
1	
	

 UNIVERSITY OF CALIFORNIA,
IRVINE

XEditor:

A Language-Agnostic Framework for Graphical Query Editing

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Science

By

Raman Grover

 Thesis Committee:
 Professor Michael Carey, Chair

 Professor Chen Li
 Professor Sharad Mehrotra

 2010

2	
	

Copyright © 2010 Raman Grover

ii	
	

The thesis of Raman Grover is approved:

 Committee Chair

University of California, Irvine
2010

iii	
	

DEDICATION

 To

My parents

in recognition of their worth

“what I am is because of them”

iv	
	

TABLE OF CONTENTS

CHAPTER PAGE

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT OF THE THESIS . x

1 Introduction . 1
 1.1 Graphical Editing . 1
 1.1.1 Graphical Query Editing . 2
 1.1.2 Graphical Data Mapping. 2
 1.2 Motivation . 3
 1.3 Related Work . 4
 1.4 Organization . 7

2 Building a Language Agnostic Framework for Graphical Editing 9
 2.1 Basic Design Goals . 9
 2.1.1 Loose Coupling With the Textual Language. 10
 2.1.2 Usable With Any Text Editor. 10
 2.1.3 Customizable User Interface. 10
 2.2 Advanced Features . 11
 2.2.1 Error Handling. 11
 2.2.2 Handling Comments. 11
 2.2.3 Graphical Editing of Subqueries . 12
 2.2.4 Detecting Unused Sections of Query. . . . 12
 2.3 Overview of Approach to Building a Language Agnostic Framework 13
 2.4 Architecture . 15

3 Graphical Language. 19
 3.1 High-Level Operations Expressible through a Query.

3.2 Graphical Language of XEditor .

19
22

4 Query Analysis . 34
 4.1 Analyzing a Query: 34
 4.2 Comment Handling . 34
 4.3 Extracting Clauses and Variables. 37
 4.4 Forming Dependency Relationships . 38
 4.4.1 Analysis of Symbol Table to Derive Relationships. 39

v	
	

5 Query Rendering 42
 5.1 Opening the Container . 42
 5.2 GEF and Draw2d . 45
 5.3 Forming the Data Model of a Query . 46

6 Query Editing . 47
 6.1 Editing a Query in the Graphical View . 47
 6.1.1 Changing a Clause Definition via Text Editing. 47
 6.1.2 Deleting a Clause . 52
 6.1.3 Forming or Deleting Connections. 54

7 Using XEditor for multiple languages. 57
 7.1 Interaction between XEditor and Language-specific Plug-Ins 57
 7.2 Using XEditor for XQuery . 58
 7.2.1 Sample Queries in XQuery . 62
 7.2.1.1 Inner Join . 62
 7.2.1.2 Outer Join. 63
 7.2.1.3 Nested Expressions . 65
 7.2.1.4 Order By. 66
 7.2.2 Degree of support for XQuery .

.
67

 7.3 Using XEditor SQL . 68
 7.3.1 Sample Queries in SQL . 69
 7.3.1.1 Select-Project-Join . 69
 7.3.1.2 Order By . 69
 7.3.2 Degree of Support for SQL . . . 70
 7.4 Incorporating other languages. 71
 7.4.1 Using XEditor for Pig. 71

8 Conclusion. 73
 8.1 Discussion . 73
 8.2 Future Work .

74

 REFERENCES . 76

vi	
	

 LIST OF TABLES

Table Page

7.1 Similarity between Components of a FLWOR expression and high-level
operations in XEditor .

59

7.2 Key differences in features provided by XEditor and XQE 61

7.3 Subset of data analysis tasks expressible through SQL

68

7.4 Similarity between operations in Pig and the operations modeled in
XEditor .

72

8.1 Lines of code required to build XEditor and the language specific plug-
ins .

74

vii	
	

 LIST OF FIGURES

Figure Page

2.1 Underlying Architecture of XEditor . . .

15

3.1 Example queries written in XQuery and SQL consists of high-level
operations .

21

3.2 Template for building a graphical representation of an Iterator 24

3.3 Graphical Representation of Iteration depends upon the method used to

produce data elements .

25

3.4 Graphical representation of a filter used for applying a predicate.

26

3.5 Graphical representation of a query that uses a filter for applying a
predicate . . .

27

3.6 Graphical representation of a filter used for joining.

28

3.7 Graphical representation of a bind operation .

29

3.8 Graphical representation of a sort operation .

29

3.9 Graphical representation of an example query involving a sort operation. 30

3.10 Graphical representation of a collect operation shows the structure of the
result returned by the query.

31

3.11

Use of different kinds of lines to depict relationships in a sample query
written in XQuery .

32

4.1 Handling comments in a query . 36

4.2 Population of symbol table as part of Query Analysis. 38

4.3 Data-flow lines derived from the analysis of the symbol table. 40

5.1 Example showing a Container Object formed after analysis of a sample
query written in XQuery .

43

viii	
	

5.2 Output of Query Analysis phase is passed as input to the Query
Rendering phase .

44

6.1 Editing a Clause Expression. 48

6.2 Editing session in XQuery .

49

6.3 Error Handling .

50

6.4 Delete a clause from the graphical view . 53

6.5 Result after deleting a clause . 54

7.1 The editing environment provided by XEditor . 60

7.2 Inner Join: A query involving function calls and XML schemas and its
graphical representation .

62

7.3 Outer Join: A query containing an outer-join and its graphical
representation .

64

7.4 Packed representation of a nested expression.

65

7.5 Switching between packed and unpacked representations 66

7.6 A query containing a sort operation. The graphical representation depicts
sorting using a rectangular box. . .

67

7.7 Graphical representation of a SQL select-project-join query.

54

7.8 Graphical representation of a SQL query with a sort operation

69

ix	
	

 ACKNOWLEDGEMENTS

I am extremely indebted to Professor Michael Carey for giving me the unique

opportunity of working with him. He advised, encouraged and inspired my research. I am

thankful for the confidence he had in me, and for the freedom and responsibility I

received in my work.

I would also like to acknowledge Google for their generous support of this project via the

Google Research Awards program. I would also like to thank Dr. Alon Halevy of Google

and Drs. Len Seligman and Peter Mork of the MITRE Corporation and the OpenII

initiative for their encouragement of this work.

Finally, I would like to express my deepest gratitude towards my parents and my better

half Payel. They constantly stood by me and ensured that I remain focused.

x	
	

ABSTRACT OF THE THESIS

XEditor:

A Language-Agnostic Framework for Graphical Query Editing

 By

Raman Grover

Master of Science in Computer Science

University of California, Irvine, 2010

Professor Michael Carey, Chair

Graphical editing provides a development environment where a user may write a program

in text or may express it in terms of shapes and lines. The graphical representation

captures the high-level task that is to be done by the program while abstracting away the

underlying language syntax to ac hieve the same end goal. Understanding a graphical

representation can be simpler as it does not require a mastery of the syntax rules for the

language. Tools have been developed that provide a dual-editing environment for query

languages. There the user is presented with a textual view showing the source as well as a

graphical view showing an equivalent graphical representation of the source and is

allowed to edit in either of the views. Typically such dual-editing tools are tightly

coupled with a query language.

In this thesis we describe a framework that provides an environment for two-way

editing that is not specific to a query language. The framework works in coordination

with a lightweight pluggable language-specific component that understands the rules of

the language and is invoked where an understanding of the grammar of the language is

xi	
	

required. Its architecture enables small pluggable components to be written for a variety

of query languages. This work exploits the commonality between query languages and

has resulted in the successful prototyping of an extensible dual-editing environment for

multiple query languages.

	

	 	 1	
	

 CHAPTER 1

 Introduction

1.1 Graphical Editing

Graphical editing provides an editing experience where a program written in the form of

text is instead, or also, expressible in terms of shapes and lines. The spatial arrangement

of graphic objects (shapes and lines) can highlight the structure of a program, providing

an overview which can rarely be obtained with a textual description. This may be useful

for inexperienced users, who may take advantage of the two-dimensional representation

to better understand the basics of program.	 A novice user, uncomfortable with the syntax

rules of the programming language, may prefer making changes in the graphical

representation instead of directly editing in textual format. The graphical model is also

useful for expert users, who can define complex interrelations just by drawing shapes and

forming lines between them.

In two-way editing environments, the user is presented with a textual view

showing the source as well as with a graphical view showing an equivalent graphical

representation of the source and he or she is allowed to edit in either of the views. In this

kind of two-way editing, the graphical view and the textual view are synchronized with

each other so that changes made in one view are visible in the other view. Two-way

editing provides a paradigm shift from the traditional method of hand-editing source,

where it was required that users be fully conversant with the textual language and use it

for all tasks.

	

	 	 2	
	

1.1.1 Graphical Query Editing

A query language is a type of computer language used to formulate queries against

databases and information systems. Most query languages are textual in nature, requiring

a precise syntactic and semantic analysis to define or understand query expressions, and

only in simple cases can a quick glance provide an understanding of the intent behind a

query. It is thus desirable to able to express a query in terms of shapes and lines that

describe the information to be returned from the query and the intermediate steps or

conditions to retrieve the desired information. Graphical editing can be combined with

textual editing to provide a two-way editing environment for a query language, which can

help make the task of formulating a complex query much simpler [1].

1.1.2 Graphical Data Mapping

Transforming, merging and coalescing data from multiple and diverse sources into

different data formats continues to be an important problem in modern information

systems. Schema matching is the process of matching elements of a source schema with

elements of a target schema. Schema mapping, on the other hand refers to the process of

creating a query that maps data instances between two disparate schemas. Both of these

are at the heart of data integration systems. Schema mapping tools are typically

characterized by a GUI that places a source structure on one side of the screen and a

target structure on the other side. Users specify correspondences by drawing lines across

these structures and annotating them with features that carry some of the transformation

semantics (e.g., filtering predicates, functions, etc.).

Data mapping tools shield the user from hand writing queries or programs for

every translation problem at hand. The output of the data mapping process is an

	

	 	 3	
	

executable query which can carry out the transformation from source data to target data.

The generated query is a lower level representation of the data mapping. While all data

mapping tools allow users to express mappings graphically, a two-way editing

environment, can help user to create/edit correct data mappings more easily. Advanced

data mapping tools like ALDSP [4] and Stylus Studio [3] are thus also equipped with a

two-way editing environment for the query language used to implement the generated

data mappings.

1.2 Motivation

Visual query editors and visual data mapping tools provide two-way editing as a useful

feature. The flexibility offered by a two-way editing environment allows users to use

either the graphical or the textual view of a query. Data mapping tools also allow users to

express data transformations, to create and edit data mappings, as well as to formulate

more general queries written in a specific query language such as XQuery.

Most query languages, particularly those used for data transformation share a

common denominator - namely, a set of high-level logical operations expressible through

the language. To form a graphical representation of a query, the user essentially uses

shapes and lines to represent the sequence of high-level operations for the query. The

same sequence of operations would be expressed differently using the syntaxes of

different languages, but semantically the query remains the same.

The question that forms the motivation behind the work described in this thesis is:

	

	 	 4	
	

Can we develop a single robust system that allows two-way editing, not for a specific

query language, but that instead has a plug-and-play architecture that can enable the

system to provide graphical and textual query editing for a language of interest?

In this thesis, we demonstrate that the task of building a two-way graphical editor

for a given query language can be simplified by exploiting this common denominator. It

is not necessary to build each editor from scratch, re-implementing a polished user-

interface and re-solving problems related to layouts of shapes and connections,

graphically representing hierarchical data sources, or even providing for advanced text-

editing features like code assistance. Instead, these functionalities can be provided by a

single re-usable framework. In this thesis, we present the principles and a prototype for

such a framework, which is henceforth referred as XEditor.

The framework described here does not entangle itself with a specific language

grammar or syntax rules. Instead it has a pluggable language component that understands

the rules of a given language and that is invoked in various situations that require

understanding of the grammar of the language. This architecture enables small pluggable

components to be written for a wide variety of languages, plugging them into a single re-

usable framework, henceforth yielding a dual-editing environment for a given language

of interest.

1.3 Related Work

A number of tools have been developed that provide a graphical editing experience for a

specific query language. A visual query language for expressing a large subset of XQuery

was provided as XQBE (XQuery by Example) [5]. XQBE was designed with the main

	

	 	 5	
	

objective of being easy to use, highly expressive, and directly mappable to XQuery.

XQBE allows for arbitrarily deep nesting of XQuery FLWOR expressions, supports

construction of new XML elements, and permits restructuring of existing documents.

A graphical editor for SQL was presented in [8]. This paper presented a system

intended for both the direct visual specification of relational database queries as well as

the visual description of SQL queries. It introduced GraphSQL, a visual language, in

which SQL statements can be expressed graphically. In addition, textual SQL statements

can be turned into GraphSQL graphical representations.

In mid-2005, BEA introduced the AquaLogic Data Services Platform (ALDSP

2.0) as a middleware platform developed for building services, referred to as data

services, that integrate access and manipulate information coming from multiple

heterogeneous sources of data. In order to provide an effective graphical tool to help data

service developers quickly and easily develop their information integration queries, XQE

[6] was developed as ALDSP’s graphical XQuery editor. XQE handled the full XQuery

language and provided a robust two-way editing experience involving both graphical and

source views of each query.

Another commercial tool that is similar to XQE is the XQuery mapper from

Stylus Studio. Like XQE, the Stylus Studio tool aims to provide a two-way editing

experience. Unlike XQE, Stylus Studio's mapping model has a fairly rigid sources-on-

the-left, target on-the-right editing paradigm. Mid-screen, Stylus Studio has a rich editing

trough where one can place functions and FLWOR boxes along the paths of the left-to-

right data lines. XQE and Stylus Studio differ significantly in terms of their graphical

granularity. Stylus Studio represents boolean expressions and other mapping expressions

	

	 	 6	
	

(such as arithmetic expressions and function calls) as networks of edges and nodes in the

editing trough, while XQE opted to allow snippets of XQuery source to be added and

edited using its expression editor.

A commercial tool that offers data integration services, similar to BEA’s ALDSP,

is the graphical data mapping tool by Altova, known as Mapforce [2]. MapForce is a

graphical data mapping, conversion, and integration tool that maps data between any

combination of XML, database and/or web service, and can even view and save the

XSLT 1.0/2.0 or XQuery execution code. Mapforce allows the user to graphically

generate an executable query to implement their data mapping; it does not offer a two-

way editing environment or allow creation of a graphical representation of an existing

textual query.

Clio[7] is another significant tool for generating mappings between relational and

XML Schemas. A Clio user is presented with the structure and constraints of two

schemas and is asked to draw correspondences between the parts of the schemas that

represent the same real world entity. Correspondences can also be inferred by Clio and

then verified by the user. Once the mapping has been completed, Clio can generate the

(SQL, XSLT, or XQuery) queries that drive the translation of data conforming to the first

(source) schema to data conforming to the second (target) schema. Clio does not aim to

support two-way editing or graphical rendering of existing queries.

In addition to these graphical query editors and data mapping tools, a number of

schema matching tools have also been developed. Harmony [9] from MITRE is one such

tool. Schema mapping tools typically display three vertical panes. The left and right

panes show the two schemas to be matched; the center pane is where the designer defines

	

	 	 7	
	

the correspondences, usually by drawing lines connecting the appropriate parts of the

schemas. Schema matching tools help the user to express the elements in the source and

target schema that relate to each other, but they usually do not have the user express the

exact method needed to transform data instances from the source schema to the target

schema.

The tools that have been briefly described here each provide an editing

environment for some specific query language. In contrast, XEditor is a graphical query

editor that allows two-way editing, and not for one specific query language, but with a

plug-and-play architecture to support multiple languages.

1.4 Organization

The remainder of the thesis is structured as follows:

• Chapter 2 describes the underlying architecture of the XEditor framework in

detail. It explains how XEditor interacts with external pluggable components.

• Chapter 3 describes the graphical language used to represent a query. The

language described is independent of the syntax/grammar of a specific query

language and is concerned only with the high-level logical operations commonly

applied on data.

• Chapter 4 details the process of parsing and subsequently analyzing a query to

identify the sequence of high-level logical operations that the query intends to

perform. This process is termed the Query Analysis phase.

	

	 	 8	
	

• Chapter 5 describes the formation of a graphical representation of a query from

the elements of information collected in the ‘Query Analysis’ phase. This is

termed the Query Rendering phase.

• Chapter 6 describes the mechanisms required to edit a query, both graphically and

textually. It explains multiple two-way editing scenarios and how they are

handled by XEditor. It further describes how the editing responsibility is split

between XEditor and the language-specific pluggable component.

• Chapter 7 describes the usage of XEditor to support two popular query languages

namely XQuery and SQL. It also briefly explains how XEditor might be used to

support other languages.

• Chapter 8 presents the conclusion of this work. It highlights the salient features of

XEditor and the lessons learned as well as discussing several areas of required

future work.

	

	 	 9	
	

 CHAPTER 2

 A Language-Agnostic Framework

 for Graphical Query Editing

The previous chapter mentioned the concept of two-way editing, whereby a query is

editable in either a graphical or textual view. The concept has been implemented for

query languages like XQuery and SQL, but the implementations have been tightly

coupled with the target language. State of the art two-way editing systems that support

data mapping also provide for graphical editing, but most are also tightly coupled with a

specific query language for implementing the given mapping. This chapter talks in detail

of a different solution – XEditor, a framework that supports two-way editing of source

code and yet is language-agnostic.

Being language-agnostic essentially means that XEditor does not need to

understand the grammar/syntax of the target language. It instead works in coordination

with a language- specific pluggable component that understands the language grammar.

This chapter elaborates the design goals of XEditor. It then describes the approach that

we adopted in building XEditor and details the software architecture that allows XEditor

to be language- agnostic.

2.1 Basic Design Goals

This section walks through the desired characteristics of XEditor, describing the

importance of each feature.

	

	 	 10	
	

2.1.1 Loose Coupling With the Textual Language

XEditor should support graphical editing - not for one specific language, but for different

query languages. XEditor should work at a semantic level and should concern itself only

with the high-level logical operations that a query may perform on data. XEditor must

have a default mechanism to depict these operations on the graphical user interface, and it

should only interact with a language-specific component when the task requires an

understanding of the language grammar.

2.1.2 Usable With Any Text Editor

Text-based source editors are available that provide advanced features like code

assistance, linking with compilers, etc. These features make textual query editing easier

as well as more productive. XEditor should not reinvent the wheel to provide such

features; instead, it should be able to leverage investments already made in state-of-the-

art textual source editors. XEditor must therefore provide an interface whereby a textual

source editor can optionally be plugged into the system so that the source view is handled

by that textual editor. The user should be allowed to edit using the chosen textual editor,

with XEditor taking care of forming the graphical view. Similarly, changes made in the

graphical view should result in modified source code in the textual editor. In this way, as

new features are added to a textual editor, XEditor can benefit from them.

2.1.3 Customizable User Interface

Each language has its own grammar that describes its syntax rules as well as its language-

specific constructs or clauses. XEditor should have a default way of graphically

representing high-level operations, but it should also be customizable to cater to the

	

	 	 11	
	

requirements of a specific language. For example, a language might want to show

filtering of data via a box with a specific shape, or it may prefer showing it via some type

of connection. XEditor should allow for such customizations.

2.2 Advanced Features

In addition to the basic design goals mentioned above, XEditor should also provide

certain advanced editing features. The following sections briefly describe some of the

desired advanced features.

2.2.1 Error Handling

On a graphical view of a grammatically correct query, the user will be able to edit and

may potentially make the resulting query incorrect as per the grammar of the language.

XEditor, though not conversant with the grammar of the specific language, should be

able to detect and show such errors while staying within the graphical view. That is,

XEditor should not force the user to shift to the textual view to find the error and correct

it. The incorrect part of the query should be marked differently in the graphical view,

clearly indicating to the user where work is required to remove the error.

2.2.2 Handling Comments

Comments embedded within a query often describe a section of the query and are visible

in the textual view. Based on the proximity of a comment’s boundaries to neighboring

sections of the query, it should be possible to associate each comment with the section of

the query that it (most likely) corresponds to. XEditor should attempt to form this

association and show the associated comments as tooltips in the graphical view.

	

	 	 12	
	

2.2.3 Graphical Editing of Subqueries

A subquery is a query within a query and is also referred to as a nested query. A subquery

can represent a fixed value, a correlated value, or a list of values. The value represented

by a subquery is used in a clause that is defined in the outer query. The clauses that exist

as part of the subquery can be graphically represented and placed alongside the graphical

representations of the clauses belonging to the outer query. Alternatively, the graphical

representation of the clauses that are a part of the subquery can instead be packed inside

the graphical representation of the outer clause. The former is an unpacked

representation, while the latter is a packed representation. An unpacked representation

results in a larger number of shapes on the user interface in comparison to a packed

representation. XEditor should support both kinds of representation and allow graphical

editing of subqueries.

2.2.4 Detecting Unused Sections of a Query

A large, incrementally constructed query may involve declared variables which are not

used subsequently, and hence removing their declaration would have not change what the

query intends to do. XEditor should be able to detect such unused variables and mark

their graphical representation differently, indicating to the user that they are unused and

can be removed.

2.3 Overview of Approach to Building a Language-Agnostic Framework

XEditor is a graphical framework providing both graphical and textual views of a query

in a given query language. A user of XEditor uses a graphical language to form a

graphical representation of a given query. In doing do, the user interacts with data using a

	

	 	 13	
	

defined set of high-level logical operations. Sorting the data, filtering data on basis of

some predicate, and iterating through a list of data items are examples of the high-level

logical operations commonly performed on data. The graphical language thus defines

shapes, notations and different kinds of connections that are used to represent the high-

level operations to be carried out in a given query. A detailed description of the graphical

language as well as the high-level operations identified by XEditor can be found in

Chapter 3.

To identify the high-level operations being performed in a query, an

understanding of the language grammar is required. For this, XEditor relies on a

language-specific pluggable component that is conversant with the language grammar.

This component resides outside the core of the framework so that a similar component

written for a different language could be plugged in to obtain a similar editing

environment for that language. The pluggable component transforms the query text into

an Abstract Syntax Tree (AST) representation. During this transformation, any comments

present as part of the query text are ignored, as they do not form a part of the language

grammar. The high-level operations mentioned above are each expressible through a

corresponding clause that represents the operation in the textual language syntax. Each

such clause can be identified by the pluggable component by traversing the AST. During

traversal, the pluggable component is also given a handle to a symbol table. The symbol

table is used to record occurrences of clauses and declared variables together with the

scope in which they occur. Each of the elements in the symbol table, such as scopes,

clauses, and variables, are referred to by unique IDs assigned to them.

	

	 	 14	
	

 At the programming level, XEditor offers the plug-in developer a list of base

classes, with each one representing a high-level operation. The language-specific

component can choose to simply use these base classes or it may may derive from them

(adding any custom fields) if desired. While traversing the AST, the language-specific-

component keeps track of the current scope, as the rules governing begin or end of scope

are language-specific and are known only to the pluggable component. If a clause

definition is encountered, the corresponding class that represents the operation is

identified. Information about the clause is captured in the fields inside an object of the

class and a reference to the object is put in the symbol table. Similar steps are followed

for each variable declaration. At the end of the traversal, XEditor has thus constructed an

ordered list of clauses and variables, each grouped by the scope in which they occurred in

the query, and the required detailed information resides in the symbol table.

In a query, the output of a high-level operation may be fed as an input into

another high-level operation. XEditor depicts such relationships as directed lines or

connections. XEditor must be able to identify all such relationships and form connections

between the shapes/symbols that represent the high-level operations; the relationships can

be deduced by analysis of the symbol table. The set of shapes and the connections

between them then form the graphical view of the query. Breaking a query into logical

operations and building the relationships between the logical operations comes under the

Query Analysis phase. Once this understanding has been built, the next phase consists of

forming shapes and connections, and is referred to as the Query Rendering phase. These

phases are explained further in Chapters 4 and 5, respectively. Continuing the present

discussion, the underlying software architecture of XEditor is described next.

	

	 	 15	
	

	

Language-‐Specific	
Components	 	

2.4 XEditor Architecture

As designed, the XEditor architecture must support a dual-editing environment, as the

user may switch from one view to the other at any time as per their convenience. Changes

made in one view must be synchronized with the representation in the other view. Figure

2.1 shows the underlying architecture of XEditor and is followed by a description of each

of the components.

 Figure 2.1 Underlying Architecture of XEditor

1. Language-specific component

a. AST Generator: The AST Generator, as the name suggests, is responsible

for converting a query into its equivalent AST representation. This step is

Language-‐Specific	

Component:	 XQuery	

	 	 	 	 	 	 Text	 Editor	

	 	 	 	 	 	 SQL	 XQuery	 AST	 Generator	

AST	 Reader	

Source	 	 Generator	

g	
	 	 	 	 	 	 	 	 	 	 	 	 Edit	 	 	 	 	 	 	

Manager	 	

For	 $x	 in	
doc(‘dblp.xml’)	
Return	
$x/author	

Comment	 Parser	

	 	
UI	 Renderer	 	 UI	

Synchronizer	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 GEF	 	 	 +	 	 Draw	 2d	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 User	 Interface	 	

Source	 Generator	

Resource
Manager

	

Plug	 into	 the	
Framework	

Repository	 	
containing	

language-‐specific	
components	

Tool	 Set	 	

Tools	 used	
in	 analyzing	
and	
rendering	 a	
query	 	

Symbol	 Table	
Manager	

	

	 	 16	
	

a prerequisite for any further analysis of the query. The AST Generator is

a part of the language-specific pluggable component.

b. AST Reader: The AST Reader traverses the AST, keeping track of the

clause definitions as well as any variable declarations. The AST reader

understands the high-level logical operations and maps each encountered

clause to the corresponding high-level logical operation. These high-level

logical operations are described in detail in the Chapter 3.

c. Source Generator: A user may cause modifications in the query

expression through interaction with the graphical user interface. The

Source Generator is conversant with the language grammar and receives

information about user actions from XEditor. If it is possible to correctly

generate code, the Source Generator responds with the change; else it

simply returns a null. In the latter case, XEditor opts for receiving the

change in the form of text through user input. In the case of a non-null

response, XEditor integrates the change into the query and then validates

the new query expression.

2. Resource Manager: A query may refer to pre-defined functions or data sources

such as documents or tables. Information about pre-defined functions and data

sources is available via the Resource Manager. When any pre-defined function or

data source is referenced in the query and needs to be represented graphically, the

Resource Manager is able to return the information required to form a graphical

representation. The Resource Manager also holds references to other tools such as

	

	 	 17	
	

the Symbol Table Manager, Comment Parser, etc., and makes them available to

the Edit Manager.

3. Symbol Table Manager: The symbol table manager is a store for all information

related to the clauses and variables discovered in the query. It provides a simple

API which is used by the AST Reader to register clauses and variables.

4. Edit Manager: In providing a dual-editing environment, various generic

components like the Symbol Table Manager and the Comment Parser need to be

instantiated with specific parameters allowing them to be used for a specific query

language. XEditor follows a pre-defined sequence of steps in order to analyze and

render a query. These steps are initiated in the correct order by the Edit Manager.

5. UI Renderer: XEditor utilizes the Eclipse Graphical Editing Framework and

Draw2d [10] for painting the graphical representation of a query in terms of

shapes and lines. The UI Render interacts with GEF and forms a data model that

can be processed by GEF.

6. UI Synchronizer: Changes made in the textual view must be applied in the

graphical view in a manner that does not disturb the initial layout of the query.

This responsibility is handled by the UI synchronizer.

7. Source Generator: A change in the graphical view may result in changing the

initial query expression and hence must also be applied to the textual view. If the

change is complex, the Source Generator relies on the language-specific

component to help generate source code in accordance with the action taken in the

graphical view. Furthermore, the Source Generator makes sure that changes are

	

	 	 18	
	

applied in the textual view without disturbing the initial indentation/alignment of

the text.

	

	 	 19	
	

CHAPTER 3

Graphical Language

XEditor abstracts itself from the varied syntax/grammar rules of any particular query

language but exploits the degree of commonality in the high-level logical operations that

are expressible through most query languages. XEditor uses a graphical language to form

a graphical representation of these high-level operations. This chapter describes the high-

level operations as well as the graphical language used by XEditor.

3.1 High-Level Operations Expressible through a Query

Query languages inherit a number of properties common to programming languages in

general. At compile time, the source in a query language consists of identifiers,

expressions, clauses, and optional comments. In addition, there are scoping rules which

decide the visibility of variables/functions in a sub-section of the query. Considering only

query languages, it is additionally possible to identify a set of high-level operations on

data that are common to multiple query languages. These high-level operations are

described next.

1. Iteration

Data may be statically stored in a file, or it may be dynamically generated upon

evaluation of an expression or invocation of a function. Iteration allows for the

traversal of one or more such sources of data and the production of a list of data

elements. Each data element traversed may be subjected to manipulation by other

high-level operations. For example, when using SQL to query against a relational

	

	 	 20	
	

database, traversal over the rows contained in one or more relations is a form of

iteration and is expressed using the FROM clause.

2. Filtering

Filtering is the process of selectively including data elements that satisfy a given

predicate or a condition. For example, consider retrieving information about

employees working in an organization. One may wish to include only those

employees that have work experience greater than a specific value. Filtering helps

in applying a set of one or more predicates on attributes of data. Filtering may

also involve the joining of multiple sources of data on a common attribute.

3. Sorting

Sorting refers to the task of arranging the elements in a list in either an ascending

or descending manner based upon the value of one or more attributes. A sort

operation specifies a set of attributes and their orders.

4. Binding

Binding allows the association of a value with a variable. The value may be an

expression or the output of another high-level operation.

5. Collecting

Collecting refers to the task of accumulating and shaping the data that forms the

result of a query. For example, consider having a list of employee records with

each record having some number of attributes. One may wish to retrieve

information about employees, but to include only a subset of the attributes for

each record. Collecting helps in structuring the result of a query.

	

	 	 21	
	

Figure 3.1 describes the high-level data operations involved in two example

queries written in XQuery and SQL.

Figure 3.1: Example queries written in XQuery and SQL consist of a sequence of high-level
operations.

The task of extracting the desired information from a database or any information

repository involves a combination of the high-level operations mentioned above. A query

language offers a set of clauses, each corresponding to one of these high-level operations.

For example, XQuery offers the for clause for expressing an iteration, while iteration is

	

	 	 22	
	

expressed in SQL using the FROM clause. The graphical language used by XEditor is

based on the high-level operations discussed above; it defines shapes and other methods

to graphically depict these high-level operations.

3.2 Graphical Language of XEditor

XEditor treats a query as a sequence of the high-level data operations, just discussed. For

forming the graphical representation of a query, each of the high-level data operations is

converted into a corresponding graphical representation. XEditor uses rectangular shapes

to build the graphical view for a query. In addition to using rectangular shapes, XEditor

also uses several different kinds of lines that connect the rectangular shapes and have

specific semantics. In order to understand the graphical representation of each high-level

operation and the relevant example queries, it is imperative to first understand the kinds

of lines or connections used by XEditor. This is described next and is followed by a

discussion of the graphical representation of each of the high-level operations.

(i) Cardinality line: Cardinality lines indicate the repetitive occurrence of a

clause, with the repetition being controlled by another clause definition. For

example, iteration allows traversal over a list of data elements. Each data

element traversed during iteration may be subjected to other high-level

operations like filtering and/or sorting. Each data element that is not discarded

by filtering is structured by the collect operation before becoming a part of the

query result. Thus the number of data elements subjected to the collect

operation is influenced by the number of data elements traversed during

iteration. There exists a quantity relationship between iteration and collection.

	

	 	 23	
	

To depict this relationship, an iteration operation is connected to

corresponding collect operation using a cardinality line.

(ii) Data-flow line: Data-flow lines are used to represent flow of data from a

source to a destination where the data gets used. There are several high-level

operations that involve a flow of data between them. For example, when the

value of an expression is assigned to a variable using the bind operation, data-

flow lines are drawn that connect the graphical representation of each term in

the expression to the graphical representation of the variable being defined.

As another example, consider a filter operation that applies a condition on

one or more attributes of data. The value of each attribute gets used in

determining the output of the filter. This is depicted by drawing data-flow

lines that connect each attribute to the shape that represents the filter

operation.

(iii) Join line: We may wish to iterate over multiple lists of data elements and join

the data elements that have some attribute in common or satisfy some

predicate. In such a case, we are joining data based upon a filter condition.

The filter condition may involve variables and is depicted by a join line

connecting the variables.

We have described the different kinds of lines or connections that are used by XEditor.

We next describe the graphical representation for each of the high-level operations

understood by XEditor.

	

	 	 24	
	

1. Iteration

Iteration allows the traversal of one or more such sources of data and producing a list

of data elements. In order to form a graphical representation, each data source needs

to be represented graphically. XEditor uses a rectangular shape to represent a data

source. Hence, iteration over ‘n’ data sources is represented using ‘n’ rectangular

boxes. The contents inside the rectangular shape depict the shape of the elements

coming from the data source and may vary as per the kind of data source being

represented. For example, a relational table can be a data source when writing a query

in SQL, while a function returning an XML structure can act as a data source in the

case of XQuery. XEditor does not understand the semantics behind a relational table

or a XML schema. XEditor uses a generic tree structure to depict the shape of the

elements coming from the data source. Figure 3.2 illustrates the template for building

a representation of a data source.

 Figure 3.2: Template for building a graphical representation of an Iterator

Figure 3.3 shows different kinds of representations, derived from the same template,

that differ because of differences in the type of data source.

	 	 	 	 	 	 	 	 	 	 ITERATOR	

<Data	 source	 tree>	
	 	 	 	 	 	 	 	 	 <tree	 node>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <tree	 leaf>	 	
	 	 	 	 	 	 	 	 <tree	 node>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <tree	 leaf>	

	

	 	 25	
	

(i) (ii) (iii)

Figure 3.3: The representation of iteration depends upon the method used to produce data elements.
Case (i) represents an iterator producing data elements by traversing through a SQL table. The
representation shows the table name and columns of the SQL table.
Case (ii) represents an iterator running over a range expression with start and end limits. The
representation shows the start and end limits.
Case (iii) represents an iterator traversing over data elements produced as a result of invocation of a
function. The representation shows the DTD of the XML type returned by the function.

As evident from the above discussion, iteration over multiple data sources would be

graphically represented using as many rectangular boxes. For example, a SQL

query retrieving data from two relational tables involves iterations over two

different data sources and hence the graphical representation includes two

rectangular boxes, each representing a relational table.

2. Filtering

Filtering involves applying a set of conditions on data elements to discard unwanted

results. A filter may involve applying a conditional expression involving one or

more fields or joining two data sets on a common attribute. The graphical language

defines a different representation for each case. A conditional expression involving

one or more fields is represented using a rectangular shape. The fields involved in

the conditional expression are connected to the rectangular shape using separate

	

	 	 26	
	

data-flow lines. Figure 3.4 shows the graphical representation of a filter involving a

conditional expression.

 Figure 3.4: Graphical representation of a filter used for applying a predicate

To understand the representation better, consider the example query below.

for $EMPLOYEE in cus:EMPLOYEES()
where $EMPLOYEE/WORK_EXP >=5
return
 <EMPLOYEE>
 <ns1:FIRST_NAME>$EMPLOYEE/FIRST_NAME</ns1:FIRST_NAME>
 <ns1:LAST_NAME>$EMPLOYEE/LAST_NAME</ns1:LAST_NAME>
 <ns1:DEPARTMENT>$EMPLOYEE/DEPARTMENT</ns1:DEPARTMENT>
 <ns1:WORK_EXP>$EMPLOYEE/WORK_EXP</ns1:WORK_EXP>

</EMPLOYEE>

The query selectively retrieves employees with work experience more than 5

years. In this case, work experience is a field on which a conditional expression is

applied. Figure 3.5 shows the graphical representation of the query.

	 	 	 	 	 	 	 	 	 	 Filter	

	 	 	 	 	 	 	 	 Conditional	 expression	

Data-‐	 flow	 lines	
originating	 from	 each	 field	

involved	 in	 the	 conditional	
expression	

	

	 	 27	
	

 Figure 3.5 Graphical representation of a query that uses a filter used for applying a predicate

In the graphical representation, filtering is depicted using a rectangular box. A

data-flow line connects the field WORK_EXP and the rectangular box. It

indicates that the employee records traversed through iteration are filtered based

on the value of the field – WORK_EXP.

As stated earlier, a filter may also be applied for joining two data sets on a

common attribute. As an example, consider having two data sets, one comprising

of a list of customer orders and other comprising of a list of customers. We wish

to join the two data sets using customer id as the common attribute. The data sets

themselves are represented using iterator boxes. Each iterator box shows the

attributes that are part of each record. The join condition is represented using a

straight line that connects the common attribute across the two iterator boxes.

Figure 3.6 illustrates a filter being used for forming a join condition.

Data	 flow	 line	 connecting	
the	 field	 WORK_EXP	 and	

the	 filter	

	

	 	 28	
	

 Figure 3.6: Graphical Representation of a filter used for joining. In the illustration above, a join exists
between two data sets using the common attribute- “CUSTOMER_ID”.

3. Binding

Binding operation involves assigning a value of an expression to a variable. The

expression may be a constant, a function call, another variable, or may be composite in

nature consisting of sub-expressions. For example, consider the following snippet from a

query written in XQuery language.

let $CUSTOMER_ID := $CUSTOMER_ORDER/CUSTOMER_ID

The value assigned to the variable $CUSTOMER_ID is derived from an attribute of the

variable $CUSTOMER_ORDER. This association is depicted using a data-flow line that

in the given case, connects the specific attribute of the variable $CUSTOMER_ORDER

to a rectangular shape representing the bind operation. This is illustrated in Figure 3.7.

Filter	 operation	
shown	 as	 a	
connection	

	

	 	 29	
	

 Figure 3.7: Graphical representation of a bind operation

In a general case, where the value being assigned to a variable may be derived from

multiple sources, multiple data-flow lines are drawn each connecting the specific source

to the rectangular shape representing the bind operation.

4. Sorting

A sort operation is described by the specifying the source of input data, the attribute(s) to

sort on, and their sorting order(s) (either ascending or descending). The graphical

representation for a sort operation is shown in Figure 3.8.

Figure 3.8: Graphical representation of a sort operation.

Data	 Flow	

connection	

Binding	
operation	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 SORTER	

Sorting	 criterion:	 The	
line	 originates	 at	 the	

label	 representing	 the	
field	 used	 for	 sorting.	

	
Sorting	 order	

Cardinality	 line	

originating	 at	 the	
input	 data	 source	

	

Rectangular	 shape	
representing	 a	 sort	
operation	

Cardinality	 line	

representing	 the	
sorted	 output	

	 	 	 	 	 	 	 	 	 Editable	 expression	

Ascending/Descending	

	

	 	 30	
	

The attribute used as the sorting criterion is connected to the rectangular shape using a

data flow connection. The connection is labeled with the sorting order. To understand this

better, we illustrate the graphical representation of an example query written in SQL in

Figure 3.9 below.

 Figure 3.9 Graphical Representation of an example query involving a Sort operation

In the figure above, the query result is sorted on the basis of the “LAST_NAME” field.

This is shown by a data-flow line connecting the corresponding label with the rectangular

shape representing the sort operation.

5. Collecting

The data traversed during iteration may undergo subsequent operations like filtering or

sorting, but are eventually collected by the collect operation to form the result of the

query. The result of the query may consist of multiple data elements, but each of the

resulting data elements follows a similar structure. For example, in case of a SQL query,

Sorting	
order	

Sorting	
criterion	

	

	 	 31	
	

multiple rows might get returned, but each row has the same structure (a list of column

values). The collect operation describes the common structure; with each data element

forming the result that the query is expected to have. This is illustrated in Figure 3.10

using an example query.

Query Source

SELECT employee.FIRST_NAME, employee.LAST_NAME,
employee.DEPARTMENT_ID , department.DEPT_NAME
FROM employee,department
ORDER BY employee.LAST_NAME

Figure 3.10: Graphical representation for the collect operation shows the structure of the result returned by
the query.

The example query here returns specific fields from two SQL tables. The query’s result

fields are shown inside the rectangular shape representing the collect operation.

In order to illustrate the use of above described graphical representations, we take up a

query example written in XQuery and describe its graphical representation.

	

	 	 32	
	

 Figure 3.11: Use of different kinds of lines to depict relationships in a sample query written in XQuery.

In the query represented in Figure 3.11, we are iterating over customer orders and

customer profiles and joining the data on a common attribute. The query uses the for

clause to represent an iteration. A customer order is described by multiple attributes that

are listed inside the rectangular shape representing the iteration. A similar rectangular

shape represents the iteration over customer profiles. The result of the query consists of

XML elements, each having specific attributes. These specific attributes are listed inside

the rectangular shape representing the collection operation. For example, the first and last

names, represented by the attributes FIRST_NAME and LAST_NAME respectively, are

obtained from the data elements traversed during iterating the customer profiles. This is

depicted using data-flow lines. The rectangular shapes representing iteration are

connected to the rectangular shape representing collection using cardinality lines. A

Cardinality	 	
Line	
	

	

Data	 Flow	
Line	 	 	
Line	
	

	

Join	

Query	
Source	

	

	

	 	 33	
	

customer order is joined with the corresponding customer profile using

“CUSTOMER_ID” as the common attribute. This is represented by a join line.

	

	 	 34	
	

CHAPTER 4

 Query Analysis

The “Query Analysis” phase breaks a query in textual form into smaller components and

maps each subpart into logical operations understood by XEditor. This phase involves the

interaction of the language-agnostic XEditor core with a language-specific plug-in that is

conversant with the grammar of the language. This chapter describes this interaction and

how XEditor is fed with sufficient information about the query.

4.1 Analyzing a Query

At a high-level, a query consists of source code with optional comments embedded

within. Source code consists of language-specific clauses, each signifying a high-level

logical operation and perhaps defining variables. The analysis of a query begins by

collecting the comments, if any, embedded inside the query. This is followed by breaking

the query into language-specific clauses of the kinds that are well understood by XEditor.

Information about any variables used in the query is also collected. This analysis provides

XEditor with an ordered list of clauses together with a list of variables grouped by scope.

XEditor must also be able to associate comments with the clauses against which they are

written so that they can be shown as tool tips on the user interface. XEditor is aided by

the language-specific plug-in in understanding the query.

4.2 Comment Handling

Comments start and end with language-specific string literals. For example, SQL

comments start with ‘/*’ and end with ‘*/’. The sequences of characters that occur

	

	 	 35	
	

between these string literals form a comment. These string literals can also occur as part

of a character constant, and in such a case, the enclosed characters are not considered to

be part of a comment. Given the string literals that define the start and end of a comment

and those that define the start and end of a character constant, comments can be extracted

from the source code without any deeper understanding of the language grammar.

XEditor performs one pass over the source query to form a list of all comments,

ordered by their occurrence. For every comment, XEditor records its precise location,

that is, its starting/ending line and column numbers. Each comment is modeled as a

Comment Clause, which is a pre-defined clause kind understood by XEditor. During this

pass, the corresponding start/end string literals which mark the beginning/end of a

comment and a character constant are obtained from the language specific plug-in.

The clauses contained inside a query are modeled as shapes in the graphical view.

XEditor attempts to associate each comment with some clause in the query based upon

the proximity of the comment to its neighboring clauses. A comment may be associated

with either the preceding clause or the subsequent clause. For every clause, the precise

location, that is, the starting/ending line and column numbers are known. This

information is used to guess the associated clause for a comment from amongst its

neighboring clauses. The comment then appears as a tool tip with the graphical

representation of the associated clause. This is summarized and illustrated in Figure 4.1.

	

	 	 36	
	

 Query Source

 (: outer loop over x :)
 for $x in (1 to 10)
 (: inner loop over y :)
 for $y in (2 to 5)
 (: returning result :)
 return $x

 Figure 4.1 Handling comments in a query

Handling of comments in this fashion is a unique feature, in contrast to other visual query

editors that we are aware of, as comments in the source query are usually just discarded

in the graphical view.

AST	
Reader	

Comment	
Parser	

AST	
Parser	

(: outer loop over x :)
(: inner loop over y :)
(: returning result :)	

for	 $x	 in	 (1	 to	 10)	
for	 $y	 in	 (1	 to	 10)	
return	 $x	

for	 $x	 in	 (1	 to	 10)	

	

	 Associate	 each	 Comment	
Clause	 with	 a	 Code	 Clause	
based	 on	 proximity	 analysis	

Each	 comment	

is	 converted	
into	 a	 Comment	

Clause	

Each	 clause	 is	
converted	 into	
a	 Code	 Clause	

	

	 	 37	
	

4.3 Extracting Clauses and Variables

Extracting the clauses and variables of a query, grouped together by scope, is not in the

purview of the core of XEditor since it does not understand the grammar of the language

or the rules governing the beginning and end of a scope. XEditor relies on a language-

specific plug-in that is conversant with the language grammar to parse the query into its

AST (Abstract Syntax Tree).

For capturing information related to the clauses and variables in a query, XEditor

maintains a symbol table. The language-specific plug-in builds the AST during its first

pass over the query source. Before beginning the second pass, XEditor then instantiates a

symbol table and passes a handle to it to the language-specific plug-in. The AST created

in the initial pass is then traversed by the plug-in. During its traversal, the language-

specific plug-in recognizes clause and variable occurrences as well as the beginnings and

ends of scopes as per its language rules. Every clause has a kind based upon the high-

level operation that it signifies, and each variable holds reference to the clause that

defined it as well as information about other expressions required to construct its value.

The XEditor core is implemented in the Java programming language. It defines

classes that represent each kind of clause and a class for representing a variable. These

classes can be extended by the language-specific plug-in, if required. The language-

specific plug-in is expected to instantiate these classes during traversal of the AST and to

populate the fields inside with relevant information. The language-specific plug-in

registers the objects with the symbol table using a Java API. Each registered object is

assigned a unique ID generated by XEditor core. Figure 4.2 illustrates this phase.

	

	 	 38	
	

 Query Source
for $x in (1 to 5)
 (: inner loop for y:)
for $y in (2 to 4) Symbol Table
return $x

 Figure 4.2: Population of symbol table as part of Query Analysis

4.4 Forming Dependency Relationships

As the language-specific plug-in traverses the AST, it populates the symbol table. Also

the clauses collected are merged (on the basis of their start/end line and column numbers)

with the clauses representing the comments collected by XEditor. In this way, XEditor

ID Type Na
me

Parent
Clause
ID

Scope
ID

213 Var X 234 345

123 Var Y 132 134

234 Clause For Null 345

132 Clause For Null 134

AST	
Generator	

AST	 	
Reader	

UI	 Renderer	

	

	 	 39	
	

obtains the complete sequence of clauses, interleaved with clauses representing

comments, in order of their occurrence in the query. In addition, XEditor also obtains a

list of variables encountered during traversal of the AST. XEditor has now obtained what

it requires from the language-specific plug-in. The task of the XEditor core is to analyze

the symbol table and form dependency relationships that finally get rendered as

connections in the graphical view.

4.4.1 Analysis of Symbol Table

The symbol table contains an entry for each clause or variable encountered during

traversal of the AST. Each entry for a variable also has additional information about the

terms used to define the value assigned to the variable. Each term may be an expression,

a primitive term like an integer or a string, a function call, or a reference to another

variable. Each term is treated as a contributing factor in building the value of the variable.

This relationship is depicted as a data flow line between the shapes drawn to represent the

term and the variable. If the term is a function call, the arguments are treated as a list of

terms that each contribute in defining the value assigned to the variable. If a term is a

reference to another variable, it is looked up in the symbol table to derive information

about the clause which defines the variable. The resulting clause is then connected to the

variable using a data-flow line. We consider an example query and show its graphical

representation in Figure 4.3.

	

	 	 40	
	

Query Source

for $CUSTOMER_ORDER in cus:CUSTOMER_ORDER()
let $TOTAL := $CUSTOMER_ORDER/HANDLING_CHARGE +
$CUSTOMER_ORDER/LIST_PRICE + fn:ceiling($CUSTOMER_ORDER/SURCHARGE)
return
<ns1:ELEC_ORDER>
 <ns1:CUSTOMER_ID>$CUSTOMER_ORDER/CUSTOMER_ID</ns1:CUSTOMER_ID>
 <ns1:ORDER_DATE>{fn:data($CUSTOMER_ORDER/ORDER_DATE)}</ns1:ORDER_DATE>
 <ns1:BILL>$TOTAL</ns1:BILL>
</ns1:ELEC_ORDER>

 Figure 4.3: Data-flow lines derived from analysis of the symbol table.

In the example query, $TOTAL is defined using three other terms, namely

HANDLING_CHARGE, LIST_PRICE, and SURCHARGE. This relationship is shown

using data flow lines in the graphical representation. The value collected in the variable

TOTAL is further assigned to the element <ns1:BILL>. This assignment also gets

captured as a data-flow line.

As should be evident from this chapter, the task of breaking a query into smaller

components and extracting information from them is divided between XEditor and the

language-specific plug-in. XEditor takes care of comments and relies on the language-

specific plug-in to provide an ordered list of clauses and variables grouped by the scopes

in which they occur. Each clause object has a kind that signifies the high-level operation

that it represents. The lists of clauses and variables generated by the language-specific

	

	 	 41	
	

plug-in are then analyzed by XEditor to form the dependency relationships that are

depicted as connections in the graphical view.

	

	 	 42	
	

CHAPTER 5

Query Rendering

The previous chapter explained the query analysis phase in which a query in textual form

is broken down by a language-specific plug-in into an ordered list of clauses and

variables, each grouped by the associated scope in which they occurred. The result is

packed into what is referred to as a Container object, a serializeable representation that

can be rendered into a graphical view. XEditor must decide on an initial layout of the

query, in the graphical view, after which the layout gets saved as part of the Container.

This chapter explains how a graphical view is formed out of a Container object.

5.1 Opening up the Container

As described in Chapter 3, Query Analysis is done by the back-end component of

XEditor. XEditor also contains a User Interface component that interacts with the back-

end component in terms of a Container object, which is the only element of information

exchanged between the two components. Figure 5.1 illustrates the contents of a Container

Object for a sample query.

	

	 	 43	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Figure 5.1: Example showing a Container Object formed after analysis of a sample query written in
XQuery.

ID Name Kind Expression

 0rt34 Comment Comment Iterating
over….

0ef34 For Iterator for $CUS…

454er Comment Comment Iterating
over…

34efe For Iterator for $CUS…

243de Let Binding let $HAN..

535sg Where Condition Where
$CUS…

425sg3 Return Output Return <CUS

ID Start End

045gk3 0ef343 425sg3

675gl4 34efe2 425sg3

56dkj3 0ef343 243de3

43hj34 0ef343 34efe2

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Query	 	 	 	 	 	 	 	 	 Analysis	 	

Clauses
s	

Connections

s	

CONTAINER	 OBJECT	

	

	 	 44	
	

The sequence of steps taken after the Container object is passed on to the Query

Rendering phase is illustrated in Figure 5.2. As the UI component scans the contents of

the Container object, it discovers clause definitions. By reading the kind information

inside each clause, the UI component decides which shape to use to represent it. When

the scan is finished, the UI component has a list of shapes that need to be drawn and it

also knows which of them need to be connected with which other shapes using the

various kinds of lines.

 Query Query

 Analysis Painting

 Phase Phase

 Graphical

 Representation

Figure 5.2: Output of Query Analysis phase is passed as input to the Query Rendering phase, where the
output – a Container object - is analyzed to form a graphical representation

Each clause has a unique ID that gets assigned when the clause is registered in the

symbol table. The UI component uses the unique ID to maintain a correlation between a

shape and its corresponding clause so that when the user interacts with the shapes in the

Container	

Output	 of	
query	
analysis	
phase	 	 Contents	 of	

container	 are	 split	

based	 on	 type	

	

Connection	 Objects:	 	
stores	 reference	 to	

start	 and	 end	
locations	

Comments:	 	

	

Each	 clause	 is	
represented	 by	 a	
shape	 	

Clauses:	
represent	 high	 -‐
level	 operations	

in	 the	 query	

	

	 	 45	
	

graphical view, XEditor knows what part of the query is being modified. Laying out a

query on the canvas does not involve any language-specific plug-in and is therefore done

in a homogeneous manner independent of the language of the query. XEditor uses the

Eclipse Graphical Editing Framework (GEF), which facilitates creating a user interface

while being model-agnostic. GEF is based upon the model-view-controller pattern

(MVC) and uses Draw2d to put shapes on the canvas. The following sections gives a

brief description of GEF and Draw2d and how XEditor utilizes them.

5.3 GEF and Draw2d

The Graphical Editing Framework (GEF) was developed for the Eclipse platform. GEF

follows the model-view-controller pattern. Here, the model represents the application’s

data model. The view represents the layer of user-interface widgets that get displayed.

The intermediate controller coordinates between the view and the model such that

changes in the view are reflected onto the underlying model and vice versa. Everything is

in the model, and the model is the only thing that is persisted and restored. The

application thus stores all important data in the model. During the course of editing,

undo, and redo, the model is the only thing that endures.

 For every element in the model, there is a shape that represents it on the user

interface. The view consists of shapes that are essentially Draw2d objects. Draw2d

provides a bag of shapes that form the building blocks of the user interface. Controllers

bridge between the view and model. Each controller, or EditPart as they are called in

Draw2d, is responsible both for mapping the model to its view and for applying changes

to the model. The EditPart also observes the model and will update the view to reflect

	

	 	 46	
	

any changes in the model's state. In order to render a query, it is important to form the

data model as well as to instantiate appropriate shapes that correspond to the elements in

the data model.

5.4 Forming the Data Model of a Query

The model layer in the MVC pattern followed by GEF is essentially hierarchical in

nature. For every element in the data model there exists an element in the view

component that forms the graphical representation of the element. For rendering, the

model is traversed in a preorder manner, each node in the hierarchy is visited, and the

corresponding shape is instantiated. Thus, a hierarchy of shapes, similar to the hierarchy

existing in the model layer, has been built at the end of the traversal. The shapes are then

rendered in a bottom-up manner, rendering children first and then painting the

encompassing parent.

It is essential to form the hierarchical data model in order to use GEF. As a query

is broken down into its constituent clauses, a shape gets associated with the clause to

form the graphical representation of the clause. Each clause becomes a node in the GEF

data model. A clause definition is further broken down into elements that build up the

clause expression. These elements become children of the node representing the clause.

The leaf level contains primitive types in the language that cannot be broken down

further. The data model is then passed on to the GEF layer, which takes care of laying it

out on the canvas.

	

	 	 47	
	

 CHAPTER 6

 Query Editing

A query may be edited from either the graphical or textual view, and changes made in

either view must be synchronized and reflected in the other view. In addition, the layout

of shapes in the user interface or the alignment of source code in the textual view should

not be disturbed when modifications are made through the other view. If a modification

in either view yields a syntactically incorrect query, XEditor should still be able to

provide a graphical view, marking the region of error, so that the user can make

corrections within the graphical view. This chapter gives a detailed description of how

XEditor meets these requirements in its handling of the modifications made to the query

in either view.

6.1 Editing a Query in the Graphical View

In the graphical view, a query is laid out in the form of shapes and lines that connect the

shapes. Considering a query to be a sequence of clauses, a modification to the query can

mean changing the existing definitions of clauses, adding a clause, or deleting a clause.

This section describes how XEditor handles the modification of an existing clause or the

deletion a clause via the user interface.

6.1.1 Changing a Clause Definition via Text Editing

Recall from Chapter 2 that a clause has an associated expression, as per the language

grammar rules. Changing a clause definition is equivalent to modifying the associated

expression. In the graphical view, the expression is shown as a non-editable label inside

	

	 	 48	
	

the rectangular shape representing the clause. Double clicking on the label changes it to

an editable text box, allowing user to edit the expression. This is illustrated below in

Figure 6.1.

 Figure 6.1 Editing a Clause Expression

When the user finishes making a change in this manner, the modified expression replaces

the previous expression and a new query is formed by XEditor. The section of the query

following the modified section is adjusted according to the length of the modified

expression in order to maintain formatting. This is illustrated in Figure 6.2.

	

	 	 49	
	

Figure 6.2: Figure showing an editing session. An expression is changed in the graphical view and the
changes get applied in the textual view while preserving the original formatting.

2.	 Graphical	 View:	 	
HANDLING_CHARGE	
increased	 by	 $50	

3.	 Textual	 View:	 	
Changes	 applied	 without	
disturbing	 the	 	 query’s	
indentation	

1.	 Original	 Query	

	

	 	 50	
	

When the expression associated with a clause is changed via an editable textbox,

the modified expression may cause the overall query to become syntactically incorrect.

Since XEditor does not understand the grammar rules of the language, it relies on the

language-specific pluggable component to validate the query. The modified query is

submitted to the language-specific pluggable component for generation of the AST. If

this step is unsuccessful, it is indicative of an error in the query. This is flagged to

XEditor, which must now pass on an error message to the user. XEditor does not force

the user to switch to the textual view to understand what went wrong. Instead, the shape

that represented the edited clause is marked in red to indicate an error. This is illustrated

in Figure 6.3.

Figure 6.3: Error Handling: The user makes a change that is not compliant with the syntax rules of the
language. XEditor receives input from the language-specific plug-in and indicates the error to the user.

Marked	 in	 Red	 	

Syntax	 Error	

	

	 	 51	
	

In the event of an error, the user can edit the clause expression again and re-submit the

changes. The same sequence of validation is then repeated, and the shape representing the

edited clause remains colored as red until the erroneous expression has been corrected.

Once the modified query is valid, it then needs to be re-drawn on the canvas. The

new query may result in new shapes needing to be drawn or older shapes needing to be

deleted. Alternatively, a change may require that additional connections be drawn

between two shapes or that existing connections be deleted. In such cases, the current

positioning of the other shapes (those not affected by the change) in the user interface

ideally should not change, as the shapes may be at their specific on-canvas locations

because the user wanted them laid out that way.

When XEditor applies changes on the user interface, it tries to cause minimal

disturbance in the layout of the new query with respect to the earlier version of the query.

XEditor does not understand the modifications that are done to an existing clause

expression. When the changed query is submitted to the language-specific pluggable

component, provided that the modification was syntactically correct, what is retrieved is

an ordered list of clauses and variables. At this stage, XEditor has not overridden its

internal symbol table, so the internal state of XEditor still has the list of clauses

associated with the query before the change.

XEditor traverses the old and the new lists to determine the clauses that are

common to both, clauses that are present only in the old list, and newly added clauses that

are present in the new list. The shapes related to the clauses that are common to both need

not be changed and are retained on the user interface at their previous locations.

	

	 	 52	
	

Shapes corresponding to clauses that are only present in the old list are removed. When a

shape is removed, the associated connections, originating or terminating at the shape are

also removed. The shapes for representing the newly added clauses are then generated

fresh and laid out on the user interface alongside the previously retained shapes.

6.1.2 Deleting a Clause

Recall from Chapter 4 that XEditor considers a query to be a sequence of clauses, each

being a representative of a high-level operation. Deleting a clause thus means removing

the high-level operation from the query. As an example, consider the query given below.

Query Source

for $CUSTOMER_ORDER in cus:CUSTOMER_ORDER()
order by $CUSTOMER_ORDER/CUSTOMER_ID
return
<CUSTOMER_DATA>

<ns1:ORDER_ID>{fn:data($CUSTOMER_ORDER/ORDER_ID)}</ns1:ORDER_ID>
<ns1:CUSTOMER_ID>{fn:data($CUSTOMER_ORDER/CUSTOMER_ID)}</ns1:CUSTOMER_ID>
<ns1:ORDER_DATE>$CUSTOMER_ORDER/ORDER_DATE</ns1:ORDER_DATE>
<ns1:SHIPMENT>$CUSTOMER_ORDER/SHIP_METHOD</ns1:SHIPMENT>

</CUSTOMER_DATA>

The query returns a list of customer orders sorted by the attribute CUSTOMER_ID. The

user may not require a sorted result, and may wish to remove the sort operation. Right

clicking on the rectangular shape representing the sort operation gives the user an option

to delete the operation. This is illustrated in Figure 6.4.

	

	 	 53	
	

 Figure 6.4: About to delete a clause from the graphical view.

If the user indeed chooses to delete the sort, changes need to be applied in both the

graphical and textual views. Recall from Chapter 4 that for each clause encountered in a

query, XEditor stores the corresponding start/end line and column numbers. When a

clause is deleted from the graphical view, XEditor removes the portion of text enclosed

between the start/end line and column numbers associated with the clause. XEditor

removes the associated shape from the graphical view and re-routes any connecting lines.

In the example query described above, removing the rectangular shape representing the

sort operation also requires re-routing the cardinality lines. The result of the deletion is

shown in Figure 6.5.

	

	 	 54	
	

 Figure 6.5: Result after deleting a clause

Deleting a high-level operation can become non-trivial in some cases. As an

example, Iteration and Binding introduce new variables, and these may be referred to

from other parts of the query. In case these variables are not being referred to, the clauses

can be deleted in a manner similar to deletion of a sort operation. Otherwise, deleting the

corresponding clause may leave some variable references undefined. In such a case,

XEditor does not support the deletion of such high-level operations from the graphical

view.

 6.1.3 Forming or Deleting Connections

Connections are also representative of high-level operations done in the query. For

example, a connection that connects two variables may indicate an equi-join involving

the variables or may indicate the use of one variable in defining the other. If the user is

trying to form an equi-join between two attributes, the change may result in the

	

	 	 55	
	

introduction of a new clause. The exact expression for the new clause will depend upon

the language grammar and hence is beyond the understanding of the XEditor core.

To understand the manifestation of such a user action, XEditor again relies on the

language-specific pluggable component. XEditor plays a part in capturing information

about the user’s action, including the kind of connection the user is trying to make

graphically, or attempting to delete, as well as the start and end points of the connection.

On the user interface, the start/end points are merely shapes. Recall from Chapter 3 that

depending on its kind, a clause is represented by one or more shapes. Each of these

shapes has a unique ID which is same as the ID that was assigned to the corresponding

clause at the time of insertion into the symbol table. This helps XEditor find the

corresponding clause(s) that is(are) being touched. XEditor identifies the clause(s) from

amongst the list of ordered clauses that it obtained earlier from the language-specific

plug-in. Information that includes the type of connection, affected clause(s) and the

complete list of clauses is then submitted to the language-specific component.

Upon scanning this information, the language-specific component is expected to

return the modified query. A language-specific component that is not advanced enough to

scan the information returned in response to a graphical change has the option of

returning a null response. XEditor interprets the null response as the inability of the

language-specific component to generate code for the requested graphical change. In such

a case, as a fallback, XEditor opens up a text box containing the complete query. The

user then must explicitly provide code that expresses the change that he/she desires. Of

course a well-written language-specific component will respond with the modified query.

Deleting a connection follows a similar strategy; the language-specific component

	

	 	 56	
	

responds by returning the modified query in text form, which is then analyzed and

converted into an equivalent graphical representation.

	

	 	 57	
	

 CHAPTER 7

Using XEditor for Multiple Languages

To validate the XEditor design decisions and the architecture, we have prototyped

language-specific components for two languages, namely XQuery and a subset of SQL.

Each of these languages’ pluggable components implemented the prescribed interfaces so

that it could neatly fit into and work with the core architecture. This exercise

demonstrated that XEditor can indeed provide multi-lingual support and form graphical

editable views of queries written in both languages.

This chapter describes how these pluggable components were built and covers example

queries to show the resulting editing environments.

7.1 Interaction between XEditor and Language-Specific Plug-Ins

Recall from Chapter 2 that the pluggable component for a language must perform three

main functions, which are:

1. Parse source code and form the equivalent AST.

2. Traverse the AST and identify clauses and variables together with the scopes in

which they occur.

3. Generate source code for a given action taken in the graphical view.

The pluggable component thus has three sub-components. Each of the functionalities

above is provided by one sub-component. A prerequisite for providing these

	

	 	 58	
	

functionalities is to form a mapping between the operations expressible in the target

query language and the high- level operations understood by XEditor.

7.2 Using XEditor for XQuery

XML is a versatile markup language that is capable of labeling the information content of

diverse data sources, including structured and semi-structured documents, relational

databases, and object repositories. A query language for XML can express queries across

all these kinds of data, whether physically stored in XML or viewed as XML via

middleware [4]. XQuery is such a language.

XQuery allows users to write queries in a similar way to the familiar SQL

approach. Its equivalent of SQL's SELECT expression is called the FLWOR expression

[11]. The name FLWOR, pronounced "flower", is suggested by the keywords for, let,

where, order by, and return. The for and let clauses in a FLWOR expression generate

an ordered sequence of tuples of bound variables called the tuple stream. The where

clause is optional and serves to filter the tuple stream, retaining some tuples and

discarding others. The optional order by clause can be used to reorder the tuple stream.

The return clause constructs the result of the FLWOR expression. The return clause

structures the query result and is evaluated once for every tuple in the tuple stream, after

filtering by the where clause, using the variable bindings in the respective tuples. The

result of the FLWOR expression is an ordered sequence containing the concatenated

results of these evaluations. Table 7.1 briefly describes the components of a FLWOR

expression and shows the high-level operations they each correspond to in XEditor.

	

	 	 59	
	

No FLWOR
Expression
Component

Description High-Level Operation

1 for The for clause generates
an ordered sequence of
tuples of bound variables,
called the tuple stream

Iteration

2 let The let clause binds each
variable to the result of
its associated expression,
without iteration.

Binding

3 where The where clause serves
to filter the tuple stream

Filtering

4 order by The order by clause can
be used to reorder the
tuple stream in ascending
or descending manner.

Sorting

5 Return The return clause
constructs the result of
the FLWOR expression.

Collecting

Table 7.1: Similarity between components of a FLWOR expression and the high-level operations
understood by XEditor.

The language-specific component for XQuery transforms a given query into its

equivalent AST. The AST is then traversed and, as any of the clauses mentioned in Table

7.1 is encountered, appropriate information is added to the symbol table. As described in

Chapters 4 and 5, once appropriate information has been put into the symbol table, a

Container object is formed and subsequently analyzed in order to form a graphical

representation of the query.

Figure 7.1 shows the XQuery editing environment provided by XEditor. XEditor

with a plug-in for XQuery works as a two-way graphical editing tool for the XQuery

language and competes functionally with BEA’s XQE (a tool written specifically for

	

	 	 60	
	

XQuery). Table 7.2 summarizes the key differences in features provided by the current

XEditor-based XQuery editor prototype and XQE.

 Figure 7.1: The editing environment provided by XEditor

Textual	

View	

Graphical

View	

Outline	
View	

	

	 	 61	
	

No Feature BEA’s
XQE

XEditor Comments

1 Editing clause expressions in
graphical view

XQE provides partial editing of clause
expressions. It provides an expression
editor to edit filter/join conditions but
does not allow editing of other kind of
clauses.
XEditor follows a generic approach
whereby double clicking on the
corresponding shape in the graphical
view makes the associated expression
editable.

2 Parsing of Prolog to form
function definitions and
environment variables

 XEditor does not yet parse the
declaration of user defined functions.

3 Enumerating list of operators
and library functions (for
XQuery)

 The XEditor will expose an interface
for collecting metadata about the
language operators and functions.

4 Polished User Interface
 The XEditor user interface is evolving

and shall be polished over time.

5 Handling of full XQuery
language The language-specific pluggable

component for XQuery is evolving to
incorporate complete XQuery.

6 Support for multiple query
languages

Extensible to multiple languages by
writing a language-specific pluggable
component.

7 Handling of embedded
comments in the query

Comments appear as tool tips with the
shape representing the associated
section of the query

8 Handling of errors in
graphical view

The region on XEditor user interface
containing the error is marked red,
which can be corrected in the
graphical view.
XQE displays an error message and
forces a switch to the text view.

9 Providing different views
varying in complexity for a
single query

User can choose to view or hide the
nested components of a query

10 Outline view of the query
Outline view of the query is auto –
constructed.

 Table 7.2: Key differences in features provided by XEditor and XQE

	

	 	 62	
	

7.2.1 Sample Queries in XQuery

In this section, we provide a few example queries written in XQuery and illustrate their

graphical representations in XEditor.

7.2.1.1 Inner Join

We describe here a query involving an inner join. The query intends to return a list

containing customer names along with the date when they placed an order. Referring to

the query source in Figure 7.2, the query involves iteration over a list of customer orders

and customer profiles. Customer orders and customer profiles are joined using a common

attribute -“CUSTOMER_ID”. For each customer, the name is constructed by

concatenating the attributes “FIRST_NAME” and “LAST_NAME”.

Query Source

for $CUSTOMER_ORDER in cus:CUSTOMER_ORDER()
for $CUSTOMER_PROFILE in cus:CUSTOMER_PROFILE()
where $CUSTOMER_ORDER/CUSTOMER_ID = $CUSTOMER_PROFILE/CUSTOMER_ID
return
 <CUSTOMER_DATA>
 <ns1:NAME>
 {fn:data($CUSTOMER_PROFILE/FIRST_NAME) +
 fn:data($CUSTOMER_PROFILE/LAST_NAME)}
 </ns1:NAME>
 <ns1:ORDER_DATE>{fn:data($CUSTOMER_ORDER/ORDER_DATE)}</ns1:ORDER_DATE>
 </CUSTOMER_DATA>

	

	
	
	
Figure	 7.2	 Inner	 Join:	 A	 query	 involving	 function	 calls	 and	 XML	 schemas	 and	 its	 graphical	 representation	

Return	 type	 for	 function	
call	 shown	 as	 a	 data	 tree	 	

Name	 is	
constructed	
from	 first	 and	

last	 names	
Return	 type	 for	

function	 call	 shown	
as	 a	 data	 tree	 	

	

	 	 63	
	

Figure 7.2 shows the graphical representation of the query. The query uses user-

defined functions to iterate through a list of customer orders and customer profiles. The

return type of each user-defined function is shows as a schema tree. The inner join

between the customer orders and customer profiles is represented using a join connection.

7.2.1.2 Outer Join

We describe here a query involving an outer join. The query source is given in Figure

7.3. The query has an outer loop iterating through customer profiles. The query uses a

user-defined function to obtain a list of customer profiles. For every customer profile, a

list of orders placed by the customer is built by a subquery. The subquery constructs the

list by iterating through a list of orders and correlating them with the customer profiles

using CUSTOMER_ID as the common attribute.

 The graphical representation illustrated in Figure 7.3 depicts traversal over

customer profiles using an iterator box. The traversal over customer orders happens

inside a subquery and is depicted using an iterator box. A join line connects the common

attribute- CUSTOMER_ID present inside the two iterator boxes and (with nesting) is

symbolic of an outer-join between the two data sets. The result of the outer-join is sorted

in a descending manner on the basis of the order amount and is represented using a

rectangular box. For each customer, the result consists of the corresponding attributes -

FIRST_NAME and LAST_NAME, followed by a list of orders placed by the customer.

The result is repeated for each customer traversed during iteration. A part of the result –

namely the attributes FIRST_NAME and LAST_NAME - are driven by iteration over

customer profiles. This is graphically depicted using a cardinality line that connects the

	

	 	 64	
	

iterator box with the result box. The remaining part of the result is the sorted list of orders

placed by the corresponding customer and is driven by iteration over the list of customer

orders and subsequent sorting of matched records. The sorted list of orders is graphically

represented inside the result box and is connected to the box representing the sort

operation using a cardinality line. The cardinality lines indicate the respective parts of the

result that are driven by each of the iteration or the sort operation. Thus the cardinality

line originating from the iterator box representing sorting over customer orders

terminates at the graphical representation of the sorted output inside the result box.

Query Source

for $CUSTOMER in cus:CUSTOMER_PROFILE()
return
<tns:CUSTOMER>
 <FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
 <LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
 {
 for $ORDER in cus:CUSTOMER_ORDER()
 where $ORDER/CUSTOMER_ID eq $CUSTOMER/CUSTOMER_ID
 order by $ORDER/TOTAL
 return <ORDER>
 <OID>{fn:data($ORDER/ORDER_ID)}</OID>
 </ORDER>
 }
</tns:CUSTOMER>

Figure 7.3: Outer Join: A query containing an outer-join and its graphical representation.

Iteration	 over	

customer	 profiles	

Iteration	 over	
customer	
orders	 	 Correlating	

customer	 orders	

with	 customer	
profiles	 using	 an	
outer	 join	

List	 of	 orders	

by	 a	
customer,	
sorted	 by	 the	

order	 amount	

	

	 	 65	
	

7.2.1.3 Nested Expressions

XEditor supports nested expressions. A nested expression can be shown in XEditor in

multiple ways based upon the user’s preference. For an example of a query containing a

nested expression, consider the query presented in Figure 7.3. The query contains a

return clause that contains a nested FLWOR expression. The graphical represenation in

Figure 7.3 is an unpacked representation where the graphcial shapes representing the

nested FLWOR expression are drawn alongside the shapes representing other clauses. In

an alternate representation, these graphical shapes can also be drawn inside the graphical

represenation of the return clause that contains the nested FLWOR expression. This is a

packed representation and requires fewer shapes to represent the query. Figure 7.4

illustrates the packed representation of the query.

Figure 7.4: Packed representation of a nested expression

In a packed representation, any connections that exist between graphical components

representing the nested expression remain hidden. Right clicking a packed representation

	

	 	 66	
	

gives the user an option to switch to an unpacked representation and vice-versa. This is

illustrated in Figure 7.6.

Figure 7.5: Switching between packed and unpacked representations

For the representation illustrated in Figure 7.5, choosing the ‘Expand’ option would result

in the graphical represenation illustrated in Figure 7.3.

7.2.1.4 Order By

We next describe a query involving a sort operation. Referring to the query source in

Figure 7.6, the query involves iteration over a list of customer orders, sorted by the

attribute “CUSTOMER_ID”, and returns specific attributes for each order.

	

	 	 67	
	

Query Source

for $CUSTOMER_ORDER in cus:CUSTOMER_ORDER()
order by $CUSTOMER_ORDER/CUSTOMER_ID
return
 <CUSTOMER_DATA>
 <ns1:ORDER_ID>{fn:data($CUSTOMER_ORDER/ORDER_ID)}</ns1:ORDER_ID>
 <ns1:CUSTOMER_ID>{fn:data($CUSTOMER_ORDER/CUSTOMER_ID)}</ns1:CUSTOMER_ID>
 <ns1:ORDER_DATE>$CUSTOMER_ORDER/ORDER_DATE</ns1:ORDER_DATE>
 <ns1:SHIPMENT>$CUSTOMER_ORDER/SHIP_METHOD</ns1:SHIPMENT>
<ns1:HANDLING_CHARGE>$CUSTOMER_ORDER/HANDLING_CHARGE</ns1:HANDLING_CHA
RGE>
</CUSTOMER_DATA>

Figure 7.6: A query containing a sort operation. The graphical representation depicts sorting using a
rectangular box.

7.2.2 Degree of Support for XQuery

The language-specific plug-in for XQuery works in accordance to the protocol prescribed

by XEditor. It plays its part in breaking a query into a set of clauses and is able to collect

information about variables as well as the scopes in which they occur. The XQuery plug-

in was tested against common kinds of queries of varying complexity. The AST Reader

is able to correctly handle nested queries as well as queries involving an outer/inner join.

It successfully maps each kind of clause to a high-level operation that is understood by

Cardinality	 connection	
from	 data	 source	

	 Sorting	 order	

	

Sorting	 criterion	

	

	

	 	 68	
	

XEditor. The plug-in currently being enhanced to cover the complete XQuery language

and will be validated using the XQuery test suite [12].

7.3 Using XEditor for SQL

SQL provides the most popular query interface to relational databases. Table 7.5 shows

some of the main aspects of the SQL language and their mapping to the high-level

operations understood by XEditor. Continuing along the same lines as for XQuery, it is

possible to develop a pluggable XEditor component for SQL. The component needs to

implement the set of interfaces prescribed by XEditor. A pluggable component for a

small subset of SQL92 was developed as a first proof of XEditor’s multilingual

capabilities.

No SQL Query Clause Description High-Level
Operation

1 FROM The FROM clause specifies the
collections of tables or views to
which the query is to be applied.

Iteration

2 WHERE The WHERE clause lists search
conditions for items to add to a
result set.

Filtering

3 ORDER BY The ORDER BY clause specifies
an ordering of the objects in the
result collection.

Sorting

4 SELECT The SELECT clause organizes
the result by identifying the
specific columns that form the
result.

Collecting

 Table 7.3: Subset of data analysis tasks expressible through SQL

	

	 	 69	
	

7.3.1 Sample Queries in SQL

In this section, we show a few example queries written in SQL and illustrate their

graphical representations in XEditor.

7.3.1.1 Select –Project -Join

Figure 7.7 shows the graphical representation of a simple select-project-join query. The

query described forms a join between two tables - employee and department.

Query Source

SELECT e.designation d.dept_name
FROM employee e, department d
WHERE e.department_id = d.department_id

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Figure 7.7: Graphical representation of a SQL select-project-join
	

7.3.1.2 Order By

Figure 7.8 shows the graphical illustration of a SQL query involving sorting as one of the

intermediate steps before returning the result. The SQL sort operation is described by its

Definition	

of	 table	 -‐	
employee	

Equi-‐join	
between	
department	

and	 employee	

Definition	
of	 table	 -‐	

department	

	

	 	 70	
	

source(s) of input, the sorting criterion, and the sorting order (ascending or descending)

for each criterion. The graphical representation for a sort operation shows each of the

above.

Query Source

SELECT e.FIRST_NAME, e.LAST_NAME, e.DEPARTMENT_ID, d.DEPARTMENT_NAME
FROM employee e, department d
ORDER BY e.LAST_NAME

 Figure 7.8: A SQL query with a sort operation.

7.3.2 Degree of Support for SQL

The language specific plug-in developed for SQL is able to handle basic SQL select-

project-join queries. The plug-in is not advanced enough to handle nested queries and

does not identify many clauses, including GROUP BY, LIKE and HAVING. The plug-in

was prototyped to validate the basic architecture of XEditor and to begin to evaluate its

capability to handle multiple query languages.

Definition	
of	 table	 -‐
department	

Definition	
of	 table	 -‐	

employee	

Sorting	
criterion	

Sorting	
order	

	

	 	 71	
	

7.4 Incorporating other Languages

Data analysis is a common task, and a number of recent languages have been developed

with built-in primitives to allow users to express and parallelize their data analysis tasks.

Examples include Pig [15] from Yahoo and Hive [16] from Facebook. These languages

share many common aspects with languages like XQuery and SQL. This section very

briefly discusses the high-level operations expressible in Pig, emphasizing the

commonality with the operations understood by XEditor.

7.4.1 Using XEditor for Pig

Pig is a platform for analyzing large data sets that consists of a high-level language for

expressing data analysis programs coupled with infrastructure for evaluating these

programs. Pig queries articulate data analysis tasks in terms of set-oriented

transformations, e.g., they apply a function to every record in a set, or they group records

according to some criterion and apply a function to each group. A Pig relation is a bag of

tuples and is similar to a table in a relational database; the tuples in the bag correspond to

the rows in a table. As expected, the kind of high-level operations expressible in the

language are similar to those well understood by XEditor. Table 7.4 shows the similarity

between the basic operations in Pig and the operations modeled in XEditor.

	

	 	 72	
	

No Pig Language
Clause

Description High-Level Operation

1 FOR EACH Generates data
transformations based on
columns of data.

Iteration

2 FILTER Selects tuples from a
relation based on some
condition.

Filtering

3 ORDER Sorts a relation based on
one or more fields.

Sorting

4 DUMP Displays the contents of a
relation.

Collecting

Table 7.4: Similarity between operations in Pig and the operations modeled in XEditor.

Similar to the approach followed for XQuery and SQL, it should be possible to develop a

language component for Pig which could be plugged into XEditor to allow two-way

editing for Pig.

	

	 	 73	
	

 CHAPTER 8

 Conclusion

In this project, we set out to build a graphical query editor that allows two-way editing,

not for a specific query language, but with a plug-and-play architecture to support

multiple languages. The goal was for a lightweight pluggable component to be able to

plugged into the framework to make the editor provide a two-way editing environment

for a given query language. The concept of having a language-agnostic framework

supporting two-way editing was successfully proven. To demonstrate the concept,

prototypes of language-specific pluggable components were developed for two query

languages, namely XQuery and a subset of SQL. The result for XQuery was quite

complete and was shown to be comparable to existing editors for XQuery. The user

interface presented by the framework is currently evolving so that it can match the kind

of polished user interfaces provided by commercial tools. These two prototypes

demonstrated how a well- developed language-specific component can indeed leverage

the flexibility and features offered by XEditor.

8.1 Discussion

The design and architecture of the XEditor framework has been initially validated via

lightweight pluggable components for XQuery and a subset of SQL. The number of lines

of code required for building both XEditor and the language specific plug-ins are shown

in Table 8.1. The majority of the effort in this project went into building the re-usable

framework of XEditor. The pluggable components, being much lighter and simpler, then

	

	 	 74	
	

make use of the services offered by XEditor to provide their language-specific dual

editing environments.

Module Lines of Code

XEditor 10,376
XQuery plug-in 436

SQL plug-in 374

 Table 8.1: Lines of code required to build XEditor and the language specific plug-ins

Size-wise, though the pluggable component for XQuery left a portion of the language

uncovered, it is not expected to grow much bigger than a thousand lines of code when

done. The pluggable component for SQL is primitive and was written just as an initial

proof of concept.

8.2 Future Work

The following are aspects of XEditor that need to be worked on going forward:

1. Incorporating data source metadata:

A query language, besides having a grammar, usually has a pre-defined notion of

data sources that can be referred to by queries written in the language. For

XQuery, an XML file accessed via the doc function might serve as a data-source,

while for SQL, a table, view or a table function can act as a data source. In

addition to data sources, each language comes with a library of pre-defined

functions that are usable within a query. XEditor still needs to provide a

mechanism to nicely import these details into the Resource Manager and to

	

	 	 75	
	

subsequently show them on the user interface. These extensions will extend

XEditor’s language-neutral capabilities.

2. Providing a more polished user interface:

The current user interface supporting graphical editing is clearly not yet advanced

enough in comparison to commercially available tools. The current interface was

developed with the priorities being to capture language capabilities and to get the

architectural concepts right. Work is now focused on improving XEditor so that

the framework can become acceptable to potential users.

3. Integration with existing source editors like XQDT:

XQDT [13] is a very nice source editor for XQuery. The architecture of XQDT

was studied in order to assess the effort required to integrate XQDT with the

framework. XQDT integration will mean that the textual view of the query would

be handled by such an advanced third-party editor, one that provides features like

code highlighting and other user assistance. The unit of exchange between the

framework and a text editor has been intentionally limited to a string buffer that

contains the text for the query. This allows for minimal dependency and ease of

integration. Though the required effort to integrate with XQDT was analyzed, it

has yet to be implemented.

4. Open Source Contribution:

This project is intended for eventual contribution to the Google Open Information

Integration (Open II) effort [14], which aims at creating an open-source set of

tools for information integration.	 The goal is for XQuery to be Open II’s solution

to XML data mapping.

	

	 	 76	
	

 REFERENCES

[1] Tiziana Catarci, Maria Francesca Costabile, Stefano Levialdi, and Carlo Batini,
‘Visual Query Systems for Databases: A Survey, Journal of Visual Languages

 and Computing, 8(2), 215–260, (1997).Visual Query Systems for Databases: A
S survey

[2] Altova MapForce Professional Edition, Version 2008. http://www.altova.com.

[3] Stylus Studio, XML Enterprise Suite, Release 2. http://www.stylusstudio.com.

[4] M. Carey and the AquaLogic Data Services Platform Team.
Data delivery in a Service-Oriented World: The BEA AquaLogic data services
platform. In Proc. of the ACM SIGMOD Conf. on Management of Data, Chicago,
IL, 2006.

[5] D. Braga, A. Campi, and S. Ceri. XQBE (XQuery By
Example): A Visual Interface to the Standard XML Query Language.
ACM Trans. Database Syst., 30(2):398{443, 2005.

[6] Borkar et al. Graphical XQuery in the AquaLogic Data Services Platform
Submitted for Publication, Nov, 2009

[7] L. M. Haas, M. A. Hern´andez, H. Ho, L. Popa, and M. Roth.
Clio Grows Up: From Research Prototype to Industrial Tool. In SIGMOD,

 pages 805–810, 2005.

[8] Cerullo, C and Porta, M.	 	 A System for Database Visual Querying and Query
Visualization: Complementing Text and Graphics to Increase Expressiveness
Database and Expert Systems Applications, 2007. DEXA '07. 18th International
Conference

[9] P. Mork, A. Rosenthal, L. J. Seligman, J. Korb, and K.Samuel,
Integration Workbench: Integrating Schema Integration Tools in InterDB, Atlanta,
GA, 2006.

[10] Eclipse Consortium, Eclipse Graphical Editing Framework (GEF) – Version 3.0.1,
 2004, http://www.eclipse.org/gef.

[11] XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/

	

	 	 77	
	

[12] XQuery Test Suite, http://www.w3.org/XML/Query/test-suite/. 	

[13] XQDT – XQuery Development Tools http://www.xqdt.org/

[14] Open II, Google Open Information Integration http://code.google.com/p/openii/

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig Latin: A Not-
So-Foreign Language for Data Processing,” in SIGMOD ’08: Proceedings of the
2008 ACM SIGMOD international conference on Management of data. New York,
NY, USA: ACM, 2008, pp. 1099–1110.

[16] A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,H. Liu, P.
Wyckoff, and R. Murthy, “Hive - a Warehousing Solution Over a Mapreduce
Framework,” in VLDB ’09: Proceedings of the 35th International Conference on
Very Large Data Bases. New York, NY,USA: ACM, 2009.

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	 78	
	

	

	

	
	

