradually increased from 0 to

0.3. We observe that increasing the fraction of anti-matter records does not degrade the accuracy

of cardinality estimation for all types of synopses. This demonstrates that our approach for dealing

with anti-matter records, which is based on persisting and querying them separately, performs well.

Note that the approach also provides a synopsis-agnostic way (in contrast to specialized maintenance
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Figure 3.8: Query time overhead results for the case when a dataset is bulkloaded, creating a
single LSM component, vs. a workload with the NoMerge policy, creating a maximum number of
components.

algorithms) of dealing with changeable workloads while increasing the synopsis storage cost by only

a constant factor (of 2).

3.4.3.5 Synopsis Mergeability

Figure 3.8 further studies how the number of LSM components influences the query op-

timization time overhead of cardinality estimation. In this experiment we performed ingestion in

two different ways: using a bulkload, which is guaranteed to create a single LSM component, and

using feed-based ingestion with a NoMerge policy that leads to a maximum possible number of

components.

The figure shows the results for a dataset with Zipf frequencies, but the results for other

distributions are similar. It can be seen that the query time overhead for the NoMerge policy is

consistently higher than the same results for the bulkload-based workload. However, we note that
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this time difference is negligible between all types of data synopses. These results highlight the fact

that the mergeability of a particular synopsis type has a more profound effect on the total space

allocated to the synopses rather than on the query time.

3.4.4 WordCup Dataset Experiments

Figure 3.9 depicts the results of the accuracy experiment for the WordCup dataset. In

this experiment, we have used feed-based ingestion using the Constant LSM merge policy with the

default number of components (5). We have used range queries for each of 6 examined fields in

the dataset. The length of the range for each query was equal to 1% of the range for a particular

field (i.e. the difference between the maximum and minimum values of that field). Unlike the

earlier experiments where the values were spread throughout the whole field domain, in real-world

data, values are typically placed away from the domain extremes. This property explains why the

accuracy of the equi-width histograms does not improve as we allocate more buckets. In fact, for

fields Timestamp, ClientID and ObjectID, all values fell into a single bucket. In contrast, equi-

height histograms and Wavelets were able to dynamically adjust to the distribution of values in a

particular field. Moreover, wavelets tend to be 5-10 times more accurate.

Field Size presents an interesting example of highly skewed data with a long distribution

tail. We can observe that wavelets represent such distributions significantly better given enough

coefficients. Finally, fields Status and Server represent categorical data. The distribution of the

values in these fields has a lot of “spikes” separated by values with zero cardinality. Because all

synopses estimate the values relying on proximity-based similarity, this leads to vast over/under-

estimation errors.

In summary, the real world data experiments show that in certain cases the Wavelets and

EquiHeight histograms are more robust, being less susceptible to changes in the input data.
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Figure 3.9: Estimation accuracy results, for all types of synopses, for 6 fields from the WorldCup
dataset. The sizes of the synopses are increased from 16 to 256 elements.

3.5 Conclusions

In this chapter, we have proposed a novel lightweight approach to collecting statistics that

exploits the properties of the LSM-based storage to obtain statistical data summaries of the underly-

ing data. Our solution is integrated into common operations of the LSM framework and thus allows

us to natively and inexpensively keep statistics in sync with rapidly changing data. We have imple-

mented 3 different types of statistical synopses (equi-width histograms, equi-height histograms, and

wavelets) and developed efficient approaches to compute them during LSM lifecycle events. We have

shown experimentally that computing these data synopses introduces a negligible runtime overhead,

both during the ingestion when data summaries are created, and during query optimization when

cardinality estimates are obtained. We have also performed an extensive experimental evaluation of

the synopses’ cardinality estimation errors using various data distributions, query workloads, and
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merge policy parameters. Our experiments have shown that our design provides good accuracy in a

broad number of cases.
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Chapter 4

Sketchy Statistics: Lightweight

Cardinality Estimation for

Unordered Attributes

4.1 Introduction

Despite its novelty, the statistics-collection approach presented in Chapter 3 poses a major

restriction by only allowing statistics to be collected on indexed fields. Leveraging the sorted order

of the values of a particular field imposed by an index allowed us to use synopsis algorithms with

linear complexity. However, maintaining an index creates an additional overhead both in terms

of additional storage and increased latency of inserting new entries. Spending O(nlog(n)) time

on sorting the values of a particular field just to get statistics on that field will cause a significant

overhead in a Big Data context. In order to find a tradeoff between the statistics-related latency and

the external overhead in the LSM storage layer, we need an algorithm with a sub-logarithmic (per

input entry) runtime complexity. Given these requirements, we propose to extend our framework
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and use sketches [44] as one of the synopsis-computing methods. A common alternative to gathering

statistical information on a set of unordered items is to perform sampling, sort the sampled data,

and then apply traditional synopsis-gathering algorithms that require sorted input. By setting the

maximum size of the sample we can easily bound the time spent on computing unordered statistics.

Sampling achieves the most benefit when it can decrease the number of I/O operations; however

in a log-structured storage model where all data is streamed through regardless its advantages are

diminished. On the contrary, sketch algorithms were specifically designed for the use case when

the whole input is observed, but only the necessary information is kept, which allows the sketch to

describe the distribution with the desired accuracy.

Unlike traditional methods of obtaining statistical data such as histograms, samples, and

wavelets, sketch algorithms are a relatively recent development among these methods, primarily de-

veloped for the early data streaming systems [5]. However similar problems appear in the context of

Big Data processing. As a result, many researchers and database practitioners have been applying

different sketching methods in various settings outside of traditional streaming systems [42]. The

streaming setting assumed that large amounts of data are passing through the system in real time

(e.g. stock price data) and that it requires immediate analysis for fast decision making. In addition,

data streaming systems were usually deployed on equipment with low processing and storage capa-

bilities (e.g. edge networking devices). These rigid constraints required specialized algorithms that

could guarantee sub-linear (in terms of the length of the input) processing time per input element

and provide upper bounds on the amount of memory or storage used during computation. Moreover,

records that appear in the events streams usually do not have an inherent order and support cash

register, i.e. consist only of insertions, or turnstile semantics, i.e. contain both ‘insert’ and ‘delete’

events. Using algorithms that are designed either for cash register or for turnstile environment al-

lows us to capture the statistical distribution of the values of unordered fields. Finally, sketching

methods were designed with approximation in mind and thus provide a tunable parameter for ac-

curacy guarantees. Increasing this approximation accuracy also yields a higher runtime complexity,
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which allows us to control the desired tradeoff between statistics-collecting overhead and the normal

LSM-lifecycle latency.

There are multiple sketch algorithms that capture various aspects of the dataset and answer

different queries, e.g. provide the number of distinct values [56], answer item membership queries

[27] or capture the frequency distribution of the dataset [64, 67, 36, 47, 46]. Since we are interested in

statistics for the purpose of range query selectivity estimation, in this chapter we are concentrating

on frequency-based sketching techniques. Among those sketches, we further identify two types of

algorithms: deterministic and randomized. The former provides an approximate answer within a

specified error bound ε, while the latter relaxes this condition by bounding the accuracy only with a

given probability δ. Since it is more desirable to have better guarantees, we choose the deterministic

algorithm proposed by Greenwald and Khanna [67] to obtain statistics (quantiles) on unordered

fields. This algorithm has been rigorously tested in many research efforts and has been shown to have

the best performance among deterministic algorithms [116]. Many alternative methods [64, 47, 101]

rely on dividing the data domain D into non-overlapping chunks (usually dyadic intervals), which

imposes a restriction that |D| should be a fixed size value which is a power of 2. In contrast,

the Greenwald-Khanna sketch is a comparison-based algorithm, i.e., it relies solely on comparisons

between input items in order to construct the resulting quantiles. This enables us to obtain statistics

for domains with a total order of entries but with unbounded size, e.g. strings. Finally, quantiles

produced by this sketch algorithm could be seamlessly integrated into our statistics framework,

because a set of quantiles essentially represents an equi-height histogram of the data distribution.

The following summarizes the key contributions of this chapter:

• We implement the Greenwald-Khanna sketch [67] and integrate it into our statistics-collection

framework to compute statistics on a used-specified number of unordered fields in the primary

LSM component.

50



• We experimentally study the effect of computing multiple synopses as well as computing statis-

tics with varied accuracy and establish a tradeoff between these parameters and the runtime

overhead of computing those statistics.

• We compare the synopses obtained by the approximate sketch-based approach to the exact,

indexed-based algorithms (studied in Chapter 3) and show that the Greenwald-Khanna sketch

provides comparable accuracy for range query cardinality estimates.

The rest of the chapter is organized as follows: we review related work on sketches in

Section 4.2, while Section 4.3 presents implementation details and describes how a quantile sketch

(described earlier in Section 2.3) was integrated into our LSM-based statistics collection framework.

We provide an empirical evaluation in Section 4.4, while Section 4.5 summarizes our findings.

4.2 Related Work

A seminal piece of work on estimating statistics via sketching by Alon et al. [15] introduced

a method to approximate the F2 measure (i.e. the sum of squares) of the frequency vector assuming a

stream of records with ‘cash register’ (i.e. unordered streams without deletes) semantics. It was later

shown that sketching the F2 measure can be directly applied to estimate arbitrary inner-products,

including relation join and self-join sizes [14], as well as a number of other problems. The original

paper describes a version of the sketch algorithm that relies on averaging observations to reduce the

variance, which leads to suboptimal bounds. However, this algorithm has been further improved by

using hashing, namely the “Fast-AMS” [43] and “Fast-Count” [109].

Subsequent works, such as the Count [36] and Count-Min [47] sketches, have extended the

AMS sketch to estimate the frequency of point queries. Both use the same sketch data structure but

diverge in the way that they compute the estimate and provide different space/accuracy bounds.

In addition to point queries, the Count-Min sketch provides a way to estimate range queries and

inner-products (i.e. join/self-join cardinalities).
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Sketching techniques have also been used as an auxiliary method to build other summary

types and answer range and point queries. Gilbert et al. have demonstrated how atomic AMS

sketches could be used to reconstruct near-optimal histogram [62], as well as wavelet synopses [63, 60]

(called GKMS) for the ‘turnstile’ data model - a generalization of ‘cash register’ stream that allows

deletions. These methods use heavy partitioning of the data domain into a series of disjoint dyadic

intervals in order to reduce the problem of range query estimation to inner-product computation.

However, the GKMS solution for approximate wavelet decomposition suffers from significant query

complexity. As a result, Cormode et al. [45] proposed a novel Group-Count sketch which performs

sketching entirely in the wavelet domain. Unlike GKMS, the Group-Count sketch has a tunable

tradeoff between fast per-item update time and query time sub-linear in the size of the sketch.

Range query estimation is closely related to the problem of determining dataset quantiles.

Gilbert et al. [64, 61] showed that quantiles could be computed using sketching techniques. By

splitting the data domain into non-overlapping dyadic intervals the Random Subset Sum algorithm

presented in [64] reduced the problem of identifying quantiles in the ‘turnstile’ model to that of

calculating range sums.

All sketching techniques described so far rely heavily on randomization and are guaranteed

to succeed with a certain (high) probability 1− δ. There is also a class of deterministic algorithms

which do not relax the approximation guarantees. Manku et al. [81] proposed a framework for

deterministic quantile computation. A randomized version of this algorithm was introduced in [82]

which does not need a priory knowledge of the stream length and improves space bounds. Finally,

Greenwald and Khanna proposed a robust deterministic approximate quantile algorithm in [67].

The aforementioned quantile algorithms can work in domains of unbounded size, which sets them

apart from methods that divide a fixed size domain into dyadic intervals. This is because they

are comparison-based, i.e. they rely only on keeping a sorted sample of records from some totally

ordered domain, which makes them widely applicable for non-numeric data types, e.g. variable

length strings.
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Sketching methods differ based on both their characteristics (randomized or determinis-

tic, comparison-based or fixed universe, supporting inner-product or point/range queries, etc) and

their performance (different bounds for accuracy, update time and space). Moreover, the provided

theoretical bounds are sometimes overly pessimistic while, in practice an algorithm might provide

performance significantly better than was predicted. This has incentivized empirical studies compar-

ing various sketch algorithms against each other in a common setup. Rusu and Dobra [97] perform

a comparison of the AMS [15, 14], Fast-AMS [43], Count-Min [47] and Fast-Count [109] sketches

by measuring the accuracy of join and self-join size estimation on datasets with varying skews. It

was determined that the Fast-AMS and Count-Min sketches perform significantly better on skewed

data distributions and that the Fast-AMS sketch in all of the cases is close to the theoretical error

irrespective of the data distribution. A recent study by Luo et al. [116] compared GK [67], MRL

[82], Q-Digest [101], Count-Min [47], Random Subset Sum [64], a dyadic version of Count-Sketch

[36], and a proposed new variation of the MRL algorithm called Random. The study identified Ran-

dom and dyadic Count-Sketch to be the best among ‘cash register’ (i.e. unordered streams without

deletions) and ‘turnstile’ (i.e. unordered streams with deletions) algorithms respectively. Moreover,

the GK-sketch was still found to be the best among comparison-based approaches.

Despite the considerable research on new sketch methods, few systems have adopted these

algorithms in practice. It was reported in [106] that Oracle uses the Random [116] and Count-Min

[47] sketches to accelerate the computation of approximate aggregates. In addition they use AMS

sketches for query optimization [112], specifically to perform sampling for join queries with dynamic

predicates.

4.3 Implementation Details

This section describes modifications to our framework, presented in Section 3.3.1, in order

to integrate the GK-sketch as one of the synopsis algorithms. In particular we implement the
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GKAdaptive version of the algorithm (described in Section 2.3) since it is simpler and has been

shown [116] to have the same performance characteristics as GK.

4.3.1 Multiple Statistics

Since we do not require the input stream to be indexed on a particular key, we can capture

multiple fields’ statistics during the same flush/merge/bulkload LSM operation. Algorithm 3 shows

how we integrate GKAdaptive algorithm to into the LSM operation pipeline. All extracted quantiles

create a set of right borders of an equi-height histogram that can be later used to get range query

cardinality estimates as described in Section 3.3.6.

Algorithm 3 Algorithm for computing sketch-based statistics during the LSM flush/merge/bulk-
load for a set of fields

1: function sketchStatistics(stream,statsF ields)
2: histograms← ∅, gkSketches← ∅
3: for all element in stream do
4: for all field in statsF ields do
5: gkSketches[field].INSERT(element)

6: for all field in statsF ields do
7: φ← 1
8: for φ ≤ k do
9: buckets[φ]← gkSketches[field].EXTRACT QUANTILE(φk )

10: φ+ +

11: histograms[field]← buckets

12: return histograms

4.3.2 Handling Anti-matter Records

In order to handle LSM anti-matter records in non-indexed fields, we apply an approach

similar to the one described in Section 3.3.3. As with index-based statistics, we fork the synopsis

computation into two streams: one stream produces a regular synopsis, while another creates an anti-

matter “twin” that describes the statistical distribution of anti-matter records in a given component.

However, in AsterixDB the anti-matter record format in the case when the attribute is

indexed is different from the case when the attribute has no secondary indexes. Figure 4.1 shows
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Figure 4.1: Example of a wrong cardinality estimate after a series of LSM operations.

an example when this could lead to an incorrect cardinality estimate. Consider a single two-field

record R = 〈K1, V1〉, which is identified by the key K1 and has value V1 on the field for which we

would like to calculate statistics. Figure 4.1a shows the state after the insert and flush operations,

which results in the creation of synopsis S1 with contents {V1}. Later on, record R is deleted, which

generates an anti-matter entry that contains only the key of the deleted record R = 〈K1〉, depicted

in Figure 4.1b. We further insert a new record R′ = 〈K1, V2〉 with the same key K1. Since it is

identified by the same key it will replace the existing anti-matter entry in place. Finally, Figure

4.1c shows the state after another flush that created a new synopsis, now containing the new value

{V2}. However, the overall statistics S1 ∪ S2 = {V1, V2} are now overestimating the total number of

entries. In AsterixDB this can occur because in order to delete an original record R = 〈K1, V1〉 the

system does not generate an anti-matter entry containing values of all non-indexed attributes; only

the key fields are required to be a part of the anti-matter entry.

To avoid this situation, we propose augmenting the in-memory representation of the records

in order to capture the correct statistics. Figure 4.2 shows the stages (b) and (c) from the previous

example. Each time a record is deleted (or replaced by some other record with the same key)

we can append the previous values of all fields for which we keep statistics. Figure 4.2a shows

55



<K1,V1>

DC2

MC

{V1}

S1

(a) State after deletion of the record R. Value
V1 of the field of a deleted record is a part of the
anti-matter record 〈K1, V1〉 along with the key.

<K1,V1>
<K1,V2,V1>

MC

<K1,V2>

DC2 S2

Flush

{V2}

{V1}

S2

(b) State after insertion of a new record R′ =
〈K1, V2〉. The previous anti-matter record is re-
placed, but the value of the field V1 of a previ-
ously deleted record is carried over to the new
record. Flush now creates a pair of new synopses
S2 and S2.

Figure 4.2: Proposed solution for incorrect cardinality estimation.

this as the augmented version of the record R = 〈K1, V1〉. Whenever a new entry replaces an

augmented anti-matter record R (or a regular augmented entry) we carry over the old values of the

statistics fields. Figure 4.2b depicts this with new entry 〈K1, V2, V1〉. After the second flush, two new

synopses will be generated so that the overall cardinality now reflects the correct combined estimate

S1 ∪ S2 ∪ S2 = {V1}. Note that this record augmentation happens only within the context of the

in-memory component; the records are converted back to their normal representation during the

flush. This allows up to maintain backwards-compatibility with the storage format in AsterixDB.

4.4 Experimental Evaluation

All experiments presented in this section use the same experimental setup as in Section

3.4.1. The only difference is a that no indexes are required. Instead, we introduce a special hint

that is provided by the user at the time of dataset creation. This hint contains a concatenated list

of unindexed field names for which the user would like to keep statistics.
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4.4.1 Overhead

We start by studying the effects of unordered statistics collection on the overall ingestion

performance. According to the description of the GK-sketch (Section 2.3), the runtime complexity

of the algorithm is:

O(n(log
1

ε
+ log(log(εn)))) (4.1)

where n is the number of input entries and ε is the desired sketch accuracy. Since the number of

entries in our experiments is fixed we mainly vary the accuracy of the sketch and the number of

the fields for which we keep statistics (i.e. number of sketches). According to the definition of an

element’s rank rmin = 0 and the ε-accurate φ-quantile inequality 2.1 we get that φmin = ε. Thus, in

the following we treat φ as equal to the sketch accuracy ε, i.e. a 0.01-quantile sketch (which yields

100 buckets) is obtained by setting ε = 0.01. In the following we use the terms sketch accuracy and

number of extracted buckets/quantiles interchangeably.

AsterixDB, as well as most other LSM-based systems, can be modeled for performance

analysis purposes as a process with 2 active threads: the ingestion thread and the IO-thread. During

insertion, the former is responsible for reading a record from the input, parsing it, inserting the new

entry into the in-memory LSM component, and checking if a flush should be triggered in the event

that the size of the in-memory component has crossed some threshold. Once triggered, the flush

request is asynchronously received by the IO-thread which writes the contents of a component onto

the disk, while the ingestion thread starts populating a new in-memory component (such technique

is commonly called ‘double buffering’). In addition to flushing records to disk, the IO-thread is also

responsible for collecting statistics during an LSM-event and building a sketch. The latency of the

IO-thread is increased by either increasing sketch accuracy or collecting statistics on multiple fields

concurrently.
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Figure 4.3: Wall clock time for ingesting 1M records (a) using a bulkload operation, or (b) through
socket/file feed while varying the number of extracted quantiles from 10 to 10000 and the number
of statistics fields from 0 to 16.

During the normal ingestion process the disk latency imposed by the IO-thread is expected

to be low compared to ingestion thread overhead; however computing statistics during LSM-events

increases the work performed by the IO-thread. If we keep gradually increasing the I/O latency at

some crossover point these latencies would be equal and if we will keep increasing statistics-imposed

latency the ingestion process will not be able to makes a progress and will start blocking.

In the first set of experiments we try to identify where the latencies of IO-tread and inges-

tion tread cross over. We measure the wall clock time for the simple workload, which ingests 1M

records on a single-node, single-partition AsterixDB installation. Figure 4.3 shows the result of this

experiment for three different types of ingestion workloads (Bulkload, SocketFeed, and FileFeed)

while we varied the number of fields for which statistics are calculated and the number of extracted

quantiles. Figure 4.3b shows that there is no significant difference between FileFeed and SocketFeed,

which assures us that the experiment emphasizes the overhead in the storage layer of the system

rather than the latency associated with reading the result from the input (a network socket or a

file). Unless otherwise noted, we will be using a socket-based feed for all further experiments.

Figure 4.3a above shows that the wall clock time for bulkloading data increases significantly

when we consider more than 4 fields and extract more than 1000 quantiles, as compared to the similar

setup in the feed-based ingestion experiments depicted on Figure 4.3b. This is explained by the fact
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extracted quantiles from 10 to 10000 and the number of statistics fields from 0 to 16.

that feed ingestion here uses a NoMerge [17] LSM merge policy that, as the name implies, never

triggers the LSM merge operation. Thus the sketches are calculated only during component flushes,

so the number of records (and therefore n in equation 4.1) is small. In contrast, during a bulkload

the system populates one big LSM component with n = 1M entries, so the runtime overhead of

calculating statistics cannot be masked by other storage-related latencies. Furthermore, even for

feed-based ingestion workloads, we can see the overhead of computing statistics increases when we

are extracting 10000 quantiles.

In order to study the cause of the increased ingestion wall clock time we perform additional

experiments. Figure 4.4 measures the number of ingested records over time for a sketch with 10000
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quantiles and a varying number of statistics fields. The graph shows that for a small number of

statistics fields (0-8) the number of records grows linearly with time. However for 16 statistics fields

the ingestion speed plateaus, which shows that the ingestion was being blocked by statistics-related

overhead. Additionally, Figure 4.5 plots the average time for a flush operation for the varying

numbers of quantiles and statistics fields. The graph shows that the overhead of computing LSM-

based statistics (latency of the IO-thread) grows as we increase the number of sketch quantiles, or the

number of statistics fields. However, Figure 4.3b did not show the ingestion process being blocked

until the number of concurrently collected sketches equals to 16. This supports our analytical model

and shows that the crossover point is not reached until we collect statistics on 16 fields here, despite

the increasing latency of the IO-thread.
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All of the graphs presented earlier in this section have used the NoMerge policy This policy

has virtually zero write amplification, but it instead results in poor read latency because for each

query all components must be accessed. As we have seen in Figure 4.3, the statistics-related overhead

grows with the number of records in the flushed or merged components. During merges our sketch-

based statistics are simply recomputed from the scratch, so a more practical merge policy, one that

does perform periodic merges, will likely shift the crossover point. On the other side of the spectrum

we have the Constant merge policy, which keeps the number of disk components k at each given

moment constant. The extreme case when k = 1 will result in maximum write amplification because

flushing a new component will always cause a merge, and overall the total time spent during ingestion

is O(n2) in terms of number of ingested records. More practical polices would use higher k or take

into account other factors, like maximum size of the component in the default AsterixDB policy

Prefix [17], to determine if a component needs to be flushed. Figure 4.6 presents measurements

of the feed-based ingestion performance for 3 different LSM merge policies. As was expected, the

Constant policy starts to significantly degrade the system’s performance for 10000 quantiles, even

for the modest number of statistics fields.At the same time, the performance of the Prefix policy is

almost the same as for NoMerge, and it starts influencing the ingestion only for 10000 quantiles and

16 statistics fields. This experiment shows that for a reasonable number of fields (up to 16) and a

practical LSM merge policy, computing a GK-sketch with 1000 quantiles (or alternatively accuracy

ε = 0.0001) does not have a significant effect of the ingestion performance in AsterixDB.

4.4.2 Accuracy

We now proceed to our experiments that measured the GK-sketch accuracy of range query

cardinality estimation. For our evaluation we use the same synthetic datasets, described in Section

3.4.1.1: 3 different distributions for item’s frequency (Uniform, Zipf, ZipfRandom) and 6 types of

value distribution (Uniform, Zipf, ZipfDecreasing, ZipfRandom CuspMin, CuspMax). To measure
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accuracy, we have executed 100 different range queries with a fixed length l = 64 and report the

average error using a particular metric.

In order to evaluate our approximate sketch-based approach for unordered attributes, we

will measure its estimation accuracy against the index-based method from Chapter 3, which produced

an equi-height histogram. Because the quantile sketch produces the same type of statistical synopsis

(equi-height histogram), this experiment emphasizes only the quality of the produced synopsis (since

we factor out the accuracy associated with the type of synopsis used). In both cases, we vary the

number of buckets (quantiles) that we allocate for the histogram. During ingestion, we use the

AsterixDB [16] Prefix merge policy for non-indexed statistics and it’s Correlated-Prefix policy for

index-based synopses to ensure that the same number of components/synopses is generated in both

cases.

Figure 4.7 shows the average absolute error measurements for all aforementioned datasets.

As expected, by increasing the number of buckets allocated to the histogram, the error decreases for

both synopses. Moreover, apart from a few notable exceptions (uniformly distributed values with

Zipf and ZipRandom frequencies), the error associated with both types of statistics is comparable.

While the absolute error might be a good metric in various cases, it does not correctly

describe accuracy in situations when both the cardinality and the estimate are small in absolute

terms. On the other hand, the simple relative error tends to treat overestimates and underestimates

unequally. The q-error [87] is an alternative error metric, calculated as max(C
Ĉ
, ĈC ), which intuitively

shows the factor by which the cardinality C is different from the estimate Ĉ while treating overes-

timation and underestimation symmetrically. In addition, the q-error provides an upper bound on

the quality of the produced plan, which makes it especially relevant for evaluating query optimizers.

Figure 4.8 shows the same accuracy measurements using an average q-error metric. We observe that

the sketch error is comparable for a small number of buckets. For 1000 buckets and non-uniform

frequencies, however, its accuracy is even lower than that of the histogram. Moreover, we observe
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that for Uniform value sets, histograms provide very accurate estimates regardless of the number

of buckets, whereas a sketch with less than 1000 quantiles has a significantly higher error for Zipf

frequencies.

Overall we observe that allocating 1000 quantiles for sketching provides comparable or in

some cases even better accuracy. Since the experiments in the previous Section identified that a

sketch with 1000 quantiles does not cause significant overhead during ingestion, this a good candidate

for the default number of extracted quantiles.

4.5 Conclusions

We have extended the earlier proposed framework for LSM-based statistics-collection and

enabled the gathering of statistics on unordered fields. We did so by incorporating the Greenwald-

Khanna sketch as another local synopsis-gathering algorithm. We have thoroughly studied the

effects of non-ordered statistics and identified the tradeoffs between the number of fields for which we

collect statistics, the number of quantiles allocated to the synopsis (i.e. accuracy), and the overhead

of ingestion. We have also demonstrated that the approximate sketch-based statistics method is

comparable to the exact index-based algorithm in terms of cardinality estimation accuracy. Our

experiments have demonstrated that using a sketch with 1000 quantiles does not have a significant

impact on ingestion time, while it is still able to provide accuracy comparable to the index-based

algorithm.
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Chapter 5

A Comparative Study of

In-Memory Analytical Operations

5.1 Introduction

Business decisions are nowadays driven by advanced database analytics and companies

thrive on how quickly and how well they can analyze the available data. Recent hardware trends,

including the proliferation of parallel architectures and the rapidly decreasing cost of RAM, have

created a niche for in-memory analytics solutions. As a result, many companies, as well as academic

institutions developed databases that operate on the data stored entirely in main memory (Oracle

TimesTen [77], SAP HANA [53], MS SQL Hekaton [49], IBM BLU [24], MemSQL [100], HyPeR[74],

Peloton[4]). These systems rely on efficient query processing algorithms optimized for in-memory

workloads which allows them to significantly boost the overall performance.

While memory capacity continues to increase, the past decade has seen a stagnation of

processor clock speeds caused by the end of the Dennard scaling. This leaves parallelism as the only

option to allow fast processing for the growing amounts of memory-resident data. The computer
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architecture community considered two approaches to leverage this parallelism, namely (i) off-the-

shelf multi-core architectures, including CPUs and GPUs, [54] or (ii) customizable architectures

such as CPUs with FPGAs [1, 94, 2, 86, 108, 98]. While multi-cores typically have much higher

clock speeds, specialized hardware has both the advantages of customization (the hardware design

is optimized for a specific application) and parallelism.

The major issue limiting the performance of in-memory algorithms is the growing gap be-

tween the memory bandwidth and the speed of the processing unit (the so-called memory wall),

which is even more important for multi-cores given their higher clock speeds. The multi-core ap-

proach addressed this problem by introducing large cache hierarchies, relying on the data locality

(spatial and/or temporal) to mitigate memory latency. This solution does not come for free: cache

hierarchies can take up to 80% of the chip area thus are becoming the main factor limiting the

number of cores that can be accommodated on a single chip, as well as the primary contributor to

energy consumption through leakage current. GPUs offer a different solution leveraging on massive

SIMD parallelism and high bandwidth specialized memory (i.e. GDDR). Similarly, modern CPUs

introduced SIMD support to enable data level parallelism. However these architectural solutions

still inherently rely on data locality.

At the same time, many data-intensive computational problems are moving away from

data locality towards irregular memory access behavior. Such irregularity can be of two types:

(1) Dataflow irregularity is caused by the indirection in the data access, leading to cache (data

or TLB) misses. For example, popular hash-based database analytics algorithms (joins, group-by

aggregations) exhibit a very poor degree of spatial and/or temporal localities and do not benefit

from large cache hierarchies [39]. (2) Control flow irregularity is caused by the dynamic control flow

and leads to branch misprediction, which contributes a large fraction of stall time on CPUs [96, 111]

or thread divergence on GPUs [102]. Examples in this category include transaction processing and

evaluation of multi-predicate selection conditions.
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Rather than relying on a cache hierarchy, hardware multithreading aims to completely mask

high memory latency. This model relies on spawning a large number of treads that are not backed

by the physical core. Only one thread is running at each moment in time and the execution is

relinquished as soon as the thread performs a long-latency operation. The executing thread is then

suspended until the long-latency operation completes and eventually returns to a ready state again.

This approach has been used in CPUs (Hyper-Threading, UltraSparc [54]), however, it could support

only a relatively small number of threads because the CPU has to provision a full hardware context

for each ready/waiting thread, thereby limiting the amount of parallelism. In a custom architecture

(e.g., based on reconfigurable FPGA fabric or application-specific hardware) where the datapath

is designed for a small number of predefined operations, the required context for each thread is

much smaller than in a general-purpose CPU and hence more threads can be supported. In this

hardware multithreaded model, the parallelism is limited only by the number of active threads

(ready, executing or waiting).

Recently there has been a surge in research papers proposing new CPU algorithms for basic

in-memory database operations [75, 26, 22, 21, 13, 40, 41, 119, 96, 30, 92]. However comparing the

performance of these CPU algorithms to custom architectures, such as hardware multithreading,

is still an open problem. The key contribution of the following chapter is performing a compara-

tive study of the state-of-the-art software algorithms that implement common database analytical

operations for in-memory workloads. We provide an empirical evaluation of various performance

characteristics (throughput, scalability, power efficiency) of these algorithms and compare them

with the customized reconfigurable FPGA implementation that leverages multithreaded design.

The remainder of this chapter is structured as follows. First, we start by reviewing the re-

lated work. Next, we describe the common principles and designs of the FPGA-based multithreaded

implementation. In the subsequent sections, we provide details of the in-memory CPU algorithms

for (i) hash joins, (ii) hash group-by aggregations and (iii) selections respectively and compare their

performance with the FPGA-based hardware approaches. Finally, we provide the conclusions.
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5.2 Related Work

Many recent works consider the in-memory implementation of joins (hash or sort-merge).

Manegold et al. [80] presented the first work that emphasized the importance of TLB misses in par-

titioned hash joins and proposed a radix clustering algorithm to keep the partitions cache resident.

Later Blanas et al.[26] studied the performance of hash joins by comparing simple hardware-oblivious

algorithms and hardware-conscious approaches (since the radix clustering algorithm is tightly tai-

lored to the underlying hardware architecture). Results showed that the simple implementations

surpass approaches based on radix clustering. However recently, Balkesen et al. [21] applied a num-

ber of optimizations and found that hardware-conscious solutions in most cases are prevalent over

hardware-oblivious.

The implementation of sort-merge joins on modern CPUs was studied by Kim et al. [75].

This paper explored the use of SIMD operations for sort-merge joins and hypothesized that its

performance will surpass the hash join performance, given wider SIMD registers. Subsequent work

[13] implemented a NUMA-aware sort-merge algorithm that scaled almost linearly with the number

of computing cores. This algorithm did not use any SIMD parallelism, but it was reported to be

already faster than its hash join counterparts. Recently, Balkesen et al. [22] reconsidered the issue

and found that hash joins still have an edge over sort-merge implementations even with the latest

advance in the width of SIMD registers and NUMA-aware algorithms.

Hardware-oblivious implementations of the group-by aggregation were explored by Cieslewicz

et al. [40], who showed that performance largely depends on input characteristics (key cardinality).

Follow up work [41] explored the partitioning step of hash aggregation and concluded that the

thread coordination is a key component influencing the performance of this step. In addition, Ye et

al. [119] proposed hybrid algorithms and showed that they outperform pure hardware-conscious and

-oblivious implementations. Finally, Wang et al. [115] described a NUMA-aware hardware-conscious
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in-memory hash aggregation algorithm, which avoids cache coherency misses and minimizes locking

costs.

In addition to complex analytics operations the problem of efficient evaluation of selection

operation also have brought attention of multiple researchers. A seminal work by Ross [96], described

tradeoffs of implementing conjunctive selection conditions for row-oriented data on CPUs. It showed

that in due to dynamic control flow simple short circuiting-based implementation of conjunctive

predicate might not always yield the best performance due to branch misprediction penalties. Poly-

chroniou et al. [91] explored the same problem in a column-oriented storage model and showed that

SIMD algorithms significantly outperform earlier scalar implementations. Finally [30] performed a

through experimentation with various variants of selection operator implementations, demonstrated

importance of number of predicates in addition to individual predicate selectivity. Similarly, Sitaridi

et al. [102] evaluated performance of GPU selection kernel and demonstrated that it also suffered

from a dynamic control flow due to branch diversion of threads in GPU thread block.

5.3 Introduction to Hardware Multithreaded Design

In this section we describe the overall design of the hardware multithreaded architecture

implemented on FPGAs.1. We are assuming that the input relation fits in main memory but is too

large to fit locally on the FPGA’s memory. To fully utilize the memory bandwidth available to the

FPGA we employ a hardware multithreaded model, which allows the FPGA to process ready jobs

while idle jobs wait on (long) memory accesses. Figure 5.1 depicts a main elements of multithreaded

FPGA engine. At each given moment in time a single thread is processed in the FPGA datapath.

In addition FPGA maintains two queues of ready threads and waiting threads that can be accessed

in a single clock cycle. Whenever a thread issues a memory request the FPGA saves the thread’s

state into waiting threads queue and picks up the next ready job. Once a memory request is

fulfilled the thread state is updated, and queued back into the ready threads FIFO. If the FPGA can

1All FPGA design and implementations were performed by Robert Halstead, Prerna Budhkar and Skyler Windh
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Figure 5.1: Multithreaded model implemented on FPGAs.

Figure 5.2: The FPGA datapath for building the hash table.

maintain more thread states than the memory latency then full latency masking is achieved, thus

the bandwidth is fully utilized.

The key component of the multithreaded design is application-specific datapath, which

includes a series of operations executed in a pipelined fashion. Figure 5.2 shows the state diagram
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of a thread that builds a hash table, which is a building block of hash join and hash group-by

aggregation algorithms. The hash table data structure uses a traditional bucket chaining design

with an array of buckets pointing to a number of singly-linked lists. In the FPGA logic, local

registers are programmed at runtime and hold pointers to the relation, hash table, and linked lists.

They also hold information about the number of tuples, tuple sizes, and the join key position in the

tuple. Lastly, the registers hold the hash table size, which is used to mask off results from the hash

function.

Initially, the Tuple Request component will stream each relation’s tuple from memory,

request its join key, assign a separate FPGA thread (job) and start its pipelined execution. The

design assumes the join key size is between 1 and 8 bytes, and it is set at runtime with a register.

The actual tuple can be of arbitrary size. Requests are continually issued until all tuples have been

processed, or the memory architecture stalls. When a thread issues a request the tuple’s pointer is

added to the thread state, and the thread goes idle.

As join key requests are completed, the thread is activated, and the key along with its hash

value is stored in the thread’s state. The Write Linked List component writes the key and tuple

pointer to a new node into the appropriate bucket linked list. The Update Hash Table component

issues an atomic request to read and update the hash table. The old bucket head pointer is read

while the new node pointer replaces it. An atomic request is needed here because a single engine

can have hundreds of threads in flight, and issuing separate reads and writes would create race

conditions. While the atomic request is issued the new node pointer is added to the thread’s state.

As the atomic requests are fulfilled the thread is again activated, and the Update Linked

List component updates the bucket chain pointer. If no previous nodes hashed to that location then

the atomic request will return the empty bucket value, which is used to signify the end of a list

chain. Otherwise, the old head pointer is used to extend the list.

All experiments presented in this chapter are performed on a specialized Convey HC-2ex

heterogeneous machine that offers a shared global memory space between the CPU and FPGA
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regions. Each processing unit (CPU or FPGA) can access data from both memory regions, but

remote data accesses go across PCIe and have significantly longer latency. We chose the Convey

HC-2ex as our target platform because it allows direct comparison between hardware and software

implementations on the same memory architecture. In addition, it has 4 FPGAs with direct high

bandwidth (19.2 GB/s) access to 64 GB of 1600 MHz DDR3 memory. The software region of Convey

HC-2ex has 2 Intel Xeon E5-2643 processors running at 3.3 GHz with a 10 MB L3 cache which are

connected to local 128 GB of 1600 MHz DDR3 memory. Each CPU processor has a peak memory

bandwidth of 51.2 GB/s. To perform a fair comparison, we run our experiments on 2 FPGAs to

match memory bandwidth as close as possible (38.4 GB/s for the FPGA vs 51.2 GB/s for the CPU)

or normalize obtained throughput to the unit of bandwidth.

5.4 The Join Operator

In the following section, we describe software implementations of the in-memory relational

join operator and compare their performance with the FPGA-based multithreading approach 2.

5.4.1 Software Implementations

As the state-of-the-art multi-core hash join approach we use the implementation from [21].

It includes 2 types of hash join algorithms:

• Hardware-oblivious non-partitioned join

• Hardware-conscious partitioning-based algorithm.

Both implementations perform the traditional hash join with build and probe phases, however the

main difference lies in the way they are utilizing multi-core CPU architecture.

The non-partitioned approach builds a single hash table which is shared among all threads,

therefore requiring explicit synchronization. In addition, this algorithm does not make any hardware-

2All FPGA performance measurements were done by Robert Halstead
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specific choices relying only on hyper-threading to mask cache miss and thread synchronization

latencies, similarly to the FPGA multithreading approach.

On the other hand, the partitioning-based algorithm introduces a preliminary step to divide

the input table and avoid contention among executing threads during the build phase. Later during

the join operation, each thread will process a single partition without explicit synchronization.

The Radix clustering [29] algorithm, which is a backbone of the partitioning stage needs to be

parameterized with the number of TLB entries and cache sizes, making the approach hardware-

conscious. In our experiments, we use a two-pass clustering and produce 214 partitions, which yields

the best cache residency for our CPU.

5.4.2 Dataset Description

Our experimental evaluation uses 4 datasets. Within each dataset, we have a collection

of build and probe relations ranging in size from 220 to 230 elements. Each dataset uses the same

8-byte wide tuple format, commonly used for performance evaluation of in-memory query engines

[21, 29, 26]. The first 4 bytes hold the join key, while the rest is reserved for the tuple’s payload.

Since we are only interested in finding matches (rather than joining large tuples), our payload is

a random 4-byte value. However, it could just as easily be a pointer to an actual arbitrarily long

record, identified by the join key.

The first dataset, termed Unique, uses incrementally increasing keys which are randomly

shuffled. It represents the case when the build relation has no duplicates, thus keys in the hash table

are uniformly distributed with exactly one key per bucket (assuming simple modulo hashing). The

next dataset (Random) uses random data drawn uniformly from a 32-bit integer range. Keys are

duplicated in less than 5% of the cases for all build relations having less then 228 tuples. The largest

relations have no more than 20% duplicates. For this dataset, bucket lists average 1.6 nodes when

the hash table size matches the relation size, and 1.3 nodes when the hash table size is double the

relation size. The longest node chains have about 10 elements regardless of the hash table size. To
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explore the performance on non-uniform input, the keys in the final two datasets are drawn from

a Zipf distribution with coefficients 0.5 and 1.0 (Zipf 0.5 and Zipf 1.0 respectively); these datasets

are generated using the algorithms described by Gray et al. [66]. In Zipf 0.5 44% of the keys are

duplicated in the build relation. The bucket list chains have on average 1.8 keys regardless of the

hash table size, while the largest chains can contain thousands of keys. In Zipf 1.0 the build relations

have between 78% and 85% of duplicates. Their bucket list chains have on average from 4.8 to 6.7

keys. The longest chains range from about 70 thousand keys in the relation with 220 tuples to about

50 million in the 230 relation.

5.4.3 Experimental Evaluation

5.4.3.1 Throughput

We report the multi-core results for both partition-based and non-partitioned algorithms.

Results are obtained with a single Intel Xeon E5-2643 CPU, running on full load with 8 hardware

threads. However because of the memory-bounded nature of hash join we use two FPGAs to offset

the CPUs bandwidth advantage: a single CPU has 51.2 GB/s of memory bandwidth while two

FPGAs have 38.4 GB/s (even with this bandwidth adjustment, the CPU still has almost a 30%

advantage). By matching the bandwidth be can get a more accurate comparison between the

approaches. Obviously, given of the parallel nature of hash join, the CPU and FPGA performance

could easily be improved by adding more hardware resources.

Figure 5.3 shows the join throughput for two build relations, with 221 and 228 tuples

respectively, while increasing the probe relation size from 220 to 230 for all datasets mentioned in

Section 5.4.2. The FPGA performance shows two plateaus for the Unique, Random and Zipf 0.5

data distributions on Figures 5.3a, 5.3b, and 5.3c. The FPGA sustains throughput of 850 MTuples/s

when the probe phase dominates the computation (that is when the size of the probe relation is much

larger than the size of the build relation) and it is close to the peak theoretical throughput of 1200
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(a) Unique dataset (b) Random dataset

(c) Zipf 0.5 dataset (d) Zipf 1.0 dataset

Figure 5.3: Dataset throughput as the build relation size is increased.

MTuples/s which can be achieved with 8 engines on 2 FPGAs. When the build phase dominates the

computation, atomic operations restrict FPGA throughput to about 450 Mtuples/s (in the FPGA

228 plot, the throughput stays almost constant until the probe relation becomes comparable in size

to the build relation). Clearly, in real-world applications, the smaller relation should be used as the

build relation. In the worst case, we can expect FPGA throughput to be 600 MTuples/s when both

relations are of the same size. For the extremely skewed dataset, Zipf 1.0, (shown in Figure 5.3d)

the FPGA throughput decreases significantly and varies widely depending on the specific data. This

happens because extremely long bucket chains create a lot of stalling during the probe phase that

greatly affects throughput.
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The CPU results are consistent with numbers reported in [21]. The partitioned algorithm

peak performance is around 250 MTuple/s across all datasets, regardless of whether the computation

is dominated by the build or the probe phase. It is also not affected by the data skew. For the non-

partitioned algorithm, the throughput depends on the relative sizes of the relations, since like in the

FPGA case, the throughput of the build phase is lower than the probe phase. The non-partitioned

algorithm behaves always worse than the FPGA approach. Interestingly, for the Unique dataset, the

non-partitioned version has better throughput than the partitioned one, because the bucket chain

lengths are exactly one. As the average bucket chain length increases (moving from the Unique to

the Random to the skewed datasets) the throughput of non-partitioned approach decreases. For the

extremely skewed Zipf 1.0 dataset, it falls approximately to 50 MTuples/s.

Averaging the data points within all datasets yields the following results: the FPGA shows

a 2x speedup over the best CPU results (non-partitioned) on Unique data, and a 3.4x speedup

over the best CPU results (partitioned) on Random and Zipf 0.5 data. The FPGA shows a 1.2x

slowdown compared to the best CPU results (partitioned) on Zipf 1.0 data.

5.4.3.2 Scalability

To examine scalability, in the next experiments we attempt to match the bandwidth be-

tween software and hardware as closely as possible: every 4 CPU threads are compared to one FPGA

(note that this still provides a slight advantage to the CPU in terms of memory bandwidth). We

examine two cases, when the probe relation is much larger than the build one, and when they are

of equal size.

Figures 5.4a,5.4c and 5.4e show the results when the probe phase dominates the computa-

tion. The FPGA scales linearly on datasets Unique, Random and Zipf 0.5 (Figure 5.4a).

However, for the Zipf 1.0 dataset, the performance does not scale because of the extreme

skew. Each probe job searches through an average of 4.8 to 6.7 nodes in the linked list. Therefore

most jobs are recycled through the datapath multiple times. Having too many jobs being recycled
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(a) FPGA scalability when build relation has 221,
probe relation has 228 tuples

(b) FPGA throughput scalability when build and
probe Relations both have 228 tuples

(c) Partitioned CPU throughput scalability when
build Relation has 221, probe relation has 228 tuples

(d) Partitioned CPU throughput scalability when
build and probe relations both have 228 tuples

(e) Non-partitioned CPU throughput scalability when
build relation has 221, probe relation has 228 tuples

(f) Non-partitioned CPU throughput scalability when
build and probe relations both have 228 tuples

Figure 5.4: FPGA (a-b), Partitioned CPU (c-d) and non-partitioned CPU (e-f) throughput com-
parison as the bandwidth and number of threads are increased.
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(a) Build Relation has 221, Probe has 228 tuples (b) Build and Probe Relations both have 228 tuples

Figure 5.5: Throughput efficiency.

limits the new jobs entering the datapath causing back pressure and stalling. The partitioned CPU

algorithm scales as the number of threads increases but at a lower rate than the FPGA approach

(depicted in Figure 5.4c). The non-partitioned software algorithm shows a drop in performance

while moving from 8 to 12 threads because of the NUMA latency emerging while moving from 1 to

2 CPUs (Figure 5.4e).

The FPGA scales at a lower rate when the build and probe relations are of the same size

(Figure 5.4b), since the throughput of the build phase remains constant while the probe phase scales.

The slope of the scale graph is almost comparable to the CPU implementations (shown on Figures

5.4d and 5.4f) Again the extreme skew case does not scale for the FPGA.

5.4.3.3 Throughput Efficiency

To get a direct comparison of throughput we normalize it to the available bandwidth. As

it was mentioned earlier each FPGA has 19.2 GBs of bandwidth, while each CPU has 51.2 GBs.

The normalized results are shown in Figure 5.5.

When the probe relation dominates the computation (Figure 5.5a) the FPGA shows speedup

between 3.2x and 6x on the Unique dataset. It shows a speedup between 4.4x and 10x on the Random

and Zipf 0.5 datasets. Finally, it shows speedup between 0.6x and 8.3x on the Zipf 1.0 dataset.
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When neither relation dominates the computation (Figure 5.5b) the FPGA shows speedup

between 1.7x and 8.6x on the Unique dataset. It shows a speedup between 1.7x and 23.1x on the

Random and Zipf 0.5 datasets. Finally, it shows speedup between 0.2x and 21.6x on the Zipf 1.0

dataset.

5.5 The Group-by Aggregation

Despite the similarities with the hash join covered in Section 5.4, the two operators are

using the hash table in a very different manner: the hash join has a clear delineation between

the build phase, when the hash table is modified, and the probe phase during which the table is

only read. In the group-by aggregation the read- and write-requests are instead mixed in a single

phase. Moreover during the build phase of the hash join, a key will always create a new node

in the appropriate bucket list. For the aggregation, a key is first searched within the appropriate

bucket list and then it either updates an entry value (if this key has been found) or inserts a new

entry into bucket list. All these dissimilarities become especially important in the multithreaded

environment, when explicit synchronization is needed to guarantee correctness, leading to different

optimization strategies for the two hash-based operators. For FPGAs we consider two different

multithreaded designs: regular and multiplexed 3. Multiplexing efficiently reuses parts of the FPGA

datapath, increases the number of engines we can put onto a single FPGA and leverages inter-engine

parallelism to increase memory utilization.

5.5.1 Software Implementations

We implemented the following state-of-the-art multithreaded software aggregation algo-

rithms: (i) Independent Tables[40], (ii) Shared Table [40], (iii) Hybrid Aggregation [40], (iv) Parti-

tion with Local Aggregation Table [119] and (v) Partition & Aggregate [119]. Here, (i) and (ii) are

3All FPGA performance measurements were done by Robert Halstead and Prerna Budhkar
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considered as non-partitioned implementations, (v) is a partitioning-based algorithm while (iii) and

(iv) are hybrid approaches.

• Independent Tables is the approach most similar to the hardware implementation. The

tuples are evenly split among separate software threads (without partitioning), and each thread

aggregates the result into its own hash table. Once the aggregation is complete all tables are

merged together, which requires write synchronization.

• Shared Table (with locking or atomic synchronization) splits the tuples evenly between

threads, but all threads aggregate their results into a single hash table, hence no extra merge

step is required. The algorithm could use different synchronization primitives: either mutexes

or hardware atomic instructions. Preliminary experiments showed that atomic primitives are

significantly better on low key cardinalities and do not have any difference from mutexes on

medium and large cardinalities, so we choose atomics as a default synchronization primitive

in all further experiments.

• Hybrid Aggregation is a combination of two previous approaches. This algorithm allocates

a small hash table for each thread. The size of the table is calculated based on the processor’s

L2 size to avoid cache misses. If the local table has enough space for a new value, or the value

already exists in the table, that tuple is locally aggregated. Once the local table is filled and

the next tuple requires a new slot, the oldest entry in the cached table will be spilled into the

larger shared table residing in the main memory, thus maintaining only “hot” data in the L2

cache. Once aggregation is complete all small cached tables are merged into the large shared

table. Merge step is synchronized as in Independent Tables case.

• Partition & Aggregate (also known as count-then-move [41]) uses individual tables per

thread, but before aggregation is performed the tuples are partitioned, in contrast to all afore-

mentioned approaches. Separate partitioning step makes sure that all threads will work on

non-overlapping values, hence aggregation could be done without any synchronization and
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the final tables are simply concatenated, rather than merged. As with the partitioned join

implementations, the radix clustering [29] algorithm is a backbone of this preliminary step.

• PLAT (Partitioning with Local Aggregation Table) is a combination of two previous

techniques. The algorithm takes advantage of the fact that we are performing an additional

data scan while doing a preprocessing step. While partitioning tuples into groups with mutually

exclusive keys, each thread tries to aggregate values into its own small L2-resident table, as

in Hybrid Aggregation approach. Values that do not fit into the small table are partitioned

using radix clustering algorithm. Once preprocessing is done standard lock-free aggregation

is applied. In the end, all tables that were produced during aggregation are concatenated

together, while local aggregation tables are synchronously merged in.

5.5.2 Dataset Description

We use five datasets with various s key distributions, namely: Uniform, Heavy Hitter,

Moving Cluster [40], Self Similar and Zipf 0.5.

• In the Uniform dataset, all key values are picked from uint64 key range with uniform prob-

ability. After that generated key/value pairs are randomly shuffled.

• A half of the tuples in the Heavy Hitter dataset share the same a key value. The remaining

key values are picked uniformly and evenly distributed throughout the entire relation.

• In the Moving Cluster dataset, tuples are grouped into clusters depending on their key

values. Lower key values are more likely to appear at the beginning of the relation, whereas

tuples with higher key values tend to appear at the end of the relation.

• Self Similar uses Pareto rule to model key distribution in a dataset: a single key value is

shared by 20% of the tuples. Of the remaining 80% of tuples, 20% of those share another

key value. This process is repeated recursively to generate the relation. Tuples are randomly

shuffled. The generation algorithm is described by Gray et al. [66].
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• In the Zipf dataset key values follow the Zipf distribution with a skew coefficient of 0.5. The

generation algorithm appears in aforementioned work[66].

Each dataset consists of several benchmarks with cardinalities ranging from 210 to 222

unique keys. The relation size in all of the experiments was 256 million tuples (in line with previous

research [119]). Each dataset used the same 8-byte wide tuple format as in join experiments mention

earlier in Section 5.4. The first 4 bytes of the tuple hold the unique primary key, while the rest

is reserved for the grouping key. Since we are only interested in counting records with the same

grouping keys, our tuples do not store any other information. However, none of the design choices

prevent the use of “wide” tuples (i.e. containing fields other than primary and grouping keys). This

could be easily supported by adding a key extraction component into the FPGA design. Moreover

experimenting with such “skinny” tuple format yields the best performance for software implemen-

tations, since it minimizes the cache capacity misses, which would decrease caching effectiveness

otherwise.

5.5.3 Experimental Evaluation

5.5.3.1 Throughput

Figure 5.6 displays the throughput of the group-by aggregation as the key cardinality is

increased, obtained for various datasets. Throughput was measured across two FPGA engine designs

(regular and multiplexed), and five software (two non-partitioned, two hybrid and one partitioned)

implementations. Throughput for skewed Heavy Hitter dataset Figure 5.6d resembles the results for

Self Similar dataset Figure 5.6b, while the throughput for moderately skewed data Zipf 0.5 5.6e is

similar to the results obtained for Uniform dataset Figure 5.6a. Software implementations demon-

strate the best performance on Moving cluster dataset Figure 5.6c due to the property of the data

distribution: similar grouping keys appear in the input stream clustered together, increasing CPU-

cache hit rates.
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Figure 5.6: Aggregation throughput of hardware and software approaches for datasets with 256M
tuples.
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Despite all the differences in data distribution CPU aggregation performance mainly de-

pends on the dataset’s key cardinality. While the number of unique keys is low, hash tables can fit

into the CPU cache entirely. However, as the cardinality increases, cache misses start to hamper the

throughput due to high latency memory round-trips. Software performance severely deteriorates at

cardinalities higher than 218 on all datasets for all algorithms. Another trend, which appears in all

experiments, is that the Independent Tables approach yields the best result across all software algo-

rithms. Nevertheless, that algorithm exhibits poor scalability, since the amount of memory needed

for aggregation processing grows linearly with the number of parallel threads and the key cardinality.

As the number of parallel threads increases, the amount of available memory could quickly become

a bottleneck. We could also see that hybrid algorithms (PLAT and Hybrid Aggregation) outperform

traditional partitioned (Partition & Aggregate) and non-partitioned (Shared Table) approaches by

amortizing the cache miss cost and sustain a throughput around 400 MTuples/sec. This trend con-

tinues for cardinalities up to 216, which marks the end of L3-cache residency. After that point, the

performance advantage of hybrid algorithms vanishes and drops below 100 MTuples/sec.

The FPGA performance also drops as the key cardinality increases, however this effect

is much less profound. Unlike the software throughput, this result is explained by the overhead,

introduced by the post-processing merge step. However the overall performance is still up to 10x

higher than the software throughput. The results also clearly show the benefits of the multiplexed

engine design. Typically the throughput of the multiplexed FPGA engine is up to 30% more than

the initial design. It should be also noted that the FPGA throughput does not deteriorate on heavily

skewed data (Self Similar), as it was the case with the hash join [70].

5.5.3.2 Memory Bandwidth Usage

It should be noted that the performance benefits of the FPGA-based approaches does not

come not architecture-specific features, but from multithreading, which allows to utilize the available

memory much better than any of the software implementations. Figure 5.7 depicts the ratio of
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Figure 5.7: Ratio of average effective memory bandwidth to peak theoretical bandwidth achieved by
the Independent Tables software algorithm and the Multiplexed FPGA design for varying dataset
sizes and key cardinalities.

effective average memory bandwidth to peak theoretical memory bandwidth for the best software

(Independent Tables) and FPGA (multiplexed) implementations while varying dataset sizes and key

cardinalities. Hardware multithreading approach allows the FPGA implementation to keep the ratio

almost constant, irrespectively of dataset size or key cardinality. On the contrary, the ratio for the

software approach varies greatly. The effective memory bandwidth of the CPU implementation tends

to grow as the size of the relation increases (from 8M to 128M), whereas the FPGA-based approach

is less susceptible to data size variations. For low cardinality the aggregated relation and hash table

are cached and there are almost no memory accesses, hence the ratio approaches 0. The software

ratio peaks at around 0.3 for cardinality 218, but drops significantly for higher key cardinalities. For

very large cardinalities the FPGA implementation ratio is almost 5 times higher.

5.6 The Selection Operator

We proceed with algorithms implementing the selection operator on CPU as well as GPU

architectures and present an experimental study of its performance compared to an FPGA multi-

threaded implementation 4.

4All FPGA performance measurements were done by Prerna Budhkar, while the GPU performance evaluation was
done by Vasileios Zois
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Here we assume that selection operates directly on the input array of records (i.e. is not

pipelined to an input of an earlier operator) and materializes qualified tuples into a new output

array. This is a common scenario for query plans where the selection is pushed all the way down to

the data scan operator. For each tuple ti, we will be evaluating k predicates. There are 3 commonly

used selection evaluation algorithms: (i) branching scan, (ii) bitwise-AND and (iii) no-branch [96].

• Branching scan is the most straightforward way of implementing selection. Listing 5.1 shows

this method for a conjunctive query with ’<’ comparison.

f o r ( i =0; i < number o f tup le s ; i++)

i f ( ( ti[0] < v1 ) && (ti[1] < v2 ) && . . . (ti[k] < vk ) )

{ out [ j++] = i ; }

Listing 5.1: Algorithm - Branching Scan

The evaluation continues until one of the attributes is assessed to be false or all the attributes

of a query have been examined. This technique is often called a ‘short-circuit evaluation’

because the computation of further predicates can be skipped when the first predicate is already

evaluated to false. The logical-AND operator (&&) is typically compiled into k conditional

branch instructions. Assuming that the predicates have increasing selectivity, this method is

optimal in terms of processing cycles. However, it was shown that on CPUs it leads to heavy

branch mispredictions, causing considerable performance penalties [96, 30].

• Bitwise-AND, presented in Listing 5.2, is an alternative implementation that uses bitwise-

AND operation (&) instead of logical-AND (&&). This approach reduces k conditionals to a

single branch.

f o r ( i =0; i < number o f tup le s ; i++)

i f (ti[0] < v1 & ti[1] < v2 & . . . ti[k] < vk )

{ out [ j++] = i ; }

Listing 5.2: Algorithm - Predicate Scan with Bitwise-AND (&)

Here all predicates for a given tuple, ti, are evaluated and then, depending upon the result of

the evaluation, a branch is executed. This method reduces branch misprediction penalties at

the cost of higher computational work.
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• Finally, a no-branch implementation is shown in Listing 5.3. This approach completely

eliminates penalties caused by branch mispredictions by increasing computation cost even

further.

f o r ( i =0; i < number o f tup le s ; i++)

out [ j ] = i ;

j += (ti[0] < v1 & ti[1] < v2 & . . . ti[k] < vk )

Listing 5.3: Algorithm - No-Branch

The techniques presented in Listings 5.2 and 5.3 either reduce or completely eliminate the

branches. Yet, both approaches process all predicates and miss the opportunity to skip irrele-

vant evaluation as in the branching scan.

5.6.1 Software Implementations

An efficient implementation of algorithms 5.1-5.3 must be designed for a specific data

layout to effectively leverage the extensive cache hierarchy. Many efficient algorithms have been

proposed for both row [96] and column [91, 121, 51] storage layouts. Moreover, the columnar format

allows effective compression and increases the throughput by more than an order of magnitude over

traditional CPU row-store database systems [51]. However, all these approaches require an overhead

of converting data in a row-major format to a columnar layout either in the background or keeping

two separate representations of the same record.

In addition to thread-parallelism, modern architectures support data-level parallelism and

provide new opportunities for vectorized implementations. All modern CPUs are equipped with

SIMD registers that can be used to accelerate many database operations [120, 118], including se-

lection. All three techniques described in Section 5.6 can be vectorized. However, the algorithm in

Listing 5.1 requires additional bookkeeping to track which row should be dropped from future eval-

uation. This can be achieved by using non-contiguous loads/store (scatter/gather) operations[92]

available only in the latest processors supporting AVX2 vectorization which make the design less

portable. However, branching scan still can be implemented using older SIMD intrinsics but it will
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be sensitive to small predicate selectivity. The other two techniques are independent of predicate se-

lectivities. They do not take advantage of early termination and hence do more predicate evaluations

per query than the first algorithm.

For the CPU we implemented a scalar as well as a SIMD vectorized version of the no-

branch algorithm (Listing 5.3). (We note that for the scalar implementation we first performed a

preliminary experiment also considering the algorithms in Listings 5.1 and 5.2, but determined that

no-branch outperforms them, which is in line with earlier findings [96].) In both the scalar and

vectorized implementations, we leverage multithreading by partitioning the input relation across

different threads, pinned to physical CPU cores to avoid cache trashing. For each approach, we use

the tuple storage format that allows it to extract the greatest benefits, namely row-major format

for scalar implementation and columnar data layout for the vectorized version. Predicate constants

are statically compiled, predicate loops are manually unrolled to avoid additional cache misses and

allow additional compiler optimizations. The SIMD implementation does not use the latest AVX2

primitives (scatter/gather) to allow experimentation on older CPUs but leverages the permutation

table technique to materialize the result recordIDs [92].

Recently, GPUs have also been considered a viable alternative to modern CPUs for ac-

celerating common relational operators [71], including selections [65]. GPUs implement no-branch

algorithm because conditional execution (Listings 5.1 and 5.2) results in thread divergence and

reduces the overall system performance. Selection is executed in two steps: (1) evaluating the pred-

icate conditions and (2) gathering the indices of the qualifying rows [71]. During processing, all

threads within a warp execute in lock-step irrespective of the predicate selectivity. However, being

oblivious to predicate selectivity can lead to wasted memory bandwidth since it does not provide

any opportunities to stop fetching new predicates based on the last evaluation (Listing 5.1). For

low selectivity, GPUs may overcome this limitation by relying on indexes [71], thus reducing the

overall tuple evaluation latency at the expense of processing throughput. Overall, maintaining an
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index can be costly when frequent updates are expected thus in this work, we focus on throughput

optimization thus avoiding the use of indexes.

The GPU implementation relies on the findings of [102] and [71]. We assign each GPU

thread to a distinct tuple for processing and evaluate the conditions of a query using a for-loop. Each

evaluation is aggregated to a local register using bitwise-AND operands [102]. The final evaluation

results are written back to global memory into a flag vector. In order to identify the qualifying tuple-

ids, we utilize a stream compaction kernel available from NVIDIA’s CUB [85] library. This kernel

applies the given selection criterion, as indicated by the flag vector, to construct the corresponding

output sequence from the selected items in the tuple-id input sequence. Gathering the qualifying

tuples using the aforementioned method was also proposed in [71].

5.6.2 Datasets and Queries

In order to study in detail how the number of predicates and the total selectivity affects

runtime on different platforms we used synthetically generated data. Each tuple consists of 8 fixed

size 64-bit columns. We have considered both row-major and column-major storage formats. In the

former case, the tuple’s data is aligned contiguously occupying exactly one cache line. In the latter

scenario, values of a particular column for all tuples are stored adjacent to each other. Values of

different columns are drawn from a uniform distribution and are not correlated between individual

tuples. This allows us to easily calculate the total query selectivity from the probability of each

predicate.

In our experiments query selectivity was varied from 0% to 100% (0%: no row qualifies,

100% all rows qualify) with 10% increments, while the number of predicates in queries was inde-

pendently changed from 1 to 8. We also tried different dataset sizes (8M, 16M, 32M, 128M) and

found that throughput is independent of the dataset size. For brevity, we show only experiments on

a 128M dataset.
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To the best of our knowledge, there is no separate benchmark concentrating on evaluating

the selection operator. Standard analytical database benchmarks (like TPC-H) evaluate complex

SQL queries, consisting of multiple operators such as projections, joins, aggregations, etc. Among

the TPC-H queries, only Q6 involves single table selections; Section 5.6.3.3 presents our experiments

for this query using data created by the TPC-H benchmark.

5.6.3 Experimental Evaluation

5.6.3.1 Runtime
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Figure 5.8: Query evaluation runtime measured on FPGA, CPU, and GPU with varying selectivity
and number of predicates.

Figure 5.8 compares the absolute query runtime on the CPU, GPU, and FPGA implementa-

tions. The GPU delivers the best raw performance across different predicate values and selectivities,

followed by the FPGA-based multithreaded approach, which performs better on low selectivity val-

ues and smaller values of predicates. The CPU SIMD implementation comes next, and finally the

CPU Scalar implementation achieves the highest runtime among all other architectures.

Adhering to the branching-scan characteristics, the performance of the FPGA implementa-

tion is sensitive to predicate probability. The predicate probability of a conjunctive query increases

with the selectivity (S) as well as with the number of predicates (k). As a consequence, the query

evaluation can terminate early for the lower value of selectivities but builds up for higher values.
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Additionally, for high values of S, the work required to write tuple into the output increases too,

resulting in a quick drop in throughput.

Furthermore, in our experiments we define S using p and k assuming that all predicates

have the same probability. On the other hand, real-world queries might have a different combination

of predicate probabilities for the same total selectivity. If a query optimizer performs a good job of

arranging predicates in the order of their likelihood of being false (true) for conjunctive (disjunctive)

queries, the FPGA-based approach will work independently of the number of predicates in a query

and is only limited by the number of memory accesses required for query evaluation. This can be

seen in Figure 5.8, where the FPGA runtime does not change with the number of predicates for 0%

selectivity.

Unlike the FPGA implementation which is based on early termination, all other platforms

implement a variant of the No-Branch algorithm. The CPU Scalar graphs clearly show that its

execution time is independent both from the number of predicates and from the query selectivity.

This independence is an expected behavior because in a row-major storage format selection is a

memory-bounded computation. Each access to a particular tuple will bring from memory the values

for all its columns, whether they will be evaluated later or not.

On the other hand, the runtime of the CPU SIMD implementation grows linearly as we

increase the number of predicates in a query from 1 to 8. Again, this behavior is explained by

the fact that in a columnar storage format we are fetching only the values that will be later used

for evaluating the predicate. For the queries with 8 predicates, the runtimes of Scalar and SIMD

converge because they perform the same amount of memory accesses. However, we can also see

another trend for the vectorized implementation: its runtime grows as we move from 0% selectivity

to 100%. This is explained by the increasing amount of qualifying recordIDs which are written to

the output buffer. The SIMD implementation is susceptible to growing number of output tuples

because it requires additional permutations in order to retrieve IDs of the rows that were qualified

from a SIMD lane.
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We should also note that for the CPU implementations, the runtime is a function of the

main memory bandwidth utilization, not the penalty of fetching data into CPU cache. In both

experiments, the data access patterns (contiguous load for Scalar or load with constant strides for

SIMD) are easily recognized by the CPU prefetcher, which was verified by preliminary experiments

where we had disabled the prefetcher.

Similarly, the GPU implementation evaluates all predicates despite their different selectiv-

ities, resulting in more evaluation work for the respective query. This translates to a higher number

of memory fetches that quickly dominate the total execution time, as their cost is several magnitudes

higher than that of evaluating the predicate conditions. Therefore, an increase in the number of

predicates corresponds to increasing runtime as indicated by our experimental results.

5.6.3.2 Throughput Efficiency

To better capture the memory-bounded nature of the selection and provide a direct com-

parison between widely different architectures we normalize the FPGA, CPU, and GPU throughput

to the memory bandwidth available on each architecture. As discussed earlier in Section 5.3 the

Convey HC-2ex has 4 FPGAs with the cumulative bandwidth of 76.8 GB/s, the CPU system has

a memory bandwidth of 51.2 GB/s, and the GPU system has a memory bandwidth of 480 GB/s.

The normalized results are shown in Figure 5.9.

The CPU SIMD implementation is remarkably efficient for k = 1 and S = 0%. Since only

one predicate is evaluated, the columnar data layout makes the cache access extremely effective in

this case. Moreover, with 0% selectivity, there is no result materialization overhead. However, the

CPU SIMD throughput drops quickly as S and, especially, k are increased.

In contrast, since the hardware multithreading-based design is only susceptible to the pred-

icate probability, it takes better advantage of early termination on lower selectivity values and pro-

cesses more tuples/sec per bandwidth. It can be seen from Figure 5.9 that for k > 1 and S = 0%,

FPGA is 1.2x - 5x more bandwidth efficient. However, as selectivity increases, we start seeing the
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Figure 5.9: Throughput achieved by FPGA, CPU and GPU implementation normalized to their
respective bandwidth. Note that the legend description is same as that of Figure 5.8.

effect of the writeback pressure. For instance, for 50% selectivity, an effective speedup of only 1.2x -

1.7x is achieved over the CPU SIMD implementation. Overall the FPGA design remains 1.6x - 4.7x

more efficient in comparison to the CPU Scalar implementation within the wide range of selectivities

(0% ≤ S ≤ 50%).

A similar trend is also observed while comparing to GPU. For lower selectivity values, say,

S = 0% the FPGA-based approach is 1.8x - 5x more efficient than GPU. However, as we increase

the selectivity, the GPU throughput remains unaffected while the FPGA sees a performance drop

to 1.5x - 1.8x for S = 50%. Finally, for S = 100%, the hardware multithreaded throughput is

similar to the GPU, CPU SIMD and has a 2x edge over the CPU Scalar. At this selectivity, the

probability of each predicate is also 100%. For a conjunctive query, this leads to more time spent

on predicate evaluations. Additionally, with the maximum value of selectivity, writeback work is at

its peak. Therefore, at this stage, the FPGA design sees diminishing returns from the advantage of

early termination as writeback becomes the bottleneck.

5.6.3.3 TPC-H Query Evaluation

To evaluate the performance of our implementations on a standard workload we considered

the well-known TPC-H benchmark [9]. We have profiled all 22 TPC-H queries to understand the
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SELECT count(*)

FROM lineitem

WHERE l_shipdate >= date ‘1995-01-01’

and l_shipdate < date ‘1996-01-01’

and l_discount between 0.04 and 0.06

and l_quantity < 24;

Figure 5.11: TPC-H Query6.

various characteristics (selectivity, number of predicates, predicate types) of the selection operator

in this benchmark. Most queries in the TPC-H workload involve complex joins and group-by aggre-

gations, so not all predicates in the WHERE clause might be used as filtering conditions in selection

operators. Instead, we have considered optimized plans where selections are pushed down and exe-

cuted before the joins and right after table scan operators. Figure 5.10 presents the selectivity(%) of

different TPC-H queries. In this experiment, the average number of predicates in the selection was

2, with an exception of queries Q6 and Q19 which have 5 and 8/12 (Part/Lineitem tables) predicates

respectively. All of the selections in the benchmark were conjunctions, again excluding Q19 which

has a mix of conjunctions and disjunctions.
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Figure 5.12: TPC-H query Q6 performance evaluation.

In order to capture the real effect of the FPGA-based design in the selection operation, we

would like to isolate the effect of all relational operators in the query. This makes Q6, shown in Figure

5.11, an ideal candidate for our evaluation. We run the query Q6 on the TPC-H Lineitem table with

the scale factor of 10. The measured selectivity of this query is 1.91%. Figure 5.12a presents the raw

performance of query Q6 executed by the various architectures. We observe the same throughput

trend as discussed in Section 5.6.3.2. Due to the high memory bandwidth GPU achieves the highest

raw performance followed by the hardware multithreaded design, CPU SIMD, and CPU Scalar

implementation. However, when we compare the throughput efficiency in Figure 5.12b, the FPGA

implementation is 13x, 3x and 1.8x more bandwidth efficient than the CPU Scalar, GPU, and CPU

SIMD, respectively.

CPU Scalar CPU SIMD GPU FPGA
Memory 100 18.75 18.75 11.4

Fetches(%)
Evaluations 3 3 3 1.83
(per Row)

Effective Band- 0.47 3.44 2.01 6.13
width speedup

Peak Bandwidth 47.6 61.2 36.6 70.3
Utilization (%)

Table 5.1: Performance Evaluation of TPC-H query Q6 on CPU, GPU and FPGA implementations.
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Furthermore, to confirm the advantage of the FPGA-based design, we also measured the

total number of predicate evaluations and memory fetches. The CPU and GPU implementations

access the common columns (lshipdate, ldiscount) only once. However, FPGA treats them as two

independent attributes and fetches the same column again only if required for further evaluation. The

CPU Scalar implementation accesses all 16 columns per row of the table, therefore it is considered

to have a 100% memory access. The CPU SIMD and the GPU implementations need only 3 out

of 16 columns to evaluate the query, contributing to 18.75% of memory accesses. We used counters

to keep track of the number of memory fetches and the number of evaluated predicates for the

FPGA implementation. Memory fetches with FPGA amount to 11.4% of total memory accesses. As

suggested in [107], we compute the effective bandwidth speed-up by taking the ratio of the total size

of the Lineitem relation processed per unit time and the peak bandwidth. Finally, we also report

the actual peak bandwidth utilization in Table 5.1.

5.6.3.4 Data Layout Independence

We proceed with an experiment that tests the behavior of each approach for the row

and column storage formats. The FPGA design, utilizing the Convey HC-2ex memory subsystem,

achieves performance that does not rely on any form of data alignment in memory. Its performance

only depends on accessing individual columns of a tuple for query evaluation.

On the other hand, both CPUs and GPUs are optimized for cache line accesses. As a

result, we expect their performance to depend heavily on the different storage formats (row and

column major). This is well known for GPUs as they depend on grouping the execution of threads

into warps. This grouping is not only relevant to computation, but also to global memory accesses,

making column access more advantageous. Related literature has unanimously promoted the use of

the column-major [20, 58, 50, 102] data format for GPUs given its superior performance against the

row data format. Hence we do not consider GPUs in the next experiment.
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Figure 5.13: Performance comparison of the CPU and the FPGA implementations with row-major
and columnar data layouts.

Figure 5.13a compares the performance achieved by the CPU implementations, namely,

Scalar on row and SIMD on column store for varying selectivities and number of predicates. The

columnar data layout leads to efficient cache access when only a few predicates are required for

evaluation. This directly translates into high throughput which is 8x over the performance achieved

by a row-store data layout. However, as the number of predicates increases, the amount of data

accessed by both the row-store and the column store implementations converge and so does their

performance. Figure 5.13b shows the FPGA performance on row and column store data layouts.

For a given number of predicates and selectivity, the number of memory accesses does not depend

upon the type of data layout and therefore the FPGA performance remains unaffected.
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5.6.3.5 Power Efficiency
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(a) Power efficiency of FPGA with varying S and k
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(b) Power efficiency of CPU with varying S and k

0

10

20

30

40

0% 10% 50% 100%

Po
w
er
	Ef
fic
ie
nc
y	

(M
ill
io
n	T

up
le
s	/
s)

pe
r	W

at
t

Selectivity

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

(c) Power Efficiency of GPU with varying S and k

Figure 5.14: Comparison of Power Efficiency on FPGA, CPU and GPU systems.

To further justify the FPGA-based hardware multithreaded design, Figure 5.14 presents

the power efficiency results measured in MTuples/s per Watt. We compared the power efficiency

of CPU SIMD, GPU, and FPGA. The measured on-chip power consumption on each FPGA of the

HC-2ex machine is 21 Watt and the total power supply is 25 W, that gives us the total FPGA

power consumptions as 109W (25 + 21*4). On CPU, we use the manufacturer TDP (thermal design

power) rating of 130 W per CPU as prescribed in [90]. On GPU, the average power consumption

was measured to be 155W for the design with a power supply of 600W [3]. We compare the power

efficiency of 4 FPGAs, 2 CPUs and 3584 cores on GPU in Figure 5.14. The power efficiency is

coherent with our throughput evaluation. Since the FPGA throughput drops with the selectivity

and number of predicates, it directly affects the power efficiency too. It is 2x - 19x better than CPU-

SIMD on 0% selectivity. However, for S = 100% the power efficiency drops to 1.8x-4x. Similarly, in

comparison to GPU we get 2x - 6.6x power savings but for S = 100%, the efficiency is on par with

GPU.
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We use the same power statistics to evaluate the power efficiency of different architectures

on query Q6 of TPC-H benchmark. Overall, the FPGA design is 3.4x and 6.5x more power efficient

than GPU and CPU-SIMD implementations on this query.

5.7 Conclusions

In this chapter, we provided an empirical study of algorithms optimized for in-memory

computation of hash join, group-by aggregation, and selection. We have performed an extensive

experimental evaluation of the performance of these operators and compared them against the

hardware multithreading implementations prototyped of FPGAs. We showed that in many cases

performance achieved by the FPGA-based implementations is higher than the throughput of the

algorithms implemented in software. FPGA hardware multithreading was able to achieve higher

throughput by utilizing available memory bandwidth in a more efficient way. In light of the end of

Denard scaling era, we envision that increasing bandwidth utilization will become the only form of

scaling in-memory workloads performance.
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Chapter 6

Conclusions and Future Work

Data sources such as social media, mobile apps, and IoT sensors generate billions of records

each day. Keeping up with this influx of data while providing fast analytics to the users is a major

challenge for today’s data-intensive systems. In this dissertation, we have tackled several problems

related to query processing in modern database systems.

In Chapter 3 we have proposed a novel statistics-collection framework which uses properties

of the LSM-based storage to gather statistics. This approach piggybacks on inherent events of the

LSM framework and allows a database system to collect statistics in a lightweight fashion without

introducing additional runtime overhead. Within this framework, we have implemented 3 popular

types of statistical synopses and presented algorithms to efficiently compute these synopses using a

sorted stream abstraction provided by the index field (primary or secondary) of the LSM component.

We have carried out an extensive experimental evaluation that verified that our statistics-collection

approach does not slow down the ingestion rate of the database system. We have also presented

experiments showing that calculated statistics provide good cardinality estimates for various values

of input parameters such as input data distributions, query workloads, merge policy types and

amount of space allocated to synopses.
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In Chapter 4 we have extended this LSM framework to support statistics gathered on

unordered attributes. Instead of relying on a sorted order provided by the indexed key we have chosen

sketch algorithms (specifically, the Greenwald-Khanna approximate quantile sketch) to capture the

statistical distribution of the unordered stream of values of a particular field. We have performed

careful experiments to identify the limits of applicability of our sketch-based method and have found

that it does not hamper the system’s ingestion performance across a wide variety of settings. We have

also shown that the cardinality estimation accuracy, provided by approximate statistics leveraging

sketch algorithms, matched the accuracy of the exact indexed-based methods. Finally, we identified

the default value of sketch accuracy that provides a practical tradeoff between ingestion rate and

cardinality estimation error in AsterixDB.

As future work we propose to extend this statistics-collection approach to other value

domains (i.e., not just integer numerics) as well as to multidimensional index types (e.g., B-Trees

with composite keys and R-Trees). Another potential research direction is to explore sampling-

based statistics-collection methods and assess their accuracy and runtime overhead in comparison

to precomputed synopses. Sampling tuples from base relations provides significant advantages over

field-level statistics because it does not rely on calculating synopses only for preselected attributes,

thus allowing to correct estimation of cardinalities for correlated data. Finally, our sketch-based

approach to gathering statistics on unordered fields could be further extended by implementing

additional sketch algorithms [47, 45] to create wavelet-based synopses on unordered attributes and

estimate cardinalities of joins.

In the second part of this thesis, we have considered the problem of analytical query pro-

cessing for in-memory workloads. In Chapter 5 we have presented an in-depth empirical evaluation of

typical database algorithms optimized for modern multicore CPU architectures. We have considered

key relational operators, namely joins, aggregations and selections, and have implemented special-

ized versions of these algorithms which (i) are optimized for execution in the multicore environment,

(ii) alleviate the number of cache misses, (iii) reduce control flow branch mispredictions and (iv)
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apply vectorized execution techniques. Our experimental evaluation compared CPU implementa-

tions against the hardware multithreading algorithms implemented on FPGAs and demonstrated

that FPGA-based approaches outperform software implementations in a large number of cases by

utilizing memory bandwidth in a more efficient manner. Given the recent hardware threads, like the

end of Denard scaling and memory wall problem, we predict that maximizing memory bandwidth

utilization would be one of the key problems for future in-memory database systems.

In our experimental evaluation, we have studied the performance of each relational operator

individually. However, in a real system the operators are executed in a pipelined manner feeding

the output of one operator to the input of another. As a future work, we propose building a

unified FPGA-based query execution engine that will be able to process complex analytical queries

holistically by leveraging the hardware multithreading approach and comparing its performance

against the software implementations. Finally, in addition to end-to-end query execution, it would

be interesting to study how the FPGA-based hardware multithreading approach might be used in

hybrid platforms, such as CPUs co-located with FPGAs.
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