
UNIVERSITY OF CALIFORNIA,
IRVINE

On the Performance Evaluation of Big Data Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Pouria Pirzadeh

Dissertation Committee:
Professor Michael J. Carey, Chair

Professor Chen Li
Professor Guoqing (Harry) Xu

Doctor Till Westmann

2015

c© 2015 Pouria Pirzadeh

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION x

1 Introduction 1
1.1 Contributions of this work . 4
1.2 Organization of this dissertation . 5

2 Performance Evaluation of Key Value Stores 6
2.1 Overview . 6
2.2 Motivation . 7
2.3 Related Work . 10

2.3.1 Benchmarking cloud serving systems 11
2.3.2 Range queries in distributed environments 12

2.4 Key Value Stores . 13
2.4.1 Range query in HBase and Cassandra 15

2.5 Range Query in Hash Partitioning Key Value Stores 16
2.5.1 Index-based Technique . 17
2.5.2 No-Index Technique . 21
2.5.3 Hybrid Technique . 22

2.6 Framework . 23
2.6.1 Data and workload generator . 23
2.6.2 Workload executor and Key Value store clients 24
2.6.3 Evaluation process . 25

2.7 Experiments . 26
2.7.1 Experimental setup . 26
2.7.2 Effect of node capacity in VIX and RIX 29
2.7.3 Range Selectivity . 30
2.7.4 Mixed query workloads . 31

ii

2.7.5 Impact of hybrid schemes on other operations 32
2.7.6 Lookup and update scalability . 36
2.7.7 Range query scalability . 38
2.7.8 Non-uniform data test . 42

2.8 Discussions . 45
2.8.1 Summary of the performance results 45
2.8.2 Range index support by hash-partitioning Key Value stores 47

2.9 Conclusion and Future Work . 49

3 Performance Evaluation of Big Data Management System Functionality 50
3.1 Overview . 50
3.2 Motivation . 51
3.3 Related Work . 53
3.4 Systems Overview . 55

3.4.1 System-X . 55
3.4.2 Apache Hive . 55
3.4.3 MongoDB . 56
3.4.4 AsterixDB . 57

3.5 Data and Workload Description . 57
3.5.1 Database . 58
3.5.2 Read-Only Queries . 65
3.5.3 Data Modification Operations . 80

3.6 Experiments . 81
3.6.1 Setup . 82
3.6.2 Read-Only Workload Results . 84
3.6.3 Data Modification Workload Results 91

3.7 Discussion . 97
3.8 Conclusion . 102

4 Performance Evaluation of Big Data Analytics Platforms 104
4.1 Overview . 104
4.2 Motivation . 105
4.3 Related Work . 107
4.4 Systems Overview . 108

4.4.1 Apache Spark . 108
4.4.2 Apache Tez . 109
4.4.3 Storage Formats . 110

4.5 TPC-H Benchmark . 113
4.5.1 TPC-H Database . 113
4.5.2 Queries . 113
4.5.3 TPC-H Auxiliary Index Structures 115

4.6 Experiments . 116
4.6.1 Experimental Setup . 116
4.6.2 Experimental Results . 119

4.7 Selected queries . 129

iii

4.7.1 Query 1 . 129
4.7.2 Query 10 . 130
4.7.3 Query 19 . 133
4.7.4 Query 22 . 136

4.8 Discussion . 140
4.9 Conclusion . 142

5 Conclusions and Future Work 143
5.1 Conclusion . 143
5.2 Future work . 145

Bibliography 147

A TPC-H Queries in AQL 154

iv

LIST OF FIGURES

Page

2.1 BLink Tree on top of Voldemort . 21
2.2 System Architecture . 23
2.3 Effect of node capacity on insert . 30
2.4 Effect of node capacity on lookup and update time (VIX scheme) 30
2.5 Selectivity test - Average time for a range query 31
2.6 Mixed range queries workloads . 33
2.7 Lookup time for different systems and schemes 34
2.8 Update time for different systems and schemes 35
2.9 Insert time for different systems and schemes 35
2.10 Lookup time in different systems . 36
2.11 Lookup throughput in different systems . 37
2.12 Update time in different systems . 37
2.13 Update throughput in different systems . 37
2.14 Multi client test - Short range queries response time 39
2.15 Multi client test - Short range queries throughput 40
2.16 Multi client test - Medium range queries response time 40
2.17 Multi client test - Medium range queries throughput 40
2.18 Multi client test - Long range queries response time 41
2.19 Multi client test - Long range queries throughput 41
2.20 Multi client test - Impact of fanout and client threads - Medium range queries 41
2.21 Non-uniform data test - Response time for different range query lengths . . . 43
2.22 Non-uniform data test - Short range queries response time 43
2.23 Non-uniform data test - Short range queries throughput 44
2.24 Non-uniform data test - Medium range queries response time 44
2.25 Non-uniform data test - Medium range queries throughput 44
2.26 Non-uniform data test - Long range queries response time 45
2.27 Non-uniform data test - Long range queries throughput 45

3.1 Nested BigFUN schema . 60
3.2 Normalized BigFUN schema . 63
3.3 BigFUN operations . 67

4.1 AsterixDB scale-up on external datasets . 123
4.2 AsterixDB scale-up on internal datasets . 124
4.3 Spark SQL scale-up on the text format . 125

v

4.4 Spark SQL scale-up on the Parquet format 126
4.5 Hive scale-up on MR and the text format . 127
4.6 Hive scale-up on MR and the ORC format 127
4.7 Hive scale-up on Tez and the text format . 127
4.8 Hive scale-up on Tez and the ORC format 128
4.9 System-X scale-up . 128
4.10 Query 10 plan - System-X on 9 partitions . 132
4.11 Query 10 plan - System-X on 27 partitions 133
4.12 Query 19 plan - Spark SQL . 135
4.13 Query 19 plan - AsterixDB . 135
4.14 Query 22 plan - Spark . 139
4.15 Query 22 plan - System-X . 139
4.16 Query 22 plan - AsterixDB . 140

vi

LIST OF TABLES

Page

2.1 DQ-Gen parameters . 24
2.2 Different Query Processing Schemes on Voldemort (V-API stands for Volde-

mort built-in API and IX-API stands for our implemented Index API) . . . 29
2.3 Mixed range queries response time for Figure 2.6 (in ms) 33
2.4 Operations time for figures 2.7 to 2.9 (in ms) 35

3.1 BigFUN operations description . 66
3.2 Total database size (in GB) . 82
3.3 Nested schema - Secondary index structures 85
3.4 Normalized schema - Index structures . 85
3.5 Read-only queries - Average response time (in sec) - Part 1 92
3.5 Read-only queries - Average response time (in sec) - Part 2 93
3.5 Read-only queries - Average response time (in sec) - Part 3 94
3.6 Data modification - Avg response time (in ms) 97

4.1 TPC-H schema, Primary keys . 115
4.2 TPC-H tables size (in GB) - SF 150 . 120
4.3 TPC-H tables size (in GB) - SF 300 . 120
4.4 TPC-H tables size (in GB) - SF 450 . 120
4.5 TPC-H tables loading time (in sec) . 121
4.6 TPC-H queries response time (in sec) - SF 150 124
4.7 TPC-H queries response time (in sec) - SF 300 125
4.8 TPC-H queries response time (in sec) - SF 450 126

vii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my academic advisor Prof. Michael J. Carey
for his trust and support during the past five years. It is not often that one finds an advisor
with such a deep knowledge and insightful vision. With his unique character, patience, and
strong research dedication, he has been a source of inspiration throughout the course of
my graduate studies. It has been him who taught me how to find the right problem and
the correct approach to solve it and most importantly leaving no stone unturned by paying
enough attention to all the details. I have had the privilege to work with a smart, critical
thinker and I am deeply indebted to Prof. Carey for his guidance.

I would like to thank Dr. Till Westmann. I have been amazingly fortunate to benefit
from his advice. He has been like a second advisor to me, ready with brilliant ideas, and
encouraging words. From him, I learned how to do disciplined research. His support has
been an invaluable source of confidence for me throughout my studies.

I would like to thank Prof. Chen Li and Prof. Harry Guoqing Xu for being on the dissertation
committee. Prof. Li introduced me to a wider range of scenarios that could benefit from the
work done as part of my dissertation.

I would like to thank Dr. Hakan Hacigumus and Dr. Junichi Tatemura for the wonderful
mentoring during my internship at NEC Labs America. That internship indeed was the start
of my journey in the Big Data world and it directly contributed to this dissertation.

I would like to thank Oracle Labs for their generous support over a period of time in my
graduate studies. They gave me the opportunity to work with new technologies and gain
insight into them which had an impact on the contents of this dissertation.

I would like to thank certain people affiliated with the System-X vendor for their valuable
help on parts of this work.

I would like to thank all other AsterixDB team members and alumnus, specifically Dr.
Raman Grover and Dr. Yingyi Bu, for working hard together to build the systems, make
them usable, and create an opportunity for everyone’s contributions here and there.

The work reported in this thesis has been supported by a UC Discovery grant, by NSF IIS
awards 0910989 and 1059436, and by NSF CNS award 1305430. In addition, the Aster-
ixDB project has benefited from generous industrial support from Amazon, eBay, Facebook,
Google, HTC, InfoSys, Microsoft, Oracle Labs, and Yahoo.

I would like to thank my dear friend Mohammad Khorramzadeh for all the fun we had during
happy moments and his support during difficult times.

Finally, I would like to thank my incredible mother, amazing father and wonderful brother.
Without their love and continuous encouragement, I could not make this thesis.

viii

CURRICULUM VITAE

Pouria Pirzadeh

EDUCATION

Doctor of Philosophy in Computer Science 2015
University of California Irvine Irvine, CA

Masters of Science in Computer Science 2009
University of California Irvine Irvine, CA

Bachelor of Science in Computer Engineering 2006
Sharif University of Technology Tehran, Iran

RESEARCH EXPERIENCE

Graduate Student Researcher 2009–2015
University of California, Irvine Irvine, California

Research Assistant 2013–2015
Oracle Labs Belmont, California

Research Assistant 2010
NEC Labs America Cupertino, California

ix

ABSTRACT OF THE DISSERTATION

On the Performance Evaluation of Big Data Systems

By

Pouria Pirzadeh

Doctor of Philosophy in Computer Science

University of California, Irvine, 2015

Professor Michael J. Carey, Chair

Big Data is turning to be a key basis for the competition and growth among various busi-

nesses. The emerging need to store and process huge volumes of data has resulted in the

appearance of different Big Data serving systems with fundamental differences. Big Data

benchmarking is a means to assist users to pick the correct system to fulfill their applica-

tions’ needs. It can also help the developers of these systems to make the correct decisions in

building and extending them. While there have been several major efforts in benchmarking

Big Data systems, there are still a number of challenges and unmet needs in this area. This

dissertation is aimed at contributing to the performance evaluation of Big Data systems from

two major aspects. First, it uses both new and existing benchmarks to do deep performance

analysis of two major classes of modern Big Data systems, namely NoSQL request-serving

systems and Big Data analytics platforms. As its second contribution, this dissertation looks

at Big Data benchmarking from a new angle by comparing Big Data systems with respect

to their features and functionality. This effort is specifically important in the context of

increasing interest in using a unified system which is rich in functionality to serve different

types of workloads, especially as the Big Data applications evolve and become more complex.

x

Chapter 1

Introduction

The Big Data wave has changed the way that businesses operate and people live. We are

observing an explosion of data in various domains and it is no longer tempting, but necessary,

to store and analyze this data in order to help organizations make correct decisions and

move forward. The volume, variety, and velocity of this data and rapid growth of large-

scale, data-intensive applications have created an urgent need to build platforms to store,

manage, process, and visualize the Big Data efficiently and in a scalable manner. On one

end of the modern Big Data systems spectrum, we have NoSQL systems for serving fast and

concurrent (simple) requests, and on the other end we see Big Data analytics platforms for

batch-oriented and computationally heavy types of workloads.

Various approaches exist for building Big Data platforms, which result in these systems being

different from one another in terms of the architecture, data representation model, query

support, storage, and level of guarantee that they provide for consistency and transactions.

These differences are mainly due to the inherent needs of Big Data applications for massive

(horizontal) scaling, high availability, and high performance. Traditional database systems

have little or no ability to serve such applications with the level of demands that they

1

have, and new Big Data systems often decide to sacrifice or relax the full ACID (Atomicity,

Consistency, Isolation and Durability) properties that have been provided by RDBMSs for

a long time in favor of applications’ demands. Moving from strict to “eventual” consistency

(in Cassandra [56] or DynamoDB [75]) to achieve high availability is an example of such a

decision.

In this situation, a major challenge in the Big Data world is comparing the available systems

to each other. It is critical to have mature Big Data benchmarks to systematically evaluate

Big Data systems from different aspects as a means of helping both customers (in choos-

ing proper system(s) for their use cases) and vendors (in driving their efforts in building,

hardening and solidifying their technologies).

While the large body of existing works (from both the industry and academia) in bench-

marking traditional relational databases seems relevant and inspiring for the Big Data bench-

marking, it is not sufficient to fulfill the needs of the Big Data world. The Big Data era has

brought new challenges in benchmarking:

• Diversity in data: As the variety and velocity of the generated data items increase,

data records in Big Data applications tend to be more and more heterogeneous and

conform less to any strict schema. While many Big Data systems decide to opt for stor-

ing and processing unstructured data, there are systems that pick “semi-structured”

data models to benefit from the amount of structure (if any) that exists in data items

when storing them and processing queries. Moreover, each data item itself tends to

have a more complex structure by including attributes of richer types such as temporal,

spatial or collections and also attributes with nesting. A mature Big Data benchmark

is expected to reflect these properties in its data and has to offer reasonable metrics to

evaluate and compare Big Data systems on this aspect.

• Diversity in workloads: Considering the variety in major Big Data applications such

2

as social networks, e-commerce, or Internet of things (IoT), we are observing dominant

workloads with different characteristics (such as simple, short read and write operations

in the OLTP-style workloads, or batched, heavy analytical operations in the OLAP-

style workloads). Making reasonable assumptions about the workload characteristics

and covering this diversity in workloads is a necessary requirement for any Big Data

benchmark so that it can usefully serve by different customers and vendors.

• Diversity in performance metrics: Different Big Data applications have different

requirements for their performance. While traditionally and from the RDBMS tech-

nologies era, response time and throughput have been the major metrics to quantify

the performance of a data store, the evolution of Big Data systems has added new

dimensions to the comparison of their performance such as energy efficiency and cost

effectiveness [74]. As a result, a comprehensive Big Data benchmarking effort needs to

evaluate and compare its target Big Data systems from such perspectives as well.

Major efforts in Big Data benchmarking started with works such as [86] and [61]. To

date, most of the works in this area have a narrow focus and can be mainly categorized

as “functional benchmarks” (such as Terasort) which focus on a well-defined but very spe-

cific function, or “data-genre benchmarks” (such as Graph 500) for specific genres of data,

or “micro-benchmarks” (such as the one in [86]) which focus on a small set of application-

specific operations [46]. Given the current state of these works and the above challenges,

however there are still unmet needs [52] that need to be fulfilled by a new generation of

richer benchmarks developed specifically to explore and evaluate various aspects of Big Data

systems and applications.

3

1.1 Contributions of this work

This dissertation focuses on the issues and challenges in the performance evaluation of Big

Data systems. The major contributions of this work can be listed as:

1) A detailed study of the performance of representative Big Data systems picked from

different parts of the Big Data platform spectrum. For this purpose, we consider major

categories of workloads in Big Data applications and we use existing and new benchmarks

to study and compare various Big Data systems to each other.

2) The design and implementation of novel and extensible micro-benchmarks which address

important characteristics of data and application-specific workloads for conducting accurate

benchmarking of different Big Data systems.

3) Converging the tasks of performance evaluation and functionality evaluation of Big Data

systems in order to explore a “one size fits a bunch” conjecture which argues that one system

with a larger feature set can perform well vs. multiple systems stitched together, each opting

for providing a limited functionality with a narrow set of features. This point is important

in the context of the arising interests in using a unified system (rather than a number of

specialized systems) to serve different storage and processing needs (e.g., [36]).

4) Deriving practical guidelines and rules to assist in the process of designing, implementing

and expanding Big Data systems. This step is achieved through careful and systematic anal-

ysis of the obtained results and identifying major performance bottlenecks and the trade-offs

that may exist between picking a specific architecture and design versus specific operations.

5) Uncovering functional and performance-related issues in Big Data systems. A major part

of this work has been done in the context of AsterixDB project. AsterixDB is a (new)

full-function open source Big Data management system for ingesting, storing and querying

semi-structured data. An important side-effect of this work has been identifying a number

4

of issues in different layers and components of AsterixDB which triggered efforts to address

and fix them.

1.2 Organization of this dissertation

The remainder of this thesis is organized as follows. Chapters 2 to 4 are three core chapters

that look at the performance evaluation of Big Data systems from different perspectives.

Chapter 2 looks at the performance evaluation of NoSQL systems using different schemes

and against mixed workloads of requests in Key Value stores with an emphasis on range

queries. Chapter 3 aims at studying and comparing alternative Big Data systems with

respect to the set of features that they support and the level of performance that they offer

for them. Chapter 4 studies the performance of Big Data analytics frameworks for complex

analytics operations which are computationally heavy and potentially I/O intensive. Finally,

Chapter 5 concludes the thesis.

5

Chapter 2

Performance Evaluation of Key Value

Stores

2.1 Overview

This chapter of the thesis focuses on the first major type of workload in the Big Data world:

operations that are included in “cloud OLTP” applications whose requests normally consist

of small online and concurrent read and write requests to the data. Recently there has

been a considerable increase in the number of available Key Value stores for supporting data

storage and applications in the cloud environment. While all these stores aim to offer highly

available and scalable services in the cloud, they are significantly different from each other

in terms of their architectures and the types of applications that they try to support. Such

a variety makes it difficult for end users to pick the proper system to store their data and

process the workloads that they have. In this Chapter, we consider three widely-used such

systems: Cassandra [56], HBase [76] and Voldemort [88]. We compare them in terms of their

support for different types of query workloads; We focus mainly on their ability to support

6

range queries. HBase and Cassandra have built-in support for range queries. Voldemort does

not support this type of queries via its available API. To address that, we present practical

techniques on top of Voldemort to support range queries. Our performance evaluation is

based on a micro-benchmark which includes mixed query workloads, in the sense that they

contain a combination of short and long range queries, as well as other types of typical

queries on Key Value stores such as lookup (Get() - full value retrieval according to a given

key) and update (Put() - modifying the value associated with a given key). We show that

there are trade-offs in the performance of the selected systems and schemes, and we explore

the types of query workloads that can be processed efficiently.

2.2 Motivation

Cloud computing is expected to provide large-scale applications with elasticity of resources

through an approach called scaling-out, which is about dynamically adapting to growing

workloads by increasing the number of servers. However, data-intensive applications using

traditional relational database management systems (RDBMS) are hard to scale out since in

a large, distributed cluster environment as consistency and availability are hard to achieve

together in a scalable manner for interactive OLTP applications that require short response

times.

Key Value stores have been increasingly adopted as an alternative to RDBMSs in order to

scale out data-intensive applications. Key Value stores achieve better scalability and avail-

ability for a simpler set of workloads with reduced consistency support. There have been

a number of different Key Value stores developed to meet various requirements. Exam-

ples include Google’s BigTable [59], HBase [76], Cassandra [56], Voldemort [88], Couchbase

[40], MongoDB [82], and Amazon’s DynamoDB [75]. However, the large variety in their

architectures makes it difficult to compare Key Value stores in an apples-to-apples manner.

7

To help understand the performance implication of the architectural differences of Key Value

stores, Cooper et al. proposed a benchmark, called YCSB (Yahoo! Cloud Serving Bench-

mark) [61], which consists of several types of workloads that capture common characteristics

of typical cloud OLTP applications.

In this chapter, we contribute to this effort on performance studies of Key Value stores by

covering range queries extensively. The original workloads in YCSB include range queries in

a very limited fashion since range queries were not very common in the usage of Key Value

stores. However, we envision an increasing need for integrated support of transactional and

analytic processing in the same data store, which calls for more extensive use of range queries

and other operations.

In a traditional enterprise environment, transaction processing and analytic processing are

typically done in different stores (operational data stores and data warehouses, respectively).

Although this separation is still valid in cloud environments, we see the following cases where

transactional stores should take some part of analytic processing in addition:

• Real-time analytics : To achieve better customer satisfaction or better security, web

application service providers need to react to the real-time situations among customers.

An analytic process should be able to access the real-time data as well as archived data.

• Decision support for end users : Recent web applications support richer user interac-

tions including recommendations and powerful navigation. Such applications can be

seen as simple “decision support systems” for end users, although queries may not be

as complex as those in enterprise decision support systems.

• Platform-as-a-Service: Key Value stores are not only used for large-scale applications

that occupy a cluster of machines, but also for large-scale platforms that host a large

number of smaller applications. Google App Engine [70] is one such platform. In such

a case, building data warehouses for these small applications might be overkill.

8

As a result, supporting range queries on Key Value stores for cloud OLTP applications will

complement traditional ETL-based approaches. Notice that this complementary approach

does not necessarily call for complete integration of OLTP and OLAP as a one size fits all

data store. For traditional, batch-oriented OLAP, employing separate data stores dedicated

for data warehouse use can make more sense. Our research goal here is to investigate how

far we can push range query workloads to Key Value stores (e.g., for better interactivity or

data freshness) in such a complementary environment.

In this chapter, we are especially interested in interactive applications with range queries

(rather than Map-Reduce applications over Key Value stores). This setting is similar to

YCSB except that we introduce longer range queries.

In fact, the degree to which Key Value stores can take part in analytic processing will depend

on the architectural decisions on individual Key Value store implementations. For instance,

HBase, an open source implementation of Google’s BigTable, is in fact used for analytic

processing as well: it is often used as one of data sources of Map-Reduce jobs. In that sense,

HBase (BigTable) is a Key Value store that integrates transactional and analytic processing.

As YCSB’s paper reported, however, HBase underperforms other Key Value stores in terms

of read response time for simple key lookups. Thus, we should regard HBase (BigTable)

as one design choice for particular trade-off requirements and explore other architectures as

well.

To explore design choices extensively, we have studied the implementation of range query sup-

port on Key Value stores that employ hash-partitioning. Whereas Key Value stores that em-

ploy range-partitioning (e.g. BigTable) natively support range queries, hash-partitioning Key

Value stores (e.g. Voldemort) do not support range query APIs. However, hash-partitioning

Key Value stores have their own benefits (e.g., easier load distribution compared to range-

partitioning). Engineers should not have to give up this option only because it does not

support range queries natively. In a traditional RDBMS, choosing the partitioning scheme

9

is a part of the physical database design process. We want to preserve hash-partitioning Key

Value stores as an option to support such tradeoffs.

Implementing efficient range queries on hash-partitioning Key Value stores is not a trivial

task, although the techniques used are not new. One solution is to construct range indexes

using the data structure supported by such a Key Value store. For instance, Brantner et.

al implement a relational database on top of Amazon’s S3 [38] by implementing the BLink

tree structure [79] with a disk page in the structure being emulated using a Key Value

object [51]. Another solution is to directly access to all the data partitions in the storage

nodes and consolidate the results, just as a shared-nothing parallel RDBMS does. In either

case, additional overhead is a key concern. Extensive performance evaluation is required to

investigate the viability of range query support on hash-partitioning Key Value stores.

In this chapter, we evaluate the performance of various alternative schemes to support range-

query workloads (which include lookup and update queries as well) on top of open source Key

Value stores: HBase, Cassandra, Voldemort. In particular, we explore schemes to support

range queries on Voldemort, a hash-partitioning Key Value store. Experiments illustrate the

trade-off among different schemes, indicating that there is no absolute winner. We discuss

decision criteria for design choices based on the implications of this performance study.

2.3 Related Work

We can categorize the related work which looks at the performance of range queries into two

major groups:

1. Works on benchmarking cloud data serving systems.

2. Works on processing range queries in distributed environments.

10

We describe each group in more details below.

2.3.1 Benchmarking cloud serving systems

Cooper et. al., in [61] have presented Yahoo! cloud serving benchmark (YCSB), an extensible

framework for performance comparison of cloud data serving systems. YCSB consists of

different tiers, each for benchmarking a major aspect of cloud systems. [61] also provides

experimental results on the performance and scalability of PNUTS [60], Cassandra, HBase,

and sharded MySQL.1 One important distinction of our work and [61] is our focus on the

range queries. Although the set of core workloads in YCSB contains a workload on short

ranges (consisting of range scans that start from a random key, and retrieve up to 100

consecutive records), the type and context of range queries that we wanted to consider were

broader. We have used range queries with a wide range of different selectivities, and also

mixed workloads of them, to cover different sets of real scenarios. Thus, we decided to create

our own data and query generator. Moreover, beside using the built-in range query support

in Cassandra and HBase, we have developed and tested different techniques for supporting

such queries in Voldemort (which originally was not among the considered Key Value stores

in YCSB). Since both our system and YCSB emulate interactive (OLTP) workloads, one

can naturally combine our results, with YCSB results: ours can be served as an extension

to YCSB’s results on range queries. We have included other operations (lookup, update and

insertion) to make this coupling more meaningful. Possible future work is to integrate them

as an extended YCSB implementation. Pavlo et. al., in [86] have done a comparison of

Map-Reduce and parallel databases on a collection of tasks. Their work is mainly focused

on batch processing types of jobs (such as OLAP applications). Among other works on

benchmarking cloud serving systems [97] provides results on performance evaluation of a set

of cloud-based data management systems (HBase, Cassandra, HadoopDB[31], and Hive) to

1YCSB is available as an open source package, and it has recently extended its set of clients with MongoDB
and Voldemort clients, as well.

11

analyze different implementation approaches for various application environments. Shi et.al.,

in [97] mainly use two benchmarks, one focusing on data reads and writes, and the other

on structured queries, while each benchmark is associated with several tasks. [100] presents

ecStore, which is an elastic cloud storage system that is able to support range queries using a

persistent B-Tree, beside its other features. Considering cloud data serving systems and their

benchmarking in a more general aspect, Cattell in [57] presents a survey on comparing SQL

and cloud-based data stores, grouped based on their data models into: Key Value stores,

Document stores, Extensible record stores and relational databases. The comparison in [57]

is done on a number of different dimensions, while the major focus is on the scalability of

data stores for OLTP like applications. [48] discusses major guidelines and requirements for

benchmarking and analyzing cloud services. Describing the reasons that make benchmarks

for the traditional databases deficient for the newly emerging cloud-based data stores and

services, the authors in [48] present the ideas to design new benchmarks, which capture

main characteristics of these systems such as scalability and fault-tolerance, to obtain more

meaningful and applicable results for real case scenarios.

2.3.2 Range queries in distributed environments

There is an extensive set of works on evaluating range queries in the distributed and P2P

systems, such as publish/subscribe systems (pub/sub) or distributed hash tables (DHTs)

[87][39][73][92]. One important issue that is widely studied in these works is the tradeoff

between the efficiency of range query processing and load balancing. Different solutions have

been offered for this problem, mostly based on replication, data migration, using clever hash

functions to preserve locality, and distributed indices [44][67][78][90]. Ganesan et. al., in [68]

have used traditional database techniques and proposed two systems, SCRAP and MURK,

based on space filling curves and space partitioning, that can support range queries. Schütt

et. al., in [94] presented Chord#, which is a P2P protocol that is capable of supporting

12

range queries, using key-order preserving functions. In addition, [95] presents a routing

scheme based on Chord#, named SONAR, to support multi-dimensional data and range

queries. Cloud computing needs to address these concerns as well, and there is an overlap

between the solutions, proposed in these two areas. For example, we can consider distributed

index structures (as we used BLink tree on top of Voldemort) to process range queries. [33]

proposes a fault tolerant and scalable distributed B-tree, with extended operations, based on

distributed transactions. Lomet in [80] presents dPi-tree, which is a distributed and scalable

index structure, capable of processing range searching in parallel.

2.4 Key Value Stores

There are many instances of Key Value stores available for managing the data and queries

in Big Data applications. While these systems have significant differences with each other in

terms of their architecture, they are all attempting at addressing important requirements that

arise in cloud computing such as scaling-out, availability and high operational throughput.

Because of the natural trade-off that exists in achieving these end goals, it is practically

impossible to have a unique Key Value store which is optimal for all different types of

applications and query workloads. In this chapter, we select three popular and widely used

Key Value stores as the systems to explore: HBase [76], Cassandra [56] and Voldemort

[88]. These systems considerably differ with each other in terms of their architecture, design

decisions, and types of the applications they can serve the best. The following is a brief

overview of them.

HBase: HBase [76] is an open source version of Google’s Big Table [59], built on top of

Hadoop file system (HDFS) [41]. An HBase cluster consists of a master node which manages

the data store and one or more region server workers that are responsible to store Key

Value pairs and process read and write requests. Key Value pairs (rows) are stored in byte-

13

lexicographical sorted order across distributed regions. In its data model, HBase uses the

concept of column-families, which is a set of columns within a row that are typically accessed

together. All the values of a specific column-family are stored sequentially together on the

disk. Such a data layout results in fast sequential scans on the consecutive rows, and also

on the adjacent columns within a column family in a row (partial column access). HBase

relies on HDFS for durability and employs multi-versioning for Key Value pairs. The update

operation is essentially implemented as appending data to files on HDFS (HBase uses an

LSM-based [84] storage). Updates are once written into memory buffers, which are flushed

periodically to the disk. As a result, writes are faster than reads which need (multiple)

random I/Os for combining updates, corresponding to the row(s) of interest.

Cassandra: As a Key Value store, Cassandra [56] is mainly designed and implemented based

on the data model in Big Table [59] and the architecture of Amazon’s DynamoDB [75], a

distributed Key Value store that uses hash-based partitioning for distributing the data across

nodes. Using LSM-based storage and similar to HBase, Cassandra is also optimized for fast

write operations. At the same time, Cassandra takes Dynamo’s approach to durability and

availability: it uses replication across multiple nodes along with hinted hand-off technique,

while the cluster is configured as a ring of nodes. Cassandra also uses an eventual consistency

model, in which the consistency level can be selected by the client. Unlike HBase, there is

no master node in Cassandra, and a gossip mechanism is used to propagate the current state

of the cluster nodes. Cassandra supports pluggable data partitioning scheme and lets the

application developers choose an appropriate component (called partitioner). The version

we used provides a range-partitioner in order to support range queries.

Voldemort: Project Voldemort [88] is an open source implementation of Amazon’s Dy-

namoDB. Choosing a simpler data model, compared to HBase and Cassandra, Voldemort

tries to provide low-latency with high availability accesses to the data. Because of the hash-

partitioning policy, there is no built-in support for range queries in Voldemort. Such a

14

decision is mainly made for achieving better load balancing. Moreover, Voldemort is flexible

in terms of supporting different pluggable storage engines, such as Berkeley DB [47] and

MySQL [83].

While we focus on the current status of range queries support in Key Value stores, we have

selected the above three systems because of the fact that they are being used extensively in

a number of known companies, such as Facebook and LinkedIn that serve a large number

of clients. Moreover we believe that because of the major differences between their design

and implementation, they can be considered as a representative set for the state-of-the-art

in Key Value stores. An important design decision of our interest that should be considered

here in more details is the Key Value pairs partitioner. The choice of the partitioner along

with the way data is stored on the disk within the persistent storage determine the ability of

a Key Value store to support range queries. Most of the hash-partitioning systems such as

Voldemort do not support range queries directly. On the other hand, order-preserving parti-

tioners enables such support, according to the way they distribute the data across the nodes.

Considering these three systems, HBase only supports the order-preserving partitioner, as

the rows should be stored in a sorted manner. Voldemort is only using the hash-based parti-

tioner to achieve its load balancing goals. Cassandra is able to use either of the partitioners,

based on the user’s preference.

2.4.1 Range query in HBase and Cassandra

HBase and Cassandra support range queries via their proprietary APIs, which are different

in the way they model these queries: Whereas HBase’s Scan operation takes an interval

identified by an inclusive start key and exclusive end key as a range query’s parameter,

Cassandra takes a pair of a start key and a count number, i.e., the (maximum) number of

consecutive keys that are scanned.

15

In this chapter, we are interested in range queries with an interval, which is typical for

analytic processing. Thus, we emulate the interval-based range queries on Cassandra by

repeating count-based scan operations.

The current implementation of HBase’s Scan operation retrieves Key Value pairs sequentially

without parallelism, which is reasonable for traditional use cases:

1. An interactive application uses this sequential scan directly for very short range queries.

2. A batch-oriented application uses this sequential scan, combined with Map-Reduce

framework, such that a long range is partitioned into smaller ones, each of which gets

scanned by a mapper.

In this chapter, we are interested in interactive applications that issue longer range queries

where the batch-oriented nature of Map-Reduce is not suitable. Accordingly we implemented

our custom solution to improve the efficiency of range query processing in HBase by dividing

the whole range query interval into a number of non-overlapping sub-intervals, and the query

is processed concurrently across them.

2.5 Range Query in Hash Partitioning Key Value Stores

As described in the previous section, Voldemort does not support range queries. Thus, one

needs to develop and use additional techniques and/or data structures beside the original

architecture, to add that support. In this chapter, we use two different techniques, on top

of Voldemort for this purpose: one based on indexing and the other based on direct access

to the data nodes.

16

2.5.1 Index-based Technique

Our first technique is to build a range index on top of Key Value store where index nodes (or

“disk pages”) are implemented using Key Value pairs (e.g., [51]). A unique key is assigned

to each index node, and a node is accessed by this key through the original API of the Key

Value store. Similar to [51], we implement BLink tree [79], which is a distributed variant of

B-Tree.

Concurrency control

The BLink tree, compared to the regular B-Tree, provides higher degrees of concurrency for

different types of reading and writing operations. It has a simpler locking scheme compared to

a typical B-Tree implementation, as it does not use read locks (and so it lets read operations

not get blocked during their tree traversal). Moreover, any write operation holds locks on a

constant number of nodes, at any given time. Specifically in addition to the leaf level nodes,

in BLink tree each internal node (except the rightmost node at each level) has a link pointer

to the next node at the same level. This extra link is provided as an additional way to access

a specific node in the tree (other than the unique path that exists from root to each node),

from its left sibling node. Upon splitting a node, which results in two new nodes, the link

pointer of the first node points to the second node, while the link pointer in the second node

is identical to the link pointer of the original node (prior to split). The link pointer is a

quick fix to let the concurrent reads go through, once they access a node involved in the

split process. In such a case, if a read operation is looking for a key that is greater than the

highest key in a node, the read process simply needs to access the right node, by following

the link pointer. This way, the read operation does not get blocked at the cost of probably

an extra I/O. The insertion process is similar to the read process, as it starts going down

the tree from the root to find the proper leaf node to put data into, but it also makes sure

17

to remember the rightmost node, it had visited, at each level. This way, the insert process

has enough information to fix the tree if adding the new value results in (cascading) splits

in the tree. An important point is that upon split, the link pointers get fixed and set first

(prior to the parent pointers) to let the concurrent reads go through as described above.

Write operations

The remaining issue on concurrency is to manage multiple write operations. Instead of

introducing any central coordinators, we want to let clients coordinate in a decentralized

manner. The following is the underlying mechanism for our concurrency control of write

operations:

• Atomic update of a single Key Value pair : Voldemort supports atomic updates on a

single Key Value pair in a non-blocking manner, which is similar to a compare-and-

swap (CAS) operation of modern CPUs. A write operation on a Key Value pair is

associated with a version with which the object was read. An attempt to write a Key

Value pair with an obsolete version will fail. When data is inserted into an index node,

we always use this mechanism to serialize updates (read-and-write) operations on the

same Key Value pair.

• Locking a single Key Value pair : An index node with over capacity must be split.

Since it involves operations over multiple Key Value pairs, the atomic update support,

described above, is not sufficient. We introduce a lock that is embedded as a flag in

each index node, which itself is a Key Value pair. Any write operation is blocked when

a lock is set. Notice that, however, read operation will not be affected by this lock.

18

Eventual Consistency

Unfortunately, Voldemort supports a CAS operation only when the replication factor is

1 (i.e., no replication). When data is replicated, conflicting write operations may result

in concurrent versions (which is modeled as vector versions [75]). Handling this eventual

consistency requires a way to reconcile such concurrent versions. It is future work and

beyond the scope of what we present in this chapter to build a BLink tree on eventually

consistent data stores. Here we only discuss possible approaches and challenges to support

eventual concurrency.

• Lock table for split operations. Instead of embedding a lock flag, we can introduce a

separate set of Key Value pairs that represents a mapping from an index node’s ID

to its lock status. We can employ different replication factors between the lock table

(without replication) and the index (with replication) to enable CAS operations on the

lock table. The lock is used to avoid conflicting split operations.

• Reconciliation of concurrent writes. The remaining cause of concurrent versions is a

write operation on leaf nodes (i.e., inserting and deleting index entries). When a leaf

node with concurrent versions is detected, concurrent insertions and deletions of index

entries must be consolidated. Although this reconciliation logic looks straightforward,

a challenge is to implement it efficiently, which is our future work.

In this chapter, we use Voldemort with no replication to avoid eventual consistency. For the

same reason, we do not have BLink tree implementation on Cassandra, for which we cannot

avoid eventual consistency.

19

Node caching

Notice that the concurrency gained from the extra links of the BLink tree enables the caching

of internal nodes: using obsolete nodes that are cached only results in extra sibling node

traversal. A cached node is invalidated when such sibling node traversal happens with its

children. In our experiments, we employ internal node caching to avoid possible performance

bottlenecks such as reading the root node repeatedly.

Leaf node schemes

There is one design choice in this indexing technique: whether to embed data objects (tuples)

into index nodes (leaves). Alternatively, we can embed references (keys) to data objects into

index nodes and store data objects as individual Key Value pairs in a separate store. We

refer to these index schemes as value-embedded index (VIX) and reference-embedded index

(RIX) respectively. In a traditional RDBMS, VIX is often chosen for primary key indexes

since it can exploit disk I/O characteristics especially for fast table scans. In the case of

Key Value stores, however, RIX can also be a viable option especially when the workload is

primarily simple put/get operations and range queries take smaller fraction of the workload.

The performance impact of VIX/RIX on put/get operations is discussed below.

Impact on put/get operations

Using the VIX technique, all the put and get operations on the Key Value pairs, which were

previously done through the Voldemort API directly, needed to be done via the BLink tree.

It means that even for a lookup or value update, we need to traverse the tree levels, based

on the search procedure of BLink tree, to meet the proper key and its value (if existing). In

contrast, for the RIX case, we can still use the Voldemort API to perform lookups and value

20

Figure 2.1: BLink Tree on top of Voldemort

updates, as the Key Value pairs are stored separately from the index structures.

Parallel query execution

For the RIX case, a range scan of leaf nodes only yields a set of references, with which data

objects must be retrieved separately. We employ parallel retrieval of data objects to reduce

the impact of extra latency. Index scan and object retrieval are done in a pipelined manner,

and the object retrieval part is done by a pool of multiple threads.

2.5.2 No-Index Technique

An alternative solution to process range queries is to directly access all the data partitions

in the storage nodes, run the range scan, and consolidate the results, just similar to the way

that a shared-nothing parallel RDBMS does. In the case of a traditional parallel RDBMS,

various operations (such as grouping and aggregation) are pushed to each and every node to

execute a complex query efficiently. In this chapter we only consider simple range queries,

21

and what is pushed to a Key Value store node is very simple and limited (i.e., range selection

over the keys). We refer to this technique as No-Index technique (no-IX).

When we use this no-IX technique, we choose MySQL as the storage engine of Voldemort (we

choose BerkeleyDB (BDB) otherwise), in order to implement node-local operations (range

selection on each storage node). Using the MySQL interface, we implemented a range query

API in addition to the original Voldemort API.

Therefore, in order to process a range query, one possibility is going through the following

two-step procedure:

1. executing the query on each and every Voldemort node through its storage engine, in

parallel, to obtain range query’s “partial” results.

2. merging the partial results and returning the ultimate query answer.

Using the no-IX technique, all the put and get operations on the keys and values are simply

done as before via the Voldemort API. But just for the range queries, we need to directly do

the selection on the stored data in MySQL nodes.

2.5.3 Hybrid Technique

Later, in the experiments section, we show how the above two techniques (indexing and

no-IX) can be compared with each other in different scenarios. But we should also point out

a third option, which is actually a combination of the above two techniques. This option,

which we call Hybrid technique, tries to benefit from both indexing and no-IX techniques.

More specifically, in the hybrid technique, we try to maintain an index structure (VIX or

RIX) beside the Voldemort store that hosts Key Value pairs. Considering a specific range

scan, the ultimate technique for processing the query (using the index or going after no-IX)

22

Figure 2.2: System Architecture

is actually chosen based on the “expected” selectivity of the query, i.e., expected number of

Key Value pairs that need to be scanned for the query. While we show that we can improve

the performance of range query processing using the hybrid approach in some scenarios (for

example an update heavy workload); this approach has the extra cost of maintaining an

index structure beside the Voldemort store.

2.6 Framework

In this section, we describe the architecture and features of our performance evaluation

framework which consists of the following three main components: (1) Data and workload

generator, (2) Workload Executor, and (3) Key Value store client. Figure 2.2 illustrates the

architecture and interactions among the components.

2.6.1 Data and workload generator

The data and workload generator, which we call DQ-Gen, is mainly responsible for gener-

ating the raw Key Value pairs to be stored in datasets and the query workloads used for

performance evaluation. They are generated based on a set of user-defined parameters. Ta-

ble 2.1 lists the main parameters, which are needed to be set by the user. These parameters

enable us to generate a wide range of different datasets and query workloads that are similar

23

Parameter Description
Number of keys Number of the Key Value pairs (loaded in store)
Keys distribution Distribution of keys in [0, 1) space (uniform or

Zipf)
Number of columns Number of columns in the value associated to each

key
Value size Size of the value in each column (in bytes)
Query distribution Distribution of query points (w.r.t. generated keys

space)
Query selectivity (for range queries) expected fraction of the key

space to be retrieved by a query

Table 2.1: DQ-Gen parameters

and compatible to the actual scenarios. To generate the Zipfian distribution, our system

utilizes the component in the YCSB [61] data generator tool, which employs the algorithm

for generating a Zipfian-distributed sequence from Gray et al., [71]. In our case, we use

a clustered distribution where the popular items are clustered together towards 0 (smaller

values are more popular).

2.6.2 Workload executor and Key Value store clients

The workload executor is the component that interacts with the Key Value store client and

guides the dataset loading and query workload execution. The most important criterion in

the design and implementation of this component is its extensibility. Aiming at making the

evaluation of various Key Value stores and techniques possible, workload executor defines

an abstract API for the Key Value stores’ clients, that need to interact with it. This API

defines the main operations that should be supported by the client, so that the data loading

and query execution becomes feasible for the workload executor. These main operations are:

• Insert: Adds a new Key Value pair to the dataset.

• Lookup: Fully retrieves an existing Key Value pair.

24

• Range Query: Fully retrieves a set of Key Value pairs whose keys fall within a given

range.

• Update: Updates the stored value associated with an existing key.

• Delete: Removes an existing Key Value pair completely.

The exact implementation of each operation depends on the specific Key Value store that

the user wants to evaluate.

2.6.3 Evaluation process

Once a specific Key Value store client is defined along with the input dataset and the

query workload(s), the workload executor starts the evaluation as a multi-client, multi-

thread process, based on the user defined settings. Within this process, data is first loaded

(if needed) into the Key Value store. As the loading process normally takes a long time,

this phase could be done as a batch process in the framework. The user has the ability to

control and tune different parameters (such as batch sizes or number of loading threads) to

make this process fast and efficient. At the end of the loading phase, the workload executor

provides the user with a detailed report, containing metrics such as the average time to load

one Key Value pair, the amount of load on each node, and the overall throughput of the Key

Value store during the bulk load phase.

The next step for the evaluation is the query workload execution. In this phase, each query in

the workload is executed via the Key Value store client in a multi-client and/or multi-thread

manner. Performance metrics that are measured are the average, minimum and maximum

response time for the queries and the overall throughput of the Key Value store during the

query workload execution phase.

25

For this chapter, we implemented Key Value store clients for HBase, Cassandra, and Volde-

mort. For Voldemort, the clients consist of various implementations: Value-embedded In-

dex (VIX), Reference-embedded Index (RIX), no-IX, and Hybrid. Details of the generated

datasets and query workloads along with the obtained results are presented in the next

section.

2.7 Experiments

In this section, we present the results of experiments conducted on our framework. We first

give some details on our experimental setup, the versions of the systems that we used, and

the datasets and query workloads that we generated.

2.7.1 Experimental setup

All the reported results are obtained on a six-server cluster. Each machine has an Intel

Xeon E5620, 2.4 GHZ CPU with 4 cores, 16GB of memory and 1TB 7200 rpm disks used as

the persistent storage partitions. Machines are connected to each other through a Gigabit

Ethernet switch. For Cassandra, we used the stable 0.6.8 version and the HBase stable

version was 0.20.6. The Voldemort version was 0.81. We used the periodic synchronization

in Cassandra to achieve durability. We generated different datasets, with 1 million and

10 million rows, while each row had 5 columns. The total value size was up to 1KB, for

each key. Keys were selected from the [0, 1) key space, with either uniform or non-uniform

(Zipf) distribution. For the non-uniform key generation case, we used YCSB tool with the

default Zipfian constant of 0.99. We have two major sets of experiments, conducted on these

datasets: Uniform and non-uniform. For the uniform test case, we generated the following

different sets of query workloads:

26

• Lookup-only and Update-only: Each consists of 5,000 keys, randomly selected form

the corresponding dataset keys, where in the case of updates, each selected key is

associated with a new value with the same size as the old value for that key.

• Range queries with selectivity of α: for a fixed value of α, varying between 0.0001

and 0.9 across different workloads, the query workload consists of 200 to 1000 range

queries, where starting key of each query is selected randomly from the existing keys

in the datasets, and the length of the range query is equal to the considered α.

• Mixed range queries: Consisting of 200 to 1,000 range queries with different selec-

tivities. We have 3 types of mixed range queries: short, medium and long. For the

case of mixed short range queries, query’s selectivities vary between 0.0001 and 0.002.

For the medium they vary between 0.002 and 0.1, and mixed long range queries have

selectivities greater than 0.1.

For the non-uniform test case, in which we wanted to study the performance of techniques

developed on top of Voldemort in more depth, we generated the following two query work-

loads:

• Range queries with length of `: This workload consisted of 15 sets of queries, each

containing 50 range queries of a fixed length `, where ` varied between 0.001 to 0.9.

• Mixed range queries: This workload contained 3 sets of range queries: short, medium,

and long, each consisting of 200 range queries whose lengths were selected from a

pre-specified range of lengths. The length ranges for these sets were the same as the

selectivity intervals, used for the uniform mixed range queries (described above).

We performed the experiments against a Key Value store with warmed-up cache. For this

purpose, each query workload had also a corresponding warmup workload, consisting of

up to 10% of the queries in the original workload. Our experiments on a specific query

27

workload was always preceded by running the warmup workload (before we start measuring

the performance metrics), to make sure that we are fair with respect to the starting conditions

of the simulations.

Our client machines, which were responsible for issuing the queries to the Key Value store,

were always selected from a separate set of machines, other than those serving as the Key

Value store nodes. This way we could make sure that we were considering all the expected

delays, while the server and client processing resources are also separate.

As explained before, Voldemort does not support range queries and we considered different

techniques, based on indexing and direct access to the storage to add such support. Table

2.2 summarizes different schemes that we used. In this table, we specify how each type of

query is processed, using each scheme. Specifically we mainly use the Voldemort built-in

API (shown as V-API) for doing lookups and updates. For the range queries, the specific

technique of use depends on the type of the index that we are using. For the value-embedded

(VIX) and reference-embedded index (RIX) cases we need to scan index tree nodes to find

the qualifying keys (shown as IX-Scan in Table 2.2). If using VIX, then corresponding values

are also embedded within the index nodes. However, for the RIX case, we need to perform

a sequence of lookups, on a separate store containing Key Value pairs, to obtain the values.

For the case of no-IX scheme, we execute the range queries directly on the storage servers

(in our case MySQL servers) within the cluster nodes. This process is denoted by storage

scan in Table 2.2.

For the experimental results, we report the average response time (for each query), and the

average throughput (during the whole query execution process). As a result, because of

the inherent tradeoff between the response time and throughput, different systems can be

compared with each other with respect to a fixed set of resources. We have categorized our

experiments into different groups, based on the systems, datasets, and metrics that were

studied.

28

Scheme Fanout Lookup Update Range
Query

Voldemort API - V-API V-API -
No-IX - V-API V-API Storage Scan
VIX 70 IX-API IX-API IX-Scan
RIX 70 V-API V-API IX-Scan and

V-API
Hybrid-VIX 70 V-API IX-API

and V-API
IX-Scan or
Storage Scan

Hybrid-RIX 70 V-API V-API IX-Scan and
V-API or
Storage Scan

Table 2.2: Different Query Processing Schemes on Voldemort (V-API stands for Voldemort
built-in API and IX-API stands for our implemented Index API)

2.7.2 Effect of node capacity in VIX and RIX

The first set of experiments shows the impact of choosing different node capacities, i.e.,

the node fanout, when using VIX or RIX techniques in Voldemort. Figures 2.3 and 2.4

show the average response time for the insertion, lookup, and update. Increasing the node

capacity, the size of the index objects that are stored in Voldemort gets larger, which results

in reducing the height of the index tree. As a result, the total cost of insertion or update

increases, since we are modifying (reading and writing) larger objects in the Voldemort store.

In fact, using VIX, the unit of values that are stored or accessed via the put/get API is of

the size of the index nodes. Using larger node capacities, the average size of an index node

that is accessed increases. But in this case, there is a gain for the lookup, as its cost gets

lower, given the fact that we need to traverse fewer tree levels. In the case of RIX, lookup

and update can be done via the Voldemort-API, because we just need to directly access a

data object with its key (i.e., no need for index tree traversal).

29

Figure 2.3: Effect of node capacity on insert

Figure 2.4: Effect of node capacity on lookup and update time (VIX scheme)

2.7.3 Range Selectivity

The second set of experiments shows the impact of the selectivity of range queries on the per-

formance. Selectivity describes the expected portion of the keyspace, needed to be scanned

during the query execution. In the uniform keys case, since the keys are generated from the

[0, 1) space, selectivity can simply be interpreted as the length of the interval used in the the

range query predicate. Figure 2.5 shows the average response time of different systems and

techniques, based on the query selectivity, where we have 1 million records. Going to the

10 million case, we observed the same relative performance between different systems, while

the absolute response times had increased proportionally. Obviously there is no winner as

the best technique for all the range selectivities. While the index-based techniques do much

better than the no-IX technique for the short range queries, no-index technique would be

the best choice to select for the longer range queries. Moreover, as the range query support

in HBase and Cassandra is a new feature, and because of the design decisions made to let

30

Figure 2.5: Selectivity test - Average time for a range query

these systems work efficiently on workloads that normally contain point and short range

queries (as the major types of read workloads, they try to support) you can see that the

current range query support works reasonably in these two systems for the shorter queries,

but performs poorly for the medium and long queries.

2.7.4 Mixed query workloads

The above results indicate that there is no technique that outperforms others for all the

range query selectivities. Thus the idea of using hybrid approaches comes to mind, where we

create and maintain an index structure, for the short range queries, beside using the no-IX

technique for long range queries.

Our next set of experiments considers the performance of different techniques, we developed

on Voldemort, for the mixed range query workloads against datasets with the uniform dis-

tribution. As explained at the beginning of this section, we have created 3 mixed workloads,

each consisting of a combination of range queries with different selectivities. Using these

workloads, we actually attempted to simulate different types of real case scenarios. Mixed

short range queries try to be served as an example of the typical workloads in interactive

applications (OLTP), in which we have a large number of range queries, issued by different

clients, while each query needs to access a small portion of data. In contrast, mixed long

31

range queries try to capture the workloads in analytical types of application (OLAP), where

we need to retrieve large portions of data, based on our needs. Medium mixed workload is

a combination of these two scenarios.

Figure 2.6 shows the response time of each technique, for these three scenarios and Table

2.3 shows the corresponding exact values as some of them are not clearly visible in the chart

because of the scaling used for visualization.

The no-IX technique works almost the same for the three cases, since its execution cost is

dominated by the direct access calls made to all the storage nodes. On the other hand,

for the indexing techniques the response time changes significantly based on the number of

tree nodes, needed to be scanned, and their average size. In fact, you can see that choosing

the ultimate technique to use is highly dependent on the type of the range queries that

you mostly need to process in your system. For OLAP applications, going after the no-IX

technique seems to be a better choice, while for OLTP applications one may consider using

the indexing techniques (especially VIX).

Hybrid approaches give us the possibility to get the best time, based on the expected query

selectivity. As it can be seen in the results, Hybrid VIX outperforms others in almost all the

cases. Hence, the runtime decision made based on the query selectivity may eliminate the

need of the upfront decision on the choice between no-IX and VIX.

However, the flexibility of these hybrid approaches comes with the extra cost on update

operations as shown in the next set of experiments.

2.7.5 Impact of hybrid schemes on other operations

Considering 10 million Key Value pairs, Figures 2.7 and 2.8 show the average response time

for lookup and update operations in various systems. (Table 2.4 shows the exact values

32

Figure 2.6: Mixed range queries workloads

Scheme Short RQ Medium RQ Long RQ
No-IX 6082.59 5964.75 6021.39
Hybrid-VIX 44.84 1467.71 6009.41
Hybrid-RIX 156.27 5723.23 6014.23
VIX 37.54 1509.38 10170.54
RIX 124.65 3890.16 29286.03

Table 2.3: Mixed range queries response time for Figure 2.6 (in ms)

shown in these figures.)

First, comparing the performance of VIX to the original Voldemort (with the Berkeley DB

storage engine) and RIX shows that VIX has a significant overhead for both operations. As

discussed earlier, VIX has two sources of overhead: (1) index tree traversal for lookup and

update; (2) reading/writing a larger Key Value pair that contains multiple data objects.

Next, notice the overhead of no-IX and hybrid approaches. They use MySQL (instead of

BDB) for the underlying data store of Voldemort. In fact, the performance of no-IX is

equivalent to the performance of the original Voldemort with MySQL.

Figure 2.9 shows the average time for inserting one Key Value pair, during the loading phase,

among various systems. Notice that, unlike lookup and update, an insert operation increases

the number of Key Value pairs, which occasionally involves additional costs such as index

node split. The characteristics of such additional cost depend on a specific architecture. In

33

Figure 2.7: Lookup time for different systems and schemes

order to compare amortized insertion cost among different schemes, we measure the total

time of sequential insertion of records into an empty data store. This time should not be

confused with the expected response time to insert one record into an already populated

data store with 10 million records.

Considering hybrid approaches, for all three operations (lookup, update and insert), you can

see that they have further overheads in addition to the MySQL overhead. Especially, Hybrid-

VIX needs to replicate the whole data object in order to not only store it in a data object

store (for no-IX access) but also embed it in an index store (for VIX access). As a result,

insert and update operations become very expensive. On the other hand, lookup response

time is better than the case of VIX, since it can directly access data object in the store

without index tree traversal. Thus, Hybrid-VIX is considered to be a highly read-optimized

scheme.

The results for 1 million records are similar: the response times for the lookups were de-

creased, for most of the techniques (but the relative order was unchanged). With a decreased

data size, we got more benefits from the cached Key Value pairs in the main memory of the

servers, which actually reduces the operation time.

34

Figure 2.8: Update time for different systems and schemes

Figure 2.9: Insert time for different systems and schemes

System or Scheme Insert Lookup Update
No-IX 2.78 1.74 5.02
Hybrid-VIX 5.38 1.74 11.83
Hybrid-RIX 3.85 1.74 5.02
Cassandra 0.33 1.31 1.08
VIX 2.68 5.64 9.09
RIX 1.54 1.58 4.12
HBase 0.53 3.34 0.02
Voldemort (BDB) 0.97 1.58 4.12

Table 2.4: Operations time for figures 2.7 to 2.9 (in ms)

35

Figure 2.10: Lookup time in different systems

2.7.6 Lookup and update scalability

We have also compared the performance of lookups and updates between different systems.

Here, we are interested in scalability in terms of the number of concurrent clients. Figures

2.10 and 2.11 show the response time and throughput of different systems for lookups, using

uniform keys, as the number of clients increases, while Figures 2.12 and 2.13 show the same

metrics for the updates. To control the number of clients, we used 1 to 8 client machines

while each machine was running 10 threads of queries concurrently. We set the number of

threads by making sure that the threads, on the client side, never turned to be a bottleneck

for the query processing.

Recall that RIX is equivalent to the original Voldemort for lookup and update operations

(hence it is omitted). VIX underperforms other systems, for both operations, as it always

needs to get and put several index nodes into the Key Value store (the exact number of

nodes is equal to the height of the tree). These nodes are much larger than single Key Value

pairs, causing the extra overhead for VIX operations. Considering the update case, HBase’s

sequential write policy (appending commit logs to the tail of the transaction log file), which

initially keeps the updates in memory, makes it outperform others.

36

Figure 2.11: Lookup throughput in different systems

Figure 2.12: Update time in different systems

Figure 2.13: Update throughput in different systems

37

2.7.7 Range query scalability

We also investigated how scalable range queries are in terms of the number of concurrent

clients. This scenario is important when the application needs to handle a large number of

range queries from different clients. For this purpose, we selected three main techniques:

VIX, RIX, and no-IX, along with the mixed range queries, and we measured the response

time and throughput of the systems, using different numbers of clients (up to 8), each

running different numbers of concurrent query threads (up to 10). Figures 2.14 to 2.19 show

the results.

Ideally, if there is no significant contention among queries, the performance should look

similar to the lookup operations (as shown in Figures 2.10 and 2.11), i.e., response time is

almost constant and throughput linearly increases. However, in Figures 2.14 to 2.19, we

observe the throughput saturates and response time increases. We further observe different

degrees of saturation among three techniques for different range sizes.

Notice that, for the no-IX technique, the impact of client concurrency to the overall through-

put is small regardless of the range length. With this technique, all the clients must access

all the storage nodes at the same time. Thus, the effect of the client concurrency is bounded

by the client concurrency of each storage node (i.e., MySQL). The difference between the

performance of no-IX and VIX/RIX is significant for short range queries, where one client

of VIX/RIX will not consume server resources as much as no-IX does.

While the performances of VIX and RIX schemes are close to each other for short range

queries, you can see that they substantially differ with each other for medium and long

range queries, with respect to the number of client threads. The average size of the BLink

tree nodes, and the number of such nodes, needed to be retrieved concurrently, are the main

reasons for this difference. While the average node size is larger in VIX compared to RIX

(because of storing both keys and values together within VIX leaf nodes), we need to access

38

Figure 2.14: Multi client test - Short range queries response time

more leaf nodes in the medium and long range queries cases, compared to the short range

queries case for both schemes. Thus as the number of client threads increases, RIX faces with

less overhead and shows a better performance. But for smaller numbers of client threads,

the extra lookups, needed to be done in the second store for RIX, make RIX’s performance

drop below VIX’s.

For long range queries, none of the techniques is scalable in terms of the client concurrency,

which is not surprising because each client needs to access a large fraction of the entire data,

consuming a large amount of resources of each storage node. In this case, even indexing

techniques would access almost all the storage nodes, as the length of range query covers a

large portion of key space. No-ix is the most efficient technique, as we have seen in previous

experiments, for this scenario.

Figure 2.20 shows the impact of changing the index node capacity (fanout) in VIX , for

the medium range queries. As you can see, using larger fanout results in a gain for the

throughput. Doing the same experiment, for the short and long range queries, we got similar

relative results.

39

Figure 2.15: Multi client test - Short range queries throughput

Figure 2.16: Multi client test - Medium range queries response time

Figure 2.17: Multi client test - Medium range queries throughput

40

Figure 2.18: Multi client test - Long range queries response time

Figure 2.19: Multi client test - Long range queries throughput

Figure 2.20: Multi client test - Impact of fanout and client threads - Medium range queries

41

2.7.8 Non-uniform data test

Given the fact that none of the techniques we developed on Voldemort to support range

queries outperformed others in all the cases for uniform data; this set of experiments aimed

at exploring the impact of key distribution on the performance of those schemes. For these

tests we used 10 million keys, each associated with a value of size 1KB, while keys are

generated from a Zipf distribution in the [0, 1) space, where most of the keys were close to

0 (smaller keys are more popular).

Impact of query length

Figure 2.21 shows the response time of different schemes for range queries on Voldemort,

varying the range query length. You should note that unlike the uniform data, the length of

a range query in this case can not be directly interpreted as the query selectivity (expected

number of Key Value pairs, being retrieved). In fact, as the start point of a range query

gets closer to 0, while its length is fixed, the expected number of keys, being accessed,

would get larger. Based on the setting, used in Figure 2.21, VIX outperforms other two

schemes. Moreover, in contrast to the uniform case, the no-IX method does not turn to be

the technique of choice for the longer queries.

This result implies that a hybrid approach should consider the distribution of the keys

carefully to estimate the cost of range queries more precisely. Similar to a query optimizer

of RDBMSs, it is desirable to introduce histograms of the datasets in order to estimate the

cardinality of a given interval in the key space.

42

Figure 2.21: Non-uniform data test - Response time for different range query lengths

Figure 2.22: Non-uniform data test - Short range queries response time

Mixed query workloads

This set of experiments reports the results of the mixed query workloads, described earlier,

for the non-uniform keys. Figures 2.22 to 2.27 show the response time and throughput of

different schemes, based on the number of clients. For this set of experiments, we used 2

to 8 client machines, each running a stream of queries, against the Key Value store. An

important point in this setting is the performance of VIX vs. no-IX technique: dealing with

non-uniform keys, for the longer range queries, no-IX is no longer always outperforming VIX,

as the difference between lengths of distinct range queries, does not show a proportional

difference between their selectivities. These results again show the importance of taking

data distribution into account, when considering hybrid approaches.

43

Figure 2.23: Non-uniform data test - Short range queries throughput

Figure 2.24: Non-uniform data test - Medium range queries response time

Figure 2.25: Non-uniform data test - Medium range queries throughput

44

Figure 2.26: Non-uniform data test - Long range queries response time

Figure 2.27: Non-uniform data test - Long range queries throughput

2.8 Discussions

In this section, we first summarize our observations based on the experiments and discuss the

implications of these observations. We then suggest possible extensions on hash-partitioning

Key Value stores to natively support range queries.

2.8.1 Summary of the performance results

The following summarizes our observations on the experiments:

• As reported in [61], HBase (BigTable) achieves excellent update performance. This is

because of its sequential writes (using LSM-based storage, which is known for good

performance under write heavy workloads). However, it underperforms RIX for lookup

45

and range queries, as HBase needs to do merged read to get the latest values.

• RIX achieves reasonable range query performance without sacrificing the lookup and

value update performance of hash-partitioning Key Value stores. However, data inser-

tion in RIX suffers from the additional cost of reference insertions into the index (two

structures need to be modified per update: the index and the actual store).

• Although VIX outperforms others in terms of short to medium range queries, its over-

head hinders scalability of lookup and update.

• The no-IX method incurs significant cost for the client to access all the storage nodes,

costs that can only be amortized for a long range query. In addition, the impact of

concurrent clients on the overall throughput is limited by the efficiency of each storage

node to handle concurrent range queries. If the storage node (MySQL) could bene-

fit from an optimized plan for concurrent range scans (such as shared scans among

queries), no-IX would show more throughput increase from client concurrency. Nev-

ertheless, no-IX would be a reasonable option if a workload consists of two subsets: a

large number of lookup and update queries and a small number of long range queries.

Our observation that there is no clear winner implies the need for physical design tuning.

Given various ways to store Key Value pairs with range accessibility, an application developer

should choose one of those approaches to optimize the application’s performance. In order to

make such a tuning task efficient, a proper abstraction layer should be introduced. Although

we implemented a BLink tree index on top of Key Value stores, such an implementation

should be hidden from an application so that it can transparently access Key Value pairs

with a common API. With such a logical abstraction, the task will be similar to physical

database design tuning for relational databases (such as index selection). We expect that

various technologies, originally developed for RDBMS, will be applicable to physical design

tuning of Key Value stores.

46

We also notice that different approaches to range query support have different impacts on

data consistency. Although our implementation of an index structure which supports range

queries on hash-partitioning Key Value stores performs correctly for concurrent access, it

does not support isolation between range queries and updates. In fact, none of the systems

we explored in this chapter supports such an isolation (except for the fact that HBase’s

multi-versioning support is useful to implement some degree of isolation). A more detailed

discussion of consistency and isolation is beyond the scope of this chapter.

2.8.2 Range index support by hash-partitioning Key Value stores

Our experiments indicate that employing a range index on a hash-partitioning Key Value

store is a viable option as an alternative to range-partitioned Key Value stores. It is therefore

desirable for hash-partitioning Key Value stores to natively support range indices. The

following are possible extensions to Key Value stores for more efficient support of range

queries.

Caching internal nodes: In the experiments, we employed a warm-up process before the

actual measurement. This process not only warms up the servers but also warms up the

clients’ index node cache. In practice, however, the system should also perform well for cold

clients. Thus, it is desirable to incorporate an internal node cache at the server side: the

client should be able to access any of the storage nodes, which themselves should operate

internal node traversal by leveraging the cache. The client will then receive the key of the

leaf node, from which it will start an index scan.

Node split protocols: Recall that node splits must operate in an exclusive manner, which

is why we introduced a lock flag within each index node. In this technique, we wanted to

use the Key Value store without any change. However, if the storage nodes natively support

47

range index operations, they should be able to introduce much more efficient protocols to

achieve exclusive node splits.

Notice also that the system can perform node splits in an asynchronous manner. Unlike a

disk page in an RDBMS’s storage, our index node does not have a hard limit on its capacity

(fanout). Thus, an index node could be temporarily kept over-capacity and a split operation

could be deferred. Managing node splits at the server side as a background task would

improve the performance (especially availability) of insertion operations.

Asynchronous maintenance of RIX: RIX’s overhead on the response time of insertion

can be reduced if the Key Value store supports asynchronous maintenance of the reference-

embedded indexes. This overhead appears because of the cost of waiting for the update of

both the index and the store which contains the actual Key Value pairs. Having asynchronous

view maintenance as a feasible option in the Key Value store, we could just update the

Key Value pairs in the store and return to the user, while the index would get modified

automatically by the Key Value store asynchronously. As a result, decreased response times

upon insertion appear to be achievable at the cost of reduced consistency between the index

and the store. Thus, asynchronous view maintenance [32] is a desirable feature for Key Value

stores even for simple range queries.

Data access operations to VIX: VIX involves communication overhead between clients

and a Key Value store due to large leaf index nodes. This could be reduced by pushing data

manipulation (i.e., index node manipulation) to the Key Value storage nodes. For instance,

Cassandra supports selective access to a column in a single row. We could introduce such

an API to put/get a data object in a VIX leaf node.

48

Server-side scan: The no-IX technique, once chosen, should be integrated into Key Value

stores in more efficient ways. In our experiments, the Hybrid-VIX approach needs to dupli-

cate a data object in order to support both no-IX and VIX access patterns. A Key Value

store with native range index support should not need such duplication, as it can scan the

content of VIX leaf nodes at each storage node to support the no-IX pattern.

2.9 Conclusion and Future Work

In this chapter, we considered OLTP-style workloads and measured the performance of

operations in this class of workloads - with a focus on range queries - in Key Value stores

that employ both hash-partitioning (e.g., Voldemort) and range-partitioning (e.g., HBase,

Cassandra). We described a micro-benchmark that used different types of data and query

workloads against the considered Key Value stores, and we proposed techniques to support

range queries in Voldemort. Our results showed that there is no absolute winner for all

different types of queries, so we discussed guidelines for choosing the proper system and

setting based on the data and the workload that one needs to process. In this Chapter,

we focused on range scans on the key attribute, but as the data model in systems such as

HBase and Cassandra gives users the ability to define columns and select a subset of them to

retrieve, an extension to the work would be considering range queries on non-key attributes

or studying the performance for multi-attribute range queries. Considering other types of

query workloads such as non-uniform range scans for HBase and Cassandra would be another

possible extension. Moreover, it would be interesting to apply the techniques proposed for

range queries in Voldemort to other types of hash-partitioning systems, and to consider other

systems such as Cassandra that support both hash-partitioning and range-partitioning and

analyze their performance.

49

Chapter 3

Performance Evaluation of Big Data

Management System Functionality

3.1 Overview

As described briefly in Chapter 1, the new generation of Big Data management systems

(BDMS) differ quite a bit from one another in terms of their architectures and the features

that they support. As a result, there is an evident need to benchmark them to facilitate

comparisons and to reveal practical guidelines for making BDMS design decisions. In this

chapter, we report on a preliminary evaluation of four representative systems: MongoDB,

Hive, AsterixDB, and a commercial parallel shared-nothing relational database system. In

terms of features, all offer to store and manage large volumes of data, and all provide some

degree of query processing capabilities on top of such data. Our evaluation is based on a

new micro-benchmark that utilizes a synthetic application that has a social network flavor.

We analyze these preliminary performance results and then close with a follow-up discussion

on lessons learned from this effort.

50

3.2 Motivation

The whole IT world is excited about the Big Data “buzz”, and it is hard to avoid it. Immense

volumes of data are generated continuously in different domains: The users of social networks

keep publishing contents of various types on the web; online retailers are deeply interested in

tracking users’ activities and interests to make real-time suggestions; IoT-connected devices

constantly produce and exchange data collected through their sensors. New platforms, with

diverse sets of features, are emerging to fulfill the demand to collect, store, process and

manage the resulting Big Data. Today’s systems can be largely categorized into two groups:

interactive request-serving systems (NoSQL), mainly serving OLTP types of workloads with

simple operations, and Big Data analytics systems, which process scan-oriented OLAP types

of workloads. Developers of new Big Data systems have made various decisions at different

levels while designing and building them. These decisions affect the performance and the

scope of the applications that each of the systems is appropriate for. This variety makes it

difficult for end users to pick the most appropriate system for their specific use cases. In

this situation, benchmarking seems to be an appropriate means to gain more insight. It can

help end users to achieve a better understanding of the systems. It can also assist them in

obtaining a set of guidelines and rules to make the correct decision in picking a system for

their applications.

While well-established, comprehensive benchmarks exist to evaluate and compare traditional

database systems, benchmarking efforts in the Big Data community have not yet achieved

such a milestone. Some of the performance reports and white papers only show “hand-

picked” results for scenarios where a system is behaving just as desired. In addition, it

seems there are still ongoing debates about what the correct set of performance metrics is

for a big data system [46]. These issues make the evaluation and comparison of these systems

complicated.

51

There are a few Big Data benchmarking exercises that have gotten serious attention from the

community. These efforts have each mostly focused on a well-defined, but narrow, domain of

systems or use cases. Examples are YCSB [61] for OLTP and the work of Pavlo et al., in [86]

for OLAP use-cases. Additionally, the types of operations that these efforts have included

do not necessarily cover the full functionality set that a complete Big Data system should

offer.

In this Chapter, our aim is to contribute to the Big Data performance area from a slightly

different angle. We aim at studying and comparing Big Data systems based on their available

features. We offer a new domain-centric micro-benchmark, called BigFUN (for Big Data

FUNctionality), that utilizes a simple synthetic application with a social network flavor to

study and evaluate systems with respect to the set of features they support along with

the level of performance that they offer for those features. The BigFUN micro-benchmark

focuses on the data types, data models, and operations that we believe a complete, mature

BDMS should be expected to support. We report and discuss initial results measured on four

Big Data systems: MongoDB [82], Apache Hive [3], a commercial parallel database system,

and AsterixDB [36]. Our goal here is not to determine whether one Big Data management

system (BDMS) is superior to the others. Rather, we are interested in exploring the tradeoffs

between the performance of a system for different operations versus the richness of the set

of features it provides.

We should emphasize that BigFUN is a first step towards the goal of studying general-purpose

Big Data systems feature-wise. While we did our best in designing our micro-benchmark

and using it to evaluate a set of representative platforms, we do not claim that this work is

comprehensive. We hope our work can show the merit of the direction it has taken in Big

Data benchmarking, and we expect future work to expand on this effort.

52

3.3 Related Work

The history of benchmarking data management technologies goes back to the 1980s, when

first generations of relational DBMSs appeared in both academia and industry. The Wison-

sin benchmark [62], which was a single-user micro-benchmark for relational operations, and

the Debit-Credit benchmark [96], which was a multi-user benchmark modeling a transaction

processing workload for a banking application, are among the very first works in this area.

Because of the major influences that these efforts each had in terms of driving progress

on data management systems, the Transaction Processing Performance Council (TPC) [24]

came into existence, and it developed a series of benchmarks to drive systematic benchmark-

ing. The TPC-H and TPC-C benchmarks are two instances of widely adopted benchmarks

that came out of the TPC’s efforts. In parallel, a number of benchmarks emerged from

the research community. Examples include: OO1 [58] (for object operations), OO7 [53]

(for object-oriented DBMSs), BUCKY [54] (for object-relational DBMSs), XMark [93], and

EXRT [55] (for XML-related DBMS technologies). All these efforts were micro-benchmarks,

each inspired by some popular, practical application.

As the Big Data buzz has started to attract attention from the data management commu-

nity, work on Big Data benchmarking has also begun to appear. This work can roughly be

divided into two main categories. The first group addresses the problem of evaluating Big

Data serving technologies, from a broad perspective. An introductory article [46] describes

the community-wide efforts for defining the requirements for a Big Data benchmark. Big-

Bench [69] describes an end-to-end Big Data benchmark proposal which models a retailer

selling products both in physical and online stores. The data model, data generator and

workload specifications for BigBench are covered in [69], and its feasibility was validated on

the Teradata Aster DBMS (TAD). A recent overview paper [52] discusses a series of poten-

tial pitfalls that may arise in the Big Data benchmarking route, along with a number of

possibilities and unmet needs for the efforts in this area. The website for the Workshops on

53

Big Data Benchmarking (WBDB) [29] is a useful resource that lists and summarizes some

of the major works and discussions on this front.

The second group of work in the context of benchmarking Big Data systems are those that

propose a new Big Data benchmark and present the results obtained by running it. For

Big Data analytics systems, [86] was the very first work that compared Hadoop [2] against

Vertica and a row-organized parallel RDBMS (the same one examined here). It used a

workload consisting of different selection tasks, aggregations, and a two-way join. On the

NoSQL front, as discussed in Chapter 2, YCSB [61] (from Yahoo!) presented a multi-tier

benchmark (using an open-system model) that uses mixed workloads of short read and write

requests against a number of Key Value stores and sharded MySQL. Other works, such as

[85] and [89], have extended this effort further. A recent work [66] looked at both classes of

OLAP and OLTP workloads and used existing benchmarks (YCSB for NoSQL systems and

TPC-H for DSS) to compare the performance of SQL Server PDW against Hive and sharded

SQL Server to MongoDB. Other examples of Big Data micro-benchmarks include PigMix

[18], GridMix [8], and most recently BG [45] and LinkBench [43] (from Facebook).

Recently, there have been efforts such as BigDataBench [101] to address issues in Big Data

benchmarking that arise because of the complexity and variety of Big Data workloads and

rapid changes in their serving systems. Hence, while the Big Data community has already

identified the merit and major obstacles and challenges in evaluating Big Data systems, there

is still a long way and potential opportunities to go to create practical benchmarks that can

be widely adopted and used by users and the industry.

54

3.4 Systems Overview

In this section, we provide a brief overview of the systems that we are going to use in our

evaluation later in the chapter. We picked these systems because of the fact that most of

them have been used extensively by various customers and users for a range of different use

cases in the Big Data world. Moreover, these systems cover a rich set of features that makes

them reasonable candidates to conform to the goals of our performance study.

3.4.1 System-X

System-X is a commercial, parallel, shared-nothing, relational database system (unnamed

for licensing reasons). It defines its schemas using the relational data model and uses SQL as

the query language to describe requests. System-X partitions the data horizontally among

cluster nodes. The data is stored in tables, and System-X manages its storage using efficient

native RDBMS storage technology. There is also support for different types of indices and

integrity constraints in the system. A client can submit a query to the system through any

of its supported APIs, such as standard JDBC drivers, provided by the vendor. Having a

mature cost-based query optimizer (which can be equipped with statistics about the data),

an input SQL query gets converted into an optimized query plan, whose execution is done

in parallel by the nodes in the cluster. System-X is included here as a representative of the

older traditional way of managing Big Data.

3.4.2 Apache Hive

Hive [3] is the data warehouse on top of Hadoop [2], which provides a SQL-like interface for

data processing. Its query language, called HiveQL, is a subset of SQL. Tables in Hive are

created on existing data files in HDFS. Hive supports various file formats and compression

55

methods for the data which have significant performance differences. Some of the more

popular Hive formats are sequence and text files, RCFile, ORC [14], and Parquet [16]. A

client can submit a query either through Hive’s CLI or through available server interfaces

(such as HiveServer2). A user’s request gets compiled by the Hive compiler, and an optimized

execution plan of map and reduce jobs, in the form of a DAG, is generated for it. These

jobs are then executed by the Hadoop framework, and the results can be stored in HDFS or

delivered back to the user. Hive is included as a representative of the class of batch-oriented

Big Data analytics platforms.

3.4.3 MongoDB

MongoDB is a NoSQL document database that uses a binary serialization of JSON, called

BSON [6], to model and store the data. It stores each document, which is basically an

extensible set of Key Value pairs, in a collection. Collections in MongoDB are fully schema-

less, and a collection may contain heterogeneous documents with totally different schemas.

MongoDB supports automated sharding and load balancing to distribute the data across

cluster nodes to achieve horizontal scaling. The main MongoDB processes in a cluster envi-

ronment are mongod and mongos. Mongos is a routing service that knows about the location

of the data items in a cluster. Mongod is the main process for a MongoDB server and it

serves data-access requests and performs management operations. Clients directly connect

to MongoDB processes to submit their requests. MongoDB supports various types of indices

and operations. Aggregations can be done through the aggregation framework as well as

MongoDB’s mapReduce command. Queries are all single collection in nature, and there

is no support for a join operation in MongoDB. Changing the way that data is modeled

and stored, such as using embedded documents, or performing client-side joins, are among

the suggested alternatives to reduce the need for join operations in MongoDB. MongoDB is

included as a representative of the current class of NoSQL stores.

56

3.4.4 AsterixDB

AsterixDB [36] is a new open source Big Data management system (BDMS) with a rich set of

features for storing, managing and analyzing semi-structured data. It has its own declarative

query language (AQL) and data model (ADM). ADM can be considered as a “super-set”

of JSON, as it has additional primitive data types and type constructors as compared to

JSON. AsterixDB uses a hash-partitioned LSM-based storage layer as its native storage

[37]. It also has support for external storage (currently HDFS). AsterixDB has a rich set of

data types that includes spatial, and temporal data types. It provides users with different

types of indexing structures such as B+ Trees, spatial indices (R-Tree), and text indices

(inverted index). A built-in data feed service [72] for continuous data ingestion is another

available feature in AsterixDB. As the execution engine, AsterixDB uses Hyracks [49], a

data-parallel runtime platform for shared-nothing clusters. Clients can use the available

HTTP API in AsterixDB to submit queries. To process a query, AsterixDB first compiles it

into an algebraic form that is then optimized by a rule-based optimizer and ultimately turned

into a corresponding Hyracks job. This job gets executed by Hyracks and the results are

delivered back to the client using the results distribution framework in AsterixDB. AsterixDB

is included here as a representative of the next generation of Big Data management system

platforms.

3.5 Data and Workload Description

The data management community has characterized different aspects of Big Data using the

three V’s: Volume, Variety, and Velocity. A mature BDMS needs to deal with each of these

factors efficiently. It needs to store and manage huge volumes of data, while data items

could potentially come from multiple sources with different structures and schemas, and

such a system is supposed to handle high rates of incoming new data items and updates.

57

In the process of designing the BigFUN micro-benchmark, we did our best to reflect these

expectations in the data and the workload. For the data, we decided to follow the idea of the

Wisconsin benchmark [62] and design a generic synthetic database populated with randomly

generated records. Synthetic data can be scaled accurately in a straight-forward manner.

In addition, its flexibility in picking attribute values makes it a good choice for controlling

the distribution of values and the duplication rate in attributes during data generation and

later in generating workloads. We tried to design the BigFUN schema and workload in such

a way that they can be directly used to evaluate a wide range of functionality, features, and

query types. BigFUN aims to cover a range of basic and rich data types, as well as simple

and complex queries and operations, to study their level of support and performance in a

given system. We implemented data and query generators that are able to model various

types of workloads. In both the data and the query generators, we added knobs to carefully

control the major aspects of each synthetic workload.

In this section, we first describe the database that forms the basis of the BigFUN micro-

benchmark. We introduce the data types and the datasets and explain how they can be

scaled. Next, the benchmark operations are described. We divide the operations into two

major categories: “read-only” queries and “data modification” operations. For each opera-

tion we provide a concise description that captures its semantics. The actual implementation

of an operation depends on the specific system being evaluated, the query language it uses,

and the set of features and structures it supports.

3.5.1 Database

The BigFUN schema includes simple, complex, and nested data types along with unique and

non-unique attributes that can serve different indexing and querying purposes.

From a data model perspective, we are interested in identifying the existing atomic data

58

types in a system and checking if there is support for richer data types such as temporal or

spatial data types. In addition, we want to check if a system is flexible in terms of storing

heterogeneous records in a dataset or if it requires all the records in a dataset to have the

same schema. We want to check whether a system is able to store records with one or

more level(s) of nesting, or if it only supports flat, normalized records. From an indexing

perspective, we want to explore if there is support for secondary indices in a system, and if

yes, what types of index structures exist. Examples can be B-Trees, spatial indices such as

R-Tree, and text indices.

The data in the BigFUN micro-benchmark is stored in multiple datasets. The actual number

depends on whether records can be stored with nesting or need to be normalized.

Data types

We store information drawn from two imaginary social networks in our database: Gleambook

and Chirp. We use five user-defined data types in the schema, two of which are used as nested

data types in others (see Figure 3.1). The data types are as follows:

• GleambookUserType: It captures the information about specific members of the

Gleambook network. An example record of type GleambookUserType is shown in

Data 3.1 (in ADM format). Along with basic information such as the unique id and

name of the user, each record of this type contains an ordered list of EmploymentType

data records that shows their employment history. The end date attribute in the

EmploymentType is optional, and it only exists for already terminated employments.

A record of type GleambookUserType also contains an unordered list of friend ids that

contains the unique ids of other existing users who are connected to this user in the

network. user since is a temporal attribute that stores the time when the user joined

the network.

59

GleambookUserType/{"
""id:"int64,"
""alias:"string,"
""name:"string,"
""user_since:"date0me,"
""friend_ids:"{{"int64"}},"
""employment:"[EmploymentType]"
}"

GleambookMessageType/{/
""message_id:"int64, ""
""author_id:"int64,""""""
""in_response_to:"int64?,"
""sender_loca<on:"point,"
""send_<me:"date0me,"
""message:"string"
}"

EmploymentType"{"
""organiza<on:"string,"
""start_date:"date,"
""end_date:"date?"
}"

ChirpUserType/{"
//screen_name:"string,"
//lang:"string,"
//friends_count:"int32,"
//statuses_count:"int32,"
//name:"string,"
//followers_count:"int32"
}"

ChirpMessageType/{"
//chirpid:"int64,"
""user:"ChirpUserType,"
""sender_loca<on:"point,"
""send_<me:"date0me,"
""referred_topics:"{{"string"}},"
""message_text:"string"
}"

Figure 3.1: Nested BigFUN schema

• GleambookMessageType: It contains information about a message sent in the

Gleambook network. An example of a record of type GleambookMessageType is shown

in Data 3.2 (in ADM format). The message text itself is stored in the message at-

tribute. author id is a (foreign key) attribute that associates the message to its sender

using the sender’s unique id. send time is a temporal attribute capturing the time that

the message was sent by its user.

• ChirpMessagesType: It captures the information about a chirp message in the

Chirp network. An example of a record of type ChirpMessagesType is shown in Data

3.3 (in ADM format). This data type includes user as a nested attribute of type

ChirpUserType to store the information about the sender. It also contains an unordered

list of keywords, referred topics, which shows the hash tags associated with the chirp

message. send time is a temporal attribute that captures the time when this chirp

message was sent. sender location is a spatial attribute that saves the sending location

of the chirp message.

The attributes in Figure 3.1 are a super-set of the attributes that a given instance of each

data type may have. Some are denoted by “?” indicating that they are optional, such as

end date in the EmploymentType. In a system that supports semi-structured data, such

60

attributes can simply be left out of the records that they do not exist in. If a system only

supports structured data where all attributes appear in each and every record, a “NULL”

value is assigned to missing attributes.

{

"id": 3001,

"alias": "Kirk3001",

"name": "Kirk Robinson",

"user_since ": datetime ("2005 -03 -09 T14 :13:57") ,

"friend_ids ": {{9520067 , 3850565 , 8879709 , 4455450}} ,

"employment ":

[

{

"organization_name ": "X-technology",

"start_date ": date ("2005 -12 -29") ,

"end_date ": date ("2006 -02 -25")

},

{

"organization_name ": "Quadlane",

"start_date ": date ("2008 -08 -13")

}

]

}

Data 3.1: GleambookUserType sample record (in ADM)

{

"message_id ": 52411101 ,

"author_id ": 3001,

"in_response_to ": 1774919 ,

"sender_location ": point ("46.1488 ,68.1515") ,

"send_time ": datetime ("2006 -02 -14 T17 :37:11") ,

"message ": "Making call from New York , love Verizon , my coverage is just good"

}

Data 3.2: GleambookMessageType sample record (in ADM)

{

"chirpid ": 146666644 ,

"user": {

"screen_name ": "LawrenceCrom_796",

"lang": "en",

"friends_count ": 9,

"statuses_count ": 313,

"name": "Lawrence Halford",

"followers_count ": 154

},

"sender_location ": point ("26.6245 ,79.6869") ,

"send_time ": datetime ("2012 -05 -27 T10 :37:07") ,

"referred_topics ": {{" Surface","screen","hardware"," technology ","device "}},

"message_text ": "Just got Surface tonight , like the screen , it is amazing"

}

Data 3.3: ChirpMessageType sample record (in ADM)

61

Datasets

The number of datasets in an implementation of the BigFUN micro-benchmark depends

on the ability of a system to store records with nested and/or multi-valued (collection) at-

tributes. In a system with a rich data model, we can store the BigFUN records in three

datasets: GleambookUsers, GleambookMessages, and ChirpMessages, where each dataset

stores records of one of the top-level data types described in Figure 3.1. If a system only

supports flat records, then we need to normalize the schema. One way of doing that is storing

the records in six datasets (see Figure 3.2). The GleambookMessages dataset remains intact,

as its data type does not contain nested or multi-valued attributes. A single GleambookUsers

record is stored in three separate datasets: one stores the basic information, while the other

two store the employment details and friend ids. The unique id of the GleambookUser is

the referential key in the Employment and FriendIds datasets. The ChirpMessages dataset

becomes two datasets: one for the basic and sender information per chirp message, and

one (ReferredTopics) for the hash tags for each chirp message that uses the unique chirpid

to refer to the parent chirp message. The contents of the original schema’s user attribute

(which was nested) are flattened and stored along with the basic information in each chirp

message.

Secondary Indices

Exploiting secondary indices is a way to improve the performance of some queries in a system.

Different systems have different levels of support for various types of secondary indices. The

BigFUN micro-benchmark aims at studying the performance of systems for various features,

so it creates and uses secondary indices for its workload when it is justified and the system

under test has support for them. B-Trees on numerical and temporal attributes, a spatial

index on the spatial attribute capturing chirp message locations, and a keyword index on

62

GleambookUsers,(,id,,alias,,name,,user_since,),

Employments!(,id,,organiza<on,,start_date,,end_date,),

FriendIds,(,id,,friend_id,),

GleambookMessages,(,message_id,,author_id,,in_response_to,,
,,sender_loca<on,,send_<me,,message,),

ChirpMessages,(,chirpid,,sender_loca<on,,send_<me,,message_text,,
, , , ,,screen_name,,lang,,friends_count,,statuses_count,,

, , ,,name,,followers_count,),

ReferredTopics,(chirpid,,referred_topic,),

Figure 3.2: Normalized BigFUN schema

chirp messages for text search are the secondary index types included in BigFUN. More

details are provided later in the experiments section.

Data Generation

We created a data generator for BigFUN that uses a simple, scalable approach to generate

synthetic data in parallel across multiple partitions. It uses a scale factor that is interpreted

as the total size of data (in bytes) across all datasets to characterize one specific load for

the micro-benchmark. The data generator has a number of input parameters to control the

total number of users that exist in each social network and the average number of messages

per user. A set of adjustable policies are followed to generate the values for the attributes in

each record. Here are the details about the generation process of BigFUN’s most important

attributes:

• Identifiers: Each partition receives minimum and maximum values for the identifiers

it can generate, and it assigns a unique id to each record that it creates accordingly.

• Temporal attributes: The generator picks a random timestamp (a specific day for

63

date values, or a specific moment for datetime values), uniformly selected from the

time interval between two pre-defined starting and ending moments.

• Spatial attributes: Location values are uniformly selected from a defined 2D region

identified by minimum and maximum latitude and longitude limits. Currently, we fix

the bounding box boundaries based on the territory of the United States on the map.

• Employment: Each GleambookUser has 1 to 4 employments, and in each the orga-

nization is selected randomly from a dictionary of company names. The value for the

start date is set similar to the temporal attributes, and there is a 40% chance that the

user is still employed (so no end date is needed). Otherwise, the value of the end date

is generated randomly between the selected start date and the ending moment of the

temporal attributes.

• Message content: The generator uses a set of message templates and a dictionary of

keywords to generate synthetic, yet “meaningful”, messages for GleambookMessages

and ChirpMessages records. The messages mainly contain feelings about tech-related

services or devices. There are multiple categories of keywords about devices, parts,

vendors, and location names and each category has three separate lists of possible

choices: rare, medium and frequent. These lists capture the popularity of keywords

among the generated messages. Rare keywords appear in 5% of the messages. Those in

the medium lists appear in 20% of the messages, and frequent keywords appear in 75%

of the messages. The message text (and its referred topics, if it belongs to a ChirpMes-

sage) is set according to the values that the generator picks from the dictionary. In

addition, there is a total of 5% of noise, in the form of misspellings or swappings of one

or two characters in a keyword, that is injected into the text of the generated messages.

This noise aims at reflecting the possibility of human errors when editing a message is

used in the text similarity search queries.

64

3.5.2 Read-Only Queries

The first group of operations in BigFUN consists of read-only queries. Table 3.1 summarizes

these queries. While designing this portion of the workload, we tried to meet these goals:

• Clarity: One should be able to associate each query with a real world operation or user

request that could arise in the context of a valid Big Data application. For example, the

“unique record retrieval” query (Q1) can be mapped to fetching the profile information

for a specific user in a social network.

• Simplicity: Each query should be an independent operation that evaluates a well-

defined and reasonably small set of features. For example, the “global aggregation”

query (Q6) is focused on measuring the performance of aggregating the results of

applying a built-in function on selected records.

• Coherence: A relationship exists between groups of queries in the benchmark, such

that comparing results among them can reveal more about the performance of a system

and the overhead of specific operations in it. For example, Q6, Q7, and Q8 all measure

the performance of aggregation on a selected set of records. Q6 performs a simple

aggregation, Q7 adds grouping to the aggregation pipeline, and Q8 adds ordering and

limiting to produce ranked output.

We divide the read-only queries into groups based on the set of functionality and features that

each explores and the dataset(s) that each accesses. Figure 3.3 summarizes the groups, and

they are discussed in more detail below. Each operation is also shown for both the nested

schema (Figure 3.1) in AQL and the normalized schema (Figure 3.2) in SQL (whenever

available). The parameter values in the query statements are shown in a generic form

(preceded by @ symbol) as their actual values are set by the query generator during the

benchmark execution and according to the query version.

65

QId
Name Description

Q1 Unique record retrieval Retrieve an existing user using his or her user id.

Q2 Record id range scan Retrieve the users whose user ids fall in a given range.

Q3 Temporal range scan Retrieve the users who joined the network in a given time in-
terval.

Q4
Existential
quantification

Find basic and employment information about users who joined
the network in a given time interval and are currently employed.

Q5 Universal quantification Find basic and employment information about users who joined
the network in a given time interval and are currently not em-
ployed.

Q6 Global aggregation Find the average length of chirp messages sent within a given
time interval.

Q7
Grouping &
aggregation

For chirp messages sent within a given time interval find the
average length per sender.

Q8 Top-K Find the top ten users who sent the longest chirp messages (on
average) in a given time interval.

Q9 Spatial selection Find the sender names and texts for chirp messages sent from
a given circular area.

Q10
Text containment
search

Find the texts and send-times for the ten most recent chirp
messages containing a given word.

Q11 Text similarity search Find the texts and send-times for the ten most recent chirp
messages that contain a word similar (based on edit distance)
to a given word.

Q12 Select equi-join Find the users’ names and message texts for all messages sent
in a given time interval by users who joined the network in a
specified time interval.

Q13
Select left-outer
equi-join

For users who joined the network in a given time interval, find
their name and the set of messages that they sent in a specified
time interval.

Q14
Select join with
grouping & aggregation

For those users who joined the network in a given time interval,
find their ids and the total number of messages each sent in a
specified time interval

Q15 Select join with Top-K For those users who joined the network in a given time interval,
find their ids and the total number of messages each sent in a
specified time interval; report only the top ten users based on
the number of messages.

Q16 Spatial join For each chirp message sent within a given time interval, find
the ten nearest chirp messages.

U1 (Batch) Insert Given the information for a set of new users, add the informa-
tion to the database.

U2 (Batch) Delete Given a set of existing user ids, remove the information for each
user from the database.

Table 3.1: BigFUN operations description

66

BigFun'Operations'

Single'Dataset'
Simple

Single'Dataset'
Complex

Single'Dataset'
Advanced

Multi;Dataset'
Join

Multi;Dataset'
Combined

Multi;Dataset'
Advanced

Lookup Range'
Scan

QuantiBication Aggregation Spatial''
Selection

Text'
Search

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

Updates

U1 U2

Figure 3.3: BigFUN operations

G1. Single Dataset - Simple

The first group of operations consists of three queries, Q1, Q2, and Q3. These queries focus

on a basic, but frequently used, operation in a data store: record retrieval using identifying

key(s), where all information about a set of records is fetched. All three queries retrieve

records from the GleambookUsers dataset. Q1 and Q2 use the primary key for this purpose

(a given key value identifies one unique existing record). Q3 specifies its selection criterion

using a range of valid values for a temporal attribute that is not necessarily unique among the

records. For Q2 and Q3, we consider multiple range sizes to test the impact of the number

of qualifying records on performance. The performance of these queries can be improved if

a system has support for indexing: primary index for Q1 and Q2, and a secondary index for

Q3. Otherwise, scanning the whole dataset and checking each and every existing record is

necessary.

Q1 - Unique record retrieval

This query uses the primary key as the selection criterion to retrieve all the information

corresponding to a single existing record. As GleambookUsers is used as the target dataset

67

the retrieved record will have nested and collection attributes. (Check Listing 3.1).

for $u in dataset GleambookUsers

where $u.id = @INT64

return $u

Listing 3.1: Q1 (in AQL for the nested schema)

In the normalized schema case, the query needs to access multiple tables (GleambookUsers,

Employments, and FrindIds) to fetch the required information and combine them together.

We use “UNION ALL” (in SQL) to combine the retrieved information from three tables and

list the retrieved GleambookUsers, Employments, and FriendIds tuples with an expanded

schema. (Check Listing 3.2).

(select u.id as uc0 , u.alias as uc1 ,

u.name as uc2 , u.user_since as uc3 ,

null as ec4 , null as ec5 , null as ec6 ,

null as fc7

from GleambookUsers u

where u.id = @INT64

)

UNION ALL

(select null as uc0 , null as uc1 , null as uc2 ,

null as uc3 , e.org as ec4 , e.start_date as ec5 ,

e.end_date as ec6 , null as fc7

from Employments e

where e.id = @INT64

)

UNION ALL

(select null as uc0 , null as uc1 , null as uc2 ,

null as uc3 , null as ec4 , null as ec5 ,

null as ec6 , f.friend_id as fc7

from FriendIds f

where f.id = @INT64

)

Listing 3.2: Q1 (in SQL for the normalized schema)

Q2 - Record identifier range scan

This query retrieves a group of existing records from the GleambookUsers dataset based

on a valid range of primary key values. (Check Listing 3.3). In the normalized schema case

and similar to Q1, we need to access three tables. In order to combine the results, we order

the retrieved tuples by their “id” value so that all the tuples corresponding to one user come

after each other (so we can get as close as possible to the results in the nested schema case).

(Check Listing 3.4).

68

for $u in dataset GleambookUsers

where $u.id >= @int64

and $u.id < @int64

return $u

Listing 3.3: Q2 (in AQL for the nested schema)

(select u.id as uc0 , u.alias as uc1 ,

u.name as uc2 , u.user_since as uc3 ,

null as ec4 , null as ec5 , null as ec6 ,

null as fc7

from GleambookUsers u

WHERE

u.id >= @int64 AND

u.id < @int64

)

UNION ALL

(select e.id as uc0 , null as uc1 , null as uc2 ,

null as uc3 , e.org as ec4 , e.start_date as ec5 ,

e.end_date as ec6 , null as fc7

from Employments e

WHERE

e.id >= @int64 AND

e.id < @int64

)

UNION ALL

(select f.id as uc0 , null as uc1 , null as uc2 ,

null as uc3 , null as ec4 , null as ec5 ,

null as ec6 , f.fr_id as fc7

from FriendIds f

WHERE

f.id >= @int64 AND

f.id < @int64

)

ORDER BY uc0

Listing 3.4: Q2 (in SQL for the normalized schema)

Q3 - Temporal range scan

This query retrieves a group of records from the GleambookUsers dataset based on a valid

range of values for a temporal, non-unique attribute. (Check Listing 3.5).

for $u in dataset GleambookUsers

where $u.user_since >= @datetime

and $u.user_since < @datetime

return $u

Listing 3.5: Q3 (in AQL for the nested schema)

In the normalized schema case, as the selection predicate is based on an attribute which

only exists in the parent table (the user since attribute in GleambookUsers) we need to join

the parent and each child table to fetch corresponding Employments and FriendIds tuples.

Similar to Q2, the retrieved tuples are ordered by the primary key (foreign key for child

tables) so all the tuples for a user appear together. (Check Listing 3.6).

69

(select u.id as uc0 , u.alias as uc1 ,

u.name as uc2 , u.user_since as uc3 ,

null as ec4 , null as ec5 , null as ec6 ,

null as fc7

from GleambookUsers u

WHERE

u.user_since >= @datetime AND

u.user_since < @datetime

)

UNION ALL

(select u2.id as uc0 , null as uc1 , null as uc2 ,

null as uc3 , e.org as ec4 , e.start_date as ec5 ,

e.end_date as ec6 , null as fc7

from GleambookUsers u2 , Employments e

WHERE u2.id = e.id AND

u2.user_since >= @datetime AND

u2.user_since < @datetime

)

UNION ALL

(select u3.id as uc0 , null as uc1 , null as uc2 ,

null as uc3 , null as ec4 , null as ec5 ,

null as ec6 , f.fr_id as fc7

from GleambookUsers u3 , FriendIds f

WHERE u3.id = f.id AND

u3.user_since >= @datetime AND

u3.user_since < @datetime

)

ORDER BY uc0

Listing 3.6: Q3 (in SQL for the normalized schema)

G2. Single Dataset - Complex

This group of operations include five queries, Q4 to Q8. They cover two core features

that arise in both OLTP and OLAP types of workloads: Quantification and Aggregation.

All these queries use a temporal filter to select a set of records from their target dataset

prior to the main operation. We use the selectivity of this filter to control the number

of qualifying records to create multiple versions of each query. The quantification queries

(Q4, and Q5) access the GleambookUsers dataset and use the employment attribute in their

predicates to find employed and unemployed users. The aggregation queries (Q6, Q7, and

Q8) use the ChirpMessages dataset and report aggregate values for a selected set of messages.

The operations in this group of queries (quantification, grouping, and aggregation) can be

implemented and optimized in various ways. This group of queries aims at providing a basis

to evaluate and compare systems from that perspective.

70

Q4 - Existential quantification

This query tries to find information about currently “employed” users who joined the

Gleambook network in a given time interval. Lack of end date for at least one of the em-

ployments of a user shows that he is currently employed and this query uses existential

quantification to find users with such a status. (Check Listing 3.7.) In the normalized

schema case, as the information about the employments of users is stored in a separate ta-

ble, the query needs to access two tables and combines the retrieved information to evaluate

and return the final results. (Check Listing 3.8).

for $u in dataset GleambookUsers

where

(some $e in $u.employment

satisfies is-null($e.end_date)) and

$u.user_since >= @datetime

and

$u.user_since < @datetime

return {

"uname": $u.name ,

"emp": $u.employment

}

Listing 3.7: Q4 (in AQL for the nested schema)

SELECT u.name , em.id, em.organization ,

em.start_date , em.end_date

FROM GleambookUsers u, Employments em

WHERE u.id = em.id AND

u.user_since >= @datetime AND

u.user_since < @datetime

AND EXISTS (

SELECT *

from Employments e

WHERE e.id = u.id AND

e.end_date is NULL

)

ORDER BY u.id

Listing 3.8: Q4 (in SQL for the normalized schema)

Q5 - Universal quantification

This query is similar to Q4 with the difference that it tries to find currently “unemployed”

users from a set of users of the Gleambook network. All the employments of an unemployed

user are already terminated i.e., they all have valid values for their end date attributes.

Therefore, the query uses a universal quantification to find if a user is unemployed or not.

(Check Listings 3.9 and 3.10).

71

for $u in dataset GleambookUsers

where

(every $e in $u.employment

satisfies not(is-null($e.end_date))) and

$u.user_since >= @datetime

and

$u.user_since < @datetime

return {

"uname": $u.name ,

"emp": $u.employment

}

Listing 3.9: Q5 (in AQL for the nested schema)

SELECT u.name , em.id, em.organization ,

em.START_DATE , em.END_DATE

FROM GleambookUsers u, Employments em

WHERE u.id = em.id AND

u.user_since >= @datetime AND

u.user_since < @datetime

AND NOT EXISTS (

SELECT *

from Employments e

WHERE e.id = u.id AND

e.end_date is NULL

)

ORDER BY u.id

Listing 3.10: Q5 (in SQL for the normalized schema)

Q6 - Global aggregation

This is the basic query in the aggregation family that calculates the average length of the

messages in given set of records picked from ChirpMessages. For both of the nested and

normalized schema cases all the information for this query is stored in one dataset/table.

(Check Listings 3.11 and 3.12).

avg(

for $t in dataset ChirpMessages

where $t.send_time >= @datetime and

$t.send_time < @datetime

return string -length($t.message_text)

)

Listing 3.11: Q6 (in AQL for the nested schema)

SELECT avg(length(m.message_text))

FROM ChirpMessages m

WHERE m.send_time >= @datetime AND

m.send_time < @datetime

Listing 3.12: Q6 (in SQL for the normalized schema)

Q7 - Grouping and aggregation

This is the second query in the aggregation family which adds grouping to Q6. The

72

aggregated value is reported per group of Chirp messages, grouped based on the name of

the users who sent them. (Check Listings 3.13 and 3.14).

for $t in dataset ChirpMessages

where $t.send_time >= @datetime and

$t.send_time < @datetime

let $m := string -length($t.message_text)

group by $uname := $t.user.screen_name with $m

return {

"user": $uname ,

"avg": avg($m)

}

Listing 3.13: Q7 (in AQL for the nested schema)

SELECT m.screen_name , avg(length(m.message_text)) AS avg

FROM ChirpMessages m

WHERE m.send_time >= @datetime AND

m.send_time < @datetime

GROUP BY m.screen_name

Listing 3.14: Q7 (in SQL for the normalized schema)

Q8 - Top-K

This is the last query in the aggregation family. It adds ranking to Q7 and returns the top

users with the longest messages, sent in a given time interval, in the Chirp network. (Check

Listings 3.15 and 3.16).

for $t in dataset ChirpMessages

where $t.send_time >= @datetime and

$t.send_time < @datetime

let $m := string -length($t.message_text)

group by $uname := $t.user.screen_name with $m

let $a := avg($m)

order by $a desc

limit 10

return {

"user": $uname ,

"avg": $a

}

Listing 3.15: Q8 (in AQL for the nested schema)

SELECT m.screen_name , avg(length(m.message_text)) AS avg

FROM ChirpMessages m

WHERE m.send_time >= @datetime AND

m.send_time < @datetime

GROUP BY m.screen_name

ORDER BY avg(length(m.message_text)) DESC

FETCH FIRST 10 ROWS ONLY

Listing 3.16: Q8 (in SQL for the normalized schema)

73

G3. Single Dataset - Advanced

This group consists of three queries, Q9, Q10, and Q11, that evaluate a system’s ability

in selecting records from ChirpMessages using spatial or textual similarity predicates. Q9

performs spatial selection to retrieve all the messages sent from a given region. Q10 and

Q11 retrieve a set of chirp messages based on their messages’ contents. The predicate in

Q10 uses an exact string matching criterion, while the predicate in Q11 uses edit distance

as the similarity metric. Like the previous groups of queries, we create different versions for

each query by adjusting the expected selectivity of the predicates. For Q9, the boundaries of

the region are varied, while in Q10 and Q11 the expected occurrence frequency of the search

keyword is varied by picking keywords with different popularities (the query keywords are

selected from the dictionary that the data generator uses). These queries can be processed if

the system has support for spatial and textual data types and proper comparators for them.

If a system supports relevant indexing techniques, it may achieve a better performance by

using those indices.

Q9 - Spatial selection

This query uses a predicate on the spatial attribute (sender location) in the ChirpMessages

dataset to select a set of messages sent from a given circular area. The area is defined using

a valid point as the center of the circle and its radius. (Check Listing 3.17).

let $p := create -point(@double , @double)

let $r := create -circle($p, @double)

for $t in dataset ChirpMessages

where spatial -intersect($t.sender_location , $r)

return {

"name": $t.user.screen_name ,

"message ": $t.message_text

}

Listing 3.17: Q9 (in AQL for the nested schema)

74

Q10 - Text containment search

This query uses a query keyword picked from the dictionary used during data generation

to select a set of messages from the ChirpMessages dataset. The sending time and text of

the most recent messages which contain an “exact” occurrence of the given query keyword

are returned as the results of the query. (Check Listing 3.18).

for $t in dataset ChirpMessages

where contains($t.message_text , @string)

order by $t.send_time desc

limit 10

return {

"time": $t.send_time ,

"message ": $t.message_text

}

Listing 3.18: Q10 (in AQL for the nested schema)

Q11 - Text similarity search

This query is similar to Q10 with the difference that it uses “fuzzy” matching for text

similarity search (instead of “exact” word containment). The similarity metric of choice is

edit distance with a fixed threshold to control the maximum number of one missing/modified

characters between the query keyword and the words used in the messages. (Check Listing

3.19).

for $t in dataset ChirpMessages

where

edit -distance -contains($t.message_text , @string , 1)[0]

order by $t.send_time desc

limit 10

return {

"time": $t.send_time ,

"message ": $t.message_text

}

Listing 3.19: Q11 (in AQL for the nested schema)

G4. Multi-Dataset - Join

Join is a fundamental operation in databases that arises in a wide range of use cases. Its

frequency of use is somewhat lessened in a data model with nesting, but it is still an important

operation. In the Big Data world, where a system needs to deal with a huge amount of

75

(distributed) data, performing join in a scalable, efficient manner can be a challenge. Q12

and Q13 are join queries that join the users from GleambookUsers with their messages in

the GleambookMessages dataset. Q12 is a regular equi-join while Q13 is a left outer join.

Multiple versions of each query are generated by modifying the expected selectivity of the

temporal filter on the GleambookUsers side.

Q12 - Select equi-join

This query is a select-equi join which returns pairs of user names and messages which

capture information about all the messages, sent in a given time interval, by a group of

users in the Gleambook network. For this purpose this query joins these two datasets using

the primary key from the GleambookUsers side which is stored as the foreign key (i.e., the

author id attribute) in the GleambookMessages records. (Check Listings 3.20 and 3.21).

for $m in dataset GleambookMessages

for $u in dataset GleambookUsers

where $m.author_id = $u.id and

$u.user_since >= @datetime and

$u.user_since < @datetime and

$m.send_time >= @datetime and

$m.send_time < @datetime

return {

"uname": $u.name ,

"message ": $m.message

}

Listing 3.20: Q12 (in AQL for the nested schema)

SELECT u.name , m.message

FROM GleambookUsers u, GleambookMessages m

WHERE m.author_id = u.id AND

u.user_since >= @datetime AND

u.user_since < @datetime AND

m.send_time >= @datetime AND

m.send_time < @datetime

Listing 3.21: Q12 (in SQL for the normalized schema)

Q13 - Select left-outer equi-join

This query does a left-outer join and uses similar filtering predicates as Q12 on the Gleam-

bookUsers and GleambookMessages sides to find all the messages that each user, from a

selected set of users, has sent. The set of messages of a user could be empty if the user did

76

not send any message within the considered time interval. (Check Listing 3.22.) For the

normalized schema case, we order the retrieved messages based on the name of their senders

so that all the messages that a given user had sent appear together. This way we try to get

as close as possible to the results that the query on the nested schema would return. (Check

Listing 3.23.)

for $u in dataset GleambookUsers

where $u.user_since >= @datetime and

$u.user_since < @datetime

return {

"uname": $u.name ,

"messages ":

for $m in dataset GleambookMessages

where $m.author_id = $u.id and

$m.send_time >= @datetime and

$m.send_time < @datetime

return $m.message

}

Listing 3.22: Q13 (in AQL for the nested schema)

SELECT u.name , m.message

FROM GleambookUsers u LEFT OUTER JOIN GleambookMessages m

ON m.author_id = u.id

WHERE u.user_since >= @datetime AND

u.user_since < @datetime AND

m.send_time >= @datetime AND

m.send_time < @datetime

ORDER BY u.name

Listing 3.23: Q13 (in SQL for the normalized schema)

G5. Multi-Dataset - Combined

This group of queries (Q14 and Q15) combines joins with aggregation. They use the Gleam-

bookUsers and GleambookMessages datasets and report grouped aggregation and ranked

results. The main goal of these queries is to measure the performance of a system for two of

the core operations in a data store (join and aggregation) once they are combined together

and compare it to the results of the aggregation-only and join-only queries. Such a combina-

tion could occur in an application where one wants to calculate aggregated values or to rank

records coming from different data sources. Similar to the join queries, different versions of

these queries are created by changing the expected selectivity of the temporal filter on the

users side.

77

Q14 - Select join with grouping and aggregation

This query combines join and aggregation operations by joining GleambookUsers and

GleambookMessages datasets to find the number of messages that a selected set of users

sent during a given time interval. For this purpose the resulting tuples from the join are

grouped according to the id of the senders and the aggregated count is reported for each

group. (Check Listings 3.24 and 3.25.)

for $m in dataset FacebookMessages

for $u in dataset GleambookUsers

where $m.author_id = $u.id and

$u.user_since >= @datetime and

$u.user_since < @datetime and

$m.send_time >= @datetime and

$m.send_time < @datetime

group by $uid := $u.id with $u

let $c := count($u)

return {

"uid": $uid ,

"count": $c

}

Listing 3.24: Q14 (in AQL for the nested schema)

SELECT u.id , count (*) AS count

FROM GleambookUsers u, GleambookMessages m

WHERE m.author_id = u.id AND

u.user_since >= @datetime

AND u.user_since < @datetime

AND m.send_time >= @datetime

AND m.send_time < @datetime

GROUP BY u.id

Listing 3.25: Q14 (in SQL for the normalized schema)

Q15 - Select join with top-K

This query is similar to Q14 with the addition of ranking and it returns top groups i.e., the

users who have sent the most number of messages in a given time interval. (Check Listings

3.26 and 3.27.)

G6. Multi-dataset - Advanced

The last group of queries contains a select-join query (Q16) whose join predicate is on a

spatial attribute and it tries to find recent messages that are sent from a given neighborhood

78

for $m in dataset GleambookMessages

for $u in dataset GleambookUsers

where $m.author_id = $u.id and

$u.user_since >= @datetime and

$u.user_since < @datetime and

$m.send_time >= @datetime and

$m.send_time < @datetime

group by $uid := $u.id with $u

let $c := count($u)

order by $c desc

limit 10

return {

"uid": $uid ,

"count": $c

}

Listing 3.26: Q15 (in AQL for the nested schema)

SELECT u.id , count (*) AS count

FROM GleambookUsers u, GleambookMessages m

WHERE m.author_id = u.id AND

u.user_since >= @datetime

AND u.user_since < @datetime

AND m.send_time >= @datetime

AND m.send_time < @datetime

GROUP BY u.id

ORDER BY count (*) DESC

FETCH FIRST 10 ROWS ONLY

Listing 3.27: Q15 (in SQL for the normalized schema)

around a set of Chirp messages. Similar to Q9, the boundaries of the the neighborhood are

modified to create different versions of the query. Spatial indexing techniques can improve

a system’s performance for this query.

Q16 - Spatial join

This query is a spatial join which selects a set of messages from the ChirpMessages dataset,

using the send time attribute and performs a spatial (self-)join to find “near-by” messages

for each of the selected chirp messages. A near-by message is one that was sent from a

specified neighborhood around the sending location of the original chirp message. The query

returns the top 10 near-by messages (ranked based on the sending time) per selected chirp

message. (Check Listing 3.28.)

79

for $t1 in dataset ChirpMessages

where $t1.send_time >= @datetime and

$t1.send_time < @datetime

let $n := create -circle($t1.sender_location , @double)

return {

"chirp": $t1.chirpid ,

"nearby -chirps ":

for $t2 in dataset ChirpMessages

where spatial -intersect($t2.sender_location ,$n) and

$t1.chirpid != $t2.chirpid

let $d := spatial -distance($t1.sender_location , $t2.sender_location)

order by $d desc

limit 10

return $t2.message_text

}

Listing 3.28: Q16 (in AQL for the nested schema)

3.5.3 Data Modification Operations

The second group of operations in BigFUN consists of data modification operations, shown

in Table 3.1. The goal for their inclusion is to study a system’s behavior when dealing

with data addition (insert) or data removal (delete). We made the following decisions while

designing the data modification portion of the workload for BigFUN:

• To examine the impact of complex records and index structures (which must be main-

tained properly through data modifications) on the cost of updates, we used Gleam-

bookUsers as the target dataset for this workload. It contains records with nested and

collection attributes as well as a secondary index.

• Real applications do inserts and deletes both individually and in batches. The BigFUN

micro-benchmark includes both singleton and bulk operations, with varying sizes, to

examine the performance impact of grouping data modification operations together.

As shown in Table 3.1, a single insert (or delete) operation adds (or removes) a record and all

its attributes’ values from the database. As a result, if a system stores the target dataset in

a normalized fashion, a single data modification operation turns into multiple corresponding

operations on several datasets. If a GleambookUser record is stored as described in Figure

3.2, then three datasets - GleambookUsers, Employments, and FriendIds - need to be mod-

80

ified in each operation. Performing multiple correlated changes can add extra cost for the

data modification workload compared to the case where the records are stored in a single

nested dataset.

Batch insert

This operation modifies the contents of the GleambookUsers dataset by adding full infor-

mation about a set of non-existing users. (Check Listing 3.29.)

insert into dataset GleambookUsers (

for $t in [

@ADM -Full -Rec -1,

@ADM -Full -Rec -2,

...,

@ADM -Full -Rec -k

]

return $t

);

Listing 3.29: U1 (in AQL)

Batch delete

This operation modifies the GleambookUsers dataset by removing all the information

about a set of existing users which are identified via their primary key values. (Check

Listing 3.30.)

delete $u from dataset GleambookUsers

where $u.id = @int64 -1 or

$u.id = @int64 -2 or

...

$u.id = @int64 -k;

Listing 3.30: U2 (in AQL)

3.6 Experiments

This section presents a set of experimental results that we obtained by running the BigFUN

micro-benchmark on the systems listed in Section 3. We first go over the details of the

81

Asterix
Schema

Asterix
KeyOnly System-X Hive Mongodb

9 Partitions 169 285 292 18 276
18 Partitions 338 571 587 36 553
27 Partitions 508 856 881 53 833

Updates 162 279 272 - 278

Table 3.2: Total database size (in GB)

setup for the systems and the tests. Then, the results for the read only queries and data

modification operations are presented separately.

3.6.1 Setup

For the experiments, we used a 10-node IBM x3650 cluster with a Gigabit Ethernet switch.

Each node had one Intel Xeon processor E5520 2.26GHz with four cores, 12 GB of RAM,

and four 300GB, 10K RPM hard disks. Each node was running 64-bit CentOS 6.6, and

on each machine three disks were used as data partitions to store each system’s persistent

storage files. The fourth disk was used as the log partition for the transaction and system

logs.

Client

The BigFUN client driver code was running on a separate machine with 16 GB of memory

and 4 CPU cores (hyper threaded) that was connected to the main cluster through the same

Ethernet switch. While running the workload, we monitored the resource usage on the client

machine to make sure that it was never the performance bottleneck. A single-user, closed-

system model was used for our tests; queries were independent of one another, and each new

request was only triggered once the previous one was finished. As the performance metric,

we measured and report the average end-to-end response time per operation from the client’s

perspective. We also ran each workload multiple times, considered the first few initial runs

82

as warm-up rounds and discarded them, and reported measurements on a warmed-up cache

for each system.

System-X

For System-X, we used a version dated approximately 2013. Each node in the cluster served

3 database partitions. Data was partitioned using the system’s built-in hash-partitioning

scheme. We used the system’s storage manager to maintain the tablespaces. Our client used

the vendor’s JDBC driver to run the workload.

Hive

For Apache Hive, we used stable release 0.13. The client driver used Hive’s JDBC client

through hiveserver2 to execute queries against the data warehouse and retrieve the results.

The data was stored using Hive’s Optimized Row Columnar (ORC) file format [14], which

has inherent optimization for storage savings and enhanced read performance when a query

needs a subset of the rows and/or the columns within them. We used 4 map and 4 reduce

slots per node. The machines in the cluster were running datanode and tasktracker daemons.

Three disks per machine were used by HDFS to store data (with a replication factor of 1)

and the fourth disk served as the log partition. The NameNode and JobTracker daemons

were running on a separate machine (with 4 cores, and 16 GB of memory) connected to the

cluster using the same Ethernet switch.

MongoDB

For MongoDB, we used version 2.6.3. The client used MongoDB’s Java Driver 2.12.4 to

interact with the document store. Data was stored in sharded collections, using hashed shard

keys. On each machine, we put three shards (on three separate disks) and three mongod

processes, one per shard. We used the fourth disk on each machine to store MongoDB’s

journal files.

83

AsterixDB

For AsterixDB, we used version 0.8.7. The native RESTful API was used to run the

workload. The data was stored in internal datasets, hash-partitioned using the primary key

of each dataset. One node controller with three data partitions was running on each machine.

We assigned 6 GB of memory to each node controller, along with 1 GB of bufferpool. We

measured AsterixDB’s performance for two different data type approaches: AsterixSchema,

where the data type definitions pre-declared all possible attributes for each data type, and

AsterixKeyOnly, in which the data type definitions only defined the minimal set of attributes

(required for indexing) in each data type. These two variations lie on the two end-points

of the data type definitions spectrum (for semi-structured records) in AsterixDB: providing

the system with complete vs. the least amount of information about the attributes in a data

type. The overhead of the information stored per record differs between these two cases.

3.6.2 Read-Only Workload Results

Our read-only experiments focused on the scale-up characteristic of the tested systems. We

used three scales with 9, 18, and 27 partitions using 3, 6, and 9 machines respectively. (Each

machine served 3 partitions.)

The data generator described in Section 3.5 was used to create the data for the three scales.

For the 9-partition scale, 90 million GleambookUsers, almost 450 million GleambookMes-

sages, and more than 220 million ChirpMessages were generated and used. These cardi-

nalities were scaled up proportionally for the 18 and 27-partition scales. We tried to place

a reasonable amount of data on each node based on the available memory per machine so

that when running the tests against a warmed-up system, read and write requests turn to

be physical IO requests and are not simply served by the OS cache. For this purpose, the

amount of data in our final loads for each scale was at least five times the total available

84

Dataset Attribute AsterixDB MongoDB
GleambookUsers user since BTree BTree
GleambookMessages author id BTree BTree
ChirpMessages send time BTree BTree
ChirpMessages sender location RTree 2d-IX
ChirpMessages message text inverted-IX text-IX

Table 3.3: Nested schema - Secondary index structures

Table Column System-X
GleambookUsers id BTree (PIX, Clustered)
GleambookUsers user since BTree
GleambookMessages message id BTree (PIX)
GleambookMessages author id BTree (clustered)
ChirpMessages chirpid BTree (PIX, Clustered)
ChirpMessages send time BTree
Employments id BTree (clustered)
FriendIds id BTree (clustered)
ReferredTopics chirpid BTree (clustered)

Table 3.4: Normalized schema - Index structures

memory size across the machines. We loaded the data into AsterixDB and MongoDB as

records with nesting as shown in Figure 3.1. For System-X and Hive, we used the normal-

ized schema as described in Figure 3.2. Table 3.2 shows the total database size per system

after loading. As the systems use different storage formats to persist their data, they differ

in terms of the total database size. One can see a size difference between the AsterixSchema

and AsterixKeyOnly cases because of the extra information stored per record in the latter

case. One can also see the impact of the storage optimization in the ORC file format for

Hive; ORC’s built-in compression reduced the total size of the stored tables significantly.

Auxiliary index structures

Table 3.3 lists the secondary indices that we created in AsterixDB and MongoDB for

the nested schema. The indices on user since (GleambookUsers dataset) and send time

(ChirpMessages dataset) attributes were extensively used to filter and select a subset of users

85

or chirp messages in various queries. The author id index (GleambookMessages dataset)

was exploited for join queries. The spatial index on sender location and the text index on

message text (both in ChirpMessages) were used for the spatial and text similarity queries

respectively. AsterixDB and MongoDB use different types of indices for spatial and text

fields. AsterixDB uses RTrees for indexing spatial data types, while MongoDB uses a 2D

index (created by computing “geo-hash” values for the coordinate pairs while the two dimen-

sional map is divided into quadrants recursively [23]). For indexing textual data, AsterixDB

has support for n-gram inverted indices that can be used for both exact text search and

text similarity search. For the purpose of our experiments, we created the inverted index

on 2-grams. MongoDB’s more traditional text index is created by using stemming, filtering

stop words, etc.

Table 3.4 shows the indices used for the normalized schema in System-X. Besides showing

the base table and column for each index, we have noted the clustered indices. A clustered

index specifies how the rows of a table are physically ordered in a tablespace. Cluster-

ing can provide a considerable performance advantage for operations that involve accessing

many records. While the primary index was used as the clustered index in both the Gleam-

bookUsers and ChirpMessages tables, we clustered GleambookMessages rows based on the

author id attribute, as our workload tended to access this table for fetching all the messages

sent by a specific user (rather than accessing the messages directly using their primary key

values). Moreover, as Employments, FriendIds, and ReferredTopics are three tables created

as a result of normalizing the schema, we used indices on the parent tables’ id attributes

as their clustered indices. These tables did not have a primary index, as they were only

accessed through their parent tables. We included corresponding referential constraints for

them, defined as foreign keys, when executing the DDL. We gathered statistics in System-X

to provide its cost-based optimizer with the required information to generate optimal plans.

We did not use indices in Hive because of their level of support; unlike other systems, the

optimizer in Hive does not automatically consider indices when generating a plan, so users

86

need to re-write each query in such a way that indices can be exploited.

As MongoDB has no built-in support for joins, we had to perform its join operations on the

client side. For this purpose, we added a code snippet to the client program that performed

an index nested loop join using primary and secondary indices on the collections involved in

the query.

Performance results

Table 3.5 shows all the results for the read-only queries. Each row shows the average response

time (in seconds) for one query across all systems for all three scales. If we could not run

a query against a system (due to the fact that the features tested by the query were not

directly supported by that system), the corresponding cell in the table contains a “-”. A cell

with “NS” means that the query did not scale properly and did not produce reliable results

for that case. Each query may have several versions whose results are reported in separate

rows. For most queries we have 3 versions: small (S), medium (M), and large (L). These

versions are defined with respect to the expected selectivity of the filters in a given query.

Each filter could be of one of the following types:

• Primary key filter: It defines a range of valid existing ids for GleambookUsers. The

small version is chosen so as to select 100 users; the medium version selects 10,000

users, and the large version selects 1 million users.

• Temporal filter: It defines a range of valid timestamps according to the start and

end dates the generator used during the record creation process. Depending on the

dataset used in the query, the filter is defined either on the user since attribute (in

GleambookUsers) or the send time attribute (in ChirpMessages). For the base scale

(9 partitions), an expected number of 100 records would pass the filter in the small

87

version; the number is 10,000 for the medium version, and 1 million for the large

version.

• Spatial filter: It defines a circular neighborhood whose center is a valid point within

the region the generator used when creating values for the spatial attributes. Changing

the radius of the neighborhood changes the selectivity of the filter. The filter is applied

on the values of the sender location attribute in the ChirpMessages dataset. In the

9-partition scale, the small version picks an expected number of 100 records; for the

medium and the large versions, this value is 10,000 and 1 million records respectively.

• Text filter: It uses a keyword selected from the dictionary of keywords that the

generator used in creating message texts. The filter is applied on the message text

attribute in the ChirpMessages dataset and selects a subset of the chirp messages in

the text similarity search queries. The small version picks a keyword with an expected

occurrence frequency of 5% in the whole dataset, while the medium version picks a

keyword that exists in approximately 20% of the records.

In Table 3.5, two of the aggregation queries, Q6 and Q8, have a fourth version, denoted

by F (standing for “full”). In this version, the query runs against the full dataset (no pre-

aggregation filter) and computes the aggregation over all records. Such aggregations arise

in OLAP types of workloads, so we included these versions to measure the performance in

such scenarios.

For the queries involving joins (Q12 to Q15), we report results for two different variations

of the query: one in which no secondary index exists on the author id attribute from the

messages side of the join, and one in which this attribute is indexed (this variation is denoted

by an “ix” suffix in Table 3.5). We considered these two cases since existence of the secondary

index could change the actual join technique a system would use. In AsterixDB, the user can

add a hint to the query’s join predicate to switch from hybrid hash join (its default technique

88

for equi-joins) to an indexed nested loop join. Currently, indexed join is only available for

inner joins; For left-outer joins (cells with a * in Table 3.5), a hybrid hash join is always used.

For MongoDB we performed a client-side indexed nested loop join. In System-X, the cost-

based optimizer picks the indexed technique when it is statistically expected to out-perform

the hybrid hash technique. Our client-side join for MongoDB used the indexed nested loop

join technique driven by the client program.

Below, we go over some important details about the read-only queries’ results, case by case.

General observations

Hive does not have support for automatic use of secondary indices. As a result, it needs

to perform a full scan on the involved dataset(s) in all the queries. The ORC format has

built-in optimizations that make scanning faster than other file formats in Hive, but the

requirement to access all the records worsened Hive’s performance for most of the queries,

specifically the short ones, compared to the other systems. (To be fair, Hive was designed

for batch jobs over large datasets and not for OLTP types of workloads or real-time queries.)

MongoDB’s performance degrades considerably when going from small to medium queries.

In addition, for most of the large queries, we faced issues that prevented us from obtaining

reliable results. We hit memory related issues in running the mapReduce command, and we

observed that the results of selections on secondary indices were hitting result cursor time-

outs on the server side. By switching to “immortal” cursors, results came in bursts from the

shards, and the cursors were idle for long periods of time waiting for more results, and they

returned many documents in periodic sudden spikes. These behaviors happened because our

queries tended to be of “scatter-gather” style, where all shards had documents that could

contribute to the final results. MongoDB is known to behave well for short queries that need

to access one or a few shards, and not for large scatter-gather like queries. That is why for

most of the large versions of the queries we have “NS” for MongoDB in Table 3.5.

89

Full record retrievals

For the single dataset, simple queries (Q1, Q2, and Q3), AsterixDB and MongoDB needed

to access only one dataset (GleambookUsers) as a result of storing their records with nesting.

However, because of normalization, System-X and Hive had to access three tables to fetch

all the attributes in the qualifying records and combine them together (we used “UNION

ALL” or joins, depending on the query, to combine the values). These steps added their own

overheads that, for example, showed their negative impact in the large version of Q3.

Aggregations

For the aggregation queries (Q6, Q7, and Q8) in MongoDB we used the mapReduce

command since the strings’ length values were used in the aggregation. This command hit

memory issues for the large and full versions of the queries, and we had trouble getting

reliable performance.

The full version of Q6 ran a global aggregation on all the records in the ChirpMessages

dataset. As a result, all systems needed to perform a full dataset scan to access every

record. Hive benefited from its compact storage format and achieved better performance

for this version of Q6 compared to other systems. In the full version of Q8, the overhead of

grouping and ranking reduced this storage-format related performance advantage for Hive.

Spatial Selection and Text search

We report the results for this group of queries only for AsterixDB and MongoDB, as

they have built-in support for loading and indexing both spatial and textual data. The

two systems use different techniques to index such data types. The results for Q9 showed

AsterixDB performing more robustly, compared to MongoDB, for the medium and large

versions of the spatial selection query. In AsterixDB, spatial predicates were evaluated via an

R-Tree, while MongoDB used a 2D-index and its $geoWithin operator against this geospatial

90

index. The large version of Q9 in MongoDB suffered from the “scatter-gather” query issue

described before. For the exact text search (Q10), AsterixDB used an inverted index and

outperformed MongoDB, which was using its own text index. AsterixDB’s inverted index

was also used for text similarity search (Q11), where the performance of the system was

comparable to Q10.

Joins

In the small versions of queries that involve joins (Q12 to Q15), the indexed nested loop

join technique outperformed hybrid hash join by orders of magnitude, as would be expected.

The indexed technique lost its performance advantage in the medium and large versions as a

result of performing too many random I/Os, while the hybrid hash technique showed more

robust performance.

Another important observation in Q12 and Q13 is the drop in the performance of the client-

side join in MongoDB. While the client program showed reasonable performance for the small

versions of the queries, it quickly worsened for the medium version as a result of running too

many find() requests against the GleambookMessages collection.

3.6.3 Data Modification Workload Results

Our data modification experiments measured systems’ performance when processing batches

of insert or delete operations against the GleambookUsers dataset. We ran this set of tests

on 9 partitions. We considered two batch sizes: a batch size of 1 to measure a system’s base

performance when dealing with a single operation, and a batch size of 20 to check the impact

of grouping similar operations together. In the insert workload, each record in a batch was

a valid, non-existing GleambookUsers record with values for all attributes (including the

employment history and friends’ ids). The delete workload deleted existing users in the

91

9-
p
ar

ti
ti

on
s

18
-p

ar
ti

ti
on

s
27

-p
ar

ti
ti

on
s

Asterix
Schema

Asterix
KeyOnly

System-X

Hive

MongoDB

Asterix
Schema

Asterix
KeyOnly

System-X

Hive

MongoDB

Asterix
Schema

Asterix
KeyOnly

System-X

Hive

MongoDB

Q
1

0.
04

5
0.

04
7

0.
06

55
.2

4
0.

01
7

0.
04

6
0.

04
8

0.
06

4
55

.7
1

0.
01

9
0.

04
8

0.
05

3
0.

07
55

.9
5

0.
02

3

Q
2-

S
0.

08
9

0.
09

6
0.

10
2

72
.6

7
0.

02
9

0.
10

4
0.

12
5

0.
10

8
73

.6
1

0.
04

2
0.

12
6

0.
13

5
0.

11
3

74
.1

0.
05

4
Q

2-
M

0.
35

0.
38

7
0.

35
4

76
.9

2
1.

12
4

0.
37

8
0.

40
3

0.
36

3
78

.1
1

1.
24

0.
43

3
0.

47
4

0.
37

7
78

.1
3

1.
35

4
Q

2-
L

6.
02

7
6.

06
6

15
.3

6
25

1.
9

10
7.

2
15

.3
7

15
.6

8
16

.3
4

25
0.

5
13

0.
2

24
.9

2
25

.3
1

17
.3

6
25

5.
1

15
2.

6
Q

3-
S

0.
27

8
0.

27
9

0.
57

6
81

5.
9

0.
11

3
0.

29
9

0.
32

2
0.

65
7

85
6

0.
12

7
0.

3
0.

36
9

0.
76

2
89

8.
1

0.
13

5
Q

3-
M

6.
43

9
6.

64
7

39
.8

6
82

4.
7

32
.8

2
6.

78
4

7.
22

3
40

.5
1

86
1

70
.3

2
7.

06
7

7.
53

2
41

.4
3

90
3.

5
10

6.
2

Q
3-

L
29

.2
4

43
.3

2
27

9.
4

94
7.

1
N

S
32

.0
4

47
.4

8
29

4.
1

10
31

N
S

43
.5

8
63

.8
1

31
2.

8
13

14
N

S

Q
4-

S
0.

28
0.

30
7

0.
33

5
52

6.
6

0.
13

3
0.

31
6

0.
33

6
0.

34
54

5.
3

0.
13

8
0.

31
9

0.
35

9
0.

34
5

57
0.

5
0.

14
1

Q
4-

M
6.

50
3

6.
60

3
15

.6
6

53
3

49
.0

7
6.

71
5

6.
88

1
15

.8
7

55
4.

2
11

7
6.

73
2

7.
49

1
16

.2
7

57
5.

9
18

3.
3

Q
4-

L
31

.5
6

44
.3

1
76

.8
5

58
3.

8
N

S
37

.8
9

54
.0

1
78

.0
1

63
5.

2
N

S
57

.8
1

80
.7

2
80

.1
3

68
6.

9
N

S
Q

5-
S

0.
10

9
0.

20
6

0.
31

9
59

8.
4

0.
13

2
0.

21
4

0.
24

2
0.

32
8

63
7.

1
0.

13
6

0.
23

6
0.

24
8

0.
33

6
66

6.
8

0.
14

1
Q

5-
M

6.
06

1
6.

22
9

20
.1

6
60

7.
4

47
.6

9
6.

23
4

6.
60

6
19

.7
7

64
1

10
9.

5
6.

27
9

6.
75

6
20

.9
5

67
6.

6
17

1.
9

Q
5-

L
29

.4
43

.3
1

19
3.

5
63

1.
6

N
S

33
.5

2
51

.9
2

19
4.

6
64

8
N

S
48

.5
1

71
.4

9
19

4.
6

68
4.

3
N

S
Q

6-
S

0.
24

6
0.

24
7

0.
12

6
51

.2
9

0.
17

4
0.

25
0.

26
8

0.
13

5
50

.9
1

0.
19

0.
27

1
0.

28
1

0.
14

8
52

.0
7

0.
20

8
Q

6-
M

6.
76

9
6.

80
6

4.
58

1
51

.8
2

9.
05

7
6.

78
6.

86
5

4.
77

6
52

.3
7

10
.1

3
6.

87
2

6.
88

6
4.

92
4

52
.9

4
11

Q
6-

L
76

.5
1

11
2.

5
90

.9
8

53
.8

6
N

S
89

.4
4

11
3.

9
91

.4
54

.8
1

N
S

93
.9

9
11

6.
5

93
.3

2
56

.0
2

N
S

Q
6-

F
91

.6
6

19
2.

4
68

.0
4

57
.8

6
N

S
92

.5
9

20
0.

3
70

.1
2

58
.8

N
S

96
.9

1
20

1
71

.6
5

59
.9

5
N

S
Q

7-
S

0.
46

8
0.

47
5

0.
13

3
54

.5
5

0.
19

9
0.

55
3

0.
61

2
0.

13
6

55
.8

1
0.

20
4

0.
71

2
0.

74
0

0.
13

6
56

.4
1

0.
21

2
Q

7-
M

6.
97

5
7.

02
2

4.
73

9
57

.4
9

9.
98

7
7.

08
2

7.
30

4
4.

90
1

58
.1

1
10

.6
1

7.
41

1
7.

68
7

4.
92

5
59

.9
2

11
.3

Q
7-

L
96

.1
1

20
0.

6
89

.4
3

66
.1

N
S

96
.9

4
20

0.
6

92
.3

5
73

.2
2

N
S

10
0.

1
20

0.
7

94
.6

9
80

.5
4

N
S

Q
8-

S
0.

51
3

0.
58

6
0.

13
9

69
.7

3
0.

20
1

0.
83

6
0.

93
8

0.
14

3
72

.4
5

0.
21

1
1.

06
7

1.
27

0.
14

6
75

.1
8

0.
21

9
Q

8-
M

7.
04

9
7.

36
6

5.
06

5
71

.3
4

10
.6

7.
21

9
7.

71
5

5.
15

8
74

.1
1

11
.4

2
7.

69
5

8.
65

7
5.

24
4

77
.9

4
11

.9
Q

8-
L

10
2.

6
20

0.
6

90
.3

77
.4

6
N

S
14

7.
63

20
0.

7
93

.1
1

78
.9

8
N

S
17

3.
1

20
1

95
.2

8
80

.6
8

N
S

Q
8-

F
20

0.
8

32
3.

8
13

5.
9

15
1.

1
N

S
22

2.
2

34
9.

2
15

5.
9

17
3.

9
N

S
23

6.
1

38
6.

8
17

6.
9

19
6.

3
N

S

Table 3.5: Read-only queries - Average response time (in sec) - Part 1
92

9-
p
ar

ti
ti

on
s

18
-p

ar
ti

ti
on

s
27

-p
ar

ti
ti

on
s

Asterix
Schema

Asterix
KeyOnly

System-X

Hive

MongoDB

Asterix
Schema

Asterix
KeyOnly

System-X

Hive

MongoDB

Asterix
Schema

Asterix
KeyOnly

System-X

Hive

MongoDB

Q
9-

S
4.

96
18

.8
5

-
-

1.
1

6.
07

2
23

.0
7

-
-

1.
42

6.
08

5
23

.5
5

-
-

1.
74

8
Q

9-
M

11
.6

4
24

.6
5

-
-

46
.9

11
.7

7
33

.9
-

-
10

3.
8

12
.4

36
.6

1
-

-
16

0.
9

Q
9-

L
97

.7
7

18
3.

8
-

-
N

S
10

2.
9

19
3.

3
-

-
N

S
11

1.
6

20
0.

9
-

-
N

S
Q

10
-S

94
.5

4
17

4
-

-
99

0.
7

95
.8

2
17

5.
7

-
-

12
33

96
.7

20
0.

8
-

-
14

81
Q

10
-M

10
0.

2
19

0.
4

-
-

12
97

10
1.

5
19

6
-

-
13

93
10

3
19

8.
3

-
-

14
92

Q
11

-S
97

.6
1

20
0.

4
-

-
-

98
.6

1
20

0.
6

-
-

-
10

2
20

0.
8

-
-

-

Q
12

-S
13

3.
7

17
6.

5
11

4
23

7.
5

-
13

7.
9

17
8.

2
11

6.
7

26
7.

9
-

13
8.

3
18

7.
6

11
8.

9
30

0
-

Q
12

-M
14

2.
3

18
2.

7
11

8.
1

23
9.

1
-

14
4.

6
18

4.
5

12
0

27
0.

8
-

14
5.

5
19

3.
9

12
3.

9
30

1.
6

-
Q

12
-L

16
4.

1
20

0.
3

14
5

24
0.

1
-

17
1.

2
22

0.
3

14
8.

2
27

0.
9

-
17

6.
2

23
4

15
1.

1
30

2
-

Q
12

-S
-I

X
1.

07
8

1.
09

1
1.

21
9

-
1.

14
9

1.
70

3
1.

82
3

1.
91

8
-

2.
76

9
2.

28
9

2.
52

4
2.

55
2

-
4.

39
6

Q
12

-M
-I

X
35

.1
6

49
.9

8
58

.8
1

-
45

5.
8

48
.3

5
69

.2
4

62
.4

2
-

53
3.

1
49

.2
5

71
.9

66
.1

-
61

2.
3

Q
12

-L
-I

X
12

0.
9

19
2.

1
14

2.
4

-
N

S
14

9.
8

22
9.

2
14

5.
2

-
N

S
15

5.
7

24
1.

3
14

6.
9

-
N

S
Q

13
-S

13
5.

1
17

7.
8

11
4.

3
63

0.
7

-
13

9
17

8.
8

11
8.

1
72

0.
7

-
13

9.
3

18
7.

7
12

0.
4

81
1.

9
-

Q
13

-M
14

3.
3

18
6.

4
11

9.
1

64
1.

5
-

14
7.

7
18

7.
3

12
2.

7
72

6.
9

-
14

8.
2

19
5.

1
12

5.
8

81
4.

1
-

Q
13

-L
16

7.
9

21
6.

6
15

0.
2

64
4.

5
-

17
2.

8
22

4.
3

15
0.

8
74

0.
6

-
17

8.
9

23
7.

9
15

1.
6

83
7.

1
-

Q
13

-S
-I

x
*

*
1.

35
6

-
1.

42
5

*
*

2.
01

5
-

3.
05

9
*

*
2.

67
3

-
4.

67
7

Q
13

-M
-I

x
*

*
59

.2
1

-
46

5.
7

*
*

62
.7

2
-

54
5.

3
*

*
66

.2
3

-
62

3.
9

Q
13

-L
-I

x
*

*
14

5.
9

-
N

S
*

*
14

6.
7

-
N

S
*

*
14

8.
8

-
N

S

Table 3.5: Read-only queries - Average response time (in sec) - Part 2
93

9-
p
ar

ti
ti

on
s

18
-p

ar
ti

ti
on

s
27

-p
ar

ti
ti

on
s

Asterix
Schema

Asterix
KeyOnly

System-X

Hive

MongoDB

Asterix
Schema

Asterix
KeyOnly

System-X

Hive

MongoDB

Asterix
Schema

Asterix
KeyOnly

System-X

Hive

MongoDB

Q
14

-S
14

0
18

4.
6

11
4.

2
29

3.
5

-
14

4.
5

18
8.

7
11

7.
1

29
6.

9
-

14
4.

8
18

9.
5

11
8.

9
29

9.
7

-
Q

14
-M

14
8.

5
19

3.
8

11
9.

2
29

6.
6

-
15

3.
2

19
7.

4
12

0.
5

29
8.

8
-

15
4.

5
19

9.
7

12
2.

6
30

2.
1

-
Q

14
-L

16
6.

6
21

3.
4

15
1.

3
29

7.
5

-
16

9.
3

22
2.

6
15

2
30

1.
1

-
17

3.
3

23
5.

1
15

1.
5

30
4.

5
-

Q
14

-S
-I

x
1.

14
2

1.
17

4
1.

42
3

-
-

1.
71

4
1.

83
4

2.
05

1
-

-
2.

29
3

2.
70

9
2.

67
7

-
-

Q
14

-M
-I

x
37

.5
1

52
.6

1
59

.1
6

-
-

50
.4

2
71

.4
8

62
.8

1
-

-
51

.5
1

72
.1

4
66

.4
8

-
-

Q
14

-L
-I

x
12

1.
1

19
3.

6
14

2.
8

-
-

15
2.

7
23

5.
4

14
5.

9
-

-
15

7
24

3.
7

14
7.

4
-

-
Q

15
-S

14
0

18
4.

8
11

4.
5

31
3.

7
-

14
4.

6
18

9.
8

11
7.

1
31

5.
7

-
14

4.
9

18
9.

8
11

9.
2

31
9.

2
-

Q
15

-M
14

8.
8

19
3.

9
12

0
31

5.
3

-
15

3.
3

19
8.

2
12

3.
2

31
9.

7
-

15
4.

7
20

0.
9

12
5.

5
32

3.
1

-
Q

15
-L

16
9.

5
21

6.
1

15
1.

3
31

6.
7

-
17

0.
6

22
4.

6
15

1.
4

32
0

-
17

4
23

5.
3

15
1.

7
32

3.
3

-
Q

15
-S

-I
x

1.
25

1.
47

9
1.

46
7

-
-

1.
81

1.
94

1
2.

16
1

-
-

2.
47

5
2.

75
7

2.
84

2
-

-
Q

15
-M

-I
x

38
.0

1
53

.3
9

59
.7

3
-

-
51

.9
1

73
.8

7
62

.9
7

-
-

53
.3

74
.3

2
67

.5
7

-
-

Q
15

-L
-I

x
12

1.
8

19
5.

6
14

3.
6

-
-

15
2.

8
23

8.
7

14
5.

3
-

-
15

7.
2

24
4

14
8.

8
-

-

Q
16

-S
17

89
18

76
-

-
21

.8
9

19
11

20
14

-
-

57
.4

1
21

47
22

36
-

-
90

.1
9

Q
16

-M
19

12
19

96
-

-
68

.4
1

20
53

22
07

-
-

14
8.

1
21

65
24

82
-

-
23

0.
7

Q
16

-L
40

62
43

15
-

-
N

S
46

62
47

89
-

-
N

S
49

72
50

52
-

-
N

S

Table 3.5: Read-only queries - Average response time (in sec) - Part 394

dataset based on randomly selected ids. In AsterixDB and MongoDB where the schema

contained records with nesting, only one dataset (GleambookUsers) along with its secondary

index (on the user since attribute) needed to be updated for each operation. In System-

X, the normalized schema forced the system to update three datasets, GleambookUsers,

Employments, and FriendIds, along with their indices. We did not include Hive for this set

of experiments since Hive does not offer row-level updates and the life cycle of its data is

normally maintained outside of the system.

AsterixDB uses LSM-trees at the storage layer to store internal datasets. AsterixDB’s up-

dates (inserts or deletes) modify the “in-memory” component of an index, while the system

guarantees durability for the changes by recording the updates in the transaction log. We

set the size of the “in-memory” component budget for the LSM indices to be 256MB per

node controller in AsterixDB. In System-X, we increased both the number and the size of

the transaction log files to improve performance, as suggested by the vendor. In MongoDB,

we used the journaled write concern to provide the same durability level as AsterixDB and

System-X. We also decreased the commit interval for the journal from its default value to

2ms to make sure that our serial update client was not limited by the MongoDB’s group

commit policy.

While running the data modification workload, we realized that the reported results will be

reliable only if the systems have warmed up enough prior to the measurements. The duration

of the warm-up phase for a system has to be carefully picked so that enough updates have

been run against the system (according to the total available memory size) to take the system

to a steady state before starting measurements, as what is measured in the early stages of

an update workload (during the warm-up phase) is mostly the cost of in-memory updates.

Such a number can be significantly smaller than the real cost of an update in a system that

has been up and running for a long time. We therefore conducted our data modification

experiments so that, during the warm-up phase, we performed enough updates to make the

95

systems’ buffer cache be filled with dirty pages. Our real measurements happened once the

expected cache misses and IOs were happening per operation.

Table 3.6 shows the performance of the systems when running batches of inserts and of

deletes. For each case, we show the average response time in milliseconds from the client’s

perspective for “one” operation. When the batch size was 20, we measured the average

response time per batch (shown within () in the table) and divided it by the batch size to

calculate this number. Grouping updates together lets a portion of the overhead in running

them to be amortized over the operations in the group; this can reduce the average per-record

response time. Table 3.6 shows that all three systems benefited from batching, but the level

of improvements differed among them. AsterixDB benefited the most, moving from being the

slowest when dealing with single updates to the fastest in processing groups of updates. This

is due the current overhead in AsterixDB for compiling and generating jobs that happens

for each request. System-X did not benefit as much as the others from batching. This was

mainly because of its normalized schema and the fact that it needed to run multiple updates

against several structures for a single request. We also used JDBC’s “prepared statements”

to execute updates in System-X, which reduced a portion of the overhead by letting the

database run SQL statements without having to compile them first.

Support for continuous data ingestion is a unique feature in AsterixDB that enables the

system to process fast streams of incoming data (feeds) efficiently. AsterixDB uses a long

running job that is scheduled to execute on the cluster to process data feeds, which removes

the extra overhead of repeatedly creating query plans and setting up jobs in performing

updates. Table 3.6 also includes the performance of AsterixDB when we ran the same insert

workload, described above, using data feeds. We report the average insert time per record

in milliseconds, which is several orders of magnitude faster compared to the U1 numbers.

96

Batch
Size

Asterix
Schema

Asterix
KeyOnly System-X Mongodb

U1 1 73.75 73.97 46.34 13.85
U1 20 6.20 6.23 30.15 7.9

U2 1 73.96 79.3 49.01 19.93
U2 20 4.73 4.89 33.79 14.2

Feeds - 0.029 0.031 - -

Table 3.6: Data modification - Avg response time (in ms)

3.7 Discussion

In this section, we summarize the important lessons we learned from this effort.

L1. Flexible schemas and their impact on performance

Many Big Data applications need to deal with complex records with heterogeneous struc-

tures and nested or collection attribute values. Unlike systems with the relational data model,

which require all the records in a table to strictly comply with its schema, most NoSQL sys-

tems are able to store and process heterogenous records in a straightforward manner. In

fact, many of them consider this characteristic as one of their design points. However, this

flexibility normally comes with extra overhead at the storage level, as the system needs to

store enough metadata per record for later parsing. While some systems, like MongoDB

are completely schemaless (always with maximum flexibility), data type definitions in As-

terixDB let users decide about the level of flexibility in the schema and its expected impact

on performance. A data type can be fully schemaless (similar to the AsterixKeyOnly data

type definition in our experiments) or it can provide as much as information as possible

(similar to the AsterixSchema data type definition in our experiments). The extra overhead

in storage size can directly impact a system’s performance for queries performing large scans

or those that access a large number of records. Large and full versions of aggregation queries

(Q6-L/F, Q7-L, Q8-L/F) in BigFUN were examples of such queries. Comparing the perfor-

mance in AsterixSchema case vs. AsterixKeyOnly case, we can see that the AsterixKeyOnly

97

case was worse (almost proportional to the difference in the storage size between these two

data type definitions) as it needed to deal with records with a larger size. Moreover, if we

compare the performance of AsterixSchema against System-X, which requires a full schema

definition, we can see that AsterixDB achieved comparable performance once we provided it

with complete data type information.

L2. Pros and cons of normalized schemas

In a relational system, records are stored with normalization. This requirement impacts

the performance for specific types of queries. Depending on the query, this impact can be

positive or negative. For those queries that include full record retrieval for a large number

of records, the system needs to access more than one table to fetch the normalized attribute

values for a record and combine them together. A similar situation exists for record insertions

or deletions, in which several structures need to be updated per data modification request.

These structures are the parent and children tables containing different parts of each record

along with the auxiliary index structures (typically clustered) which are created on the

children tables to avoid full scans during read operations. As an example, consider System-

X’s performance vs. AsterixSchema’s for queries Q2-L and Q3-L in Table 3.5, where System-

X needed to access three tables (GleambookUsers, Employments, and FriendIds), whereas

AsterixDB found all the information in one dataset. The performance for operations U1 and

U2 in Table 3.6 (batch size 20) shows the negative impact of modifying three tables and

their clustered indices on System-X’s performance for updates compared to AsterixDB and

MongoDB. However, for queries that include projection and just need a subset of attributes

that exist in one of the normalized tables, a system with a normalized schema does not fetch

unwanted nested data; in a nested schema, all attributes are stored together per record and

the system needs to read them all during read operations. Reading less data can improve

performance once a large number of records are involved in a query. The large and full

versions of the aggregation queries in Table 3.5, such as Q6-F or Q7-L, are examples of

98

this case, where System-X did not retrieve referred topics for the chirp messages as it only

needed the send time, message and user’s screen name attributes from the parent table

ChirpMessages. In this case, AsterixDB could not avoid fetching referred topics, as the

dataset was stored with nesting. (Of course AsterixDB’s flexible type definitions would

permit storing chirp messages with normalization as well, if one so chooses.)

L3. Optimized storage format and its performance gain

The total size of the stored data directly impacts the performance of a system in scanning

a large number of records. The ORC format in Hive has built-in optimizations for reducing

its stored size on disk and also for doing faster scans and projections. Table 3.2 shows that

Hive’s total stored data size is much smaller than other systems for this reason, and it helps

the system to perform better comparing to other systems for some of the queries which

include large scans. For example, Hive achieved the fastest time for Q6-F and Q7-L, where

all or a large number of records needed to be accessed to calculate an aggregation.

L4. Advanced and mature query optimization

Decisions made during query optimization can have a significant impact on the ultimate

performance of a system. The benefits of an efficient index structure or run-time operator

may fade as a result of missing some known, effective optimizations that could have been

included in the query plan. As an example in Table 3.5, Q9 (spatial selection) shows that the

spatial index (R-Tree) in AsterixDB had a better performance comparing to MongoDB’s 2D-

index for the medium version, but in Q16 (spatial join), AsterixDB was orders of magnitude

slower than MongoDB’s client-side join for the medium version. Beside the difference that

the systems have in terms of the type of spatial index they use, in this query MongoDB

pushed the limit clause (finding first 10 chirp messages) down into sorting, which helped it

to simply skip processing a huge, but unnecessary, number of documents. AsterixDB, on the

other hand, failed to apply this optimization and lost the potential advantage of its efficient

99

spatial indexing for this query. Another example, which has been known for a long time,

is picking the indexed nested loop join technique instead of hybrid hash join whenever it

can result in better performance (based on the join predicate and the expected selectivity

of the filters before joining). System-X is able to make such a decision automatically, while

AsterixDB requires a hint for this purpose (check Q12 in Table 3.5). In fact, the mature,

cost-based optimizer and advanced query evaluation techniques that System-X uses enabled

it to generate more efficient plans and achieve robust behavior across the different versions of

a query, while it also showed stable performance characteristics in scaling up. In general, this

is an expected advantage (at least for now) for the relational database systems as compared

to NoSQL solutions [66].

L5. MongoDB performance issues

MongoDB is a representative system for NoSQL data stores, and based on its design points

it targets a narrow, yet popular, set of use cases and shows reasonable performance for short

queries against a single collection which tend to access a small number of documents coming

from one or a few shards. We observed a significant performance drop when switching to

medium queries with a scatter-gather nature, and the system showed unstable performance

for large queries (check Q3, Q4, and Q5 as examples). Similar issues existed in running its

mapReduce command for large aggregation queries (check Q6, Q7, and Q8). By using a

client-side join to run queries that access more than one collection, we observed that Mon-

goDB’s performance dropped quickly as the number of qualifying documents grew because

of the increased number of separate find() requests sent to the system by the client. The

join performance can be improved (for example by batching lookups as shown in [50]) but

client-side joins generally suffer from a scalability issue.

L6. Job generation path and its overhead

The results for updates in Table 3.6 show that the overall query path and job generation

100

task in AsterixDB currently add significant overhead to the performance of the system for

small operations. In our update tests, AsterixDB went from being the slowest system to

fastest one when similar operations were grouped together in a batch so that its job generation

overhead was amortized by several operations. There are a number of known solutions for this

problem such as parameterized queries, query plan caching, and simplified plan serialization,

that AsterixDB still needs to add. Unlike AsterixDB, System-X (because of its mature

built-in optimizations) and MongoDB (because of its narrower operations scope) have built-

in means to avoid this overhead.

L7. Performance changes in running updates

A system’s performance can change significantly between initial and later stages of update

tests, especially in “update in-place” systems (MongoDB and System-X in our tests). This

is mainly due to the fact that the buffer cache (in the system and/or the OS) normally

has enough free space available in the early stages of running updates to serve the requests.

However, once enough updates happen (according to the total available memory size), the

number of dirty pages in the buffer cache increases and the system needs to perform page

evictions and flushing of writes to make the older changes persistent on disk and create

room for the newly requested pages. The overhead of these operations increases the average

response time in serving an update request, and in fact this slower time is the correct time

to report as it is the expected performance that one would get from a system that has been

up and serving requests for a while.

L8. “One size fits a bunch”

Looking at the overall performance of AsterixDB across different operations, one could see

that although AsterixDB did not always outperform the other systems, it did not scarifies its

core performance by delivering the widest range of features and functionality. In fact, in most

cases, AsterixDB was able to offer a performance level comparable to the fastest system. This

101

performance study supports a “one size fits a bunch” conjecture (which argues for a solid

system with a rich set of features to serve different use cases rather than involving multiple

narrower systems and stitching them together), and it shows that it is indeed possible to

build such a robust system as a solution.

L9. Revealing functional and performance issues via benchmarking

One of the goals of benchmarking can be identifying unknown functional or performance

issues in a given system. Running BigFUN micro-benchmark achieved this goal by identifying

a number of issues in AsterixDB during the course of this work. Some of these issues have

already been fixed by the developers. Examples are issues which were related to evaluating

spatial or text-similarity predicates and queries involving disjunction. There are on-going

efforts to address the remaining open issues, such as the overhead of the query path, which

we already pointed to.

3.8 Conclusion

In this chapter, we reported on an evaluation of four representative Big Data management

systems according to their features and functionality set and the performance that they

provide for Big Data operations. We used a micro-benchmark, BigFUN, as the basis of our

study. We described the schema and operations (including read-only queries and updates)

in the micro-benchmark, and reported scaleup results for read-only workloads as well as the

update performance of the systems. This work has attempted to look at benchmarking Big

Data systems from a different angle by evaluating the systems with respect to their feature

vectors and measuring the base performance of each feature. We believe this direction in

Big Data benchmarking is important, as it is expected that Big Data systems will eventually

converge on the set of features and operations provided to process both OLAP and OLTP

102

types of workloads efficiently. Interesting extensions to this work could be expanding the

set of systems to include other Big Data systems and frameworks; considering non-uniform

distributions for the data and query predicates to simulate some popular operations arising

in Big Data applications (such as fetching the latest messages or most popular users), and

adding multi-client tests with a focus on measuring the overall throughput of a system.

103

Chapter 4

Performance Evaluation of Big Data

Analytics Platforms

4.1 Overview

This chapter of the thesis looks at another major class of workloads in Big Data applications:

Big Data analytics (OLAP-style) workloads. Using the read-only queries from the TPC-H

benchmark [26], we study and compare four representative Big Data frameworks: Hive [3],

Spark [4], AsterixDB [36], and a commercial parallel relational database system (the same

one used in Chapter 3) which we refer to as System-X. In terms of their query processing

capabilities, all of these systems have rich query APIs and built-in runtime operations that

enable them to process all 22 TPC-H queries. On the other hand, these systems also have

major differences in terms of their architectures, preferred storage formats, and query opti-

mization processes, which makes them a reasonable set of representative Big Data systems to

explore with respect to the goals of this thesis. We present the results that we have obtained

from running these systems at different TPC-H scales using various settings and we compare

104

them to one another. We also analyze a number of “interesting” queries in more detail. A

follow-up discussion is included at the end regarding the lessons learned from this effort.

4.2 Motivation

Big Data is turning to be an essential factor in the process of making decisions at leading

companies that seek to outperform their competitors in setting directions and serving their

customers. Big Data analytics is an important tool that an organization can exploit in order

to use the wealth of data it has access to. Big Data analytics is about collecting, storing,

and analyzing large volumes of data efficiently with the goal of extracting invaluable, but

hidden, information from it. According to a 2014 report by Forbes [7]: “87% of enterprises

believe Big Data analytics will redefine the competitive landscape of their industries within

the next three years. 89% believe that companies that do not adopt a Big Data analytics

strategy in the next year risk losing market share and momentum”.

Unlike transaction processing (OLTP-style workloads, considered in Chapter 2), which is

characterized by a large number of (concurrent) short requests initiated by independent

users, Big Data analytics workloads are characterized by fewer requests, submitted by fewer

users (mostly experts and business analysts), with each query tending to be complex and

resource intensive. Here is a list of characteristics that, depending on its complexity, an

analytical workload normally has at least a few of [63]:

• Extreme data volume,

• Complex data model,

• Bulk operations,

• Multi-step/multi-touch analysis algorithms,

105

• Temporary or intermediate staging of data.

The response times of the queries in an analytical workload mostly tend to be on the order

of tens or hundreds of seconds, and depending on the available resources, CPU, I/O, the

network, or a combination thereof could be the processing bottleneck.

Because of the inherent differences between OLTP and OLAP workloads, the serving sys-

tems for them are also built in different manners. The key design points in an analytical

processing framework are “functional richness” and “efficient resource usage”. Moreover,

as the requirements and demands of applications using them tend to evolve over time and

become more complex, the richness of the API(s) to interact with the system and adequate

expressive power in the supported query language(s) of the system (declarative languages

are preferred) are among other design points for analytical processing environments.

Parallel relational databases and data warehouses were the prominent solutions for serving

analytical workloads for a long time. With the advent of Big Data, however, various new

frameworks have been developed to manage and run analytics to serve different applications

such as log analysis, text analytics, or the task of organizational decision-making. Examples

of these systems include Hive [3] (from Hortonworks), Presto [19] (from Facebook), Impala

[12] (from Cloudera), Dremel [81] (from Google), Apache Drill [1] (from MapR), Spark

SQL [42] (from Databricks), HAWQ [9] (from Pivotal), and IBM Big SQL (from IBM).

These frameworks normally require an environment with characteristics such as high storage

capacity, fast data movement capacity, and large amounts of available memory in order to

achieve a desired performance level and proper (horizontal) scaling. In terms of their data

storage, all of these systems can operate on data which is stored in HDFS. In terms of

their APIs, they all provide SQL-based languages to describe queries. However, they differ

significantly in terms of their architecture, optimization and code generation techniques, and

run-time processing approaches. As analytical workloads tend to be complex and resource-

106

intensive, these differences can considerably impact their performance.

In this chapter, we evaluate four different systems picked from different parts of the Big Data

platform space, in terms of their ability to execute an analytical workload. They are Hive,

Spark SQL, AsterixDB, and System-X (the parallel RDBMS included in Chapter). For the

benchmark data and workload, we use the read-only query suite from the TPC-H benchmark

[26]. We chose to use TPC-H because its data model and workload are complex enough to

serve as a reasonable set of analytics tasks. Moreover, many vendors are still using this

benchmark to evaluate and report on the performance of their technology. The main goal in

this chapter is to study the performance of these systems and their scale-up behavior with a

focus on the impact of their different approaches to storage formats and query optimization.

We report results for three TPC-H scales and analyze a number of “interesting” queries in

more detail to extract important lessons. In the rest of the chapter, we first briefly discuss

some related work and then review some details of the systems and the workload that we

consider. The full set of details regarding the experiments and performance results come

next, and are then followed by a discussion of the results.

4.3 Related Work

The performance evaluation of data stores for analytical workloads has been a major topic

in the context of Big Data benchmarking. Among the released benchmarks by TPC, TPC-

H [26] and TPC-DS [25] include analytical and OLAP-style queries with different levels of

complexity. These benchmarks have been used in various works on Big Data benchmark-

ing. From the Big Data community, one of the very first works on the topic of Big Data

analytics was [86], which compared MapReduce (Hadoop) to RDBMSs. Being focused on

basic architectural differences (e.g., programming model, expressiveness, and fault-tolerance)

of the frameworks, the analytical workload in [86] included four simple, non-TPC queries:

107

filtered selection, grouped aggregation, join, and UDF aggregation. A more recent study

that compared Hive against SQL Server parallel data warehouse (PDW) using the TPC-H

benchmark, and showing that the relational systems can provide a significant performance

advantage over Hive was [66]. Another recent paper [64] compared the performance of Hive

vs. Impala using the read-only queries of the TPC-H benchmark and using TPC-DS inspired

workloads. With a focus on the I/O efficiency of their columnar storage formats, the results

in [64] showed that Impala was faster than Hive for different queries. Its main conclusion

was to reaffirm the clear advantages of using a shared-nothing architecture for analytical

SQL queries over a MapReduce-based runtime. Our work in this chapter has some overlap

with [66] and [64] in terms of its workload (using TPC-H queries), and also in terms of one

of the evaluated frameworks (Hive). However, the overall set of systems that we consider

here, our assumptions, and the settings used for the tests are different.

4.4 Systems Overview

Of the four Big Data platforms that we consider in this chapter, three of them (System-X,

Hive, and AsterixDB) were previously examined and summarized in Section 4 of Chapter 3.

This section provides a brief overview of the fourth framework, i.e., Spark, and also of Tez

[5] (a new runtime engine for use with Hive). We also describe the two storage formats that

we use here for storing and using data in HDFS, namely Parquet [16] and ORC [14].

4.4.1 Apache Spark

Apache Spark [4] is a general purpose computing engine that runs on clusters of arbitrary

size and uses a multi-stage, in-memory computational model to achieve fast performance. In

addition to its core platform, Spark’s ecosystem consists of multiple projects and libraries for

108

handling streaming data, graph processing, and machine learning tasks. Two key components

that we are specifically interested in related to our goals in this chapter are Spark core and

Spark SQL.

Spark core [103] is the central component of the Spark project and it is responsible for

creating parallel tasks and scheduling them. Resilient Distributed Datasets (RDDs) [102],

the programming abstraction that Spark uses for performing in-memory computation in a

fault tolerant manner, is part of Spark core and is exposed via language-level APIs to Spark’s

applications and libraries.

Spark SQL [42] is a component on top of Spark core that integrates relational processing with

Spark’s functional programming API. Data frames, a data abstraction designed to support

access to and computation on structured and semi-structured data, is included in Spark SQL.

Another important part of Spark SQL is Catalyst, an extensible query optimizer. Catalyst

uses features such as pattern-matching and composable optimization rules in conjunction

with a general transforming framework to analyze query plans and do runtime code genera-

tion. In order to create data frames, write queries in SQL, and work with structured data in

Spark SQL, Spark applications use SQLContext which is the entry point at the programming

API level. Applications also have access to HiveContext which offers additional features such

as supporting queries written in HiveQL and reading data from Hive tables [11].

4.4.2 Apache Tez

Tez [5] is an open-source framework designed to build dataflow-driven processing runtimes

[91]. It generalizes the MapReduce paradigm to execute complex computations more effi-

ciently. Data processing in Tez is expressed as a DAG that can be created via the program-

ming API that Tez provides. A vertex in this DAG defines the application logic and resources

needed to execute one step of the job. An edge defines a connection between producer and

109

consumer vertices and shows the data movement between them. Such a DAG models the

computation at a logical level, and Tez expands this logical graph at runtime to perform the

operations in parallel using multiple tasks, similar to Hyracks [49] and its role in AsterixDB

[36].

Using Tez instead of MapReduce as the execution engine for Hive can improve performance

by removing many inefficiencies that exist in query planning and query execution. Pipelining,

using in-memory writes (skipping disk writes), and allowing for multiple reduce stages are

some of the Tez primitives that lead to improved performance [10], again similar to the lessons

learned from Hyracks [49]. An optimized query tree in Hive can be directly translated into

a DAG in Tez. In addition, Hive adds some customized edges written in Tez’s API for more

complex operations such as joins. These algorithmic optimizations are combined with the

inherent execution efficiency that Tez offers on top of Yarn [99] to help Hive gain significant

performance benefits [91].

4.4.3 Storage Formats

The advantages of using columnar data are well known for analytical workloads in relational

databases [30] [98]. The direct impact that columnar models have on the primary storage

efficiency of a system and on moving only relevant portions of data into memory during

query processing can help a system achieve significant performance gains when dealing with

workloads that access a few columns across many rows and run costly operations on them.

Columnar storage formats have been available for storing data in HDFS [41] for a while,

and first started with the RCFile [77] and Trevni [28] formats. There have been discussions

on the efficiency and performance of these formats (e.g., [65] on RCFile). Currently, the

ORC format [14] (introduced by Hortonworks and Microsoft) and the Parquet format [16]

(introduced by Cloudera and Twitter) are the two most popular and widely used columnar

110

storage formats for data stored in HDFS. As ORC is mainly optimized for Hive, and Parquet

has become the suggested file format for Spark, we chose these two formats to run the TPC-

H workload on to examine the impact of optimized storage formats on Big Data systems’

performance. We briefly review each of these file formats below.

Optimized Row Columnar (ORC)

According to the ORC file format specification [15], ORC is an optimized version of the

RCFile format and was created mainly for overcoming certain limitations in RCFile. ORC

uses the type information obtained from a table’s definition and utilizes type-specific writers

that use lightweight compression techniques to create much smaller files. A user may also

decide to apply other compression techniques, such as Snappy [21], on top of the built-in

compression in order to achieve an even greater reduction in size. Besides compression, ORC

achieves I/O efficiency via arranging data into row groups (of 10,000 rows) and including

lightweight indexes that contain the minimum and maximum values for each column in each

row group. Combining this lightweight index with a filter push-down optimization, ORC file

readers can skip entire groups of rows that are not relevant to a query based on the query’s

predicate.

Internally, each ORC file stores data as stripes of row data along with a file footer that

contains auxiliary information. Each stripe itself consists of three parts [15]:

1. Index data: This contains the minimum and maximum values for each column as well

as the row offsets for each column.

2. Row data: This is the actual data, stored in a columnar fashion, which is accessed

during scanning. Each column is stored as several “streams” that are stored next to

one another in the file. The type of a column and its value determines the number

of streams. For example, an Integer is stored as two streams: “PRESENT”, which

111

is just one bit indicating whether the value is present or not (i.e. is it NULL), and

“DATA”, which captures the actual non-null values. Binary data, for example, uses

another stream besides these two, a “LENGTH” stream that indicates the length of

the value.

3. Stripe footer: This indicates the encoding of each column and includes a directory of

streams.

The stripe size in an ORC file is configurable and is normally set as 256 MB.

Parquet

Inspired by Dremel’s storage format [81], the Parquet file format also tries to benefit from

columnar data representation and compression to achieve efficiency in I/O. Supporting com-

plex nested data structures was also one of the key points considered in Parquet’s design.

Parquet stores data by considering logical horizontal partitions of rows, called row groups,

where a row group in turn consists of a column chunk for each column in the dataset [17].

This is similar to PAX [34]. Column chunks are further sub-divided into pages, and each

column chunk may have one or more pages. In Parquet, it is guaranteed that all of the

pages for a specific column chunk will be stored contiguously on disk. Associated with each

column chunk in a page, there is some column metadata which is part of the page header.

The start locations of the metadata information are stored in the file metadata of a Parquet

file. Readers use this metadata to find all of the column chunks that are needed for a specific

query and to access them. Columns chunks are read sequentially.

Parquet was implemented so that multiple projects in the Hadoop ecosystem could all use

it. There are currently several systems, such as Impala [12] and Spark SQL, that suggest it

as their best practice for the storage format to use with them.

112

4.5 TPC-H Benchmark

TPC-H [26] is a decision support benchmark managed by the TPC [24]. It consists of a

suite of business-oriented ad-hoc queries and concurrent data modifications. The TPC-H

benchmark models decision-support systems that examine large volumes of data, execute

queries with a high degree of complexity, and give answers to critical business questions.

The workload that we use in this chapter consists of the read-only queries that are included

in the TPC-H specifications.

4.5.1 TPC-H Database

The database for TPC-H consists of eight separate tables. Listing 4.31 shows the schema

for these tables. There are a set of requirements included in the benchmark specification

that should be met in populating the database. DBGen is a TPC-provided software package

that can be used to produce the benchmark data. A single “scale factor” (SF) is used with

DBGen and that describes the total size of the data in GB across all eight tables.

4.5.2 Queries

The read-only portion of the workload of TPC-H consists of a total of 22 SQL queries. At

a high level, each query tries to answer a specific “business question” which illustrates the

business context in which the query can be used [26]. A functional query definition, which

defines the function that query has to execute, is included in SQL form in the benchmark

specification. We used these functional query specifications as our queries for the systems

that support SQL as their query language.

Among the four systems considered, only System-X was (currently) able to fully support the

113

NATION

(N_NATIONKEY:INTEGER , N_NAME:TEXT , N_REGIONKEY:INTEGER , N_COMMENT:TEXT)

REGION

(R_REGIONKEY:INTEGER , R_NAME:TEXT , R_COMMENT:TEXT)

PART

(P_PARTKEY:INTEGER , P_NAME:TEXT , P_MFGR:TEXT , P_BRAND:TEXT , P_TYPE:TEXT ,

P_SIZE:INTEGER , P_CONTAINER:TEXT , P_RETAILPRICE:DECIMAL , P_COMMENT:TEXT)

SUPPLIER

(S_SUPPKEY:INTEGER , S_NAME:TEXT , S_ADDRESS:TEXT , S_NATIONKEY:INTEGER ,

S_PHONE:TEXT , S_ACCTBAL:DECIMAL , S_COMMENT:TEXT)

PARTSUPP

(PS_PARTKEY:INTEGER , PS_SUPPKEY:INTEGER , PS_AVAILQTY:INTEGER ,

PS_SUPPLYCOST:DECIMAL , PS_COMMENT:TEXT)

CUSTOMER

(C_CUSTKEY:INTEGER , C_NAME:TEXT , C_ADDRESS:TEXT , C_NATIONKEY:INTEGER ,

C_PHONE:TEXT , C_ACCTBAL:DECIMAL , C_MKTSEGMENT:TEXT , C_COMMENT:TEXT)

ORDERS

(O_ORDERKEY:INTEGER , O_CUSTKEY:INTEGER , O_ORDERSTATUS:TEXT ,

O_TOTALPRICE:DECIMAL , O_ORDERDATE:DATE , O_ORDERPRIORITY:TEXT ,

O_CLERK:TEXT , O_SHIPPRIORITY:INTEGER , O_COMMENT:TEXT)

LINEITEM

(L_ORDERKEY:INTEGER , L_PARTKEY:INTEGER , L_SUPPKEY:INTEGER ,

L_LINENUMBER:INTEGER , L_QUANTITY:DECIMAL , L_EXTENDEDPRICE:DECIMAL ,

L_DISCOUNT:DECIMAL , L_TAX:DECIMAL , L_RETURNFLAG:TEXT , L_LINESTATUS:TEXT ,

L_SHIPDATE:DATE , L_COMMITDATE:DATE , L_RECEIPTDATE:DATE ,

L_SHIPINSTRUCT:TEXT , L_SHIPMODE:TEXT , L_COMMENT:TEXT)

Listing 4.31: TPC-H database

standard TPC-provided SQL. As a result, we used the exact set of SQL statements included

in the TPC-H specification for System-X (with proper values for its substitution parameters

determined according to each test’s SF). As HiveQL does not fully support all the features

in SQL, the original TPC-H queries in SQL needed to be modified for it. The developers of

Hive have already published a modified set of queries in HiveQL [20], but an issue with this

set is that it is now fairly old and does not consider some of the latest features in Hive (such

as the now available support for nested sub-queries). For this reason, the authors of [64]

revisited these queries and re-wrote 11 of them to optimize them further. The authors of

[64] kindly shared their revised queries with us and we have used this set in our experiments

for both Hive and Spark SQL. Finally, AsterixDB currently supports AQL as its only query

language, so we translated the original TPC-H queries into AQL. The full set of TPC-H

queries in AQL are available at [27] and included as the Appendix of this thesis.

114

Table Primary Key Column(s)

NATION N NATIONKEY
REGION R REGIONKEY
PART P PARTKEY
SUPPLIER S SUPPKEY
PARTSUPP PS PARTKEY, PS SUPPKEY
CUSTOMER C CUSTKEY
ORDERS O ORDERKEY
LINEITEM L ORDERKEY, L LINENUMBER

Table 4.1: TPC-H schema, Primary keys

4.5.3 TPC-H Auxiliary Index Structures

The TPC-H benchmark specification includes a set of rules for primary/foreign key con-

straints and indexing. Table 4.1 lists the column(s) used as the primary key when creating

the TPC-H tables. Listing 4.32 shows the referential constraints that are captured by DBGen

during data generation. According to the benchmark rules, it is allowable to create auxiliary

index structures on primary/foreign key attributes. Moreover, indices on single columns of

the DATE datatype are also allowed. Listing 4.33 shows the columns that we indexed in our

tests in those systems that include indexing functionality.

NATION: N_REGIONKEY (referencing R_REGIONKEY);

PARTSUPP: PS_PARTKEY (referencing P_PARTKEY);

PARTSUPP: PS_SUPPKEY (referencing S_SUPPKEY);

CUSTOMER: C_NATIONKEY (referencing N_NATIONKEY);

ORDERS: O_CUSTKEY (referencing C_CUSTKEY);

LINEITEM: L_ORDERKEY (referencing O_ORDERKEY);

LINEITEM: L_PARTKEY (referencing P_PARTKEY);

LINEITEM: L_SUPPKEY (referencing S_SUPPKEY);

LINEITEM: L_PARTKEY , L_SUPPKEY (referencing PS_PARTKEY , PS_SUPPKEY);

Listing 4.32: TPC-H referential constraints (foreign key)

ORDERS: O_ORDERDATE

LINEITEM: L_SHIPDATE

LINEITEM: L_RECEIPTDATE

Listing 4.33: TPC-H auxiliary index structures

115

4.6 Experiments

In this section, we first discuss the details of the experiments and describe the details of the

hardware used and the settings used in different systems. We then present the performance

results that we obtained in our experiments.

4.6.1 Experimental Setup

Cluster: We used a 10-node IBM x3650 cluster with a Gigabit Ethernet switch. Each node

had one Intel Xeon processor E5520 2.26GHz (4 cores), 12 GB of RAM, and four 300GB,

10K RPM hard disks. The machines were running 64-bit CentOS 6.6 as their operating

system. Three disks on each machine were used as persistent storage. The fourth disk was

dedicated to storing the transaction and systems logs.

Client: Our client was running on a separate machine (with 16GB of RAM and 4 CPU

cores) and was connected to the tests’ cluster via the same switch. Using a closed-system

model, we measured the average end-to-end response time of each individual query from the

client’s perspective to use as the performance metric. In each test, we ran the full set of

22 TPC-H queries sequentially, one after the other, three times per system/settings, and we

discarded first run as the warm-up run. We report the average for the other two runs on the

warmed-up cache as the response time for each query.

HDFS: We used Apache Hadoop version 2.6.0 with a heap size of 8GB and a replication

factor of 1. Each node in the cluster was running the DataNode daemon for HDFS and

Yarn’s NodeManager daemon (if needed). The NameNode and ResourceManager daemons

were running on a separate machine with a similar configuration as the cluster nodes.

116

Hive: We used Apache Hive stable version 1.2.0. For Tez, we built and used the stable

version 0.7.0, using the code from the Apache repository. We enabled optimizations in Hive

such as predicate push-down and map-side joins.

Spark SQL: We used Apache Spark version 1.5.0 with the Kryo serializer [13]. Each

worker was running four executors (one per core) with 2GB of memory. Our queries were

run from a Spark application written using Spark’s Java API and Spark SQL’s HiveContext.

The driver program for running our Spark benchmarking application was run on a separate

machine with 6GB of memory. Our application used Hive’s metastore to access the schema

and data for the tables created on files in HDFS.

AsterixDB: We used AsterixDB version 0.8.7 with one NC running on each node with 3

partitions. We set a maximum of 8GB of memory per NC and 2GB of buffer cache size. The

HTTP API in AsterixDB was used to submit the AQL queries to the system.

System-X: For System-X, we used a version that was released in 2013 by its vendor. Each

node in the cluster was serving three database partitions. The memory manager provided

in System-X was responsible for tuning its resource allocations. A JDBC driver, provided

by the vendor, was used to submit the queries to the system.

Data and storage: We conducted our experiments with a focus on the scale-up charac-

teristics of the systems. For this purpose, we considered three system scales, 9, 18, and 27

partitions running on 3, 6, and 9 machines respectively. We placed 50GB of data on each

machine, which is almost five times their available memory. We used the DBGen program

to generate a total of 150GB, 300GB, and 450GB of data for these different system scales.

For Hive, we used two types of tables: external tables created on raw text data files and ORC

117

format tables. In Spark SQL we considered both external and Parquet tables. For the ORC

and Parquet cases, the CUSTOMER and SUPPLIER tables were created as partitioned

tables using the NATION KEY column as the partitioning attribute (there are total of 25

possible values for NATION KEY). For loading the ORC and Parquet tables, we used Hive’s

insert statement in HiveQL to read the data from the external text tables and add it to the

target ORC or Parquet tables. We loaded the partitioned tables partition by partition to

reduce the high memory usage overhead of partitioning data dynamically during the loading.

As AsterixDB has support for both internal and external datasets [35], we considered both

options there as well. The external datasets were created using the exact same files in

HDFS as used for the external text tables in Hive and Spark SQL. For creating the internal

(managed) datasets, we included all of the attributes in the DDL statements. Internal

datasets were hash-partitioned based on the primary keys shown in Table 4.1. Moreover,

we created secondary indices on the attributes listed in Listing 4.32 and 4.33 for both the

external and internal datasets. For loading the internal datasets we used AsterixDB’s native

bulk load statement.

In System-X, we created hash-partitioned tables using the primary key(s) in each table.

Similar to AsterixDB, we also created the secondary indices of Listing 4.32 and 4.33. We

also included the definition of referential constraints (PK/FK relationships) in our DDL

statements. We used the load utility provided in System-X to bulk-load the data and pop-

ulate the tables. After loading each scale factor, we ran the statistics gathering scripts in

System-X to provide its cost-based optimizer with the information required for generating

effective query plans.

118

4.6.2 Experimental Results

In this section, we review the experimental results that we obtained from running all systems

on the three different scales.

Loading

Tables 4.2, 4.3, and 4.4 show the original size of the data generated per table in each scale as

well as the total size of each table after loading based on the target system and/or format.

As one can see, there are significant storage size differences between the different formats and

systems. As an example, in Table 4.4 (for SF=450) one can see that, because of its built-in

compression, ORC is the most efficient format in terms of storage size. This is consistent

with what we saw in Chapter 3 as well. Parquet also shows storage size advantages for a

similar reason i.e., the use of columnar storage and compression. These two formats use

different compression techniques which is why they differ from one another in terms of their

total size. In AsterixDB, we could load the data in parallel and across all partitions, while

the load utility in System-X required us to load each hash partitioned table in the database

partition by partition. AsterixDB (with internal datasets) and System-X use their own

managed storage layer to store the data. Each of these systems has its own storage format

and loads the data into a variant of B-Tree and organizes the records in pages with enough

information stored per page for future access. This comes with additional costs in terms of

storage space compared to the raw data format.

Table 4.5 shows the total amount of time used for loading each storage format per scale.

For each scale factor, we report the total amount of time that it took to load all 8 TPC-H

tables and prepare the database (e.g., adding indices and gathering statistics). You can

see that the loading times for ORC and Parquet do not change a lot as the data scales

up. It is due to the fact that the transformation of records from text to ORC or Parquet

119

Nation Region Part Supplier Partsupp Customer Orders Lineitem

Text 2KB 389 Bytes 3.68 0.21 18.38 3.7 26.75 119.92

ORC 1.75 KB 1 KB 0.59 0.08 4.63 1.23 6.3 26.91

Parquet 3.2 KB 1.1 KB 1.91 0.22 16.8 3.57 20.16 51.93

AsterixDB
LSM

3.45 MB 1.92 MB 5.45 0.3 23.40 4.89 38.7 207

System-X 18 MB 18 MB 4 0.26 19 4 28 137

Table 4.2: TPC-H tables size (in GB) - SF 150

Nation Region Part Supplier Partsupp Customer Orders Lineitem

Text 2 KB 389 Bytes 7.36 0.42 36.7 7.4 53.5 239.84

ORC 1.75 KB 1 KB 1.18 0.16 9.25 2.46 12.63 53.91

Parquet 3.2 KB 1.1 KB 3.81 0.44 33.6 7.17 40.16 103.26

AsterixDB
LSM

6.91 MB 1.92 MB 10.91 0.61 46.8 9.79 77.4 414

System-X 36 MB 36 MB 8.33 0.52 38 8 56.67 274.33

Table 4.3: TPC-H tables size (in GB) - SF 300

is happening as a map-only job per table, where each mapper reads its input data (from

HDFS) and writes its output data (to HDFS) locally. These jobs are running in parallel,

therefore adding more partitions does not add too much overhead. As we load System-X

partition by partition, the loading time increases proportional to the increase in the number

of partitions. In AsterixDB’s case, the increase in the loading time is under investigation.

Nation Region Part Supplier Partsupp Customer Orders Lineitem

Text 2 KB 389 Bytes 11.07 0.64 55.4 11.12 80.97 363.67

ORC 1.75 KB 1 KB 1.77 0.23 13.86 3.68 19 81

Parquet 3.2 KB 1.1 KB 5.7 0.67 50.4 10.8 60 154

AsterixDB
LSM

9.6 MB 1.92 MB 16.39 0.92 70.2 14.71 116.1 621

System-X 54 MB 54 MB 13 0.79 57 12 86 412

Table 4.4: TPC-H tables size (in GB) - SF 450

120

9 Partitions 18 Partitions 27 Partitions

ORC 3,055 3,187 3,318

Parquet 3,535 3,728 3,920

AsterixDB LSM 2,838 5,843 9,014

System-X 8,608 17,057 25,345

Table 4.5: TPC-H tables loading time (in sec)

Failed Queries

There were a couple of cases where we could not obtain a stable time from certain queries

for a given system, mainly as the result of a failure:

In Spark, Q11 took a very long time (on the order of hours) within an aggregation step at

the beginning of the last stage of the query for both the text and Parquet formats at all

scales, and we had to kill that query. Q18 was another problematic query in Spark. As the

result of a failure in allocating the required memory, Q18 failed for both the text and Parquet

formats at all scales.1 Q21 was the third query with issues in Spark. While it worked fine

in the 9-partition case, this query failed for the other scales for a similar reason as Q18,

i.e., a failure in memory allocation. One last query with minor issues in Spark was Q16.

The parser in Spark SQL failed to parse the modified and optimized version of this query in

HiveQL (provided by authors of [64]) because of a lack of parsing rules. We had to revert

this query to an older version which did not use the latest sub-query support in HiveQL in

order to run it successfully.

In Hive, we encountered one query with issues. Q4 did not complete while running on Tez

with the ORC tables. A Yarn container was killed by the system after running this query for

a long time resulting in a failed vertex exception during the execution of the query’s DAG.

1An open issue for a similar failure exists in the project’s JIRA for the stable version of the software that
we used [22]

121

Query Times

Tables 4.6, 4.7, and 4.8 show the full set of results that we obtained on all three scales. (The

cells for the failed queries are marked with “-”.) As one can see, no system or storage format

was found to provide the best performance for all of the queries. In addition, the different

systems showed different scale-up behavior. Figures 4.1 to 4.9 show how the response times

for each system changed as we scaled up the benchmark. The 9-partition case is considered

as the base response time in these figures, and we then show the ratios of the times for the

18-partition and 27-partition cases relative to the base case.

In terms of overall scale-up, AsterixDB shows reasonable behavior for both its external and

internal datasets. For most queries, the response times remain more or less the same as the

data and number of partitions grow. In terms of performance, internal datasets in AsterixDB

show better response times as they are stored in AsterixDB’s binary data format (ADM)

and they do not need any translation when being read. Moreover, the I/O requests against

internal datasets are done in a single-threaded fashion per I/O device by AstreixDB, while in

HDFS multiple threads may access different splits of data simultaneously and with interfere

at the I/O device level which can have a negative impact on the performance [35]. In Spark

SQL, we can see that the response time grows as the data grows in the text data case. With

Parquet tables, however, Spark SQL shows better scale-up behavior. One major reason for

this which we observed during the tests, was related to differences in the way that data is

read for the two formats. In the Parquet case we could see parallel reads happening among all

workers, while the text data case suffered from the lack of enough parallelism in scheduling

and doing I/Os among workers. For most of the problematic cases, we could see that all

workers except one were idle, with that one being busy reading data from the file system.

Changing the number of executors and workers did not really affect this behavior. For Hive,

we can see that Hive on Tez shows the best scale-up behavior. System-X also showed proper

scale-up behavior for most of the TPC-H queries. There are two queries in System-X which

122

show strange behavior: Q10 shows a non-linear performance change between different scales,

and Q22’s response time grows as the total data size grows. We will look at these two cases

in more detail in the next Section.

In terms of the storage formats, all of the queries in Spark SQL benefit as we switch from the

text format to the Parquet file format. Besides its smaller size, one other reason for it is the

way that I/O requests were handled in the Parquet case. As explained above, we could see

better I/O parallelism with Parquet. The ORC format in Hive also showed a performance

gain for most of the queries versus the text format. This is an expected behavior because of

the inherent optimizations in ORC.

In terms of Hive’s runtime, most of the queries benefited from Tez, especially those involving

multiway joins. The small job-starting overhead and skipping of intermediate materialization

steps in Tez as compared to MapReduce are the main reason for that. The combination of Tez

with ORC also showed better behavior in terms of utilizing the Map-side join optimization

in Hive. There were several queries that used Map-sides join only with this combination

(e.g., Q2 and Q5).

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

Q1	
 Q2	
 Q3	
 Q4	
 Q5	
 Q6	
 Q7	
 Q8	
 Q9	
 Q10	
 Q11	
 Q12	
 Q13	
 Q14	
 Q15	
 Q16	
 Q17	
 Q18	
 Q19	
 Q20	
 Q21	
 Q22	

9	
 Par11ons	

18	
 Par11ons	

27	
 Par11ons	

Figure 4.1: AsterixDB scale-up on external datasets

123

Asterix
External

Asterix
Internal

SparkSQL
Text

SparkSQL
Parquet

Hive
MR
Text

Hive
MR
ORC

Hive
Tez
Text

Hive
Tez
ORC System-X

Q1 879 657 827 154 508 315 465 273 270

Q2 164 123 162 73 352 332 173 141 56

Q3 815 524 983 263 957 695 758 489 417

Q4 673 357 842 114 1137 754 500 - 409

Q5 840 510 1212 500 1613 1155 1036 891 421

Q6 248 376 695 82 219 84 218 90 259

Q7 1066 856 1256 385 3145 2799 1372 1044 590

Q8 936 688 1196 358 1522 1023 1134 1061 375

Q9 2585 1988 1929 1057 4224 3607 4552 3523 587

Q10 704 408 901 168 832 532 586 359 1604

Q11 145 72 - - 820 534 227 228 41

Q12 479 428 877 123 509 315 473 265 320

Q13 652 260 244 133 404 426 292 280 99

Q14 269 234 687 86 310 166 269 142 442

Q15 266 245 1366 165 614 360 469 186 319

Q16 180 147 158 44 353 278 180 147 33

Q17 1548 1330 1711 445 2246 1582 1811 1716 269

Q18 1044 788 - - 2396 2018 1262 1702 375

Q19 621 428 827 158 1729 1302 2141 1394 265

Q20 506 431 823 137 666 474 481 319 2316

Q21 3069 2634 2575 725 2900 2093 2184 1649 8776

Q22 333 322 181 42 335 337 201 203 336

Table 4.6: TPC-H queries response time (in sec) - SF 150

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

Q1	
 Q2	
 Q3	
 Q4	
 Q5	
 Q6	
 Q7	
 Q8	
 Q9	
 Q10	
 Q11	
 Q12	
 Q13	
 Q14	
 Q15	
 Q16	
 Q17	
 Q18	
 Q19	
 Q20	
 Q21	
 Q22	

9	
 Par11ons	

18	
 Par11ons	

27	
 Par11ons	

Figure 4.2: AsterixDB scale-up on internal datasets

124

Asterix
External

Asterix
Internal

SparkSQL
Text

SparkSQL
Parquet

Hive
MR
Text

Hive
MR
ORC

Hive
Tez
Text

Hive
Tez
ORC System-X

Q1 885 663 1863 162 510 320 467 277 277

Q2 218 186 246 76 357 343 186 149 58

Q3 822 525 2381 491 1002 705 790 518 429

Q4 686 390 2042 118 1148 756 650 - 415

Q5 973 683 2859 930 1622 1290 1081 982 433

Q6 269 378 1742 86 224 91 236 93 262

Q7 1181 945 2804 635 3351 3041 1473 1127 698

Q8 948 742 2396 388 1565 1112 1169 1089 452

Q9 2742 2092 3354 1152 4572 3925 4781 3629 595

Q10 718 429 2231 298 909 534 712 378 1618

Q11 148 78 - - 916 781 245 246 42

Q12 489 461 2166 220 626 325 574 273 340

Q13 665 260 422 141 577 453 348 292 116

Q14 284 249 1697 92 316 177 277 144 446

Q15 286 256 3397 189 644 360 489 189 328

Q16 215 176 225 69 387 334 187 150 44

Q17 1572 1380 3767 475 2307 1642 1963 1757 271

Q18 1079 821 - - 2445 2060 1320 1751 386

Q19 711 490 1896 179 1770 1324 2154 1489 269

Q20 512 439 1960 140 711 531 524 331 2914

Q21 3620 2762 - - 2957 2274 2387 1845 11102

Q22 355 343 349 45 357 357 216 210 868

Table 4.7: TPC-H queries response time (in sec) - SF 300

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

Q1	
 Q2	
 Q3	
 Q4	
 Q5	
 Q6	
 Q7	
 Q8	
 Q9	
 Q10	
 Q11	
 Q12	
 Q13	
 Q14	
 Q15	
 Q16	
 Q17	
 Q18	
 Q19	
 Q20	
 Q21	
 Q22	

9	
 Par11ons	

18	
 Par11ons	

27	
 Par11ons	

Figure 4.3: Spark SQL scale-up on the text format

125

Asterix
External

Asterix
Internal

SparkSQL
Text

SparkSQL
Parquet

Hive
MR
Text

Hive
MR
ORC

Hive
Tez
Text

Hive
Tez
ORC System-X

Q1 889 665 2870 168 511 324 471 283 286

Q2 263 236 326 80 362 351 196 152 60

Q3 828 528 3825 709 1046 714 821 537 436

Q4 703 421 3236 121 1155 759 794 - 424

Q5 1105 795 4512 1359 1628 1385 1114 1082 442

Q6 290 378 2717 90 229 96 252 98 265

Q7 1176 1006 4272 879 3507 3261 1569 1218 796

Q8 959 776 3599 417 1616 1190 1188 1104 524

Q9 2878 2156 4785 1260 4844 4423 5007 3745 601

Q10 723 445 3558 417 983 535 832 389 455

Q11 152 81 - - 1006 1025 268 266 42

Q12 501 490 3451 313 738 339 680 285 355

Q13 677 261 573 149 741 474 400 300 125

Q14 298 261 2702 97 321 186 284 146 454

Q15 298 265 5419 210 673 360 514 193 334

Q16 240 195 290 90 416 385 198 154 51

Q17 1602 1411 5827 504 2372 1695 2104 1784 272

Q18 1114 846 - - 2516 2105 1372 1792 399

Q19 790 545 2962 201 1809 1341 2165 1573 273

Q20 517 442 3097 141 752 575 559 346 3535

Q21 3990 2862 - - 3013 2417 2577 2016 12986

Q22 374 362 513 47 377 368 226 213 1393

Table 4.8: TPC-H queries response time (in sec) - SF 450

0	

0.5	

1	

1.5	

2	

2.5	

3	

Q1	
 Q2	
 Q3	
 Q4	
 Q5	
 Q6	
 Q7	
 Q8	
 Q9	
 Q10	
 Q11	
 Q12	
 Q13	
 Q14	
 Q15	
 Q16	
 Q17	
 Q18	
 Q19	
 Q20	
 Q21	
 Q22	

9	
 Par11ons	

18	
 Par11ons	

27	
 Par11ons	

Figure 4.4: Spark SQL scale-up on the Parquet format

126

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

Q1	
 Q2	
 Q3	
 Q4	
 Q5	
 Q6	
 Q7	
 Q8	
 Q9	
 Q10	
 Q11	
 Q12	
 Q13	
 Q14	
 Q15	
 Q16	
 Q17	
 Q18	
 Q19	
 Q20	
 Q21	
 Q22	

9	
 Par11ons	

18	
 Par11ons	

27	
 Par11ons	

Figure 4.5: Hive scale-up on MR and the text format

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

Q1	
 Q2	
 Q3	
 Q4	
 Q5	
 Q6	
 Q7	
 Q8	
 Q9	
 Q10	
 Q11	
 Q12	
 Q13	
 Q14	
 Q15	
 Q16	
 Q17	
 Q18	
 Q19	
 Q20	
 Q21	
 Q22	

9	
 Par11ons	

18	
 Par11ons	

27	
 Par11ons	

Figure 4.6: Hive scale-up on MR and the ORC format

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

Q1	
 Q2	
 Q3	
 Q4	
 Q5	
 Q6	
 Q7	
 Q8	
 Q9	
 Q10	
 Q11	
 Q12	
 Q13	
 Q14	
 Q15	
 Q16	
 Q17	
 Q18	
 Q19	
 Q20	
 Q21	
 Q22	

9	
 Par11ons	

18	
 Par11ons	

27	
 Par11ons	

Figure 4.7: Hive scale-up on Tez and the text format

127

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

Q1	
 Q2	
 Q3	
 Q4	
 Q5	
 Q6	
 Q7	
 Q8	
 Q9	
 Q10	
 Q11	
 Q12	
 Q13	
 Q14	
 Q15	
 Q16	
 Q17	
 Q18	
 Q19	
 Q20	
 Q21	
 Q22	

9	
 Par11ons	

18	
 Par11ons	

27	
 Par11ons	

Figure 4.8: Hive scale-up on Tez and the ORC format

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

Q1	
 Q2	
 Q3	
 Q4	
 Q5	
 Q6	
 Q7	
 Q8	
 Q9	
 Q10	
 Q11	
 Q12	
 Q13	
 Q14	
 Q15	
 Q16	
 Q17	
 Q18	
 Q19	
 Q20	
 Q21	
 Q22	

9	
 Par11ons	

18	
 Par11ons	

27	
 Par11ons	

Figure 4.9: System-X scale-up

128

4.7 Selected queries

In this section, we examine a subset of the queries in greater detail. The main reason to

choose these particular queries is that either the performance of the different systems differed

significantly for them, or a specific system showed a different scale-up behavior as compared

to the other queries.

4.7.1 Query 1

Query 1, shown in Listing 4.34, provides a summary pricing report for all lineitems shipped as

of a given date [26]. It only accesses one, but the largest, table in the database, LINEITEM.

From the runtime perspective, this is in fact a query that can check how fast a system can

perform filtered scans on a large table. The storage size and format, and the way that

selection predicate is evaluated on tuples, are the key factors in the performance of a system

for this query.

As Table 4.8 shows for the largest scale (SF=450), Spark SQL was able to achieve the best

time among all systems when using Parquet. Interestingly, Spark SQL showed the worst

performance when running on the text data. The execution of this query in Spark consists

of two stages. During the first one, the LINEITEM table is scanned with the selection

predicate and a local aggregation is performed. After an exchange, the global aggregation is

computed during the second stage. The Spark SQL runtime plan is the same for both the text

and Parquet cases. As mentioned before, we observed a much better I/O parallelization when

the Parquet format was being used. Similar to Spark’s stages, Hive uses two MapReduce

jobs to process this query. Hive on Tez with the ORC format shows the best performance

for Hive. It is mainly due to the ORC format’s advantages along with Hive’s efficient data

parsing strategy, which is able to skip copying and parsing whole records by just fetching

129

the relevant columns.

In both AsterixDB and System-X, we have a secondary index on the column used in the

query’s predicate, i.e., L SHIPDATE. The selectivity of this predicate is large. In the SF=450

case, it selects more than 887 million tuples out of almost 2.7 billion LINEITEM tuples. As

a result, exploiting this index will not help for this query. System-X’s cost-based optimizer

decides to fully scan the LINEITEM table for this reason. In AsterixDB the “skip-index”

hint is available for this purpose, and it was used for the times we reported. The combination

of values in L RETURNFLAG and L LINESTATUS, which are the grouping columns, has

only 4 possible values. In AsterixDB we used hash-based aggregation (enabled with a hint)

for this query which resulted in better performance as compared to sort-based aggregation.

(This reduced the response time for SF=450 by about 30%). However, System-X’s optimizer

decided to use sorting for grouping and aggregation here. For a full scan of the LINEITEM

table, AsterixDB and System-X are comparable. (For SF=450, scanning took 270 seconds

for AsterixDB and 250 seconds for System-X).

SELECT L_RETURNFLAG , L_LINESTATUS ,

SUM(L_QUANTITY) AS SUM_QTY ,

SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE ,

SUM(L_EXTENDEDPRICE *(1- L_DISCOUNT)) AS SUM_DISC_PRICE ,

SUM(L_EXTENDEDPRICE *(1- L_DISCOUNT)*(1+ L_TAX)) AS SUM_CHARGE ,

AVG(L_QUANTITY) AS AVG_QTY ,

AVG(L_EXTENDEDPRICE) AS AVG_PRICE ,

AVG(L_DISCOUNT) AS AVG_DISC ,

COUNT (*) AS COUNT_ORDER

FROM

LINEITEM

WHERE

L_SHIPDATE <= DATE (’1998-12-01’) - 90 DAY

GROUP BY L_RETURNFLAG ,

L_LINESTATUS ORDER BY

L_RETURNFLAG , L_LINESTATUS;

Listing 4.34: TPC-H Query 1

4.7.2 Query 10

This query finds the top 20 customers in terms of their effect on lost revenue for a given

quarter [26]. The query is shown in Listing 4.35 and involves a 4-way join between the CUS-

130

TOMER, ORDERS, LINEITEM, and NATION tables, for which an optimizer has different

join ordering and join strategy choices to choose from. Spark SQL first joins CUSTOMER

with filtered ORDERS tuples and then joins these results with filtered LINEITEM tuples,

finally joining the results with the NATION table. AsterixDB joins CUSTOMER and fil-

tered ORDERS tuples first, and the available secondary index on O ORDERDATE is used

for applying the predicate on ORDERS. This join is followed by joining its results with the

NATION table. Finally the results are joined with the filtered LINEITEM tuples. In terms

of the join strategy, AsterixDB currently uses hybrid hash joins for the equi-joins. For this

query, Spark SQL uses sort merge joins for the first two joins, and for the join involving

the NATION table, it broadcasts this table and performs a hybrid hash join. AsterixDB

shows a better scale-up for this query, and the performance of Spark SQL with Parquet

and AsterixDB are comparable for SF=450. Hive shows its best performance for this query

when it runs on Tez with ORC. With this setting and by using 4 map and 4 reduce steps,

Hive follows a similar strategy as Spark SQL by first joining CUSTOMER and ORDERS

using sort merge join and then replicating NATION and doing a broadcast hash join with

LINEITEM. The performance of these similar plans in Hive and Spark SQL is comparable

for SF=450 as well.

The main reason we found this query interesting is that System-X scaled up non-linearly for

the 27-partition case. This turns out to be because System-X changed the query plan that it

used when dealing with this case (SF=450). Figure 4.10 shows its query plan for 9 partitions,

and Figure 4.11 shows the plan for 27 partitions. In both cases, System-X first joins filtered

ORDERS and LINEITEM tuples. It exploits the secondary indices on O ORDERDATE

and L ORDERKEY for filterng and joining. For the smaller scales, System-X proceeds by

scanning the CUSTOMER table and joining it with the NATION table, and as the output

is already sorted on customer keys, the system chooses a merge join to do the join between

the results of the CUSTOMER and the NATION tables join and the results of the first

join (ORDERS and LINEITEM). In SF=450, however, System-X decides to broadcast the

131

NATION table (which consists of only 25 tuples) across all partitions and to do a hash join at

the end. As shown in Figure 4.9, the response time of the query changes differently between

SF=150 and SF=450 as compared to SF=150 and SF=300.

SELECT C_CUSTKEY , C_NAME ,

SUM(L_EXTENDEDPRICE * (1 - L_DISCOUNT)) AS REVENUE ,

C_ACCTBAL , N_NAME , C_ADDRESS , C_PHONE , C_COMMENT

FROM

CUSTOMER , ORDERS , LINEITEM , NATION

WHERE

C_CUSTKEY = O_CUSTKEY

AND L_ORDERKEY = O_ORDERKEY

AND O_ORDERDATE >= DATE (’1993-10-01’)

AND O_ORDERDATE < DATE (’1993-10-01’) + 3 MONTH

AND L_RETURNFLAG = ’R’

AND C_NATIONKEY = N_NATIONKEY

GROUP BY C_CUSTKEY , C_NAME , C_ACCTBAL , C_PHONE , N_NAME , C_ADDRESS , C_COMMENT

ORDER BY

REVENUE DESC

LIMIT 20;

Listing 4.35: TPC-H Query 10

Sec$IX'Scan'
(O_Orderdate)'

Orders'
table'

Fetch'

Sec$IX'Scan'
Lineitem_FK_orders'

Lineitem'
table'

Fetch'

Nested'Loop'
Join'

Sort'
on'

(o_custkey)'

date1&=<&o_orderdate&
&&o_orderdate&<&date2&

l_orderkey&=&o_orderkey&&

l_returnflag&=&‘R’&

IX'scan'
NaAon'

Nested'Loop'
Join'

Scan'
Customer'

Merge'Sort'
Join'

Grouping&&&Sort&&&Output&

c_na>onkey&=&n_na>onkey&&

c_custkey&=&o_custkey&&

Figure 4.10: Query 10 plan - System-X on 9 partitions

132

Sec$IX'Scan'
(O_Orderdate)'

Orders'
table'

Fetch'

Sec$IX'Scan'
Lineitem_FK_orders'

Lineitem'
table'

Fetch'

Nested'Loop'
Join'

Sort'
on'

(o_custkey)'

date1&=<&o_orderdate&
&&o_orderdate&<&date2&

l_orderkey&=&o_orderkey&&

l_returnflag&=&‘R’&

Merge'Sort'
Join'

Scan'
Customer'

Hash'Join'

Scan'
NaAon'

Broadcast&

Grouping&&&Sort&&&Output&

c_custkey&=&o_custkey&&

c_na>onkey&=&n_na>onkey&&

Figure 4.11: Query 10 plan - System-X on 27 partitions

4.7.3 Query 19

This query finds the gross discounted revenue for all orders that were shipped by air and

delivered in person for three different types of parts [26]. As shown in Listing 4.36, the

query joins the PART and LINEITEM tables on their PK/FK columns and has complex

disjunctive and conjunctive predicates on both tables. Looking carefully, one can see that the

predicates on L SHIPMODE and L SHIPINSTRUCT from LINEITEM are common among

all three disjuncts. These predicates in fact are quite selective (in SF=450, less than 97

million tuples pass them out of more than 2.7 billion total LINITEM tuples). As a result,

pushing these predicates down and applying them prior to the join step can help a system’s

overall performance significantly.

Figure 4.12 shows the optimized plan that Spark SQL generates for this query. Spark SQL

indeed extracts the common predicate and applies it prior to the join step. It also extracts the

common lower bound of the range filter on P SIZE and pushes it down, but as all the PART

133

tuples satisfy this lower bound that is of no help in this case. The remaining case-specific

(P BRAND related) predicates are applied to the results of the join, which are then fed to

the aggregate step. The plan that System-X generates for this query is similar to Spark’s

plan. The main difference is in which predicates it pushes down. System-X decides to apply

all of the predicates (both the common and case-specific ones) for both the LINEITEM and

PART tables while scanning them. The case-specific predicates are grouped and are first

applied disjunctively and then applied again in a case-specific manner on the join results.

In this way, System-X tries to reduce the input sizes for the join step. For example, in the

SF=450 case, about 58 million (out of more than 2.7 billion) LINEITEM tuples and about

216,000 (out of 90 million) PART tuples pass these filters. Unlike Spark SQL and System-X,

Hive does not extract the common predicate on LINEITEM from the disjuncts to push it

down. Running on Tez, Hive first uses two maps to fully scan both tables and sorts them on

the PARTKEY columns. Then two reducers are used to perform a merge join, grouping and

aggregation. The negative impact of joining a large number of unneeded tuples is the main

reason that Hive’s response times for all settings are significantly higher than the others.

In AsterixDB, the optimizer did not factor out the common predicates and push them down,

when the AQL query was based on a straightforward translation from SQL to AQL. The sys-

tem decided to first fully join LINEITEM and PART, and since the attribute from PART used

in the join predicate (P PARTKEY = L PARTKEY) is PART’s primary key, LINEITEM

is hash-exchanged. This decision results in a significant overhead in data movement, which

impacts AsterixDB’s performance negatively. A more careful translation of the query into

AQL (shown in Listing 4.37) removes this overhead by helping the system to push down

the common predicates; this improves performance by a factor of 3 for the SF=450 case.

The optimized plan for this query in AsterixDB is shown in Figure 4.13 and the numbers in

Tables 4.6 to 4.8 are reported based on that.

134

Scan%
Lineitem%

Filter%

Sort%

Scan%
Part%

Filter%

Sort%

Sort%Merge%
Join%

Filter%

Aggregate%

hash%exchange%
(partkey)%

p_size'>='1'
shipmode'~'(AIR||AIR'REG)''

' ' '&&''
(shipinstruct'='DELIVER'IN'PERSON)'

(p_brand'='Brand#12'&&''
'p_container''~'(SM'CASE||SM'BOX||SM'PACK||SM'PKG)'&&''
'l_quanPty'>='1.0)'&&'l_quanPty'<='11.0'&&'p_size'<='5)''

||''
(p_brand'='Brand#23'&&''

'p_container'~'(MED'BAG||MED'BOX||MED'PKG||MED'
PACK)'&&''

'l_quanPty'>='10.0'&&'l_quanPty'<='20.0'&&'p_size'<='10)'
||''
(p_brand'='Brand#34'&&''

'p_container'~'(LG'CASE||LG'BOX||LG'PACK||LG'PKG)'&&'
'l_quanPty'>='20.0'&&'l_quanPty'<='30.0'&&'p_size'<='15)'

Figure 4.12: Query 19 plan - Spark SQL

Scan%
Lineitem%

Filter%

Scan%
Part%

Hybrid%Hash%
Join%

Filter%

Aggregate%

hash%exchange%
(l_partkey)%

shipmode'~'(AIR||AIR'REG)''
' ' '&&''

(shipinstruct'='DELIVER'IN'PERSON)'

(p_brand'='Brand#12'&&''
'p_container''~'(SM'CASE||SM'BOX||SM'PACK||SM'PKG)'&&''
'l_quanPty'>='1.0)'&&'l_quanPty'<='11.0'&&''
'p_size'>='1'&&'p_size'<='5)''

||''
(p_brand'='Brand#23'&&''

'p_container'~'(MED'BAG||MED'BOX||MED'PKG||MED'
PACK)'&&''

'l_quanPty'>='10.0'&&'l_quanPty'<='20.0'&&''
'p_size'>='1'&&'p_size'<='10)'

||''
(p_brand'='Brand#34'&&''

'p_container'~'(LG'CASE||LG'BOX||LG'PACK||LG'PKG)'&&'
'l_quanPty'>='20.0'&&'l_quanPty'<='30.0'&&''
'p_size'>='1'&&'p_size'<='15)'

Figure 4.13: Query 19 plan - AsterixDB

135

SELECT

SUM(L_EXTENDEDPRICE * (1 - L_DISCOUNT)) AS REVENUE

FROM

LINEITEM , PART

WHERE

(

P_PARTKEY = L_PARTKEY

AND P_BRAND = ’BRAND#12’

AND P_CONTAINER IN (’SM CASE ’, ’SM BOX ’, ’SM PACK ’, ’SM PKG ’)

AND L_QUANTITY >= 1 AND L_QUANTITY <= 1 + 10

AND P_SIZE BETWEEN 1 AND 5

AND L_SHIPMODE IN (’AIR ’, ’AIR REG ’)

AND L_SHIPINSTRUCT = ’DELIVER IN PERSON ’

) OR

(

P_PARTKEY = L_PARTKEY

AND P_BRAND = ’BRAND#23’

AND P_CONTAINER IN (’MED BAG ’, ’MED BOX ’, ’MED PKG ’, ’MED PACK ’)

AND L_QUANTITY >= 10 AND L_QUANTITY <= 10 + 10

AND P_SIZE BETWEEN 1 AND 10

AND L_SHIPMODE IN (’AIR ’, ’AIR REG ’)

AND L_SHIPINSTRUCT = ’DELIVER IN PERSON ’

) OR

(

P_PARTKEY = L_PARTKEY

AND P_BRAND = ’BRAND#34’

AND P_CONTAINER IN (’LG CASE ’, ’LG BOX ’, ’LG PACK ’, ’LG PKG ’)

AND L_QUANTITY >= 20 AND L_QUANTITY <= 20 + 10

AND P_SIZE BETWEEN 1 AND 15

AND L_SHIPMODE IN (’AIR ’, ’AIR REG ’)

AND L_SHIPINSTRUCT = ’DELIVER IN PERSON ’

);

Listing 4.36: TPC-H Query 19 (in SQL)

4.7.4 Query 22

This query counts the number of customers within a specific range of country codes that have

not placed orders but have a greater than average positive account balance [26]. This query

is shown in Listing 4.38 and it is interesting for us for two reasons: Spark SQL on Parquet

shows a very good performance for it, and System-X shows its worst scale-up behavior among

all queries for this one. We show the query plan that each system uses in Figures 4.14 to

4.16. The part of the plan that calculates AVG(C ACCTBAL) on the CUSTOMER table

is the same among all three systems. The main performance difference between the systems

is based on how the “greater-than” predicate (C ACCTBAL > AVG(C ACCTBAL)) and

the “anti-join” part (CUSTOMER tuples with no order) of the query are evaluated. Spark

(Figure 4.14) decides to use a sort-merge outer join to find customers with no order and then

applies the greater-than predicate after doing a Cartesian product. Hive on Tez uses three

136

DECLARE FUNCTION Q19_TMP () {

FOR $T IN DATASET LINEITEM

WHERE

($T.L_SHIPMODE = ’AIR ’ OR $T.L_SHIPMODE = ’AIR REG ’)

AND $T.L_SHIPINSTRUCT = ’DELIVER IN PERSON ’

RETURN {

"LPKEY": $T.L_PARTKEY ,

"QUANTITY ": $T.L_QUANTITY ,

"EXTNDPRICE ": $T.L_EXTENDEDPRICE ,

"DISCOUNT ": $T.L_DISCOUNT

}

}

SUM(

FOR $L IN Q19_TMP ()

FOR $P IN DATASET PART

WHERE $P.P_PARTKEY = $L.LPKEY

AND ((

$P.P_BRAND = ’BRAND #12’

AND REG -EXP($P.P_CONTAINER ,’SM CASE|SM BOX|SM PACK|SM PKG ’)

AND $L.QUANTITY >= 1 AND $L.QUANTITY <= 11

AND $P.P_SIZE >= 1 AND $P.P_SIZE <= 5

) OR (

$P.P_BRAND = ’BRAND #23’

AND REG -EXP($P.P_CONTAINER , ’MED BAG|MED BOX|MED PKG|MED PACK ’)

AND $L.QUANTITY >= 10 AND $L.QUANTITY <= 20

AND $P.P_SIZE >= 1 AND $P.P_SIZE <= 10

) OR (

$P.P_BRAND = ’BRAND #34’

AND REG -EXP($P.P_CONTAINER , ’LG CASE|LG BOX|LG PACK|LG PKG ’)

AND $L.QUANTITY >= 20 AND $L.QUANTITY <= 30

AND $P.P_SIZE >= 1 AND $P.P_SIZE <= 15

)

)

RETURN $L.EXTNDPRICE * (1 - $L.DISCOUNT)

)

Listing 4.37: TPC-H Query 19 (in AQL)

map and four reduce steps to process this query. It first calculates the AVG value (using one

map and one reduce) and broadcasts it. Another map step finds the qualified CUSTOMER

tuples, and using a map and reduce step a group-by on ORDERS based on O CUSTKEY

is calculated. Then Hive performs an outer merge join on the qualified CUSTOMERS and

the grouped ORDERS. The greater-than predicate is also applied in this step. The final

aggregation happens on the output of this join and generates the results. System-X, however,

decides to use the index on O CUSTKEY on the ORDERS table to evaluate a sub-query

for finding customers with no orders; the greater-than predicate evaluation happens in a

subsequent nested loop join. As shown in Figure 4.16, AsterixDB first applies the less-than

predicate and finds the customers with above the average balances by performing a nested

loop join and then it evaluates the anti-join sub-query as the last step.

137

By breaking the query down into pieces and running each one, we realized that the anti-join

(finding customers with no orders) takes the most time. While both Spark and AsterixDB

use outer joins for this part, System-X chooses to use the secondary index on the foreign

key column. In the SF=150 case, out of 22.5 million customers, more than 6.3 million of

them pass the predicate on C PHONE, and more than 2.1 million of these customers have

no orders. Moving up to SF=450, we find a total of 67.5 million customers where almost

19 million of them pass the filter on C PHONE. Out of these customers, almost 6.3 million

have no orders. Therefore, as the data grows, the number of qualifying customers for this

predicate also grows proportionally. Because of the access method that System-X uses to

find them (index lookups rather than an outer join), it needs to do more and more random

I/Os, proportional to the data size, as the cardinality scales up.

SELECT

CNTRYCODE ,

COUNT (*) AS NUMCUST ,

SUM(C_ACCTBAL) AS TOTACCTBAL

FROM

(

SELECT

SUBSTR(C_PHONE , 1 , 2) AS CNTRYCODE ,

C_ACCTBAL

FROM CUSTOMER

WHERE

SUBSTR(C_PHONE ,1,2) IN (’13’, ’31’, ’23’, ’29’, ’30’, ’18’, ’17’) AND

C_ACCTBAL >

(

SELECT AVG(C_ACCTBAL)

FROM CUSTOMER

WHERE

C_ACCTBAL > 0.00 AND

SUBSTR(C_PHONE ,1,2) IN (’13’, ’31’, ’23’, ’29’, ’30’, ’18’, ’17’)

)

AND NOT EXISTS

(

SELECT *

FROM ORDERS

WHERE

O_CUSTKEY = C_CUSTKEY

)

)

GROUP BY

CNTRYCODE

ORDER BY

CNTRYCODE;

Listing 4.38: TPC-H Query 22

138

Scan%
Customer%

Filter%

Grouping%

Scan%
Customer%

Scan%
Orders%

Grouping% Filter%

Sort% Sort%

Merge%Sort%
Outer%Join%

Filter%

Cartesian%
Product%

Filter%

Aggregate'&'Sort'&'Output'

avg(c_acctbal)'

hash%exchange%
(custkey)%

isnull'(o_custkey)'

c_acctbal'>'avg_acctbal'

Figure 4.14: Query 22 plan - Spark

Scan%
Customer%

Filter%

Grouping%

Sec?IX%Scan%
(O_Custkey)%

Scan%
Customer%

Filter%

Nested%Loop%
Join%

Sort'&'Aggregate'&'Output'

p1)'substr(c_phone)'IN'list(…)'
p2)'Predicate'as'subQuery:'

'NOT'EXISTS'

'''(SELECT'RID''

''''FROM'ORDERS'

''''WHERE''

''''O_CUSTKEY'='C_CUSTKEY)'
avg(c_acctbal)'

c_acctbal'>'avg_acctbal'

Figure 4.15: Query 22 plan - System-X

139

Filter'

Grouping'

avg(c_acctbal)+ Nested'Loop'
Join'

Scan'
Orders'

Le7'Hybrid'
Hash'Join'

Filter,+Sort+&+Aggregate+&+Output+

c_acctbal+>+avg_acctbal+ O_CUSTKEY+=+C_CUSTKEY+

Scan'
Customer'

Split'

Figure 4.16: Query 22 plan - AsterixDB

4.8 Discussion

In this section, we summarize the main lessons that we have learned from our TPC-H based

performance evaluation of Big Data analytics platforms. These lessons are not entirely new,

however, they do provide an excellent insight into the state of reality in Big Data analytics

platforms as of now.

L1. Importance of cost-based optimization

As Big Data analytics queries tend to be complex, the quality of the physical plans for

processing them plays a significant role in the overall performance. Section 4.7 showed that

the systems considered here come up with different query plans for most of our selected

queries (for example Q10 and Q22). In practice, finding the optimal plan is a complicated

task, as a complex query may have many different possible execution paths. Having a

comprehensive set of rewrite rules, an accurate cost model, statistics about the data, and

140

reasonable estimates of the sizes of intermediate results are crucial factors in generating an

efficient plan. From this perspective, relational databases still have significant advantages

over modern Big Data systems. However, query optimization in new Big Data platforms is

getting richer fast, as they are learning from DBMSs and also focusing on tackling various

performance issues that have arisen with Big Data.

L2. Importance of storage format and I/O parallelism

Our experiments clearly showed the impact of optimized storage formats on Big Data

platforms performance. Spark SQL showed a significant performance improvement when

switching from the text format to Parquet. Both of the runtime engines in Hive (MapRe-

duce and Tez) also showed performance advantages with ORC as compared to text data.

A part of these performance gains comes from the reduced storage sizes with ORC and

Parquet. Another key reason, however, is the inherent optimizations of these newer storage

formats (such as using columnar model with built-in auxiliary information) when combined

with format-specific readers. Such a combination can reduce the overhead of I/O by avoiding

reading unneeded data for a query. The developers of recent formats for Spark and Hive

have put considerable effort to implement such features and pairing them with other op-

timizations such as predicate push-down so that I/O becomes less of a bottleneck in their

overall performance.

L3. Importance of dataflow processing

Our experiments re-confirmed the performance advantages that arise from using a pipelined

query execution model when dealing with complex queries whose processing consists of sev-

eral stages. Comparing Hive’s results on Tez vs. MapReduce shows the overall impact of

reduced scheduling overhead and data materialization. Both Spark and Hyracks [49] (used

by AsterixDB) are execution engines that are built from scratch to run dataflow jobs effi-

ciently. While MapReduce is excellent for one-pass computations, especially computations

141

whose running times require failure-tolerance, it suffers from performance-related issues for

more complex jobs due to its limited (stylized) two-step programming model and its spilling

intermediate results to disk.

4.9 Conclusion

In this chapter, we reported on the performance evaluation of Big Data systems for OLAP-

style workloads. We used the data and read-only queries from the TPC-H benchmark to

evaluate variants of four Big Data platforms: Hive, Spark SQL, AsterixDB, and System-X

(a parallel RDBMS). We also used several different storage formats for Spark SQL (text and

Parquet tables) and Hive (text and ORC files). For Hive, we considered both MapReduce

and Tez as the underlying execution engine. Our results showed that no system or storage

format gives the best performance for all of the queries. Moreover, different systems showed

different scale-up behaviors. We also showed how the columnar storage formats (ORC and

Parquet) improve performance in many cases. To better understand the performance differ-

ences between the systems, we analyzed a selected subset of the queries in more detail to

study the impact of some of the systems’ optimizations on performance.

142

Chapter 5

Conclusions and Future Work

5.1 Conclusion

Emerging Big Data technologies, along with the increasing volume, velocity, and variety

of data in Big Data applications, have created challenges in Big Data benchmarking. In

this dissertation, we looked at the performance evaluation of Big Data systems from several

different angles.

Modern Big Data systems can be divided into two major classes: NoSQL request-serving sys-

tems and Big Data analytics platforms. There are inherent differences between the workloads

that each group is trying to serve. The first part of the thesis looked at the performance eval-

uation of NoSQL Key Value stores for the OLTP class of workloads. The experiments there

used mixed workloads of short queries consisting of lookups, updates, and range scans, with a

focus on range queries with different selectivities. Key Value stores of both hash-partitioning

and range-partitioning types were included in the study. Moreover, we proposed different

techniques to support range queries on top of a hash-partitioned Key Value store and studied

the tradeoffs that exist in picking different schemes versus their performance.

143

In the second part of the thesis, we conducted a performance evaluation of Big Data systems

based on their features and functionality. We proposed a new micro-benchmark, called Big-

FUN (for Big Data FUNctionality), which consists of configurable and extensible data and

workload generator components. The workload includes both read-only and data modifica-

tion operations, and each operation aims at evaluating the level of support that a system

has for some core, fundamental functionality along with its performance. This part of the

thesis reported on the performance of four Big Data systems using BigFUN along with a

discussion of the results.

The last part of the thesis looked at the performance of the second major class of Big Data

systems, namely Big Data analytics platforms, for analytics queries. We used the TPC-H

benchmark for this purpose and explored the performance of four representative Big Data

systems drawn from this class.

Significant differences in the architectures and design decisions of Big Data systems, along

with their rapid growth have created important challenges in the task of benchmarking

them. Our efforts in this thesis showed the importance of creating and utilizing standard

benchmarks for evaluating and comparing Big Data platforms systematically. A mature per-

formance evaluation effort should be comprehensive enough in terms of considering different

characteristics of Big Data and the variety of the workloads to make sure that the bench-

marking process does not simply concentrate on the “sweet spots” of the performance curve

for a specific system. There are evident unmet needs in terms of defining the correct set

of performance metrics and workload characteristics which have to be addressed to achieve

this goal. We also want to emphasize on the importance of including an evaluation of the

functional richness of a Big Data system within the benchmarking process. This is very

important since Big Data applications tend to evolve and their needs tend to become more

complicated. There is an increasing interest in using a “unified” system to serve a wide

range of data processing needs rather than utilizing multiple systems. In fact, many Big

144

Data systems with a limited functionality are now being extended with new features in or-

der to serve different types of applications efficiently. The “one size fits a bunch” conjecture

that we briefly discussed in Chapter 3 mainly argues about this need, and one of our goals in

this dissertation has been converging the tasks of performance evaluation and functionality

evaluation to explore the feasibility and merits of this idea.

5.2 Future work

Further along the path of this thesis, we believe there are several potential extensions and

challenging directions to be explored:

• Adding new Big Data platforms to the performance evaluation tasks: As

mentioned in Chapter 1, new systems and solutions have been proposed in each class of

Big Data systems that we considered. One potential extension to this work would be

to use the benchmarks that we have considered to evaluate new systems and compare

the results to the ones that we obtained.

• Extending the data and workloads: While we did our best in designing the schema

and workload for our micro-benchmarks, there are a number of potential extensions

that can be considered. Examples include:

1. Adding more data diversity and applying a richer set of value distributions in the

data generation process;

2. Considering workloads with a focus on throughput in order to find the saturation

point in a system’s performance curve when dealing with many concurrent users;

3. Involving more complex concurrent mixes of simple/short queries, analytical queries,

and updates;

145

4. Involving concurrent mixes of queries with different levels of resource-intensiveness

(including CPU, I/O, memory, and network intensities).

• Exploring domain-centric Big Data benchmarks: As Big Data applications are

rapidly growing and becoming more complex, there is an increasing need for serving

workloads which involve graph processing, machine learning, and scientific computing

tasks. There is currently a lack of mature benchmarks that include rich data and op-

erations along with generally agreed upon metrics for comparing Big Data systems on

these dimensions. Creating such standard benchmarks is a challenging, but unavoid-

able, future task for the Big Data community.

146

Bibliography

[1] Apache Drill. https://drill.apache.org.

[2] Apache Hadoop. http://hadoop.apache.org/.

[3] Apache Hive. http://hive.apache.org/.

[4] Apache Spark. http://spark.apache.org.

[5] Apache Tez. https://tez.apache.org.

[6] BSON. http://bsonspec.org/.

[7] Forbes Report. http://onforb.es/1nwCOsb/.

[8] GridMix. https://hadoop.apache.org/docs/r1.2.1/gridmix.html.

[9] HAWQ. http://hawq.incubator.apache.org.

[10] Hive on Tez. https://cwiki.apache.org/confluence/display/Hive/Hive+on+Tez.

[11] HiveContext in Spark. http://spark.apache.org/docs/latest/

sql-programming-guide.html.

[12] Impala. http://impala.io/.

[13] Kryo Serializer. https://github.com/EsotericSoftware/kryo.

[14] ORC. http://cwiki.apache.org/confluence/display/Hive/LanguageManual+

ORC.

[15] ORC specification. https://cwiki.apache.org/confluence/display/Hive/

LanguageManual+ORC#LanguageManualORC-orc-spec.

[16] Parquet. https://cwiki.apache.org/confluence/display/Hive/Parquet.

[17] Parquet specification. https://parquet.apache.org/documentation/latest/.

[18] PigMix. https://cwiki.apache.org/confluence/display/PIG/PigMix.

[19] Presto. http://prestodb.io.

147

https://drill.apache.org
http://hadoop.apache.org/
http://hive.apache.org/
http://spark.apache.org
https://tez.apache.org
http://bsonspec.org/
http://onforb.es/1nwCOsb/
https://hadoop.apache.org/docs/r1.2.1/gridmix.html
http://hawq.incubator.apache.org
https://cwiki.apache.org/confluence/display/Hive/Hive+on+Tez
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://impala.io/
https://github.com/EsotericSoftware/kryo
http://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
http://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC#LanguageManualORC-orc-spec
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC#LanguageManualORC-orc-spec
https://cwiki.apache.org/confluence/display/Hive/Parquet
https://parquet.apache.org/documentation/latest/
https://cwiki.apache.org/confluence/display/PIG/PigMix
http://prestodb.io

[20] Running TPC-H queries on Hive. https://issues.apache.org/jira/browse/

HIVE-600.

[21] Snappy. https://google.github.io/snappy/.

[22] Spark JIRA issue. https://issues.apache.org/jira/browse/SPARK-10309.

[23] Spatial index internals in MongoDB. https://docs.mongodb.org/manual/core/

geospatial-indexes/.

[24] TPC. http://www.tpc.org.

[25] TPC-DS. http://www.tpc.org/tpcds/.

[26] TPC-H. http://www.tpc.org/tpch.

[27] TPC-H queries in AQL. https://github.com/apache/incubator-asterixdb/tree/
master/asterix-benchmarks/src/main/resources/tpc-h/queries.

[28] Trevni. https://avro.apache.org/docs/1.7.7/trevni/spec.html.

[29] WBDB. http://clds.ucsd.edu/bdbc/workshops.

[30] D. J. Abadi, P. A. Boncz, and S. Harizopoulos. Column-oriented database systems.
Proceedings of the VLDB Endowment, 2(2):1664–1665, 2009.

[31] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Silberschatz.
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for An-
alytical Workloads. PVLDB, 2(1):922–933, 2009.

[32] P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava, and R. Ramakrishnan. Asyn-
chronous view maintenance for VLSD databases. SIGMOD ’09. ACM, 2009.

[33] M. K. Aguilera, W. Golab, and M. A. Shah. A practical scalable distributed B-tree.
In Proc. VLDB Endow., volume 1, pages 598–609, 2008.

[34] A. Ailamaki, D. J. DeWitt, and M. D. Hill. Data page layouts for relational databases
on deep memory hierarchies. The VLDB Journal, 11(3):198–215, 2002.

[35] A. A. Alamoudi, R. Grover, M. J. Carey, and V. R. Borkar. External data access and
indexing in asterixdb. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, CIKM 2015, Melbourne, VIC, Australia,
October 19 - 23, 2015, pages 3–12, 2015.

[36] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, M. J. Carey,
I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y. Kim,
C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and
T. Westmann. AsterixDB: A Scalable, Open Source BDMS. PVLDB, 2014.

[37] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim, M. J. Carey, M. Dreseler,
and C. Li. Storage Management in AsterixDB. PVLDB, 2014.

148

https://issues.apache.org/jira/browse/HIVE-600
https://issues.apache.org/jira/browse/HIVE-600
https://google.github.io/snappy/
https://issues.apache.org/jira/browse/SPARK-10309
https://docs.mongodb.org/manual/core/geospatial-indexes/
https://docs.mongodb.org/manual/core/geospatial-indexes/
http://www.tpc.org
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch
https://github.com/apache/incubator-asterixdb/tree/master/asterix-benchmarks/src/main/resources/tpc-h/queries
https://github.com/apache/incubator-asterixdb/tree/master/asterix-benchmarks/src/main/resources/tpc-h/queries
https://avro.apache.org/docs/1.7.7/trevni/spec.html
http://clds.ucsd.edu/bdbc/workshops

[38] Amazon S3. https://aws.amazon.com/s3/.

[39] A. Andrzejak and Z. Xu. Scalable, Efficient Range Queries for Grid Information Ser-
vices. In Peer-to-Peer Computing, pages 33–40, 2002.

[40] Apache CouchDB. http://couchdb.apache.org/.

[41] Apache HDFS. http://hadoop.apache.org/hdfs/.

[42] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi, et al. Spark SQL: Relational data processing in Spark. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, pages 1383–1394. ACM, 2015.

[43] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan. Linkbench: A
Database Benchmark Based on the Facebook Social Graph. In SIGMOD, 2013.

[44] J. Aspnes, J. Kirsch, and A. Krishnamurthy. Load balancing and locality in range-
queriable data structures. PODC ’04, pages 115–124. ACM, 2004.

[45] S. Barahmand and S. Ghandeharizadeh. BG: A Benchmark to Evaluate Interactive
Social Networking Actions. In CIDR, 2013.

[46] C. Baru, M. Bhandarkar, R. Nambiar, M. Poess, and T. Rabl. Benchmarking Big Data
Systems and the Big Data Top100 list. Big Data, 1(1), 2013.

[47] Berkeley DB. http://www.oracle.com/technetwork/database/

database-technologies/berkeleydb/overview/index.htm.

[48] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing. How is the weather tomorrow?:
towards a benchmark for the cloud. In Proceedings of the Second International Work-
shop on Testing Database Systems, DBTest ’09, pages 9:1–9:6. ACM, 2009.

[49] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks: A Flexible and
Extensible Foundation for Data-Intensive Computing. In ICDE, 2011.

[50] V. Borkar, M. Carey, D. Lychagin, T. Westmann, D. Engovatov, and N. Onose. Query
Processing in the Aqualogic Data Services Platform. In VLDB, 2006.

[51] M. Brantner, D. Florescu, D. A. Graf, D. Kossmann, and T. Kraska. Building a
database on S3. In SIGMOD Conference, pages 251–264, 2008.

[52] M. J. Carey. BDMS Performance Evaluation: Practices, Pitfalls, and Possibilities. In
TPCTC, 2012.

[53] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7 Benchmark. In SIGMOD,
1993.

[54] M. J. Carey, D. J. DeWitt, J. F. Naughton, M. Asgarian, P. Brown, J. E. Gehrke, and
D. N. Shah. The BUCKY Object-Relational Benchmark. In SIGMOD, 1997.

149

https://aws.amazon.com/s3/
http://couchdb.apache.org/
http://hadoop.apache.org/hdfs/
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.htm
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.htm

[55] M. J. Carey, L. Ling, M. Nicola, and L. Shao. EXRT: Towards a Simple Benchmark
for XML Readiness Testing. In TPCTC. Springer, 2011.

[56] Cassandra. http://cassandra.apache.org/.

[57] R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec., 39:12–27, May 2011.

[58] R. Cattell and J. Skeen. Object Operations Benchmark. ACM Trans. Database Syst.,
17(1), 1992.

[59] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System for Structured
Data. ACM Trans. Comput. Syst., (2), 2008.

[60] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.
Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow., 1:1277–1288, 2008.

[61] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with YCSB. In SoCC, pages 143–154, 2010.

[62] D. J. DeWitt. The Wisconsin Benchmark: Past, Present, and Future. In The Bench-
mark Handbook. 1991.

[63] A. Edwards and G. Davies. Understanding Analytic Workloads - Meeting the complex
processing demands of advanced analytics. 2011.

[64] A. Floratou, U. F. Minhas, and F. Özcan. Sql-on-hadoop: Full circle back to shared-
nothing database architectures. Proceedings of the VLDB Endowment, 7(12):1295–
1306, 2014.

[65] A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata. Column-oriented storage tech-
niques for MapReduce. Proceedings of the VLDB Endowment, 4(7):419–429, 2011.

[66] A. Floratou, N. Teletia, D. J. DeWitt, J. M. Patel, and D. Zhang. Can the Elephants
Handle the NoSQL Onslaught? PVLDB, 2012.

[67] P. Ganesan, M. Bawa, and H. Garcia-molina. Online Balancing of Range-Partitioned
Data with Applications to Peer-to-Peer Systems. In In VLDB, pages 444–455, 2004.

[68] P. Ganesan, B. Yang, and H. Garcia-Molina. One Torus to Rule Them All: Multidi-
mensional Queries in P2P Systems. In WebDB, 2004.

[69] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen.
BigBench: Towards an Industry Standard Benchmark for Big Data Analytics. In
SIGMOD, 2013.

[70] Google App Engine. https://cloud.google.com/appengine/.

150

http://cassandra.apache.org/
https://cloud.google.com/appengine/

[71] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly
Generating Billion-Record Synthetic Databases. SIGMOD Rec., 23:243–252, May 1994.

[72] R. Grover and M. Carey. Data Ingestion in AsterixDB. EDBT, 2015.

[73] A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate Range Selection Queries in
Peer-to-Peer Systems. In CIDR, 2003.

[74] R. Han and X. Lu. On Big Data Benchmarking. CoRR, abs/1402.5194, 2014.

[75] D. Hastorun, M. Jampani, G. Kakulapati, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazons highly available key-value store. In In Proc. SOSP,
pages 205–220, 2007.

[76] HBase. http://hbase.apache.org/.

[77] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. RCFile: A fast and
space-efficient data placement structure in MapReduce-based warehouse systems. In
Data Engineering (ICDE), 2011 IEEE 27th International Conference on, pages 1199–
1208. IEEE, 2011.

[78] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: A Balanced Tree Structure for
Peer-to-Peer Networks. In In VLDB, pages 661–672, 2005.

[79] P. L. Lehman and S. B. Yao. Efficient Locking for Concurrent Operations on B-Trees.
ACM Trans. Database Syst., 6(4):650–670, 1981.

[80] D. Lomet. Replicated indexes for distributed data. DIS ’96, pages 108–119. IEEE
Computer Society, 1996.

[81] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vas-
silakis. Dremel: interactive analysis of web-scale datasets. Proceedings of the VLDB
Endowment, 3(1-2):330–339, 2010.

[82] MongoDB. http://www.mongodb.org/.

[83] MySQL. https://www.mysql.com/.

[84] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil. The log-structured merge-tree (LSM-
tree). Acta Informatica, 33(4):351–385, 1996.

[85] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson, A. Fuchs, and
B. Rinaldi. YCSB++: Benchmarking and Performance Debugging Advanced Features
in Scalable Table Stores. In SoCC, 2011.

[86] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stone-
braker. A comparison of approaches to large-scale data analysis. In SIGMOD Confer-
ence, pages 165–178, 2009.

151

http://hbase.apache.org/
http://www.mongodb.org/
https://www.mysql.com/

[87] T. Pitoura, N. Ntarmos, and P. Triantafillou. Replication, Load Balancing and Efficient
Range Query Processing in DHTs. In EDBT, pages 131–148, 2006.

[88] Project Voldemort. http://project-voldemort.com/.

[89] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A. Jacobsen, and
S. Mankovskii. Solving Big Data Challenges for Enterprise Application Performance
Management. PVLDB, 2012.

[90] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker. Brief announce-
ment: prefix hash tree. PODC ’04. ACM, 2004.

[91] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino. Apache
Tez: A Unifying Framework for Modeling and Building Data Processing Applications.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, pages 1357–1369, 2015.

[92] O. D. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi. A Peer-to-peer Framework for
Caching Range Queries. In ICDE, pages 165–176, 2004.

[93] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark:
A Benchmark for XML Data Management. In VLDB, 2002.

[94] T. Schütt, F. Schintke, and A. Reinefeld. Structured Overlay without Consistent
Hashing: Empirical Results. In CCGRID, 2006.

[95] T. Schütt, F. Schintke, and A. Reinefeld. Range queries on structured overlay networks.
In Computer Communications, volume 31, 2008.

[96] O. Serlin. The history of debitcredit and the tpc.

[97] Y. Shi, X. Meng, J. Zhao, X. Hu, B. Liu, and H. Wang. Benchmarking cloud-based
data management systems. In Proceedings of the second international workshop on
Cloud data management, CloudDB ’10, pages 47–54. ACM, 2010.

[98] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, et al. C-store: a column-oriented DBMS. In Proceedings
of the 31st international conference on Very large data bases, pages 553–564. VLDB
Endowment, 2005.

[99] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache Hadoop YARN: Yet Another
Resource Negotiator. In Proceedings of the 4th annual Symposium on Cloud Comput-
ing, page 5. ACM, 2013.

[100] H. T. Vo, C. Chen, and B. C. Ooi. Towards Elastic Transactional Cloud Storage with
Range Query Support. In PVLDB, volume 3, pages 506–517, 2010.

152

http://project-voldemort.com/

[101] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, and
S. Zhang. Bigdatabench: A Big Data Benchmark Suite from Internet Services. In
IEEE HPCA, 2014.

[102] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, pages 2–2. USENIX Association, 2012.

[103] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster
computing with working sets. In Proceedings of the 2nd USENIX conference on Hot
topics in cloud computing, volume 10, page 10, 2010.

153

Appendix A

TPC-H Queries in AQL

This appendix includes the AQL version of all 22 TPC-H queries used in our experiments in

Chapter 4.

SET IMPORT -PRIVATE -FUNCTIONS ’TRUE ’;

FOR $L IN DATASET(’LINEITEM ’)

WHERE $L.L_SHIPDATE /*+ SKIP -INDEX */ <= ’1998-09-02’

/*+ HASH*/

GROUP BY $L_RETURNFLAG := $L.L_RETURNFLAG ,

$L_LINESTATUS := $L.L_LINESTATUS

WITH $L

ORDER BY $L_RETURNFLAG , $L_LINESTATUS

RETURN {

"L_RETURNFLAG ": $L_RETURNFLAG ,

"L_LINESTATUS ": $L_LINESTATUS ,

"SUM_QTY ": SUM(FOR $I IN $L RETURN $I.L_QUANTITY),

"SUM_BASE_PRICE ": SUM(FOR $I IN $L RETURN $I.L_EXTENDEDPRICE),

"SUM_DISC_PRICE ": SUM(FOR $I IN $L RETURN $I.L_EXTENDEDPRICE * (1 - $I.L_DISCOUNT)),

"SUM_CHARGE ":

SUM(FOR $I IN $L

RETURN $I.L_EXTENDEDPRICE * (1 - $I.L_DISCOUNT) * (1 + $I.L_TAX)),

"AVE_QTY ": AVG(FOR $I IN $L RETURN $I.L_QUANTITY),

"AVE_PRICE ": AVG(FOR $I IN $L RETURN $I.L_EXTENDEDPRICE),

"AVE_DISC ": AVG(FOR $I IN $L RETURN $I.L_DISCOUNT),

"COUNT_ORDER ": COUNT($L)

}

Listing A.39: TPC-H Query 1 (in AQL)

154

DECLARE FUNCTION TMP1() {

FOR $P IN DATASET(’PART ’)

FOR $PSSRN IN (

FOR $PS IN DATASET(’PARTSUPP ’)

FOR $SRN IN (

FOR $S IN DATASET(’SUPPLIER ’)

FOR $RN IN (

FOR $R IN DATASET(’REGION ’)

FOR $N IN DATASET(’NATION ’)

WHERE $N.N_REGIONKEY = $R.R_REGIONKEY AND $R.R_NAME = ’EUROPE ’

RETURN {

"N_NATIONKEY ": $N.N_NATIONKEY ,

"N_NAME ": $N.N_NAME

}

)

WHERE $S.S_NATIONKEY = $RN.N_NATIONKEY

RETURN {

"S_SUPPKEY ": $S.S_SUPPKEY ,

"N_NAME ": $RN.N_NAME ,

"S_NAME ": $S.S_NAME ,

"S_ACCTBAL ": $S.S_ACCTBAL ,

"S_ADDRESS ": $S.S_ADDRESS ,

"S_PHONE ": $S.S_PHONE ,

"S_COMMENT ": $S.S_COMMENT

}

)

WHERE $SRN.S_SUPPKEY = $PS.PS_SUPPKEY

RETURN {

"N_NAME ": $SRN.N_NAME ,

"P_PARTKEY ": $PS.PS_PARTKEY ,

"PS_SUPPLYCOST ": $PS.PS_SUPPLYCOST ,

"S_NAME ": $SRN.S_NAME ,

"S_ACCTBAL ": $SRN.S_ACCTBAL ,

"S_ADDRESS ": $SRN.S_ADDRESS ,

"S_PHONE ": $SRN.S_PHONE ,

"S_COMMENT ": $SRN.S_COMMENT

}

)

WHERE $P.P_PARTKEY = $PSSRN.P_PARTKEY AND LIKE($P.P_TYPE , ’%BRASS ’) AND $P.P_SIZE = 15

RETURN {

"S_ACCTBAL ": $PSSRN.S_ACCTBAL ,

"S_NAME ": $PSSRN.S_NAME ,

"N_NAME ": $PSSRN.N_NAME ,

"P_PARTKEY ": $P.P_PARTKEY ,

"PS_SUPPLYCOST ": $PSSRN.PS_SUPPLYCOST ,

"P_MFGR ": $P.P_MFGR ,

"S_ADDRESS ": $PSSRN.S_ADDRESS ,

"S_PHONE ": $PSSRN.S_PHONE ,

"S_COMMENT ": $PSSRN.S_COMMENT

}

}

Listing A.40: TPC-H Query 2 (in AQL) - Part 1

155

DECLARE FUNCTION TMP2 (){

FOR $P IN DATASET(’PART ’)

FOR $PSSRN IN (

FOR $PS IN DATASET(’PARTSUPP ’)

FOR $SRN IN (

FOR $S IN DATASET(’SUPPLIER ’)

FOR $RN IN (

FOR $R IN DATASET(’REGION ’)

FOR $N IN DATASET(’NATION ’)

WHERE $N.N_REGIONKEY = $R.R_REGIONKEY AND $R.R_NAME = ’EUROPE ’

RETURN {

"N_NATIONKEY ": $N.N_NATIONKEY ,

"N_NAME ": $N.N_NAME

}

)

WHERE $S.S_NATIONKEY = $RN.N_NATIONKEY

RETURN {

"S_SUPPKEY ": $S.S_SUPPKEY ,

"N_NAME ": $RN.N_NAME ,

"S_NAME ": $S.S_NAME ,

"S_ACCTBAL ": $S.S_ACCTBAL ,

"S_ADDRESS ": $S.S_ADDRESS ,

"S_PHONE ": $S.S_PHONE ,

"S_COMMENT ": $S.S_COMMENT

}

)

WHERE $SRN.S_SUPPKEY = $PS.PS_SUPPKEY

RETURN {

"N_NAME ": $SRN.N_NAME ,

"P_PARTKEY ": $PS.PS_PARTKEY ,

"PS_SUPPLYCOST ": $PS.PS_SUPPLYCOST ,

"S_NAME ": $SRN.S_NAME ,

"S_ACCTBAL ": $SRN.S_ACCTBAL ,

"S_ADDRESS ": $SRN.S_ADDRESS ,

"S_PHONE ": $SRN.S_PHONE ,

"S_COMMENT ": $SRN.S_COMMENT

}

)

WHERE $P.P_PARTKEY = $PSSRN.P_PARTKEY AND LIKE($P.P_TYPE , ’%BRASS ’) AND $P.P_SIZE = 15

/*+ HASH*/

GROUP BY $P_PARTKEY := $PSSRN.P_PARTKEY WITH $PSSRN

RETURN {

"P_PARTKEY ": $P_PARTKEY ,

"PS_MIN_SUPPLYCOST ": MIN(FOR $I IN $PSSRN RETURN $I.PS_SUPPLYCOST)

}

}

FOR $T2 IN TMP2()

FOR $T1 IN TMP1()

WHERE $T1.P_PARTKEY = $T2.P_PARTKEY AND $T1.PS_SUPPLYCOST = $T2.PS_MIN_SUPPLYCOST

ORDER BY $T1.S_ACCTBAL DESC , $T1.N_NAME , $T1.S_NAME , $T1.P_PARTKEY

LIMIT 100

RETURN

{

"S_ACCTBAL ": $T1.S_ACCTBAL ,

"S_NAME ": $T1.S_NAME ,

"N_NAME ": $T1.N_NAME ,

"P_PARTKEY ": $T1.P_PARTKEY ,

"P_MFGR ": $T1.P_MFGR ,

"S_ADDRESS ": $T1.S_ADDRESS ,

"S_PHONE ": $T1.S_PHONE ,

"S_COMMENT ": $T1.S_COMMENT

}

Listing A.40: TPC-H Query 2 (in AQL) - Part 2

156

FOR $C IN DATASET(’CUSTOMER ’)

FOR $O IN DATASET(’ORDERS ’)

WHERE

$C.C_MKTSEGMENT = ’BUILDING ’ AND $C.C_CUSTKEY = $O.O_CUSTKEY

FOR $L IN DATASET(’LINEITEM ’)

WHERE

$L.L_ORDERKEY = $O.O_ORDERKEY AND

$O.O_ORDERDATE < ’1995-03-15’ AND $L.L_SHIPDATE > ’1995-03-15’

/*+ HASH*/

GROUP BY $L_ORDERKEY := $L.L_ORDERKEY ,

$O_ORDERDATE := $O.O_ORDERDATE ,

$O_SHIPPRIORITY := $O.O_SHIPPRIORITY

WITH $L

LET $REVENUE := SUM (

FOR $I IN $L

RETURN

$I.L_EXTENDEDPRICE * (1 - $I.L_DISCOUNT)

)

ORDER BY $REVENUE DESC , $O_ORDERDATE

LIMIT 10

RETURN {

"L_ORDERKEY ": $L_ORDERKEY ,

"REVENUE ": $REVENUE ,

"O_ORDERDATE ": $O_ORDERDATE ,

"O_SHIPPRIORITY ": $O_SHIPPRIORITY

}

Listing A.41: TPC-H Query 3 (in AQL)

DECLARE FUNCTION TMP()

{

FOR $L IN DATASET(’LINEITEM ’)

WHERE $L.L_COMMITDATE < $L.L_RECEIPTDATE

DISTINCT BY $L.L_ORDERKEY

RETURN { "O_ORDERKEY ": $L.L_ORDERKEY }

}

FOR $O IN DATASET(’ORDERS ’)

FOR $T IN TMP()

WHERE $O.O_ORDERKEY = $T.O_ORDERKEY AND

$O.O_ORDERDATE >= ’1993-07-01’ AND $O.O_ORDERDATE < ’1993-10-01’

GROUP BY $O_ORDERPRIORITY := $O.O_ORDERPRIORITY WITH $O

ORDER BY $O_ORDERPRIORITY

RETURN {

"ORDER_PRIORITY ": $O_ORDERPRIORITY ,

"COUNT": COUNT($O)

}

Listing A.42: TPC-H Query 4 (in AQL)

157

FOR $C IN DATASET(’CUSTOMER ’)

FOR $O1 IN (

FOR $O IN DATASET(’ORDERS ’)

FOR $L1 IN (

FOR $L IN DATASET(’LINEITEM ’)

FOR $S1 IN (

FOR $S IN DATASET(’SUPPLIER ’)

FOR $N1 IN (

FOR $N IN DATASET(’NATION ’)

FOR $R IN DATASET(’REGION ’)

WHERE $N.N_REGIONKEY = $R.R_REGIONKEY

AND $R.R_NAME = ’ASIA ’

RETURN {

"N_NAME ": $N.N_NAME ,

"N_NATIONKEY ": $N.N_NATIONKEY

}

)

WHERE $S.S_NATIONKEY = $N1.N_NATIONKEY

RETURN {

"N_NAME ": $N1.N_NAME ,

"S_SUPPKEY ": $S.S_SUPPKEY ,

"S_NATIONKEY ": $S.S_NATIONKEY

}

)

WHERE $L.L_SUPPKEY = $S1.S_SUPPKEY

RETURN {

"N_NAME ": $S1.N_NAME ,

"L_EXTENDEDPRICE ": $L.L_EXTENDEDPRICE ,

"L_DISCOUNT ": $L.L_DISCOUNT ,

"L_ORDERKEY ": $L.L_ORDERKEY ,

"S_NATIONKEY ": $S1.S_NATIONKEY

}

)

WHERE $L1.L_ORDERKEY = $O.O_ORDERKEY AND

$O.O_ORDERDATE >= ’1994-01-01’ AND $O.O_ORDERDATE < ’1995-01-01’

RETURN {

"N_NAME ": $L1.N_NAME ,

"L_EXTENDEDPRICE ": $L1.L_EXTENDEDPRICE ,

"L_DISCOUNT ": $L1.L_DISCOUNT ,

"S_NATIONKEY ": $L1.S_NATIONKEY ,

"O_CUSTKEY ": $O.O_CUSTKEY

}

)

WHERE $C.C_NATIONKEY = $O1.S_NATIONKEY AND $C.C_CUSTKEY = $O1.O_CUSTKEY

/*+ HASH*/

GROUP BY $N_NAME := $O1.N_NAME WITH $O1

LET $REVENUE := SUM (

FOR $I IN $O1

RETURN

$I.L_EXTENDEDPRICE * (1 - $I.L_DISCOUNT)

)

ORDER BY $REVENUE DESC

RETURN {

"N_NAME ": $N_NAME ,

"REVENUE ": $REVENUE

}

Listing A.43: TPC-H Query 5 (in AQL)

158

LET $REVENUE := SUM(

FOR $L IN DATASET(’LINEITEM ’)

WHERE $L.L_SHIPDATE >= ’1994-01-01’

AND $L.L_SHIPDATE < ’1995-01-01’

AND $L.L_DISCOUNT >= 0.05 AND $L.L_DISCOUNT <= 0.07

AND $L.L_QUANTITY < 24

RETURN $L.L_EXTENDEDPRICE * $L.L_DISCOUNT

)

RETURN {

"REVENUE ": $REVENUE

}

Listing A.44: TPC-H Query 6 (in AQL)

159

DECLARE FUNCTION Q7_VOLUME_SHIPPING_TMP () {

FOR $N1 IN DATASET(’NATION ’)

FOR $N2 IN DATASET(’NATION ’)

WHERE ($N1.N_NAME=’FRANCE ’ AND $N2.N_NAME=’GERMANY ’) OR

($N1.N_NAME=’GERMANY ’ AND $N2.N_NAME=’FRANCE ’)

RETURN {

"SUPP_NATION ": $N1.N_NAME ,

"CUST_NATION ": $N2.N_NAME ,

"S_NATIONKEY ": $N1.N_NATIONKEY ,

"C_NATIONKEY ": $N2.N_NATIONKEY

}

}

FOR $LOCS IN (

FOR $LOC IN (

FOR $LO IN (

FOR $L IN DATASET(’LINEITEM ’)

FOR $O IN DATASET(’ORDERS ’)

WHERE $O.O_ORDERKEY = $L.L_ORDERKEY AND $L.L_SHIPDATE >= ’1995-01-01’

AND $L.L_SHIPDATE <= ’1996-12-31’

RETURN {

"L_SHIPDATE ": $L.L_SHIPDATE ,

"L_EXTENDEDPRICE ": $L.L_EXTENDEDPRICE ,

"L_DISCOUNT ": $L.L_DISCOUNT ,

"L_SUPPKEY ": $L.L_SUPPKEY ,

"O_CUSTKEY ": $O.O_CUSTKEY

}

)

FOR $C IN DATASET(’CUSTOMER ’)

WHERE $C.C_CUSTKEY = $LO.O_CUSTKEY

RETURN {

"L_SHIPDATE ": $LO.L_SHIPDATE ,

"L_EXTENDEDPRICE ": $LO.L_EXTENDEDPRICE ,

"L_DISCOUNT ": $LO.L_DISCOUNT ,

"L_SUPPKEY ": $LO.L_SUPPKEY ,

"C_NATIONKEY ": $C.C_NATIONKEY

}

)

FOR $S IN DATASET(’SUPPLIER ’)

WHERE $S.S_SUPPKEY = $LOC.L_SUPPKEY

RETURN {

"L_SHIPDATE ": $LOC.L_SHIPDATE ,

"L_EXTENDEDPRICE ": $LOC.L_EXTENDEDPRICE ,

"L_DISCOUNT ": $LOC.L_DISCOUNT ,

"C_NATIONKEY ": $LOC.C_NATIONKEY ,

"S_NATIONKEY ": $S.S_NATIONKEY

}

)

FOR $T IN Q7_VOLUME_SHIPPING_TMP ()

WHERE $LOCS.C_NATIONKEY = $T.C_NATIONKEY

AND $LOCS.S_NATIONKEY = $T.S_NATIONKEY

LET $L_YEAR0 := GET -YEAR($LOCS.L_SHIPDATE)

GROUP BY $SUPP_NATION := $T.SUPP_NATION , $CUST_NATION := $T.CUST_NATION , $L_YEAR := $L_YEAR0

WITH $LOCS

LET $REVENUE := SUM(FOR $I IN $LOCS RETURN $I.L_EXTENDEDPRICE * (1 - $I.L_DISCOUNT))

ORDER BY $SUPP_NATION , $CUST_NATION , $L_YEAR

RETURN {

"SUPP_NATION ": $SUPP_NATION ,

"CUST_NATION ": $CUST_NATION ,

"L_YEAR ": $L_YEAR ,

"REVENUE ": $REVENUE

}

Listing A.45: TPC-H Query 7 (in AQL)

160

FOR $T IN (

FOR $SLNRCOP IN (

FOR $S IN DATASET (" SUPPLIER ")

FOR $LNRCOP IN (

FOR $LNRCO IN (

FOR $L IN DATASET(’LINEITEM ’)

FOR $NRCO IN (

FOR $O IN DATASET(’ORDERS ’)

FOR $NRC IN (

FOR $C IN DATASET(’CUSTOMER ’)

FOR $NR IN (

FOR $N1 IN DATASET(’NATION ’)

FOR $R1 IN DATASET(’REGION ’)

WHERE $N1.N_REGIONKEY = $R1.R_REGIONKEY AND $R1.R_NAME = ’AMERICA ’

RETURN { "N_NATIONKEY ": $N1.N_NATIONKEY }

)

WHERE $C.C_NATIONKEY = $NR.N_NATIONKEY

RETURN { "C_CUSTKEY ": $C.C_CUSTKEY }

)

WHERE $NRC.C_CUSTKEY = $O.O_CUSTKEY

RETURN {

"O_ORDERDATE" : $O.O_ORDERDATE ,

"O_ORDERKEY ": $O.O_ORDERKEY

}

)

WHERE $L.L_ORDERKEY = $NRCO.O_ORDERKEY

AND $NRCO.O_ORDERDATE >= ’1995-01-01’

AND $NRCO.O_ORDERDATE <= ’1996-12-31’

RETURN {

"O_ORDERDATE ": $NRCO.O_ORDERDATE ,

"L_PARTKEY ": $L.L_PARTKEY ,

"L_DISCOUNT ": $L.L_DISCOUNT ,

"L_EXTENDEDPRICE ": $L.L_EXTENDEDPRICE ,

"L_SUPPKEY ": $L.L_SUPPKEY

}

)

FOR $P IN DATASET ("PART")

WHERE $P.P_PARTKEY = $LNRCO.L_PARTKEY AND $P.P_TYPE = ’ECONOMY ANODIZED STEEL ’

RETURN {

"O_ORDERDATE ": $LNRCO.O_ORDERDATE ,

"L_DISCOUNT ": $LNRCO.L_DISCOUNT ,

"L_EXTENDEDPRICE ": $LNRCO.L_EXTENDEDPRICE ,

"L_SUPPKEY ": $LNRCO.L_SUPPKEY

}

)

WHERE $S.S_SUPPKEY = $LNRCOP.L_SUPPKEY

RETURN {

"O_ORDERDATE ": $LNRCOP.O_ORDERDATE ,

"L_DISCOUNT ": $LNRCOP.L_DISCOUNT ,

"L_EXTENDEDPRICE ": $LNRCOP.L_EXTENDEDPRICE ,

"L_SUPPKEY ": $LNRCOP.L_SUPPKEY ,

"S_NATIONKEY ": $S.S_NATIONKEY

}

)

FOR $N2 IN DATASET(’NATION ’)

WHERE $SLNRCOP.S_NATIONKEY = $N2.N_NATIONKEY

LET $O_YEAR := GET -YEAR($SLNRCOP.O_ORDERDATE)

RETURN {

"YEAR": $O_YEAR ,

"REVENUE ": $SLNRCOP.L_EXTENDEDPRICE *(1- $SLNRCOP.L_DISCOUNT),

"S_NAME ": $N2.N_NAME

}

)

GROUP BY $YEAR := $T.YEAR WITH $T

ORDER BY $YEAR

RETURN {

"YEAR": $YEAR ,

"MKT_SHARE ": SUM(FOR $I IN $T

RETURN SWITCH -CASE($I.S_NAME=’BRAZIL ’, TRUE , $I.REVENUE , FALSE , 0.0))/

SUM(FOR $I IN $T RETURN $I.REVENUE)

}

Listing A.46: TPC-H Query 8 (in AQL)
161

FOR $PROFIT IN (

FOR $O IN DATASET(’ORDERS ’)

FOR $L3 IN (

FOR $P IN DATASET(’PART ’)

FOR $L2 IN (

FOR $PS IN DATASET(’PARTSUPP ’)

FOR $L1 IN (

FOR $S1 IN (

FOR $S IN DATASET(’SUPPLIER ’)

FOR $N IN DATASET(’NATION ’)

WHERE $N.N_NATIONKEY = $S.S_NATIONKEY

RETURN {

"S_SUPPKEY ": $S.S_SUPPKEY ,

"N_NAME ": $N.N_NAME

}

)

FOR $L IN DATASET(’LINEITEM ’)

WHERE $S1.S_SUPPKEY = $L.L_SUPPKEY

RETURN {

"L_SUPPKEY ": $L.L_SUPPKEY ,

"L_EXTENDEDPRICE ": $L.L_EXTENDEDPRICE ,

"L_DISCOUNT ": $L.L_DISCOUNT ,

"L_QUANTITY ": $L.L_QUANTITY ,

"L_PARTKEY ": $L.L_PARTKEY ,

"L_ORDERKEY ": $L.L_ORDERKEY ,

"N_NAME ": $S1.N_NAME

}

)

WHERE $PS.PS_SUPPKEY = $L1.L_SUPPKEY AND $PS.PS_PARTKEY = $L1.L_PARTKEY

RETURN {

"L_EXTENDEDPRICE ": $L1.L_EXTENDEDPRICE ,

"L_DISCOUNT ": $L1.L_DISCOUNT ,

"L_QUANTITY ": $L1.L_QUANTITY ,

"L_PARTKEY ": $L1.L_PARTKEY ,

"L_ORDERKEY ": $L1.L_ORDERKEY ,

"N_NAME ": $L1.N_NAME ,

"PS_SUPPLYCOST ": $PS.PS_SUPPLYCOST

}

)

WHERE CONTAINS($P.P_NAME , ’GREEN ’) AND $P.P_PARTKEY = $L2.L_PARTKEY

RETURN {

"L_EXTENDEDPRICE ": $L2.L_EXTENDEDPRICE ,

"L_DISCOUNT ": $L2.L_DISCOUNT ,

"L_QUANTITY ": $L2.L_QUANTITY ,

"L_ORDERKEY ": $L2.L_ORDERKEY ,

"N_NAME ": $L2.N_NAME ,

"PS_SUPPLYCOST ": $L2.PS_SUPPLYCOST

}

)

WHERE $O.O_ORDERKEY = $L3.L_ORDERKEY

LET $AMOUNT := $L3.L_EXTENDEDPRICE * (1 - $L3.L_DISCOUNT) -

$L3.PS_SUPPLYCOST * $L3.L_QUANTITY

LET $O_YEAR := GET -YEAR($O.O_ORDERDATE)

RETURN {

"NATION ": $L3.N_NAME ,

"O_YEAR ": $O_YEAR ,

"AMOUNT ": $AMOUNT

}

)

GROUP BY $NATION := $PROFIT.NATION , $O_YEAR := $PROFIT.O_YEAR WITH $PROFIT

ORDER BY $NATION , $O_YEAR DESC

RETURN {

"NATION ": $NATION ,

"O_YEAR ": $O_YEAR ,

"SUM_PROFIT ": SUM(FOR $PR IN $PROFIT RETURN $PR.AMOUNT)

}

Listing A.47: TPC-H Query 9 (in AQL)

162

FOR $LOCN IN (

FOR $L IN DATASET(’LINEITEM ’)

FOR $OCN IN (

FOR $O IN DATASET(’ORDERS ’)

FOR $C IN DATASET(’CUSTOMER ’)

WHERE $C.C_CUSTKEY = $O.O_CUSTKEY AND $O.O_ORDERDATE >= ’1993-10-01’

AND $O.O_ORDERDATE < ’1994-01-01’

FOR $N IN DATASET(’NATION ’)

WHERE $C.C_NATIONKEY = $N.N_NATIONKEY

RETURN {

"C_CUSTKEY ": $C.C_CUSTKEY ,

"C_NAME ": $C.C_NAME ,

"C_ACCTBAL ": $C.C_ACCTBAL ,

"N_NAME ": $N.N_NAME ,

"C_ADDRESS ": $C.C_ADDRESS ,

"C_PHONE ": $C.C_PHONE ,

"C_COMMENT ": $C.C_COMMENT ,

"O_ORDERKEY ": $O.O_ORDERKEY

}

)

WHERE $L.L_ORDERKEY = $OCN.O_ORDERKEY AND $L.L_RETURNFLAG = ’R’

RETURN {

"C_CUSTKEY ": $OCN.C_CUSTKEY ,

"C_NAME ": $OCN.C_NAME ,

"C_ACCTBAL ": $OCN.C_ACCTBAL ,

"N_NAME ": $OCN.N_NAME ,

"C_ADDRESS ": $OCN.C_ADDRESS ,

"C_PHONE ": $OCN.C_PHONE ,

"C_COMMENT ": $OCN.C_COMMENT ,

"L_EXTENDEDPRICE ": $L.L_EXTENDEDPRICE ,

"L_DISCOUNT ": $L.L_DISCOUNT

}

)

GROUP BY $C_CUSTKEY :=$LOCN.C_CUSTKEY ,

$C_NAME := $LOCN.C_NAME ,

$C_ACCTBAL := $LOCN.C_ACCTBAL , $C_PHONE := $LOCN.C_PHONE ,

$N_NAME := $LOCN.N_NAME , $C_ADDRESS :=$LOCN.C_ADDRESS , $C_COMMENT :=$LOCN.C_COMMENT

WITH $LOCN

LET $REVENUE := SUM(FOR $I IN $LOCN RETURN $I.L_EXTENDEDPRICE * (1 - $I.L_DISCOUNT))

ORDER BY $REVENUE DESC

LIMIT 20

RETURN {

"C_CUSTKEY ": $C_CUSTKEY ,

"C_NAME ": $C_NAME ,

"REVENUE ": $REVENUE ,

"C_ACCTBAL ": $C_ACCTBAL ,

"N_NAME ": $N_NAME ,

"C_ADDRESS ": $C_ADDRESS ,

"C_PHONE ": $C_PHONE ,

"C_COMMENT ": $C_COMMENT

}

Listing A.48: TPC-H Query 10 (in AQL)

163

LET $SUM := SUM (

FOR $PS IN DATASET(’PARTSUPP ’)

FOR $SN IN (

FOR $S IN DATASET(’SUPPLIER ’)

FOR $N IN DATASET(’NATION ’)

WHERE $S.S_NATIONKEY = $N.N_NATIONKEY

AND $N.N_NAME = ’GERMANY ’

RETURN { "S_SUPPKEY ": $S.S_SUPPKEY }

)

WHERE $PS.PS_SUPPKEY = $SN.S_SUPPKEY

RETURN $PS.PS_SUPPLYCOST * $PS.PS_AVAILQTY

)

FOR $T1 IN (

FOR $PS IN DATASET(’PARTSUPP ’)

FOR $SN IN (

FOR $S IN DATASET(’SUPPLIER ’)

FOR $N IN DATASET(’NATION ’)

WHERE $S.S_NATIONKEY = $N.N_NATIONKEY

AND $N.N_NAME = ’GERMANY ’

RETURN { "S_SUPPKEY ": $S.S_SUPPKEY }

)

WHERE $PS.PS_SUPPKEY = $SN.S_SUPPKEY

GROUP BY $PS_PARTKEY := $PS.PS_PARTKEY WITH $PS

RETURN {

"PS_PARTKEY ": $PS_PARTKEY ,

"PART_VALUE ": SUM(FOR $I IN $PS RETURN $I.PS_SUPPLYCOST * $I.PS_AVAILQTY)

}

)

WHERE $T1.PART_VALUE > $SUM * (0.0001 / SF) [Check TPC -H specification]

ORDER BY $T1.PART_VALUE DESC

RETURN {

"PARTKEY ": $T1.PS_PARTKEY ,

"PART_VALUE ": $T1.PART_VALUE

}

Listing A.49: TPC-H Query 11 (in AQL)

FOR $L IN DATASET(’LINEITEM ’)

FOR $O IN DATASET(’ORDERS ’)

WHERE $O.O_ORDERKEY = $L.L_ORDERKEY

AND $L.L_COMMITDATE < $L.L_RECEIPTDATE

AND $L.L_SHIPDATE < $L.L_COMMITDATE

AND $L.L_RECEIPTDATE >= ’1994-01-01’

AND $L.L_RECEIPTDATE < ’1995-01-01’

AND ($L.L_SHIPMODE = ’MAIL ’ OR $L.L_SHIPMODE = ’SHIP ’)

GROUP BY $L_SHIPMODE := $L.L_SHIPMODE WITH $O

ORDER BY $L_SHIPMODE

RETURN {

"L_SHIPMODE ": $L_SHIPMODE ,

"HIGH_LINE_COUNT ": SUM(

FOR $I IN $O

RETURN

SWITCH -CASE($I.O_ORDERPRIORITY =’1-URGENT ’ OR $I.O_ORDERPRIORITY =’2-HIGH ’,

TRUE , 1, FALSE , 0)

),

"LOW_LINE_COUNT ": SUM(

FOR $I IN $O

RETURN SWITCH -CASE($I.O_ORDERPRIORITY =’1-URGENT ’ OR $I.O_ORDERPRIORITY =’2-HIGH ’,

TRUE , 0, FALSE , 1)

)

}

Listing A.50: TPC-H Query 12 (in AQL)

164

SET IMPORT -PRIVATE -FUNCTIONS ’TRUE ’;

FOR $GCO IN (

FOR $CO IN (

FOR $C IN DATASET(’CUSTOMER ’)

RETURN {

"C_CUSTKEY ": $C.C_CUSTKEY ,

"O_ORDERKEY_COUNT ": COUNT(

FOR $O IN DATASET(’ORDERS ’)

WHERE $C.C_CUSTKEY = $O.O_CUSTKEY AND NOT(LIKE($O.O_COMMENT ,’%SPECIAL%REQUESTS %’))

RETURN $O.O_ORDERKEY

)

}

)

GROUP BY $C_CUSTKEY := $CO.C_CUSTKEY WITH $CO

RETURN {

"C_CUSTKEY ": $C_CUSTKEY ,

"C_COUNT ": SUM(FOR $I IN $CO RETURN $I.O_ORDERKEY_COUNT)

}

)

GROUP BY $C_COUNT := $GCO.C_COUNT WITH $GCO

LET $CUSTDIST := COUNT($GCO)

ORDER BY $CUSTDIST DESC , $C_COUNT DESC

RETURN {

"C_COUNT ": $C_COUNT ,

"CUSTDIST ": $CUSTDIST

}

Listing A.51: TPC-H Query 13 (in AQL)

FOR $L IN DATASET(’LINEITEM ’)

FOR $P IN DATASET(’PART ’)

WHERE $L.L_PARTKEY = $P.P_PARTKEY

AND $L.L_SHIPDATE >= ’1995-09-01’

AND $L.L_SHIPDATE < ’1995-10-01’

LET $LP := {

"L_EXTENDEDPRICE ": $L.L_EXTENDEDPRICE ,

"L_DISCOUNT ": $L.L_DISCOUNT ,

"P_TYPE ": $P.P_TYPE

}

GROUP BY $T:=1 WITH $LP

RETURN 100.00 * SUM(

FOR $I IN $LP

RETURN SWITCH -CASE(LIKE($I.P_TYPE , ’PROMO%’),

TRUE , $I.L_EXTENDEDPRICE *(1-$I.L_DISCOUNT),

FALSE , 0.0)

) / SUM(FOR $I IN $LP RETURN $I.L_EXTENDEDPRICE * (1 - $I.L_DISCOUNT)

)

Listing A.52: TPC-H Query 14 (in AQL)

165

DECLARE FUNCTION REVENUE () {

FOR $L IN DATASET(’LINEITEM ’)

WHERE $L.L_SHIPDATE >= ’1996-01-01’ AND $L.L_SHIPDATE < ’1996-04-01’

GROUP BY $L_SUPPKEY := $L.L_SUPPKEY WITH $L

RETURN {

"SUPPLIER_NO ": $L_SUPPKEY ,

"TOTAL_REVENUE ": SUM(FOR $I IN $L RETURN $I.L_EXTENDEDPRICE * (1 - $I.L_DISCOUNT))

}

}

LET $M := MAX(

FOR $R2 IN REVENUE ()

RETURN $R2.TOTAL_REVENUE

)

FOR $S IN DATASET(’SUPPLIER ’)

FOR $R IN REVENUE ()

WHERE $S.S_SUPPKEY = $R.SUPPLIER_NO AND

$R.TOTAL_REVENUE <$M +0.000000001 AND

$R.TOTAL_REVENUE >$M -0.000000001

RETURN {

"S_SUPPKEY ": $S.S_SUPPKEY ,

"S_NAME ": $S.S_NAME ,

"S_ADDRESS ": $S.S_ADDRESS ,

"S_PHONE ": $S.S_PHONE ,

"TOTAL_REVENUE ": $R.TOTAL_REVENUE

}

Listing A.53: TPC-H Query 15 (in AQL)

166

DECLARE FUNCTION TMP (){

FOR $PSP IN (

FOR $PS IN DATASET(’PARTSUPP ’)

FOR $P IN DATASET(’PART ’)

WHERE $P.P_PARTKEY = $PS.PS_PARTKEY AND $P.P_BRAND != ’BRAND#45’

AND NOT(LIKE($P.P_TYPE , ’MEDIUM POLISHED %’))

RETURN {

"P_BRAND ": $P.P_BRAND ,

"P_TYPE ": $P.P_TYPE ,

"P_SIZE ": $P.P_SIZE ,

"PS_SUPPKEY ": $PS.PS_SUPPKEY

}

)

FOR $S IN DATASET(’SUPPLIER ’)

WHERE $PSP.PS_SUPPKEY = $S.S_SUPPKEY AND NOT(LIKE($S.S_COMMENT , ’%CUSTOMER%COMPLAINTS %’))

RETURN {

"P_BRAND ": $PSP.P_BRAND ,

"P_TYPE ": $PSP.P_TYPE ,

"P_SIZE ": $PSP.P_SIZE ,

"PS_SUPPKEY ": $PSP.PS_SUPPKEY

}

}

FOR $T2 IN (

FOR $T IN TMP()

WHERE $T.P_SIZE = 49 OR $T.P_SIZE = 14 OR $T.P_SIZE = 23

OR $T.P_SIZE = 45 OR $T.P_SIZE = 19 OR $T.P_SIZE = 3

OR $T.P_SIZE = 36 OR $T.P_SIZE = 9

GROUP BY $P_BRAND1 := $T.P_BRAND , $P_TYPE1 := $T.P_TYPE ,

$P_SIZE1 := $T.P_SIZE , $PS_SUPPKEY1 :=$T.PS_SUPPKEY WITH $T

RETURN {

"P_BRAND ": $P_BRAND1 ,

"P_TYPE ": $P_TYPE1 ,

"P_SIZE ": $P_SIZE1 ,

"PS_SUPPKEY ": $PS_SUPPKEY1

}

)

GROUP BY $P_BRAND := $T2.P_BRAND , $P_TYPE := $T2.P_TYPE , $P_SIZE := $T2.P_SIZE WITH $T2

LET $SUPPLIER_CNT := COUNT(FOR $I IN $T2 RETURN $I.PS_SUPPKEY)

ORDER BY $SUPPLIER_CNT DESC , $P_BRAND , $P_TYPE , $P_SIZE

RETURN {

"P_BRAND ": $P_BRAND ,

"P_TYPE ": $P_TYPE ,

"P_SIZE ": $P_SIZE ,

"SUPPLIER_CNT ": $SUPPLIER_CNT

}

Listing A.54: TPC-H Query 16 (in AQL)

167

DECLARE FUNCTION TMP (){

FOR $L IN DATASET(’LINEITEM ’)

GROUP BY $L_PARTKEY := $L.L_PARTKEY WITH $L

RETURN {

"T_PARTKEY ": $L_PARTKEY ,

"T_AVG_QUANTITY ": 0.2 * AVG(FOR $I IN $L RETURN $I.L_QUANTITY)

}

}

SUM(

FOR $L IN DATASET(’LINEITEM ’)

FOR $P IN DATASET(’PART ’)

WHERE $P.P_PARTKEY = $L.L_PARTKEY

AND $P.P_BRAND = ’BRAND#23’

AND $P.P_CONTAINER = ’MED BOX ’

FOR $T IN TMP()

WHERE $L.L_PARTKEY = $T.T_PARTKEY

AND $L.L_QUANTITY < $T.T_AVG_QUANTITY

RETURN $L.L_EXTENDEDPRICE

)/7.0

Listing A.55: TPC-H Query 17 (in AQL)

FOR $C IN DATASET(’CUSTOMER ’)

FOR $O IN DATASET(’ORDERS ’)

WHERE $C.C_CUSTKEY = $O.O_CUSTKEY

FOR $T IN (

FOR $L IN DATASET(’LINEITEM ’)

GROUP BY $L_ORDERKEY := $L.L_ORDERKEY WITH $L

RETURN {

"L_ORDERKEY ": $L_ORDERKEY ,

"T_SUM_QUANTITY ": SUM(FOR $I IN $L RETURN $I.L_QUANTITY)

}

)

WHERE $O.O_ORDERKEY = $T.L_ORDERKEY AND $T.T_SUM_QUANTITY > 300

FOR $L IN DATASET(’LINEITEM ’)

WHERE $L.L_ORDERKEY = $O.O_ORDERKEY

GROUP BY $C_NAME := $C.C_NAME , $C_CUSTKEY := $C.C_CUSTKEY , $O_ORDERKEY := $O.O_ORDERKEY ,

$O_ORDERDATE := $O.O_ORDERDATE , $O_TOTALPRICE := $O.O_TOTALPRICE WITH $L

ORDER BY $O_TOTALPRICE DESC , $O_ORDERDATE

LIMIT 100

RETURN {

"C_NAME ": $C_NAME ,

"C_CUSTKEY ": $C_CUSTKEY ,

"O_ORDERKEY ": $O_ORDERKEY ,

"O_ORDERDATE ": $O_ORDERDATE ,

"O_TOTALPRICE ": $O_TOTALPRICE ,

"SUM_QUANTITY ": SUM(FOR $J IN $L RETURN $J.L_QUANTITY)

}

Listing A.56: TPC-H Query 18 (in AQL)

168

SET IMPORT -PRIVATE -FUNCTIONS ’TRUE ’;

DECLARE FUNCTION Q19_TMP () {

FOR $T IN DATASET LINEITEM

WHERE

($T.L_SHIPMODE = ’AIR ’ OR $T.L_SHIPMODE = ’AIR REG ’)

AND $T.L_SHIPINSTRUCT = ’DELIVER IN PERSON ’

RETURN {

"LPKEY": $T.L_PARTKEY ,

"QUANTITY ": $T.L_QUANTITY ,

"EXTNDPRICE ": $T.L_EXTENDEDPRICE ,

"DISCOUNT ": $T.L_DISCOUNT

}

}

SUM(

FOR $L IN Q19_TMP ()

FOR $P IN DATASET PART

WHERE $P.P_PARTKEY = $L.LPKEY

AND ((

$P.P_BRAND = ’BRAND #12’

AND REG -EXP($P.P_CONTAINER ,’SM CASE|SM BOX|SM PACK|SM PKG ’)

AND $L.QUANTITY >= 1 AND $L.QUANTITY <= 11

AND $P.P_SIZE >= 1 AND $P.P_SIZE <= 5

) OR (

$P.P_BRAND = ’BRAND #23’

AND REG -EXP($P.P_CONTAINER , ’MED BAG|MED BOX|MED PKG|MED PACK ’)

AND $L.QUANTITY >= 10 AND $L.QUANTITY <= 20

AND $P.P_SIZE >= 1 AND $P.P_SIZE <= 10

) OR (

$P.P_BRAND = ’BRAND #34’

AND REG -EXP($P.P_CONTAINER , ’LG CASE|LG BOX|LG PACK|LG PKG ’)

AND $L.QUANTITY >= 20 AND $L.QUANTITY <= 30

AND $P.P_SIZE >= 1 AND $P.P_SIZE <= 15

)

)

RETURN $L.EXTNDPRICE * (1 - $L.DISCOUNT)

)

Listing A.57: TPC-H Query 19 (in AQL)

169

FOR $T3 IN (

FOR $T2 IN (

FOR $L IN DATASET(’LINEITEM ’)

WHERE $L.L_SHIPDATE >= ’1994-01-01’ AND $L.L_SHIPDATE < ’1995-01-01’

GROUP BY $L_PARTKEY :=$L.L_PARTKEY , $L_SUPPKEY :=$L.L_SUPPKEY WITH $L

RETURN {

"L_PARTKEY ": $L_PARTKEY ,

"L_SUPPKEY ": $L_SUPPKEY ,

"SUM_QUANTITY ": 0.5 * SUM(FOR $I IN $L RETURN $I.L_QUANTITY)

}

)

FOR $PST1 IN (

FOR $PS IN DATASET(’PARTSUPP ’)

FOR $T1 IN (

FOR $P IN DATASET(’PART ’)

WHERE LIKE($P.P_NAME , ’FOREST%’)

DISTINCT BY $P.P_PARTKEY

RETURN { "P_PARTKEY ": $P.P_PARTKEY }

)

WHERE $PS.PS_PARTKEY = $T1.P_PARTKEY

RETURN {

"PS_SUPPKEY ": $PS.PS_SUPPKEY ,

"PS_PARTKEY ": $PS.PS_PARTKEY ,

"PS_AVAILQTY ": $PS.PS_AVAILQTY

}

)

WHERE $PST1.PS_PARTKEY = $T2.L_PARTKEY AND $PST1.PS_SUPPKEY = $T2.L_SUPPKEY

AND $PST1.PS_AVAILQTY > $T2.SUM_QUANTITY

DISTINCT BY $PST1.PS_SUPPKEY

RETURN { "PS_SUPPKEY ": $PST1.PS_SUPPKEY }

)

FOR $T4 IN (

FOR $N IN DATASET(’NATION ’)

FOR $S IN DATASET(’SUPPLIER ’)

WHERE $S.S_NATIONKEY = $N.N_NATIONKEY AND $N.N_NAME = ’CANADA ’

RETURN {

"S_NAME ": $S.S_NAME ,

"S_ADDRESS ": $S.S_ADDRESS ,

"S_SUPPKEY ": $S.S_SUPPKEY

}

)

WHERE $T3.PS_SUPPKEY = $T4.S_SUPPKEY

ORDER BY $T4.S_NAME

RETURN {

"S_NAME ": $T4.S_NAME ,

"S_ADDRESS ": $T4.S_ADDRESS

}

Listing A.58: TPC-H Query 20 (in AQL)

170

DECLARE FUNCTION TMP1() {

FOR $L2 IN (

FOR $L IN DATASET(’LINEITEM ’)

GROUP BY $L_ORDERKEY1 := $L.L_ORDERKEY , $L_SUPPKEY1 := $L.L_SUPPKEY WITH $L

RETURN {

"L_ORDERKEY ": $L_ORDERKEY1 ,

"L_SUPPKEY ": $L_SUPPKEY1

}

)

GROUP BY $L_ORDERKEY := $L2.L_ORDERKEY WITH $L2

RETURN {

"L_ORDERKEY ": $L_ORDERKEY ,

"COUNT_SUPPKEY ": COUNT(FOR $I IN $L2 RETURN $I.L_SUPPKEY),

"MAX_SUPPKEY ": MAX(FOR $I IN $L2 RETURN $I.L_SUPPKEY)

}

}

DECLARE FUNCTION TMP2() {

FOR $L2 IN (

FOR $L IN DATASET(’LINEITEM ’)

GROUP BY $L_ORDERKEY1 := $L.L_ORDERKEY , $L_SUPPKEY1 := $L.L_SUPPKEY WITH $L

RETURN {

"L_ORDERKEY ": $L_ORDERKEY1 ,

"L_SUPPKEY ": $L_SUPPKEY1 ,

"COUNT": COUNT(FOR $I IN $L RETURN $I.L_SUPPKEY)

}

)

FOR $L3 IN (

FOR $L IN DATASET(’LINEITEM ’)

WHERE $L.L_RECEIPTDATE <= $L.L_COMMITDATE

GROUP BY $L_ORDERKEY1 := $L.L_ORDERKEY , $L_SUPPKEY1 := $L.L_SUPPKEY WITH $L

RETURN {

"L_ORDERKEY ": $L_ORDERKEY1 ,

"L_SUPPKEY ": $L_SUPPKEY1 ,

"COUNT": COUNT(FOR $I IN $L RETURN $I.L_SUPPKEY)

}

)

WHERE $L2.L_ORDERKEY = $L3.L_ORDERKEY

AND $L2.L_SUPPKEY = $L3.L_SUPPKEY

AND $L2.COUNT = $L3.COUNT

GROUP BY $L_ORDERKEY := $L2.L_ORDERKEY WITH $L2

RETURN {

"L_ORDERKEY ": $L_ORDERKEY ,

"COUNT_SUPPKEY ": COUNT(FOR $I IN $L2 RETURN $I.L_SUPPKEY),

"MAX_SUPPKEY ": MAX(FOR $I IN $L2 RETURN $I.L_SUPPKEY)

}

}

Listing A.59: TPC-H Query 21 (in AQL) - Part 1

171

FOR $T4 IN (

FOR $T3 IN (

FOR $L IN DATASET(’LINEITEM ’)

FOR $NS IN (

FOR $N IN DATASET(’NATION ’)

FOR $S IN DATASET(’SUPPLIER ’)

WHERE $S.S_NATIONKEY = $N.N_NATIONKEY

AND $N.N_NAME = ’SAUDI ARABIA ’

RETURN {

"S_NAME ": $S.S_NAME ,

"S_SUPPKEY ": $S.S_SUPPKEY

}

)

WHERE $NS.S_SUPPKEY = $L.L_SUPPKEY AND $L.L_RECEIPTDATE > $L.L_COMMITDATE

FOR $O IN DATASET(’ORDERS ’)

WHERE $O.O_ORDERKEY = $L.L_ORDERKEY

AND $O.O_ORDERSTATUS = ’F’

FOR $T1 IN TMP1()

WHERE $L.L_ORDERKEY = $T1.L_ORDERKEY

AND $T1.COUNT_SUPPKEY > 1

RETURN {

"S_NAME ": $NS.S_NAME ,

"L_ORDERKEY ": $T1.L_ORDERKEY ,

"L_SUPPKEY ": $L.L_SUPPKEY ,

"T1_COUNT_SUPPKEY ": $T1.COUNT_SUPPKEY

}

)

FOR $T2 IN TMP2()

WHERE $T3.L_ORDERKEY = $T2.L_ORDERKEY

AND $T2.COUNT_SUPPKEY = $T3.T1_COUNT_SUPPKEY - 1

RETURN {

"S_NAME ": $T3.S_NAME ,

"L_SUPPKEY ": $T3.L_SUPPKEY ,

"L_ORDERKEY ": $T2.L_ORDERKEY ,

"COUNT_SUPPKEY ": $T2.COUNT_SUPPKEY ,

"MAX_SUPPKEY ": $T2.MAX_SUPPKEY

}

)

GROUP BY $S_NAME := $T4.S_NAME WITH $T4

LET $NUMWAIT := COUNT($T4)

ORDER BY $NUMWAIT DESC , $S_NAME

LIMIT 100

RETURN {

"S_NAME ": $S_NAME ,

"NUMWAIT ": $NUMWAIT

}

Listing A.59: TPC-H Query 21 (in AQL) - Part 2

172

DECLARE FUNCTION Q22_CUSTOMER_TMP () {

FOR $C IN DATASET(’CUSTOMER ’)

LET $PHONE_SUBSTR := SUBSTRING($C.C_PHONE , 1, 2)

WHERE $PHONE_SUBSTR = ’13’

OR $PHONE_SUBSTR = ’31’

OR $PHONE_SUBSTR = ’23’

OR $PHONE_SUBSTR = ’29’

OR $PHONE_SUBSTR = ’30’

OR $PHONE_SUBSTR = ’18’

OR $PHONE_SUBSTR = ’17’

RETURN {

"C_ACCTBAL ": $C.C_ACCTBAL ,

"C_CUSTKEY ": $C.C_CUSTKEY ,

"CNTRYCODE ": $PHONE_SUBSTR

}

}

LET $AVG := AVG(

FOR $C IN DATASET(’CUSTOMER ’)

LET $PHONE_SUBSTR := SUBSTRING($C.C_PHONE , 1, 2)

WHERE $C.C_ACCTBAL > 0.00

AND ($PHONE_SUBSTR = ’13’

OR $PHONE_SUBSTR = ’31’

OR $PHONE_SUBSTR = ’23’

OR $PHONE_SUBSTR = ’29’

OR $PHONE_SUBSTR = ’30’

OR $PHONE_SUBSTR = ’18’

OR $PHONE_SUBSTR = ’17’)

RETURN $C.C_ACCTBAL

)

FOR $CT IN Q22_CUSTOMER_TMP ()

WHERE $CT.C_ACCTBAL > $AVG

AND COUNT(FOR $O IN DATASET(’ORDERS ’) WHERE $CT.C_CUSTKEY = $O.O_CUSTKEY RETURN $O) = 0

GROUP BY $CNTRYCODE := $CT.CNTRYCODE WITH $CT

ORDER BY $CNTRYCODE

RETURN {

"CNTRYCODE ": $CNTRYCODE ,

"NUMCUST ": COUNT($CT),

"TOTACCTBAL ": SUM(FOR $I IN $CT RETURN $I.C_ACCTBAL)

}

Listing A.60: TPC-H Query 22 (in AQL)

173

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Contributions of this work
	Organization of this dissertation

	Performance Evaluation of Key Value Stores
	Overview
	Motivation
	Related Work
	Benchmarking cloud serving systems
	Range queries in distributed environments

	Key Value Stores
	Range query in HBase and Cassandra

	Range Query in Hash Partitioning Key Value Stores
	Index-based Technique
	No-Index Technique
	Hybrid Technique

	Framework
	Data and workload generator
	Workload executor and Key Value store clients
	Evaluation process

	Experiments
	Experimental setup
	Effect of node capacity in VIX and RIX
	Range Selectivity
	Mixed query workloads
	Impact of hybrid schemes on other operations
	Lookup and update scalability
	Range query scalability
	Non-uniform data test

	Discussions
	Summary of the performance results
	Range index support by hash-partitioning Key Value stores

	Conclusion and Future Work

	Performance Evaluation of Big Data Management System Functionality
	Overview
	Motivation
	Related Work
	Systems Overview
	System-X
	Apache Hive
	MongoDB
	AsterixDB

	Data and Workload Description
	Database
	Read-Only Queries
	Data Modification Operations

	Experiments
	Setup
	Read-Only Workload Results
	Data Modification Workload Results

	Discussion
	Conclusion

	Performance Evaluation of Big Data Analytics Platforms
	Overview
	Motivation
	Related Work
	Systems Overview
	Apache Spark
	Apache Tez
	Storage Formats

	TPC-H Benchmark
	TPC-H Database
	Queries
	TPC-H Auxiliary Index Structures

	Experiments
	Experimental Setup
	Experimental Results

	Selected queries
	Query 1
	Query 10
	Query 19
	Query 22

	Discussion
	Conclusion

	Conclusions and Future Work
	Conclusion
	Future work

	Bibliography
	TPC-H Queries in AQL

