

UNIVERSITY OF CALIFORNIA,
IRVINE

Hyracks Console:
Monitoring the Hyracks Partitioned-Parallel Runtime Platform

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Science

by

Siripen Pongpaichet

 Thesis Committee:
 Professor Michael J Carey, Chair

Associate Professor Chen Li
Professor Ramesh Jain

2011

© 2011 Siripen Pongpaichet

ii

DEDICATION

To

my family and friends

iii

TABLE OF CONTENTS

 Page

LIST OF FIGURES ..v

ACKNOWLEDGMENTS .. vii

ABSTRACT OF THE THESIS ... viii

1 INTRODUCTION ...1

2 HYRACKS OVERVIEW ..2

2.1 Hyracks Architecture ..3

2.2 Hyracks Jobs ...4

2.3 Hyracks Job Specification ...6

2.4 Hyracks Job Execution ..8

3 HYRACKS CONSOLE GOALS ... 11

4 HYRACKS CONSOLE ARCHITECTURE .. 13

4.1 Hyracks Console Visualization (HCV) .. 14

4.2 Hyracks Console Server (HCS) ... 15

4.2.1 Client Pull Mechanism ... 15

4.2.2 Server Push Mechanism ... 16

5 IMPLEMENTATION ... 17

5.1 REST API for Client Pulling Method .. 17

5.1.1 Hyracks Jobs .. 19

5.1.2 Hyracks Cluster Health .. 37

5.2 Publish/Subscribe API for Server Pushing Method .. 46

5.2.1 jobs channel: ... 47

5.2.2 stages/<job-id> channel: .. 48

iv

5.2.3 attempts/<job-id> channel: .. 49

5.3 Sample Web UI ... 50

6 CONCLUSION AND FUTURE THOUGHTS .. 54

REFERENCES ... 56

APPENDIX .. 59

v

LIST OF FIGURES

 Page

Figure 1: Hyracks Cluster Architecture ...3

Figure 2: Graph Representations for a Hyracks Job ...5

Figure 3: SQL Query of the Example Hyracks Job and TPC-H Schema6

Figure 4: Example Hyracks Operator Descriptor Graph (Hyracks Job Specification)7

Figure 5: Example Hyracks Activity Node Graph (Hyracks Job Plan) ...7

Figure 6: Example Hyracks Operator Node Graph at runtime .. 10

Figure 7: Hyracks Console System Architecture .. 14

Figure 8: addHandlers() and addHandler() Methods in WebServer.java..................................... 18

Figure 9: URL-Request Paths for the Hyracks Jobs Execution Information 19

Figure 10: Example Result from Hyracks Jobs Summary URL.. 21

Figure 11: Example Result from Hyracks Job's Specification URL.. 23

Figure 12: Example of Job's Specification (left) and Job’s Plan (right) 24

Figure 13: Example Result from Hyracks Job's Plan URL ... 26

Figure 14: Example Result from Hyracks Job's Stage URL ... 27

Figure 15: Example Result from Hyracks Job's Stage URL (cont.) ... 28

Figure 16: Example Result from Hyracks Job's Profile URL ... 31

Figure 17: Example of Data Movement at the M to N Hash Partitioning Connector 32

Figure 18: Small Scale Communication Matrix Image and

the Gradient Scale Representing the Partitioned Data Movement from Low to High 33

Figure 19: Large Scale Communication Matrix Image

(30 sender instances and 30 receiver instances) .. 33

vi

Figure 20: Source Code for Calculating Cell Color .. 36

Figure 21: URL Paths for Monitoring the Hyracks Cluster .. 37

Figure 22: Example Result from CC Configuration URL .. 38

Figure 23: Result from Node Configuration URL .. 39

Figure 24: Result from Nodes Summary URL ... 40

Figure 25: Result from Node Jobs Summary URL ... 41

Figure 26: Result from the First Example of Node Controller Resources URL

(MEM Category) ... 43

Figure 27: Result from the Second Example of Node Controller Resources URL

(LOAD Category) .. 45

Figure 28: Server-Push Mechanism ... 47

Figure 29: Example of /jobs Channel... 47

Figure 30: Example of /stages/<job-id> channel .. 48

Figure 31: Example of /attempts/<job-id> channel .. 49

Figure 32: Hyracks Console Visualization Sitemap ... 51

Figure 33: Job Summary in JSON format (left) and Job Browser Screenshot (right) 52

Figure 34: the Screenshot of One Part of Job Profile Page (bottom) ... 53

vii

ACKNOWLEDGMENTS

The Hyracks Console could not have been built without the assistance of many

individuals and teams. We are especially grateful to our advisor Michael Carey for his helpful

suggestions, encouragement, and for the kindness that he offered us throughout this process. We

also would like to thank the members of the Hyracks and ASTERIX group at University of

California, Irvine, for their feedback and support in overcoming obstacles: Vinayak Borkar,

Rares Vernica, Raman Grover, Alexander Behm, Nicola Onose and Yingyi Bu. Without them,

this project would not be what it is today.

Last, but not least, I would like to offer my warmest gratitude to my friend, Ching-Wei

Huang, for always being great company throughout this project, and for her splendid work on the

terrific interface design that has often left everyone speechless.

viii

ABSTRACT OF THE THESIS

Hyracks Console:
Monitoring the Hyracks Partitioned-Parallel Runtime Platform

By

Siripen Pongpaichet

Master of Science in Computer Science

University of California, Irvine, 2011

Professor Michael J Carey Irvine, Chair

 Use of high-level programming frameworks for data-intensive computation on large-scale

distributed clusters is prevalent in the parallel programming community, as the complexity of an

underling cluster can be concealed. However, debugging and optimizing applications in this

framework often leads to much difficulty and time loss on the part of the programmer. This

paper presents the Hyracks Console, which is designed to assist Hyracks users in monitoring and

understanding sets of parallel processes running on the Hyracks partitioned-parallel runtime

platform. The core challenges involved in creating the Hyracks Console were: identify which

system data will be most useful to users, gathering this data in real time, and ultimately,

presenting the data in a visual and scalable representation for the user.

1

1 INTRODUCTION

 In the past five years, high-level programming frameworks for large-scale parallel

programs, such as Hadoop [1] from Apache, MapReduce [2] from Google, Dryad [3] from

Microsoft, Pig [4] from Yahoo!, and Hive [5] from Facebook, have gained a lot of interest and

attention, both from academic researchers and real world businesses. The ability of these

frameworks to shield programmers from the complexity of an underlying distributed cluster and

to provide a simple programming interface allows programmers to create highly scalable

applications and run them in parallel on large-scale distributed clusters. Despite the success of

the MapReduce model, the model adds complexity to the computation design process of the

problem being solved; users need to translate their problems into jobs involving only Map and

Reduce primitives. In response, an alternative infrastructure called “Hyracks” [6], has been

proposed by researchers at the University of California, Irvine. Hyracks is an open-source,

partitioned-parallel platform built to support data-intensive computations on large shared-

nothing clusters.

 Debugging and monitoring remains a great challenge for these high-level programming

platforms. To diagnose the cause of a program failure, users have to understand the internal

structure of their distributed job and the mappings that exist between their fragments of

sequential source code and their jobs distributed execution. Given that program failures are

common, this means that the complexity of the distributed system inevitably becomes visible to

users. Several systems, such as Pig and DryadLINQ [7] provide a local debugging mode which is

useful for finding some types of bugs, but not for finding failures caused by large scale data.

Cloudera [8] and Karmasphere [9] provide a rich set of tools to simplify the development

experience for Hadoop users. In addition, Chukwa, a log collection framework [10], can be used

to monitor Hadoop clusters (including some visualization tools). Hyracks Users face similar

difficulties in understanding and analyzing the execution processes of their Hyracks jobs. To

accelerate the development process and provide better insight into the Hyracks platform, a

monitoring system is essential.

2

 In this thesis, the design and implementation of a new Hyracks Console is presented. The

ultimate goal of this component of Hyracks is to reduce the time and effort required for

understanding, implementing and optimizing Hyracks jobs. Programmers can use the Hyracks

console both to monitor their clusters’ health and to track the details of their Hyracks jobs’

execution. This monitoring system has some important characteristics, including: identifying

real-time job and system status and supporting large-scale clusters. All source codes for this

project will be available in a furthering release of Hyracks [11]. While the Hyracks Monitoring

Console is designed to monitor the Hyracks system, its approach is quite universal and could be

applied to other popular distributed platform such as MapReduce or Dryad. In Section 2, a quick

overview of the Hyracks platform is provided. Section 3 delves deeper into the motivations and

goals of the Hyracks Console. Section 4 presents the Hyracks Console architecture and design.

Section 5 explains the implementation of the Hyracks Console system. Finally, Section 6

summarizes the thesis and discusses a few other features that can be added in the future.

2 HYRACKS OVERVIEW

 Hyracks is an open-source, partitioned-parallel runtime platform written in the Java

programming language. Hyracks is designed to support data-intensive computations on large

shared-nothing distributed clusters. Computations on large collections of data, which are

distributed across multiple machines, are efficiently divided into smaller computations that

execute on each partition of the data separately (in parallel). Hyracks is in the same general space

as the Hadoop and Dryad infrastructures for data-parallel problems. Unlike the Hadoop

framework, which offers the MapReduce computational paradigm based on user-provided

functions, Hyracks provides an out-of-the-box set of common operators and connectors for

creating general data-oriented computation tasks. Hyracks also allows users to build their own

operator and/or connector types. In addition, Hyracks includes a Hadoop compatibility layer that

enables users to run existing Hadoop MapReduce jobs without changing their existing code. In

this section, we provide a quick overview of the Hyracks system architecture and describe the

steps involved in Hyracks job execution using a simple example of data query. A more extensive

explanation of Hyracks, along with a first evaluation of its performance, can be found in [6].

3

2.1 Hyracks Architecture

 Hyracks is designed to work on a shared-nothing cluster of commodity machines with

local CPUs, memories, and disks. As shown in Figure 1, Hyracks clusters are composed of two

types of nodes: Hyracks Cluster Controllers (CCs) and Hyracks Node Controllers (NCs). Every

Hyracks cluster is managed by one-and-only-one Cluster Controller process. In addition, any

machine in the Hyracks cluster can run one or more Node Controller processes. To setup a

Hyracks cluster, one machine is designated as a master node and runs the Hyracks Cluster

Controller. This master machine must be accessible from all worker machines in the cluster as

well as from the client machines that will be used to submit jobs to Hyracks. Worker machines

that want to participate in the Hyracks cluster must run a Hyracks Node Controller.

Figure 1: Hyracks Cluster Architecture

 When clients submit job execution requests by way of the client interface, the Cluster

Controller is responsible for accepting those requests, setting up their evaluation plans, and then

scheduling the job-tasks to run on selected machines in the cluster. When any failure occurs, the

Cluster Controller is also responsible for re-planning and re-executing some or all of the job-

tasks. In addition, the Cluster Controller is used to monitor the overall cluster health and to keep

track of the resource loads at the worker machines.

 Each worker machine in a Hyracks cluster has to run a Node Controller process which is

used to accept task execution requests from the Cluster Controller and which reports its health

Client Interface / Job Acceptor

Job Manager

Resource Accountant

Node Manager

Heartbeat Generator

Joblet Manager

Active Joblet Operators

Cluster Controller (CC) Node Controller (NC)

Cluster Controller

Node Controller

Node

Controller

Node

Controller

Node Controller

Local Disk Local Disk Local Disk

Node Controller

Source: ASTERIX: towards a scalable, semistructured data platform for evolving-world models [12]

Local Disk

4

(e.g., liveness and resource usage levels) periodically via a heartbeat mechanism. Hyracks uses a

push-mechanism to interact between the Cluster Controller and the Node Controllers: the Cluster

Controller pushes task execution requests to selected Node Controllers, and each Node

Controller pushes a notification (either complete or fail) message back to the Cluster Controller

when a computation at the worker machine is finished. In addition, to handle system failures that

might occur accidentally during the evaluation of a job, Hyracks provides a built-in mechanism

for fault detection and recovery through the use of heartbeats.

 When an NC is started, it gets three required arguments: node-id (which has to be

unique), cc-host (CC’s IP address) and data-ip-address (NC’s IP address). By default, the

Cluster Controller listens to communication data from the NCs through port 1099, but users can

setup a different port by passing optional parameters (port) when users start the Cluster

Controller. Besides the communication port between the CC and the NCs, there is another port

called http-port; this is a port for a Jetty web server with the HTTP protocol that runs inside

the Hyracks cluster. This port number is very important for the Hyracks Monitoring Console, as

all information displayed on the console is retrieved through this server port.

2.2 Hyracks Jobs

 A Hyracks job is started as a directed acyclic graph (DAG) representing a dataflow that

consists of a set of Hyracks Operator Descriptors (HODs) and Connector Descriptors (CDs). The

HOD nodes in the graph represent the partitioned computation operators of the job, and the CD

edges between the HOD nodes represent the data flow paths from one operator to another. CDs

also provide Hyracks with data-distribution information for shuffling data from the set of input

operators to the set of output operators. Internally, each HOD consists of one or more sub-

activities or phases called Hyracks Activity Nodes (HANs). Hyracks expands the HOD graph

into a more detailed HAN graph in order to divide the job into several stages and plan the order

in which the stage is going to be executed. The HOD graph is also called the Hyracks Job

Specification, and the corresponding HAN graph is also called the Hyracks Job Plan. At runtime,

Hyracks decides on the amount of parallelism necessary for each stage and then creates a set of

that many identical Hyracks Operator Nodes (HONs). These HONs are each clones of a HAN

5

and are responsible for performing their processing on individual partitions of the data coming to

them. Figure 2 summarizes these concepts.

Figure 2: Graph Representations for a Hyracks Job

 As mentioned earlier, Hyracks provides a standard set of HOD and CD libraries that are

commonly used in building data-oriented programs so that end users and query compliers can

simply use those built-in libraries to assemble their jobs. Important operators such as “file scan”,

“file writer”, “map”, “sort”, “join”, “group”, and “aggregate” operators are included in this core

library. Connectors such as “1:1”, “M:N Hash-Partition”, “M:N Hash-Partition-Merge”, “M:N

Range-Partition”, and “M:N Replicator” connectors are also part of the Hyracks core library.

Besides the core library, Hyracks allows end users to implement additional sets of HODs and

CDs specialized to their needs. For example, ASTERIX, a data-intensive storage and computing

platform based on the Hyracks platform [12], has implemented a “limit operator” and an “N:1

Merge connector” for its special requirements.

 Throughout this section, we will use a simple query as a Hyracks job example to describe

the internal processes of job execution from the beginning to the final evaluation step. This

Hyracks job is based on two files containing CUSTOMER and ORDERS data from the TPC-H

dataset [13]. This job aims to calculate the number of orders placed by customers belonging to

various market segments, and the results are sorted by their market segments. The example

Hyracks job is equivalent to the SQL query in the top of Figure 3. In addition, Figure 3 shows

the TPC-H schema of the two tables related to the query, namely the CUSTOMER and ORDERS

tables.

HOD Graph

(Hyracks Job

Specification)

Expand each HOD

into its set of HANs

HAN Graph

(Hyracks Job

Plan)

HON Graph

(Runtime)

Clone each HAN into

a Parallel set of HONs

6

Figure 3: SQL Query of the Example Hyracks Job and TPC-H Schema

2.3 Hyracks Job Specification

 The simple Hyracks job’s specification can be constructed as shown in Figure 4. Each

node shows a HOD’s name and argument(s), and each edge between two HODs indicates the

data distribution logic to be used for routing partitioned data from the set of senders to their

intended receivers. Additional metadata is provided in the File Scan operators to specify where

the files are located. Since data collections in Hyracks are partitioned and stored locally on

different nodes in the cluster, in order to access files using a file scan, the runtime tasks for the

scans have to be scheduled and executed on the machine(s) where the files are available.

 For this example, Figure 4 shows that the CUSTOMER data is partitioned into two files

(customer-part1.tbl and customer-part2.tbl) that are stored locally on nodes NC1 and NC2,

respectively. The ORDERS data is partitioned into three files (orders-part1.tbl, orders-part2.tbl,

and orders-part3.tbl), and each partition is two-way replicated. Thus, the first file can be accessed

on either node NC2 or NC3, the second file on either node NC3 or NC4, and the last file on

either node NC4 or NC5. This replication information gives Hyracks multiple choices for

scheduling the file scan HOD’s tasks on ORDERS data.

CUSTOMER

C_CUSTKEY NUMBER(10)

C_NAME VARCHAR2(25)

C_ADDRESS VARCHAR2(40)

C_NATIONKEY NUMBER(10)

C_PHONE VARCHAR2(15)

C_ACCTBAL NUMBER

C_MKTSEGMENT VARCHAR2(10)

ORDERS

O_ORDERKEY NUMBER(10)

O_CUSTKEY NUMBER(10)

O_ORDERSTATUS CHAR(1)

O_TOTALPRICE NUMBER

O_ORDERDATE VARCHAR2(10)

O_ORDERPRIORITY VARCHAR2(15)

O_CLERK VARCHAR2(15)

select C_ MKTSEGMENT, count(O_ORDERKEY)

from CUSTOMER join ORDERS on C_CUSTKEY = O_CUSTKEY

group by C_ MKTSEGMENT

order by C_ MKTSEGMENT

7

Figure 4: Example Hyracks Operator Descriptor

Graph (Hyracks Job Specification)

Figure 5: Example Hyracks Activity Node Graph

(Hyracks Job Plan)

Each File Scan HOD in Figure 4 is used to read data from a data source file

(CUSTOMER or ORDERS) and sends its stream of data to the Hash Join HOD using an M:N

hash-based partitioning connector. This connector distributes each datum produced by each of

M senders, using a provided hash function, to one of N receivers. In this case, the number of

senders (M) is the number of partitioned files in each data source, so M=2 for CUSTOMER data

and M=3 for ORDERS data. To compute the join in a partitioned manner, we need to ensure that

CUSTOMER and ORDERS instances that match on the join condition will be routed to the same

Hash Join

[M:N]

hash(C_CUSTKEY)

File Scan

(CUSTOMER)

File Scan

(ORDERS)

Pre Clustered Group By

In Memory Sort

File Writer

[M:N]

hash(C_MKTSEGMENT)

[1:1]

[1:1]

1 2

 Hash Build 3.1

 Hash Probe 3.2

 Generate Sorted Run 4.1

 Merge 4.2

[M:N]

hash(O_CUSTKEY)

3

4

5

6

[NC1: customer-part1.tbl]

[NC2: customer-part2.tbl]

[M:N]

hash(O_CUSTKEY)

[M:N]

hash(C_CUSTKEY)

[NC2: orders-part1.tbl, NC3: orders-part1.tbl]

[NC3: orders-part2.tbl, NC4: orders-part2.tbl]

[NC4: orders-part3.tbl, NC5: orders-part3.tbl]

File Scan

(CUSTOMER)

File Scan

(ORDERS)

Hash Join

(C_CUSTKEY = O_CUSTKEY)

Pre Clustered Group By

(C_MKTSEGMENT)

In Memory Sort

(C_MKTSEGMENT)

File Writer

[M:N]

hash(C_MKTSEGMENT)

[1:1]

[1:1]

8

join task. Therefore, hash partitioning of the CUSTOMER and ORDERS instances is done on

C_CUSTKEY and O_CUSTKEY, respectively.

 The Hash Join HOD in Figure 4 receives these two streams of data (one with

CUSTOMER instances and one with ORDERS instances) and produces a stream of

CUSTOMER-ORDERS pairs that satisfy the joining condition (C_CUSTKEY = O_CUSTKEY).

The result is re-distributed to an In-Memory Sort HOD using an M:N hash based partitioning

connector on the C_MKTSEGMENT field, in order to ensure that all CUSTOMER-ORDERS

pairs that agree on the that field will be routed to the same sort task. Then, each sort task locally

sorts the input stream into descending order on the C_MKTSEGMENT field and passes it to a

Pre-Clustered Group By HOD using a 1:1 connector. This 1:1 connector means that the number

of sender tasks will equal the number of receiver tasks and that data is routed pair-wise without

repartitioning. The Pre-Clustered Group By HOD can be used in this example since the input

data of this grouping HOD is clustered on the grouping field. Aggregation can then be done in a

partitioned manner, locally at each task, by invoking a COUNT aggregation function to count the

number of O_ORDERKEY occurrences within each group. Finally, the result from the Pre-

Clustered Group By HOD is sent to a File Writer HOD using, again, a 1:1 connector.

2.4 Hyracks Job Execution

 At the beginning of a job’s execution, Hyracks will expand each HOD in the Hyracks Job

Specification into a set of HANs. For example, Figure 5 shows the Hyracks activity graph for the

Hyracks job specification in Figure 4. The expansion of each HOD indicates all sub-phases

involved in each operator along with the sequencing dependency information among phases. In

our example, the Hash Join HOD is expanded into two HANs; Hash Build and Hash Probe

activities. The first activity builds a hash table on one input stream (usually the one with the

smaller amount of data). To produce the result stream of join pairs, the other input stream will

then be used in the second activity to probe the hash table (the result from Hash Build activity)

with its value on the hash field. Note that the build phase of the Hash Join HOD needs to finish

before the probe phase can begin. This sequencing constraint is indicated with the dotted arrow

(blocking edge) from the Hash Build HAN to Hash Probe HAN in Figure 5.

9

 Continuing with Figure 5, the In-Memory Sort HOD is similarly expanded into two

HANs: the Generate Sorted Runs and Merge activities. The former activity is used for generating

a set of sorted runs, and the latter activity is used to produce the sorted result by merging all

sorted runs generated by the first activity. The merge phase is not able to start until the first

phase completes; therefore, there is a blocking edge between those two activities. The rest of the

HODs in Figure 4 consist of a single activity each, so there is only one HAN in Figure 5 for each

of Figure 4’s HODs.

 A Hyracks Activity Node graph provides Hyracks with insight into the sequencing

dependencies of each part of a Hyracks job. Hyracks uses this information to facilitate execution

planning and coordination, which is why a HAN graph is also called Hyracks Job Plan. All

HANs that connect to one another with non-blocking edges are grouped together to form a job

stage. For each stage, the set of activities in it can be co-scheduled (e.g., to run in a pipelining

manner). Stages are planned and executed by Hyracks in the order in which they become ready

to run. A stage is ready to execute when all of its dependent stages have been executed

completely and successfully. Hyracks decides on the degree of parallelism and location of HAN

instances based on the job’s resource requirements and node affinities. For example, all File Scan

HAN tasks/instances have to be assigned to worker machines where the files of partitioned data

are located.

10

[1] File Scan (CUSTOMER)

[2] File Scan (ORDERS)

[3.1] Hash Build

[3.2] Hash Probe

[4.1] Generate Sorted Run

[4.2] Merge

[5] Pre-Clustered Group By

[6] File Writer

 A’s output is hash distributed to B

 B is blocked until A is completed

 A’s output is piped to B directly

Figure 6: Example Hyracks Operator Node Graph at runtime

 When each stage is scheduled, Hyracks Operator Nodes (HONs) are created at runtime to

be responsible for the actual computation at each worker machine. In fact, HONs are simply

clones of HANs. Figure 6 shows an example of a runtime HON graph resulting from stage

planning. The gray boxes in the figure indicate groups of operator nodes that belong to the same

stage. In reality, Hyracks will plan the degrees of parallelism and the locations of the HONs for

each stage just prior to the stage’s execution. At runtime, the three stages in our example will be

executed stage by stage based on their readiness to run. The first stage consists of two activities:

the File Scan activity on CUSTOMER data and the Hash Build activity as part of the hash join

operator. In this example, we assume that CUSTOMER data is partitioned into two files and that

Hyracks decides to use four nodes to compute the hash join. Hyracks begins to run the two File

11

Scan HONs along with the four Hash Build HONs to produce hash tables of CUSTOMER data

in stage 1.

 After the first stage is run successfully, the next stage, which probes the hash tables using

ORDERS data and then performs run generation for the sort operator, is planned and executed.

Here, we assume that ORDERS data is divided into three separate files with two-way replication

and that Hyracks decides to use three nodes for sorting. Thus, in the second stage, there are three

clones of the File Scan activity, four clones of the Hash Probe activity, and three clones of the

Generate Sorted Run activity, as shown in Figure 6. After Hyracks completes the second stage, it

begins to plan the last stage. This stage is composed of a set of Merge, Group By, and File Writer

HONs. The (local) Merge HONs receive the sorted runs from the previous stage, and they send

their sorted output streams to their local Group By HONs. These HONs aggregate their inputs

using a count aggregation function and produce the final results, which are written to partitions

of the output file by the File Writer HONs. The execution of this example job is then

successfully complete and terminated. Note that the 1:1 connectors between the activities in the

last stage cause the degree of parallelism of the Group By and File Writer activities to be the

same as the Sort activity.

 In the current Hyracks version (0.1.3), fault recovery from a node failure is very simple.

A job has a number indicating the maximum number of attempts for the job to be executed

before it is aborted by the Hyracks system. Any jobs that are impacted by a node failure will be

restarted from the beginning. (The Hyracks developers are now developing a more sophisticated

recovery technique that allows the system to restart a job at the granularity of each stage instead

of the entire job.)

3 HYRACKS CONSOLE GOALS

 The Hyracks platform has two main types of users

a) Hyracks End Users are users who create Hyracks jobs by assembling Hyracks

operators and connectors together, subsequently executing their jobs on the Hyracks

clusters. These users are likely to face the following problems:

12

 When a given job encounters problems during execution, users are given a

limited indication of what caused the an error; it can be hard for them to

determine at which stage the job’s error occurred. Consequently, it is often

hard and time consuming for end users to debug their Hyracks jobs.

 Users face difficulty in getting an overall picture of which nodes are

participating in the Hyracks cluster and how the various tasks in their job

have been mapped to these nodes by Hyracks.

b) Hyracks Operator Implementers are generally responsible for creating new Hyracks

operators and connectors, either in the system’s core library or in a user’s additional

library. These developers may have these following difficulties:

 Similar to the problems experienced by the end users, operator implementers

have to spend a significant amount of time implementing and debugging

Hyracks jobs in order to test their new operators and/or connectors.

 As mentioned earlier, each HOD in a Hyracks job consists of one or more

HAN(s). At runtime, each HAN is cloned into a parallel set of HONs.

Operator implementers often need to examine the internal processes of a

Hyracks job’s execution to ensure that their operators and/or connectors are

performing correctly and that input/output data are nicely partitioned and

distributed across nodes.

 The Hyracks Console is built to assist both kinds of Hyracks users to deal with the above

mentioned difficulties. The ultimate goal of the Hyracks console is to reduce the time and effort

required in monitoring and debugging Hyracks jobs. The different types of users have different

functional requirements and demands. Fortunately, these needs can be reduced to two major

domains, which are the Hyracks job’s execution processes and the Hyracks cluster’s

performance. The Hyracks Console is implemented to collect information needed for analyzing

the Hyracks system and displays that information on the visualization interface. In addition, the

console provides the following features.

 Real-Time Status: the Hyracks Console enables users to immediately detect
changes in the states of the Hyracks system. It allows users to observe the
progress of their job’s execution in real-time.

13

 Scalability: Hyracks is designed to run on a large-scale cluster. A production
cluster may consist of thousands of nodes and may execute thousands of
complicated Hyracks jobs at the same time. The console is designed to
efficiently collect, organize and present a large amount of monitored data.

4 HYRACKS CONSOLE ARCHITECTURE

 To achieve the stated system requirements and goals, we designed this system based on a

Representational State Transfer (REST) web-based architecture [14]. It consists of two major

components, which are web clients and web servers. The REST architecture is used to implement

the Hyracks console because of its scalability of component interaction, its independence in

terms of deployment of client and server components, and the simplicity of its interfaces. A

critical concept of REST is the existence of resources, each of which is referred to with a global

identifier (e.g., a URI in the HTTP protocol). In our system, these resources include the static

and dynamic states of both Hyracks Jobs (e.g., each job’s specification, plan, status, current

state, etc.) and Hyracks Clusters (e.g., the Cluster Controller and the Node Controller

configurations). To manipulate these resources appropriately, clients and servers are required to

communicate via a standardized interface such as HTTP and exchange representations of those

resources. The resources at the server are conceptually separated from the presentations returned

to the client.

 For most of the data-interchanges between clients and servers, we decided to use the

JavaScript Object Notation (JSON) format [15] rather than the Extensible Markup Language

(XML) format because of several advantages of JSON. JSON is a lightweight alternative to

XML, and JSON is smaller, faster and thus better for data interchanges. JSON is a text format

that is completely language independent and compatible with many programming languages

(e.g., Java, JavaScript, C, C++, C#, Python and many others). JSON objects are built up from

two structures: name/value pairs and ordered lists of values. These are universal data structures

found in most modern programming languages, which make the JSON format quite compatible

with many other programming languages.

14

Figure 7: Hyracks Console System Architecture

4.1 Hyracks Console Visualization (HCV)

 As shown in Figure 7, the Hyracks console architecture is conceptually divided into two

parts: “inside” and “outside” the Hyracks system. On the outside, we have implemented the

Hyracks Console Visualization (HCV) component to present the current state of the Hyracks

system in real-time. Hyracks users can access HCV with any web browser (e.g., Chrome,

Firefox, or IE). This component is totally separate from the Hyracks cluster. Any HCV can

connect to any cluster, and multiple HCVs can connect to the same cluster provided that the

user’s machine can reach the web server inside the Hyracks system.

 The HCV component provides a visualization of the current state of the Hyracks clusters

and its Hyracks jobs. It has the ability to represent information such that users can easily and

quickly understand and interpret it. Humans are a visually-oriented species, meaning that they

prefer images or diagrams over plain text. Therefore, it is vital to have appropriate visualization

methods available for representing different types of data, such as tables, charts, graphs and data

flow diagrams, in order to explain and describe the complex information in the simplest possible

way. This component should not only provide the high-level abstraction of an entire Hyracks

cluster and Hyracks jobs, but should also allow users to drill-down into the granular details of

each node in a given cluster and each stage of a given job. To this end, many visual

representation tools have been used such as GraphViz [16, 20], TimeGlider [17] and DataTables

Hyracks
Console

Visualization
(Client Server
Web-based)

Hyracks
Console Server

(Server Push) Publish

Subscribe Trigger
Services

“Outside”
Hyracks System

“Inside”
Hyracks System

Hyracks Jobs’ Information,
Cluster’s Health

Time-Series Data of Resources
e.g., CPU, Network, Memory and

Disk Usage.

Hyracks

Cluster

Call REST API
Functions

Return
Results

Send
Requests

Send
Respons

es

Hyracks
Console Server

(Client Pull)

15

[18]. There were several challenges involved in building this component, including achieving

scalability (the visualization should be intelligible at a large scale), as well as the ability of the

system to function dynamically (users should be able to see graphics changing in real-time).

Further explanation of the visualization issues, together with the set of animation tools

implemented in the Hyracks console system, can be found in [19].

4.2 Hyracks Console Server (HCS)

 The second component of the Hyracks console is the Hyracks Console Server (HCS) “on

the inside” of the Hyracks system. The HCS is responsible for collecting and delivering

monitoring information of the Hyracks system to the first component, Hyracks Console

Visualization (HCV). In fact, there are two web servers implemented in the Hyracks system to

support two different techniques for communication between clients and servers.

4.2.1 Client Pull Mechanism

 The first communication technique is called a client-pull [21], in which a client initiates a

request for transmission of information from the server. The server receives the request and calls

a REST API function to generate the result, mostly in the JSON format. Finally, the result is

delivered to the client via HTTP protocol. Our goal is to provide the exact data needed when a

user requests them; no more, no less. To connect to the web server, clients need to know the

server port number, which has to be setup through the http-port argument when users start the

Hyracks Cluster Controller process. To implement the Hyracks web server, we decided to use

Jetty, an open-source project providing an HTTP server, together with the javax.servlet

container [23], since it is embeddable, extensible, and enterprise scalable.

 To come up with an appropriate set of useful REST API functions, we first had to

understand the behavior of the Hyracks platform in fine detail, and estimate what kinds of

information are both significant and necessary. There have been various existing console systems

used to support other parallel platforms, which we used as guidelines, for example, Cloudera

and Karmasphere Studio for the Hadoop platform, Nova workflow manager [24] for Pig and

Daphne for DryadLINQ programs [25]. Combining the common functionalities of the existing

console systems with the survey of Hyracks users’ requirements, the set of necessary information

was eventually finalized. Our Hyracks console design is also flexible enough to allow users to

16

define their own REST API functions for generating and passing the resulting data through the

web server inside the Hyracks system.

 Monitoring information of the Hyracks cluster is gathered from two main sources. First,

data related to the state of the Hyracks jobs and the health of the Hyracks cluster are collected by

the CC (Hyracks Cluster Controller) and stored temporarily in the memory of the master node.

This kind of data is deleted whenever the CC is restarted. The second type of data is time-series

data stored on the local disk of the master node. Examples of this data are the CPU load, network

in/out, memory usage and disk consumption of all machines participating in the Hyracks cluster.

To collect this time-series data, we installed and used Ganglia, a scalable distributed monitoring

system for high performance computing systems [26, 27]. The Ganglia system uses RRDtool

(Round-Robin Database) [28] to store and archive all time-series data. Ganglia collects data

based on the physical view of the cluster, so there is one and only one set of data for each

machine. Unlike Ganglia, a given machine in a Hyracks cluster can install one or more NCs

(Hyracks Node Controllers). To map the logical NC nodes to the real physical nodes of the

cluster, we created an extra file that represents and stores this mapping information (as pairs of a

machine’s IP address and a path of an RRD table).

4.2.2 Server Push Mechanism

 Another technique used for client-server communications in the console is a server-push

mechanism [22], in which the server sends messages independent from any requests from clients.

Whenever new information is available, the server “publishes” that information in a specific

“channel.” To receive a message, clients have to “subscribe” or “listen” to that “channel.” This

service is used to deliver any dynamic information that should be expressed in advance (without

any requests), including notification of a new Hyracks job and notification of completed stages

and/or failure stages of a given Hyracks job. Even though this technique increases the number of

messages on the server, we adopted this approach to provide real-time support and dynamic

information for the Hyracks console. We implemented this service using CometD, a scalable

HTTP-based with a push technology pattern know as Comet over a Bayeux protocol [29, 30].

The Bayeux protocol can transport asynchronous messages with low latency between a web

server and a web client [31]. These messages are routed via named channels and can be delivered

in many directions (servers to clients, clients to servers, and clients to clients).

17

5 IMPLEMENTATION

 This section describes the implementation of the Hyracks Console in greater detail. It

describes the benefits and usages of each type of monitoring data along with actual results

returned by the console. Throughout this section, we assume that the IP address of the master

node running the Hyracks Cluster Controller process is “vanilla.ics.uci.edu” and that the

http-port number is “2099.” All of the URL examples shown here are based on that

assumption.

5.1 REST API for Client Pulling Method

The Jetty HTTP web server is embedded in the Hyracks console architecture to support

communication between the Hyracks Console Server (HCS) and the outside world including the

Hyracks Console Visualization (HCV) component. This server is started automatically when

users start the Hyracks Cluster Controller (CC) process and stopped when users stop the CC

process. The communication port number is setup based on the optional argument, http-port

number, when starting the CC process (the default value is 2099). To handle the client-pull

mechanism in the Jetty server, we simply build server connectors and handlers without using the

Servlets API. Each handler added in this server is responsible for generating different types of

results depended on the client requests. The sample code of creating “/state”, “/profile” and

“/console” handlers is presented in Figure 8.

18

Figure 8: addHandlers() and addHandler() Methods in WebServer.java

The information that typical Hyracks users request for monitoring the Hyracks system can

be boiled down into two main categories: Hyracks jobs’ execution information and Hyracks

cluster behavior. Given the REST-style architecture, we create a global URL for each type of

resource. Accordingly, the better navigating throughout every resource using the

RoutingHandler object, we organize the “URL-Request” paths based on the “Tree Structure”

as depicted in Figure 9 (as well as Figure 21 in Section 5.1.2).

As we mentioned earlier, most of the data returned from the HCS is in the JSON format.

Consequently, to provide a simple standard to the system, we build a Java object interface for

outputting the result, IJSONOutputFunction. Implementing an interface allows a class to

become more formal about the behavior that it promises to provide. Any classes that claim to

implement an interface must develop all methods defined by that interface. Interfaces also form a

contract between the classes and the outside world, and this contract is enforced at build time by

private final HandlerCollection handlerCollection;

private void addHandlers() {

ContextHandler handler = new ContextHandler("/state");

RoutingHandler rh = new RoutingHandler();

rh.addHandler("jobs", new JSONOutputRequestHandler(new JobsRESTAPIFunction(ccs)));

handler.setHandler(rh);

addHandler(handler);

handler = new ContextHandler("/profile");

handler.setHandler(new AdminConsoleProfileHandler(ccs));

addHandler(handler);

handler = new ContextHandler("/console");

rh = new RoutingHandler();

rh.addHandler("nodes", new JSONOutputRequestHandler(new NodesRESTAPIFunction(ccs)));

rh.addHandler("cluster", new JSONOutputRequestHandler(new ClusterRESTAPIFunction(ccs)));

handler.setHandler(rh);

addHandler(handler);

}

public void addHandler(Handler handler) {

handlerCollection.addHandler(handler);
}

19

the compiler. The Hyracks Console creates three classes from the IJSONOutputFunction

interface: JobsRESTAPIFunction, NodesRESTAPIFunction and

ClusterRESTAPIFunction. The first class is used for creating all information related to a

Hyracks job’s execution, and the rests are responsible for producing results regarding the

Hyracks cluster’s health.

5.1.1 Hyracks Jobs

 To assist Hyracks users monitor and understand the internal actions of each Hyracks

job’s execution, we provide the following monitoring information via the

JobsRESTAPIFunction: (1) summary of all jobs submitted to the cluster, as well as each job’s

(2) specification, (3) plan, (4) profile, and (5) stages. Figure 9 presents the URL paths that can be

used for requesting different types of information.

Figure 9: URL-Request Paths for the Hyracks Jobs Execution Information

 In this section, we are going to examine each type of information found in the Hyracks

Console and describe its usage based on real examples. Note that most of the data delivered from

the Hyracks Console Server (HCS) is presented in the JSON format.

/state /jobs /<job ID>

/spec

/plan

/<attempt>

/stage

/profile

<....…>

Intermediate Stage of the URL

End Stage of the URL

Dynamic Data

20

 Summary of Hyracks Jobs: When a client in the Hyracks Console Visualization (HCV)

sends a request to the Hyracks Console Server (HCS) through the Job-Summary URL, it

receives a JSONArray containing all Hyracks jobs that have been submitted to the Hyracks

system. Each job presents some important job-related entities such as job’s “ID”, job’s

“display-name”, job’s “application” name, job’s current “status” (i.e., INITIALIZED,

RUNNING, TERMINATED, or FAILURE), job’s “events” with time-stamp (e.g., job is

terminated event), and the number of “attempts.” Figure 10 is an example result for a Jobs

Summary URL request.

URL Path

 http://<cc-ip-address>:<http-port>/state/jobs

Example

 http://vanilla.ics.uci.edu:2099/state/jobs

21

Figure 10: Example Result from Hyracks Jobs Summary URL

{
result: [

{
id: "a965fe5a-ba0b-4a01-a13d-1b4dcc57adc1"
application: "tpch"
display-name: "job00000003"
status: "TERMINATED"
events: [

{
status: "RUNNING"
system-time: 1305922493368
date: "2011-05-20 13:14:53.368"

}
{

status: "INITIALIZED"
system-time: 1305922493361
date: "2011-05-20 13:14:53.361"

}
{

status: "TERMINATED"
system-time: 1305922494104
date: "2011-05-20 13:14:54.104"

}
]
attempts: 1
type: "job-summary"

}
{

id: "54d395c4-289f-4de9-ab54-c429b006a968"
application: "btree"
display-name: "job00000010"
status: "FAILURE"
events: [

{
status: "RUNNING"
system-time: 1305924975041
date: "2011-05-20 13:56:15.041"

}
{

status: "FAILURE"
system-time: 1305925628659
date: "2011-05-20 14:07:08.659"

}
{

status: "INITIALIZED"
system-time: 1305924975021
date: "2011-05-20 13:56:15.021"

}
]
attempts: 6
type: "job-summary"

}
]

}

22

 Job Specification: When a client sends a request to the HCS via the Job-Spec URL to gather

the job specification for a particular job, it receives a JSONArray containing two types of

data: a set of Hyracks connectors and a set of Hyracks operators. From that information,

users are able to recreate a Hyracks jobs’ specification (a DAG dataflow diagram) to ensure

that their jobs are constructed correctly. For example, in Figure 11 our example job’s

specification consists of three operators and four connectors. Each connector in the

connectors JSONArray is used to connect between two operators in the operators

JSONArray indicated by these two entities: in-operator-id and out-operator-id.

Figure 12 (left) shows the job’s specification diagram generated from the information in

Figure 11.

URL Path

 http://<cc-ip-address>:<http-port>/state/jobs/<job-id>/spec

Example

 http://vanilla.ics.uci.edu:2099/state/jobs/54d395c4-289f-

 4de9-ab54-c429b006a968/spec

23

Figure 11: Example Result from Hyracks Job's Specification URL

{
result: {
connectors: [
{
in-operator-port: 0
in-operator-id: "ODID:3b93bca7-b93a-4fab-87a6-ede060abb96e"
connector: {
id: "f4046a40-e78a-4492-af15-b25ff310994a"
java-class: "edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConnectorDescriptor"
type: "connector"

}
type: "connector-info"
out-operator-port: 0
out-operator-id: "ODID:52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf"

}
{
in-operator-port: 0
in-operator-id: "ODID:52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf"
connector: {
id: "e865252b-ba52-499f-a789-9084b1329edf"
java-class: "edu.uci.ics.hyracks.dataflow.std.connectors.OneToOneConnectorDescriptor"
type: "connector"

}
type: "connector-info"
out-operator-port: 0
out-operator-id: "ODID:7b34c851-fa5f-4d1b-94c3-cd8fa1ae5ce6"

}
]
operators: [
{
id: "3b93bca7-b93a-4fab-87a6-ede060abb96e"
in-arity: 0
java-class: "edu.uci.ics.hyracks.examples.btree.helper.DataGenOperatorDescriptor"
out-arity: 1
type: "operator"

}
{
id: "52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf"
in-arity: 1
java-class: "edu.uci.ics.hyracks.dataflow.std.sort.ExternalSortOperatorDescriptor"
out-arity: 1
type: "operator"

}
{
id: "7b34c851-fa5f-4d1b-94c3-cd8fa1ae5ce6"
in-arity: 1
java-class: "edu.uci.ics.hyracks.storage.am.btree.dataflow.BTreeBulkLoadOperatorDescriptor"
out-arity: 0
type: "operator"

}
]
type: "job"

}
}

24

Figure 12: Example of Job's Specification (left) and Job’s Plan (right)

ODID: 3b93bca7-b93a-4fab-87a6-ede060abb96e

Class: DataGenOperatorDescriptor

ODID: 52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf

Class: ExternalSortOperatorDescriptor

CDID: f4046a40-e78a-4492-af15-b25ff310994a

Class: MToNHashPartitioningConnector

CDID: e865252b-ba52-499f-a789-9084b1329edf

Class: OneToOneConnector

ODID: 7b34c851-fa5f-4d1b-94c3-cd8fa1ae5ce6

Class: BTreeBulkLoadOperatorDescriptor

ANID: f4a87f9e-16e8-409f-a2eb-7fb753e7c53f

Class: DataGenOperatorDescriptor

ANID: 889ed6c6-5660-4c6a-b302-bd5c3d065333

Class: ExternalSortOperatorDescriptor

$SortActivity

ANID: 22197d38-7f50-4540-be8e-4bcc583bd2c3

Class: ExternalSortOperatorDescriptor

$MergeActivity

ANID: ef47d7c1-46ef-4880-811f-18d18a1acf7a

Class: BTreeBulkLoadOperatorDescriptor

CDID: f4046a40-e78a-4492-af15-b25ff310994a

Class: MToNHashPartitioningConnector

CDID: e865252b-ba52-499f-a789-9084b1329edf

Class: OneToOneConnector

Stage 1

Stage 2

25

 Job Plan: When clients send a Job-Plan URL request, they receive a JSONArray of the job’s

plan information. This result consists of all of the job’s Hyracks activities, which are

expanded from the set of the Hyracks operators in the job’s specification. Each activity has a

set of input and/or output Hyracks connectors that are used to construct the Hyracks Activity

Node Graph (Hyracks Job Plan). In addition, the depends-on entity in the result shows the

“ID” of the blocking activities, specifying the dataflow constraint between each activity. All

activities connected by non-blocking edges are grouped together to form a job’s stage. Recall

that one Hyracks job is normally divided into many stages, and every stage is executed, one-

by-one, based on its readiness to run. The job’s plan gives insight into the Hyracks job’s

execution steps. For example, Figure 12 (right) is the plan diagram generated from the

information in Figure 13. The “ExternalSortOperatorDescriptor” operator in Figure 12 (left)

has been replaced with two activities, “SortActivity” and “MergeActivity,” that are

connected to each other by a blocking edge. Consequently, this job’s plan is divided into two

stages in which the second stage cannot be executed until the first stage is completed.

URL Path

 http://<cc-ip-address>:<http-port>/state/jobs/<job-id>/plan

Example

http://vanilla.ics.uci.edu:2099/state/jobs/54d395c4-289f-

4de9-ab54-c429b006a968/plan

26

Figure 13: Example Result from Hyracks Job's Plan URL

{
 result: {
 id: "54d395c4-289f-4de9-ab54-c429b006a968"
 activities: [
 {
 id: "ANID:ef47d7c1-46ef-4880-811f-18d18a1acf7a"
 owner-id: "ODID:7b34c851-fa5f-4d1b-94c3-cd8fa1ae5ce6"
 inputs: [{
 input-port: 0
 connector-id: "CDID:e865252b-ba52-499f-a789-9084b1329edf"
 type: "activity-input"
 connector-java-class:"edu.uci.ics.hyracks.dataflow.std.connectors.

OneToOneConnectorDescriptor"
 }]
 java-class: "edu.uci.ics.hyracks.storage.am.btree.dataflow.BTreeBulkLoadOperatorDescriptor"
 type: "activity"
 }
 {
 id: "ANID:22197d38-7f50-4540-be8e-4bcc583bd2c3"
 owner-id: "ODID:52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf"
 java-class: "edu.uci.ics.hyracks.dataflow.std.sort.ExternalSortOperatorDescriptor

$MergeActivity"
 outputs: [{
 connector-id: "CDID:e865252b-ba52-499f-a789-9084b1329edf"
 type: "activity-output"
 connector-java-class: "edu.uci.ics.hyracks.dataflow.std.connectors.

OneToOneConnectorDescriptor"
 output-port: 0
 }]
 type: "activity"
 depends-on: ["ANID:889ed6c6-5660-4c6a-b302-bd5c3d065333"]
 }
 {
 id: "ANID:f4a87f9e-16e8-409f-a2eb-7fb753e7c53f"
 owner-id: "ODID:3b93bca7-b93a-4fab-87a6-ede060abb96e"
 java-class: "edu.uci.ics.hyracks.examples.btree.helper.DataGenOperatorDescriptor"
 outputs: [{
 connector-id: "CDID:f4046a40-e78a-4492-af15-b25ff310994a"
 type: "activity-output"
 connector-java-class: "edu.uci.ics.hyracks.dataflow.std.connectors.

MToNHashPartitioningConnectorDescriptor"
 output-port: 0
 }]
 type: "activity"
 }
 {
 id: "ANID:889ed6c6-5660-4c6a-b302-bd5c3d065333"
 owner-id: "ODID:52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf"
 inputs: [{
 input-port: 0
 connector-id: "CDID:f4046a40-e78a-4492-af15-b25ff310994a"
 type: "activity-input"
 connector-java-class: "edu.uci.ics.hyracks.dataflow.std.connectors.

MToNHashPartitioningConnectorDescriptor"
 }]
 java-class: "edu.uci.ics.hyracks.dataflow.std.sort.ExternalSortOperatorDescriptor

$SortActivity"
 type: "activity"
 }
]
 type: "plan"
 }
}

27

 Job Stages: Unlike the results of the job’s plan or job’s specification which are static data,

when users request a job’s Job-Stage URL, they get dynamic data about the progress of the

job’s stage by stage execution. Here, the result is composed of several important entities; for

example, the current status of each stage (e.g., pending, in-progress, or completed),

the set of activities in each stage, the list of nodes assigned to process each activity, and the

time-stamp of the job’s state change events (e.g., init-time, finish-time, and

fail-time) on a stage by stage basis. As shown in Figure 14, users can monitor the

progress of their jobs’ execution by observing each stage’s status. Job execution is terminated

while there is no “pending” stage. Figure 15 provides the sense of parallelism of each activity

in the stage. As mentioned in the Hyracks overview, each activity is cloned into a set of tasks

that are scheduled to run on a set of nodes. The number of nodes at each activity, therefore,

indicates the degree of parallelism decided by the Hyracks system. In particular, the node-

events presents the actual time that each node spends for executing a Hyracks job at each

stage.

Figure 14: Example Result from Hyracks Job's Stage URL

{
 result: {
 attempt: 0
 pending-stage-ids: [
 "5ce9c97c-ba11-48e0-8ff0-01f9033d37fa"
]
 in-progress-stage-ids: [
 "079046ee-0e2f-435c-a7ce-578aedfc5bb6"
]
 completed-stage-ids: [
 "5f2a92e5-099f-4a51-978b-54985ab551ee"
]
 type: "stage-attempt"

URL Path

 http://<cc-ip-address>:<http-port>/state/jobs/<job-id>/

 <attempts>/stage

Example

http://vanilla.ics.uci.edu:2099/state/jobs/54d395c4-289f-

4de9-ab54-c429b006a968/0/stage

28

Figure 15: Example Result from Hyracks Job's Stage URL (cont.)

 stages: [
 {
 stage-id: "5f2a92e5-099f-4a51-978b-54985ab551ee"
 stage-finish-time: 1305924975320
 stage-init-time: 1305924975053
 stage-status: "completed"
 stage-name: "stage_1"
 activities: [
 {
 activity-id: "ANID:f4a87f9e-16e8-409f-a2eb-7fb753e7c53f"
 java-class: "edu.uci.ics.hyracks.examples.btree.helper.

DataGenOperatorDescriptor"
 operator-id: "ODID:3b93bca7-b93a-4fab-87a6-ede060abb96e"
 node-names: [
 "nc1"
]
 }
 {
 activity-id: "ANID:889ed6c6-5660-4c6a-b302-bd5c3d065333"
 java-class: "edu.uci.ics.hyracks.dataflow.std.sort.

ExternalSortOperatorDescriptor$SortActivity"
 operator-id: "ODID:52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf"
 node-names: [
 "nc1"
 "nc2"
 "nc3"
 "nc4"
]
 }
]
 nodes-events: [
 {
 init-time: 1305924975058
 finish-time: 1305924975318
 node-id: "nc1"
 }
 {
 init-time: 1305924975058
 finish-time: 1305924975319
 node-id: "nc2"
 }
 {
 init-time: 1305924975058
 finish-time: 1305924975305
 node-id: "nc3"
 }
 {
 init-time: 1305924975058
 finish-time: 1305924975316
 node-id: "nc4"
 }
]
 }

29

 Job Profile: This information represents data movement at the task-execution level. The unit

of data produced and consumed by Hyracks tasks is called a “Frame.” Each task-runtime

only operates on one stream of frames (per input), without consideration of any repartitioning

needed for the output. The repartitioning of the frames is handled separately by a Hyracks

connector. Each connector-runtime has two sides: the sender and the receiver, which each

can consist of several instances. A job’s profile provides a counter of how many times each

sender instance sends a frame to each receiver instance. Figure 16 depicts a sample result

from a sending job-profile URL request; it can be interpreted into the diagram as shown in

Figure 17.

In Figure 16, the format of the profile counters is

“<connector-id>.sender.<sender-id>.<receiver-id>.nextFrame.”

To turn on the collection of profiling data, which is disabled by default, Hyracks users

need to set a profile-dump-period argument (in the millisecond unit) while first starting

the Hyracks Cluster Controller process (e.g., hyrackscc -profile-dump-period

10000, which means that the profiling data should be updated every 10 seconds).

URL Path

 http://<cc-ip-address>:<http-port>/state/jobs/<job-id>/

 <attempts>/profile

Example

http://vanilla.ics.uci.edu:2099/state/jobs/54d395c4-289f-

4de9-ab54-c429b006a968/0/profile

30

{
 result: {
 job-id: "54d395c4-289f-4de9-ab54-c429b006a968"
 attempt: 0
 joblets: [
 {
 node-id: "nc1"
 type: "joblet-profile"
 stagelets: {
 stage-id: "5f2a92e5-099f-4a51-978b-54985ab551ee"
 counters: [
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.0.open"
 value: 1
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.1.open"
 value: 1
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.2.open"
 value: 1
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.3.open"
 value: 1
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.0.nextFrame"
 value: 33
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.1.nextFrame"
 value: 92
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.2.nextFrame"
 value: 101
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.3.nextFrame"
 value: 190
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.0.close"
 value: 0
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.1.close"
 value: 0
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.2.close"
 value: 0
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.3.close"
 value: 0
 }

(Note: This figure continues on the next page)

Indicate that the node-id of the

sender-id “0” is “nc1”

31

Figure 16: Example Result from Hyracks Job's Profile URL

 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.receiver.0.open"
 value: 1
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.receiver.0.nextFrame"
 value: 33
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.receiver.0.close"
 value: 0
 }
]
 }
 }
 {
 node-id: "nc2"
 type: "joblet-profile"
 stagelets: [
 {
 stage-id: "5f2a92e5-099f-4a51-978b-54985ab551ee"
 type: "joblet-profile"
 counters: [
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.receiver.1.open"
 value: 1
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.receiver.1.nextFrame"
 value: 92
 }
 {
 name: "f4046a40-e78a-4492-af15-b25ff310994a.receiver.1.close"
 value: 0
 }
]
 }
 {
 stage-id: "079046ee-0e2f-435c-a7ce-578aedfc5bb6"
 type: "joblet-profile"
 counters: [
 {
 name: "e865252b-ba52-499f-a789-9084b1329edf.receiver.1.close"
 value: 0
 }
 {
 name: "e865252b-ba52-499f-a789-9084b1329edf.receiver.1.nextFrame"
 value: 0
 }
 {
 name: "e865252b-ba52-499f-a789-9084b1329edf.receiver.1.open"
 value: 0
 }
]
 }
]
 }

Indicate that the node-id of the

receiver-id “1” is “nc2”

32

Figure 17: Example of Data Movement at the M to N Hash Partitioning Connector

(This example connector consists of one instance on the sender side and four instances on the receiver side.

There are 33, 92, 101 and 190 frames of data sent from sender “0” to receiver “0”, “1”, “2” and “3” respectively.)

It is clear from the figure that, this profiling information can become extremely large if

data is shuffled among thousands of nodes, and users may not be able to get an

understandable overview of the data movement at each connector from the data at this fine

granularity. Therefore, another URL path (shown in the box below) is provided to request the

profiling data at each connector via graphical image of a matrix representing data flow

between senders and receivers, as displayed in Figure 18 and Figure 19. The optional

number in the URL path below says that users also want to show the actual number of

frames, which are moved from senders to receivers, on the profile image.

ANID: f4a87f9e-16e8-409f-a2eb-7fb753e7c53f

Class: DataGenOperatorDescriptor

ANID: 889ed6c6-5660-4c6a-b302-bd5c3d065333

Class: ExternalSortOperatorDescriptor

$SortActivity

CDID: f4046a40-e78a-4492-af15-b25ff310994a

Class: MToNHashPartitioningConnector

Sender

“0”

Receiver

“0”

Receiver

“1”

Receiver

“3”

Receiver

“2”

33 92 101 109

URL Path

 http://<cc-ip-address>:<http-port>/profile/<job-id>/

 <attempts>/<connector-id>/(number)

Example

http://vanilla.ics.uci.edu:2099/profile/54d395c4-289f-4de9-

ab54-c429b006a968/0/f4046a40-e78a-4492-af15-b25ff310994a/number

33

High Data Movement

Low Data Movement

Average Data Movement

Figure 18: Small Scale Communication Matrix Image and

the Gradient Scale Representing the Partitioned Data Movement from Low to High

Figure 19: Large Scale Communication Matrix Image (30 sender instances and 30 receiver instances)

n
c1

nc1

nc2

nc3

nc4

Sender

R
e
ce

iv
e
r

34

Figure 18 shows a communication matrix image of a given Hyracks connector-runtime of

a Hyracks job running on a small-scale Hyracks cluster. The data is sent from one sender

instance to four receiver instances. To assume that the sender instance is operated by the

node-id “nc1” and each receiver instance is operated by the node-id “nc1”, “nc2”, “nc3” and

“nc4.” There are 33, 92, 101 and 190 frames sent from the sender node “nc1” to the receiver

nodes “nc1”, “nc2”, “nc3” and “nc4” respectively. The total number of frames that has been

sent is 416. Figure 19 shows a communication image of a particular Hyracks connector of a

Hyracks job running on a large-scale Hyracks cluster where there are 30 instances on the

sender side and 30 instances on the receiver side. The last column in the matrix image

presents the total number of frames that each receiver obtains. Moreover, the last row shows

the total number of frames which each sender delivers.

The color of each cell in the communication matrix image reflects the number of frames

that is sent among sender and receiver nodes. The colors range from the light green color

[RGB: 4 249 200] (low data movement) to the dark purple color [RGB: 80 0 112] (high data

movement). If data transfer is partitioned equally among all participating nodes, every cell in

the profile image will have the same color, which is the navy color [RGB: 46 110 151] (the

middle color in the gradient scale). These colors are being computed by increasing or

decreasing RBG (Red Green Blue) value of the middle color (navy color) toward high

(purple) or low (green) color. JHeatChart [32], a simple Java library for generating heat map

charts, has been modified and used to generate the communication matrix image.

From Figure 18, the color of the second cell in the matrix image can be computed as

shown below. The source code to calculate a cell color is also presented in Figure 20.

1) Calculating an average number of frames transfer from every sender instance to every

receiver instance.

E.g., avg = (33 + 92 + 101 + 190) / 4 = 104 frames

2) Finding a minimum and maximum value in the matrix and calculate a different between

the average value to the minimum value and maximum values.

E.g., rangeDown = avg – min = 104 – 33 = 71

rangeUp = max - avg = 190 – 104 = 86

3) Calculating a value distance between a matrix cell’s value and the average value.

E.g., the value of the second cell is 92. Thus, distance = |data – avg| = |92 – 104| = 12

35

4) Finding a proportion distance of the cell’s value toward the minimum or maximum value.

If the cell’s value is larger or equal to the average value, the rangeUp value (from step 2)

is used. Otherwise, the rangeDown value will be used.

E.g., value of the second cell, 92, is less than the average value, so

percentPosition = distance / rangeDown = 12 / 71 = 0.169

5) If the cell’s value is higher or equal to the average, we calculate the color value distance

between the navy color [RGB: 46 110 151] (reflects the average value) and the dark

purple color [RGB: 80 0 112] (reflects the maximum value). If not, the color value

distance is computed from the distance between the navy color and the light green color

[RGB: 4 249 200] (reflects the minimum value).

E.g., value of the second cell, 92, is less than the average, so

colourValueDistance = |Rnavy - Rgreen| + |Gnavy – Ggreen| + |Bnavy - Bgreen|

= |46 - 4| + |110 - 249| + |151 - 200| = 42 + 139 + 49 = 230

6) Calculating a number of times that the color value is required to shift.

E.g., colourPosition = colourValueDistance * percentPosition = 230 * 0.169 ≈ 39

7) The red (R), green (G) and blue (B) values of a given cell start with same value as the

red, green and blue values of the average color (in this example, the values are 46, 110,

and 151 respectively). Then, the cell’s R, G and B values are changed toward either the

low-end color or the high-end color by decreasing or increasing either R, G or B value

one-by-one until the number of shifting times reaches the colourPosition number (from

step 6). In each round, we compute three color distance pairs between the R, G and B of

the given cell and the R, G and B of the low/high-end color. Then, a color (R, G or B

color of the given cell) with the largest distance is selected to be added or deducted one

value at a time.

E.g., toward the low-end color, the distance of the green (G) value between the light

green and the navy is much larger than the distance of the read (R) and blue (B)

colors, thus the green value is kept increasing from 110 to 149 (increase one value

at a time until reach 39 times).

8) Finally, generating a new color from the Red, Green, and Blue color from setp 7.

E.g., the result color of the second cell (value 92) in the matrix image is

a dark green color [RGB: 46 149 151] as shown in Figure 18.

36

Figure 20: Source Code for Calculating Cell Color

 private Color getCellColour(double data, double min, double max, double avg) {

 double rangeUp = max - avg;
 double rangeDown = avg - min;
 double distance = Math.abs(data - avg);

 int r = midValueColour.getRed();
 int g = midValueColour.getGreen();
 int b = midValueColour.getBlue();

 // What proportion of the way through the possible values is that.
 double percentPosition;
 int r2, g2, b2;
 if(data >= avg){
 percentPosition = distance / rangeUp;
 r2 = highValueColour.getRed();
 g2 = highValueColour.getGreen();
 b2 = highValueColour.getBlue();
 }
 else{
 percentPosition = distance / rangeDown;
 r2 = lowValueColour.getRed();
 g2 = lowValueColour.getGreen();
 b2 = lowValueColour.getBlue();
 }
 int colourValueDistance = Math.abs(r - r2) + Math.abs(g - g2) + Math.abs(b - b2);
 int colourPosition = (int) Math.round(colourValueDistance * percentPosition);

 // Make n shifts of the colour, where n is the colourPosition.
 for (int i=0; i<colourPosition; i++) {
 int rDistance = r - r2;
 int gDistance = g - g2;
 int bDistance = b - b2;

 if ((Math.abs(rDistance) >= Math.abs(gDistance))
 && (Math.abs(rDistance) >= Math.abs(bDistance))) {
 // Red must be the largest.
 r = changeColourValue(r, rDistance);
 } else if (Math.abs(gDistance) >= Math.abs(bDistance)) {
 // Green must be the largest.
 g = changeColourValue(g, gDistance);
 } else {
 // Blue must be the largest.
 b = changeColourValue(b, bDistance);
 }
 }
 return new Color(r, g, b);
 }

private int changeColourValueDown(int colourValue, int colourDistance) {
 if (colourDistance < 0) {
 return colourValue-1;
 } else if (colourDistance > 0) {
 return colourValue+1;
 } else {
 // This shouldn't actually happen here.
 return colourValue;
 }

 }

37

5.1.2 Hyracks Cluster Health

Besides the Hyracks jobs’ information, the Hyracks Console allows users to monitor the

overall Hyracks Cluster Health. Every Hyracks cluster consists of two types of nodes: Hyracks

Cluster Controllers (CCs) and Hyracks Node Controllers (NCs). In reality, production clusters

will generally consist of thousands of nodes. At that scale, users will not be able to access each

physical node, one-by-one, to gather an overview of the current state of the cluster. As a result,

the following Request-URL paths in Figure 21 are created to assist users retrieving cluster

monitoring information. The data related to CC and NC(s) in the cluster is very important to

diagnose the overall cluster health. This data is divided into five main categories: CC

configuration, NC configuration, NC summary, NC jobs summary, and NC resources. We will

explain the further details below.

 Figure 21: URL Paths for Monitoring the Hyracks Cluster

 Hyracks Cluster Controller Configuration:

The Hyracks Cluster Controller (CC) plays a significant role in the Hyracks system. It is

the main process to handle job control communications between the master node and worker

nodes in the Hyracks cluster and schedules all jobs’ execution. To ensure that the CC is setup

correctly, users can check with the cc-config entity which reports all configuration

variables, including cc-port, http-port, heartbeat-period, max-heartbeat-

lapse-periods, default-max-job-attempts and profile-dump-period. Note

that the CC configuration values cannot be changed unless users restart the CC process. The

result of requesting the CC-Config URL also includes significant information about

applications deployed in the clusters. Shown in Figure 22 is the result of an example result

<....…>

Intermediate Stage of the URL

Dynamic Data on the URL

/console

/cluster

/<nodeid>

End Stage of the URL

/nodes /jobs

/config

/<end> /<start> /<step> /<type> /resources

38

for the Hyracks Cluster Controller. There are three applications deployed, which are tpch,

btree and fuzzyjoin.

Figure 22: Example Result from CC Configuration URL

{
 result: {

 cc-config: {
 heartbeat-period: 10000
 default-max-job-attempts: 5
 profile-dump-period: 100

max-heartbeat-lapse-periods: 5
cc-port: 1099
type: "cc-config"
http-port: 2099

 }
app-name: [
"tpch"
"btree"
"fuzzyjoin"

]
applications: [

{
 application-root-dir: "edu.uci.ics.hyracks.control.cc.

ClusterControllerService/applications/tpch"
 application-name: "tpch"
 created-at: "2011-05-20 13:12:06.425"
 initialized-at: "2011-05-20 13:12:09.799"
}
{
 application-root-dir: "edu.uci.ics.hyracks.control.cc.

ClusterControllerService/applications/btree"
 application-name: "btree"
 created-at: "2011-05-20 13:13:48.735"
 initialized-at: "2011-05-20 13:13:48.881"
}
{
 application-root-dir: "edu.uci.ics.hyracks.control.cc.

ClusterControllerService/applications/fuzzyjoin"
 application-name: "fuzzyjoin"
 created-at: "2011-05-20 13:12:59.933"
 initialized-at: "2011-05-20 13:13:00.580"
}

]
 }
}

URL Path

 http://<cc-ip-address>:<http-port>/console/cluster

Example

 http://vanilla.ics.uci.edu:2099/console/cluster

39

 Hyracks Node Controller Configuration:

All node configuration variables and their values for a given node controller are

returned from the Hyracks Console Server when clients send Node-Config URL request,

as shown in

Figure 23. (Note that if users intend to adjust its configuration values, they need to restart

the Node Controller.)

Figure 23: Result from Node Configuration URL

 Hyracks Node Controllers Summary:

When clients send a Node-Summary URL request, they get a JSONArray containing a

list of all nodes associated with the monitored Cluster Controller, as shown in Figure 24.

Each node consists of four entities, id, host, load_one and type. The host entity at each

node indicates the liveness of each node. If the host value of a given node is less than the

max-heartbeat-lapse-periods value (in CC configuration), the node is still alive. The

{
 result: {
 id: "nc1"
 frame-size: 32768
 cc-host: "127.0.0.1"

dcache-client-path: "/tmp/dcache-client"
io-devices: "/tmp"
data-ip-address: "127.0.0.1"
cc-port: 1099
type: "node-config"
dcache-client-servers: "localhost:54583"

 }
 }

URL Path

http://<cc-ip-address>:<http-port>/console/nodes/

<node-id>/config

Example

 http://vanilla.ics.uci.edu:2099/console/nodes/nc1/config

40

load_one entity is one-minute load average.1 The load average is recalculated every five

seconds based on the current system load. The system load is the number of processes that

are running on the machine plus the number of processes that are waiting to run. On the

lightly loaded node, the current system load varies between 1 and 0.

Figure 24: Result from Nodes Summary URL

1 http://book.opensourceproject.org.cn/enterprise/cluster/linuxcluster/opensource/11021/bbl0140.html

{
 result: [
 {
 id: "nc1"
 host: 0
 load_one: "4.3111111111e-01"
 type: "node-summary"
 }
 {
 id: "nc2"
 host: 1
 load_one: "6.0500000000e-01"
 type: "node-summary"
 }
 {
 id: "nc3"
 host: 2
 load_one: "3.1905555556e+00"
 type: "node-summary"
 }
 {
 id: "nc4"
 host: 1
 load_one: "3.8733333333e-01"
 type: "node-summary"
 }
]

 }

URL Path

 http://<cc-ip-address>:<http-port>/console/nodes

Example

 http://vanilla.ics.uci.edu:2099/console/nodes

41

 Hyracks Node Controller Jobs Summary:

The node controller jobs summary URL represents the list of Hyracks jobs on a given

node. Each job is classified into four categories based on their current status: INITIALIZED,

RUNNING, TERMINATED, or FAILURE. This information helps users to understand the

performance and workload of each node. An example result is presented in Figure 25.

Figure 25: Result from Node Jobs Summary URL

{
 result: {
 failed-jobs: {

job-id: "54d395c4-289f-4de9-ab54-c429b006a968"
application: "btree"
display-name: " job00000010"
status: "FAILURE"
attempts: 6

 start-time: "2011-05-20 13:56:15.041"
 end-time: "2011-05-20 14:07:08.659"
 }
 finish-jobs: [
 {

job-id: "eb444563-311f-469f-9874-2705cf3bccda"
application: "btree"
display-name: "job00000005"
status: "TERMINATED"
attempts: 1
start-time: "2011-05-20 13:15:50.536"
end-time: "2011-05-20 13:15:51.045"

 }
 {

job-id: "17159a0c-0ae9-414d-9553-928a9b42a12d"
application: "fuzzyjoin"
display-name: "job00000001"
status: "TERMINATED"
attempts: 1
start-time: "2011-05-20 13:13:26.969"
end-time: "2011-05-20 13:13:27.962"

 }
]
 }
}

URL Path

http://<cc-ip-address>:<http-port>/console/nodes/

<node-id>/jobs

Example

 http://vanilla.ics.uci.edu:2099/console/nodes/nc1/jobs

42

 Hyracks Node Controller Resources:

The CC process on the master node is significant for controlling the Hyracks system, but

information about physical resource consumption at the master node itself is less important,

since the computation is actually done at the worker nodes that run the NC process.

Information about the resource usage of each worker machine is beneficial in order to

monitor the cluster’s health and detect any job execution failures caused by node failures.

When clients send a request via the NC-Resources URL, they receive the time series data for

resource consumption at the specified Node Controller nodes.

The time series data is collected by the Ganglia software and stored in the RRD database.

By default, there are five main categories of the resource; for example, CPU (cpu_idle,

cpu_nice, cpu_system, cpu_user and cpu_wio), DISK (disk_free and disk_total), LOAD

(load_one, cpu_num, proc_run and proc_total), NETWORK (bytes_in, bytes_out, pkts_in

and pkts_out), and MEM (mem_bufferes, mem_cached, mem_free, mem_shared and

mem_total). Users can more specify about the desired data by adding these following filters

at the end of the URL: resource type(s), frequency of data (e.g., every 15 or 90 seconds) and

a time interval.

 As above display shown the first example URL asks for the memory consumption of the

node-id “nc1” in the Hyracks cluster. By default, the resolution step of resource data is

every 15 seconds, and the end-time is “now”. The number of records returned by the web-

server is about 30 records per type of resource. In other words, the default resource usage

URL returns the resource consumption in the last 450 seconds (= 15 seconds * 30 records).

The sample result (only the first ten data records) from this URL is shown in Figure 26. The

type entity represents the resource category and sub-type entity indicates the sub-type of

URL Path

http://<cc-ip-address>:<http-port>/console/nodes/

<node-id>/resources/<type>/(<step>)/(<start-time>)/(<end-time>)

Example

 (1)http://vanilla.ics.uci.edu:2099/console/nodes/nc1/resources/mem

(2)http://vanilla.ics.uci.edu:2099/console/nodes/nc1/resources/load

/90/1303333720/1303334720

43

the resource data in a given category; for instance, the MEM resource type has mem_buffers

and mem_cached as a sub-type. Each data record consists of three entities, num, time and

value to represent a value of resource usage at a specific time. The num entity shows a

number of machines (always equal to 1 for every NC).

Figure 26: Result from the First Example of Node Controller Resources URL (MEM Category)

(continue from the left figure)

 {
 type: "mem"
 sub-type: "mem_cached"
 count: 30
 data: [

 {
 num: "1.0000000000e+00"

 time: "06:51:45 PM"
 value: "6.1557333333e+04"

 }
 {
 num: "1.0000000000e+00"
 time: "06:52:00 PM"
 value: "6.1560000000e+04"
 }
 {
 num: "1.0000000000e+00"
 time: "06:52:15 PM"
 value: "6.1560000000e+04"
 }
 {
 num: "1.0000000000e+00"
 time: "06:52:30 PM"
 value: "6.1538666667e+04"
 }
 {
 num: "1.0000000000e+00"
 time: "06:52:45 PM"
 value: "6.1528000000e+04"
 }
 {
 num: "1.0000000000e+00"
 time: "06:53:00 PM"
 value: "6.1528000000e+04"
 }
 {
 num: "1.0000000000e+00"
 time: "06:53:15 PM"
 value: "6.1380000000e+04"
 }
 {
 num: "1.0000000000e+00"

 time: "06:53:30 PM"
 value: "6.1380000000e+04"
 }

{
 num: "1.0000000000e+00"

 time: "06:53:45 PM"
 value: "6.2880000000e+04"
}
{

 num: "1.0000000000e+00"
 time: "06:54:00 PM"

 value: "6.5880000000e+04"
}

 …
 …
 …
]
 }
]
}

{
 result: [
 {
 type: "mem"

 sub-type: "mem_buffers"
 count: 30

 data: [
{

num: "1.0000000000e+00"
time: "06:51:45 PM"
value: "2.4786666667e+03"

}
{

num: "1.0000000000e+00"
time: "06:52:00 PM"
value: "2.5160000000e+03"

}
{

num: "1.0000000000e+00"
time: "06:52:15 PM"
value: "2.5160000000e+03"

}
{

num: "1.0000000000e+00"
time: "06:52:30 PM"
value: "2.5506666667e+03"

}
{

num: "1.0000000000e+00"
time: "06:52:45 PM"
value: "2.5680000000e+03"

}
{

num: "1.0000000000e+00"
time: "06:53:00 PM"
value: "2.5680000000e+03"

}
{

num: "1.0000000000e+00"
time: "06:53:15 PM"
value: "2.6200000000e+03"

}
{

num: "1.0000000000e+00"
time: "06:53:30 PM"
value: "2.6200000000e+03"

}
{

num: "1.0000000000e+00"
time: "06:53:45 PM"
value: "2.6426666667e+03"

}
{

num: "1.0000000000e+00"
time: "06:54:00 PM"
value: "2.6880000000e+03"

}
…
…
…

]
 }

(continue on the right figure)

44

The second example URL asks for the system load of the node-id “nc1.” The step is set

to be 90, so the result will show the resource data in every 90 seconds. The start-time and

end-time is also set. A time in seconds since epoch (1970-01-01) format is required. The

time interval is 1,000 seconds (1303334720 – 1303334720 = 1,000 seconds). Thus, the

number of records returned by the web-server is about 12 records (1,000 / 90 ≈ 12). The

sample result from this URL is shown in Figure 27.

45

Figure 27: Result from the Second Example of Node Controller Resources URL (LOAD Category)

(continue from the left figure)

{
 type: "load"
 sub-type: "proc_run"
 count: 12
 data: [

 {
num: "1.0000000000e+00"
time: "02:09:00 PM"
value: "0.0000000000e+00"

 }
{

num: "1.0000000000e+00"
time: "02:10:30 PM"
value: "0.0000000000e+00"

}
{

num: "1.0000000000e+00"
time: "02:12:00 PM"
value: "0.0000000000e+00"

}
{

num: "1.0000000000e+00"
time: "02:13:30 PM"
value: "7.0000000000e-01"

}
{

num: "1.0000000000e+00"
time: "02:15:00 PM"
value: "1.8666666667e+00"

}
{

num: "1.0000000000e+00"
time: "02:16:30 PM"
value: "8.8888888889e-02"

}
{

num: "1.0000000000e+00"
time: "02:18:00 PM"
value: "8.7777777778e-01"

}
{

num: "1.0000000000e+00"
time: "02:19:30 PM"
value: "1.6666666667e-01"

}
{

num: "1.0000000000e+00"
time: "02:21:00 PM"
value: "1.0000000000e+00"

}
{

num: "1.0000000000e+00"
time: "02:22:30 PM"
value: "6.1111111111e-01"

}
{

num: "1.0000000000e+00"
time: "02:24:00 PM"
value: "5.4444444444e-01"

}
{

num: "1.0000000000e+00"
time: "02:25:30 PM"
value: "3.5555555556e-01"

}
]
}

]
}

{
 result: [
 {
 type: "load"
 sub-type: "load_one"
 count: 12
 data: [
 {

num: "1.0000000000e+00"
time: "02:09:00 PM"
value: "4.3111111111e-01"

}
{

num: "1.0000000000e+00"
time: "02:10:30 PM"
value: "1.8833333333e+00"

}
{

num: "1.0000000000e+00"
time: "02:12:00 PM"
value: "4.4528888889e+00"

}
{

num: "1.0000000000e+00"
time: "02:13:30 PM"
value: "3.1905555556e+00"

}
{

num: "1.0000000000e+00"
time: "02:15:00 PM"
value: "1.2870000000e+00"

}
{

num: "1.0000000000e+00"
time: "02:16:30 PM"
value: "6.0500000000e-01"

}
{

num: "1.0000000000e+00"
time: "02:18:00 PM"
value: "7.7000000000e-01"

}
{

num: "1.0000000000e+00"
time: "02:19:30 PM"
value: "9.3388888889e-01"

}
{

num: "1.0000000000e+00"
time: "02:21:00 PM"
value: "7.8722222222e-01"

}
{

num: "1.0000000000e+00"
time: "02:22:30 PM"
value: "6.0000000000e-01"

}
{

num: "1.0000000000e+00"
time: "02:24:00 PM"
value: "4.7622222222e-01"

}
{

num: "1.0000000000e+00"
time: "02:25:30 PM"
value: "3.8733333333e-01"

}
]

 dsname: "nc1"
 }

 (continue on the right figure)

46

5.2 Publish/Subscribe API for Server Pushing Method

 One of the most significant features of any monitoring system is its “real-time” support.

To satisfy this characteristic, we implement an additional web-server in the Hyracks Console

Server (HCS) to support a server-push mechanism that responds to vital Hyracks events. With

this server, the system can avoid having clients periodically poll for data. This second server

initiates communication between the Hyracks Console Server (HCS) and the Hyracks Console

Visualization (HCV) and publishes messages to a particular “channel” whenever a vital event

occurs. Any clients that subscribe/listen to that channel will receive the message and perform

appropriate actions. This web-server is implemented on port number [http-port + 1]. (E.g.,

if the http-port setting is 2099, this web-server communicates over port 2100.)

The key events in the Hyracks system are handled by messages that flow between the

Hyracks Cluster Controller (CC) and one or more of the Hyracks Node Controllers (NCs). For

example, when a stage is ready to run, the CC sends messages to the set of NCs participating in

that stage’s execution in order to start task activations, and the CC is informed of the failure or

success of a stage by the NCs. The significant Hyracks events can be classified into three main

categories; therefore, we create three channels responding to each category: (1) /jobs, (2)

/stages/<job-id> and (3) /attempts/<job-id> channel.

 As we mentioned in the system architecture section, the CometD service is employed to

support server-push communications between clients and servers via the Bayeux protocol. To

implement this service in the Jetty server, CometdServlet and JobStageServlet objects

are added to the Jetty servlet container and initiated when the server starts. The first object is

responsible for the CometD and Bayeux configuration, and the second object is responsible for

invoking CometD services in the JobStageService class. This class extends the CometD

class org.cometd.server.AbstractService, which specifies the Bayeux channels the

service is interested in.

When an important event in the Hyracks system occurs, depending on what type of event

it is, one of these three methods - pushJobs(), pushStages() or pushAttempts()- is

invoked. Each method requests JobStage Servlet URL along with different parameters and

values. The servlet then generates the result/message in the JSON format and invokes

47

JobStageService, which then publishes the message on the particular channel. This process

can be summarized as shown in Figure 28.

Figure 28: Server-Push Mechanism

5.2.1 /jobs channel:

A message is published to this channel whenever there is an event related to Hyracks

Jobs, for example: JobCreateEvent, JobStartEvent, JobAbortEvent,

JobAttemptStartEvent, and JobCleanupEvent.

Figure 29: Example of /jobs Channel

Hyracks
Console Server
(Server push)

Hyracks
Console

Visualization

Push job message through “Channel”: /jobs

Request Job Summary through REST API

“Response”: Job Summary JSON data

1

2

3
Hyracks

Console Server
(Client pull)

data { name: “jobs” }

pushJobs()

pushStages()

pushAttempts()

JobStageServlet

extends

GenericServlet Class

(servlet library)

JobStageService

extends

AbstractService Class

(cometd library)

requests invokes

JobStage Servlet URL Pattern

"http://<host>:<port>/jobstage?name=jobs";

"http://<host>:<port>/jobstage?name=attempts&jobid=<jobId>";

"http://<host>:<port>/jobstage?name=stages&jobid=<jobId>&attempt=<attempt>";

48

Figure 29 shows an example action when a new job is submitted to the system. The HCS

(supporting server-push) calls the pushJobs() method to publish a message to the /jobs

channel. The HCV, which subscribes to this channel, receives the message and reloads a

JobBrowser page by sending a new request to HCS (supporting client-pull). The latter server

processes the client request and responds back with the summary of jobs in the JSON format. In

this case, the push mechanism is used to trigger a client pull action.

5.2.2 /stages/<job-id> channel:

When an event related to some change in the states of a job stage occurs, a message,

including the current status of each stage, is published to this channel. Some examples of events

related to job stages are: ScheduleRunnableStagesEvent, StageletFailureEvent,

JobAttemptStartEvent, JobAbortEvent, and JobCleanupEvent.

Figure 30: Example of /stages/<job-id> channel

Figure 30 depicts an action when the stage of job-id “54d395c4-289f-4de9-ab54-

c429b006a968” is changed. The web-server calls the pushStage() method to publish the

Hyracks

Console Server

(Server push)

Hyracks

Console

Visualization

Push stage message through

“Channel”: /stages/<job-id>

Message includes the stages’ status in JSON format

1

For example:

data{

 name: “stages”,

 jobid: “54d395c4-289f-4de9-ab54-c429b006a968”,

 attempt: 0

 complete: ["5f2a92e5-099f-4a51-978b-54985ab551ee"],

 progress: ["079046ee-0e2f-435c-a7ce-578aedfc5bb6"],

 pending: [],

 fail: [],

 jobstatus: “RUNNING”

}

49

message to the /stages/54d395c4-289f-4de9-ab54-c429b006a968 channel. Then, the

HCV that listens to the channel receives and passes the message to the JavaScript function in

order to assign the color of each stage in the Job Activity Node Graph (Job Plan) diagram. The

message includes several entities, e.g., a job’s ID, attempt number, list of completed stages’ ID,

list of progressing stages’ ID, list of pending stages’ ID, list of failed stages’ ID, and job’s status.

The color notation of completed, progressing, pending and failed stage is light blue, light green,

gray, and salmon respectively. Note that this action, unlike the previous one, doesn’t request

other resources. This is because all needed information is already included in the message.

5.2.3 /attempts/<job-id> channel:

When an error occurs during a job’s execution, the Hyracks system will try to restart the

process again until reaching the maximum number of attempts. This channel is used when a

specific job begins a new attempt for its execution (JobAttemptStartEvent). The HCS calls

the pushAttempts() method to publish a message to the /attempts/<job-id> channel.

When the HCV receives the message, it reloads a JobProfile page as shown in Figure 31.

Figure 31: Example of /attempts/<job-id> channel

Hyracks
Console Server
(Server push)

Hyracks

Console

Visualization

Push attempt message through

“Channel”: /attempts/<job-id>

Reload the Job Profile page through REST API

“Response”: JobPlan, JobStage JSON data

1

2

3
Hyracks

Console Server
(Client pull)

For example:

data{ name: “attempts”,

 jobid: “54d395c4-289f-4de9-ab54-c429b006a968”,

 attempt: 1

}

50

5.3 Sample Web UI

 Even though data in the JSON format is fairly easy to read and comprehend, typical users

prefer information represented visually. In addition, when such data becomes large, it is almost

impossible for the users to gain knowledge by searching through thousands lines of text. In this

section, we provide some samples of the web interface of our Hyracks Console Visualization

(HCV) system. The entire sitemap of the HCV is presented in Figure 32. There are four main

pages: Hyracks Cluster Browser, Hyracks Node Controller Profile, Hyracks Job Browser and

Hyracks Job Profile. Users can navigate from the Hyracks Cluster Browser page to the Hyracks

Node Controller Profile page and from the Hyracks Job Browser page to the Hyracks Job Profile

page. In addition, they can navigate back and forth between the Hyracks Node Controller Profile

page and the Hyracks Job Profile page. Table 1 shows the list of contents presented on each web

page. A full description of the web user interface along with the user manual of the web UI can

be found in [19].

Table 1: Hyracks Web Pages Description

Page Name Description Contents

Hyracks Cluster Browser Presents overview of a particular

Hyracks Cluster including both

Hyracks nodes view and Hyracks

jobs view.

 Cluster Controller Configuration

 Registered Node Controllers &

Nodes’ Health

 Hyracks Jobs Execution

Timeline

Hyracks Node Controller Profile Presents information related to a

particular Hyracks Node Controller
 Node Controller Configuration

 Finished Jobs

 Running Jobs

 Machine Resources

Consumption

Hyracks Job Browser Presents all Hyracks Jobs that have

been submitted to a particular

Hyracks cluster

 Running Jobs

 Finished Jobs

 Initialized Jobs

 Failed Jobs

Hyracks Job Profile Presents more detail of a particular

Hyracks job
 Hyracks Job Specification Graph

 Hyracks Activity Node Graph

 Time Usage Report in Pie-Chart

 # of Partitions in Timeline

 Resources Consumption

51

Figure 32: Hyracks Console Visualization Sitemap

Hyracks Console Sitemap

Hyracks Cluster Browser Hyracks Job Browser

Hyracks Node Controller
Profile

Hyracks Job Profile

52

Figure 33: Job Summary in JSON format (left) and Job Browser Screenshot (right)

Figure 33 compares data presentation methods between the JSON format and the

visualization web interface. On the left is a (partial) summary of jobs presented in the JSON

format, and on the right is a corresponding screenshot of “Job Browser” page. This page requests

the “Jobs-Summary” URL and presents the returned data in the table using the DataTables

jQuery tool [18], which allows users to search and sort within the contents of the table. The data

is categorized into four tables based on the job’s status (i.e., initialized, running,

completed, or failed). To handle the scalability issue, users can limit the number of jobs

presented by putting a keyword on the search box. In addition, we include the CometD Client

JavaScript in this page in order to subscribe the client to the “/jobs” channel. Whenever events

{
result: [

{
id: "a965fe5a-ba0b-4a01-a13d-
1b4dcc57adc1"
application: "tpch"
display-name: "job00000003"
status: "TERMINATED"
events: [

{
status: "RUNNING"
system-time: 1305922493368
date: "2011-05-20
13:14:53.368"

}
{

status: "INITIALIZED"
system-time: 1305922493361
date: "2011-05-20
13:14:53.361"

}
{

status: "TERMINATED"
system-time: 1305922494104
date: "2011-05-20
13:14:54.104"

}
]
attempts: 1
type: "job-summary"

}
{

id: "54d395c4-289f-4de9-ab54-
c429b006a968"
application: "btree"
display-name: "job00000010"
status: "FAILURE"
events: [

{
status: "RUNNING"
system-time: 1305924975041
date: "2011-05-20
13:56:15.041"

}
{

status: "FAILURE"
system-time: 1305925628659
date: "2011-05-20
14:07:08.659"

}
{

status: "INITIALIZED"
system-time: 1305924975021
date: "2011-05-20
13:56:15.021"

}
]
attempts: 6
type: "job-summary"

}
…
…
…

]
}

53

related to the Hyracks cluster’s jobs occur (e.g., a new job is submitted to the cluster), the

Hyracks Console Server will push a message to the “/jobs” channel. Users thus see all changes

in real-time with low delay.

Figure 34: the Screenshot of One Part of Job Profile Page (bottom)

 Figure 34 is the screenshot of the one part of the “Job Profile” page that presents a

Hyracks Job Specification (called JobSpec) and the corresponding Hyracks Activity Node Graph

(called JobPlan). These diagram representations are generated by the Graphviz tool [16]. From

the Hyracks Job Specification of the “job00000010”, there are three HODs assembled to perform

one job: DataGen, ExternalSort, and BTreeBulkLoad. The first two HODs are connected by an

M:N Hash Partition connector, and the last two HODs are connected by a 1:1 connector. The

ExternalSort HOD in the job’s specification is expanded into two activities – SortActivity and

MergeActivity. The MergeActivity cannot be started until the SortActivity is completed, so there

is a blocking edge (red arrow) between these two activities. This blocking edge is also used to

divide a job into several job stages. As shown in the figure, the first stage consists of two HANs:

the DataGen and SortActivity HANs. The second stage consists of the MergeActivity and

BTreeBulkLoad HANs. The color in the diagram represents the current status of each job’s

54

stage. E.g., a light blue color presents finished stage, a light green color presents running stage, a

gray color presents pending stage, and a salmon color presents failed stage.

6 CONCLUSION AND FUTURE THOUGHTS

To support large-scale data processing and analysis, the Hyracks partitioned-parallel

platform is being developed at UCI. When users execute a job on Hyracks, the internal processes

between the input state and the output state can seem like a “black box” to users, in that they are

not able to see the intermediate steps or individual processes. When an error occurs in their

program, or its performance is not as expected, users need to understand and analyze the

execution process of their jobs. To accelerate the development process of data-intensive

applications and to provide better insight into the runtime state of the Hyracks platform, the

Hyracks Console has been developed. This thesis has described the design and server-side

implementation of the Hyracks Console.

The Hyracks Console has been designed to assist both Hyracks End Users and Hyracks

Operator Implementers in monitoring the Hyracks system. The system architecture is

conceptually divided into two main components, the Hyracks Console Server (HCS) and the

Hyracks Console Visualization (HCV). The HCS is responsible for collecting and delivering

useful information related to the current state of the Hyracks jobs and the Hyracks clusters. To

produce the precise, necessary data, clients must send requests to the HCS, and the HCS then

responds with data related to the request, mostly in the JSON format. This technique is called a

client-pull communication between client and server. In addition, a server-push mechanism is

implemented to support real-time monitoring. When significant events occur in the Hyracks

system, the HCS initiates the communication and sends a message to the clients without requests

from them. The second component, the Hyracks Console Visualization (HCV), converts and

presents plain-text data into a visual representation that users can easily and quickly understand.

Several representation tools available to the HCV have been discussed in this paper. The HCV

component also allows users to interact freely with the Hyracks Console system. The resulting

Hyracks Console should greatly aid existing users in their understanding of the execution of their

Hyracks jobs as well as helping new users overcome the steep learning curve of programming on

large clusters.

55

There are still a number of ideas and future features that could further increase the

functionality of the Hyracks Console. It would be nice for programmers if they could deploy

their applications and execute their jobs via the Hyracks Console interface instead of the

command line. It would also be beneficial to display more information at the runtime-task level

to provide better insight about data movement at runtime. The console should also display an

error log of job failures, and it should show the input/output locations of results of successful

jobs on the Hyracks Console screen. The Hyracks Console must continue grow in parallel with

the ongoing evolution of the Hyracks platform.

56

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.

In Proceedings of the 6th Symposium on Operating Systems Design and

Implementation 2004 (OSDI ’04), pages 137–150, San Francisco, California, USA,

December 2004.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed Data-Parallel

Programs from Sequential Building Blocks. In Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007, pages 59–72,

Lisbon, Portugal, March 2007.

[4] Pig. http://hadoop.apache.org/pig.

[5] Hive. http://hadoop.apache.org/hive.

[6] V. Borkar, M. J. Carey, R. Grover, N. Onose, R. Vernica. Hyracks: A Flexible and

Extensible Foundation for Data-Intensive Computing. In IEEE International

Conference on Data Engineering 2011 (ICDE 2011), Hanover, Germany, April 2011.

[7] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey.

DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing

Using a High-Level Language. In the 8th Symposium on Operating Systems Design and

Implementation 2008 (OSDI ’08), San Diego, California, USA, December 2008.

[8] Cloudera. http://www.cloudera.com/products-services/tools.

[9] Karmasphere Studio. http://www.karmasphere.com.

[10] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M. Yang. Chukwa: A Large-

Scale Monitoring System. In the 5th International Conference on Computability and

Complexity in Analysis (CCA 2008), Hagen, Germany, August 2008.

[11] Hyracks. http://code.google.com/p/hyracks.

57

[12] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li, N. Onose, R. Vernica, A.

Deutsch, Y. Papakonstantinou and V. J. Tsotras. ASTERIX: towards a scalable,

semistructured data platform for evolving-world models. In Distributed and Parallel

Database, Vol. 29, pages 185-216, 2011.

[13] TPC-H. http://www.tpch.org/tpch.

[14] R. T. Fielding and R. N. Taylor. Principled design of the modern Web architecture. In

Proceedings of the 2000 International Conference on Software Engineering (ICSE

2000), pages 407–416, Limerick, Ireland, June 2000.

[15] JSON (JavaScript Object Notation). http://www.json.org.

[16] Graphviz: Graph Visualization Software. http://www.graphviz.org.

[17] TimeGlider. http://timeglider.com.

[18] DataTables. http://www.datatables.net.

[19] C. Huang. Hyracks Console Visualization. Master thesis, Department of Computer

Science, UC Irvine (in preparation), July 2011.

[20] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull. GraphViz and

Dynagraph: static and dynamic graph drawing tools. In M. Junger and P. Mutzel,

editors, Graph Drawing Software, pages 127-148. Springer-Verlag, 2003.

[21] "Pull Technology." Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. 6

February 2011. Web. 26 June. 2011.

[22] "Push Technology." Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. 17

June 2011. Web. 26 June. 2011.

[23] Jetty. http://www.eclipse.org/jetty.

[24] C. Olston et al. Nova: Continuous Pig/Hadoop Workflows. In ACM SIGMOD 2011

International Conference on Management of Data (Industrial Track), Athens, Greece,

June 2011.

58

[25] V. Jagannath, Z. Yin and M. Budiu. Monitoring and Debugging DryadLINQ

Applications with Daphne. In International Workshop on High-Level Parallel

Programming Models and Supportive Environments (HIPS), Anchorage, AK, May

2011

[26] Ganglia Monitoring System. http://ganglia.sourceforge.net.

[27] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed monitoring system:

design, implementation, and experience. In Parallel Computing, 30(7), pages 817-840,

2004

[28] RRDtool. http://www.mrtg.org/rrdtool/tut/rrdtutorial.en.html.

[29] CometD. http://cometd.org.

[30] "Comet (programming)." Wikipedia, The Free Encyclopedia. Wikimedia Foundation,

Inc. 11 June 2011. Web. 26 June. 2011.

[31] Bayeux Protocol. http://svn.cometd.com/trunk/bayeux/bayeux.html.

[32] JHeatChart. http://www.javaheatmap.com.

[33] D. J. Dewitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar, and M.

Muralikrishna. GAMMA: a high performance dataflow database machine. In

Proceedings of the Very Large Data Bases (VLDB) 1986, pages 228-237, Kyoto, Japan,

August 1986.

[34] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A Not-So-

Foreign Language for Data Processing. In ACM SIGMOD 2008 International

Conference on Management of Data (Industrial Track), Vancouver, Canada, June

2008.

59

APPENDIX

In this section, we provide summary information about Cluster Controller Configuration,

Node Controller Configuration, and the URL-Request paths.

Table A: Cluster Controller Configuration

Variable Default Value Usage

-port 1099 Sets the port to listen for connections from node controllers.

-http-port 2099 Sets the http port for the Cluster Controller.

-heartbeat-

period

10000 Sets the time duration between two heartbeats from each

node controller in milliseconds.

-max-heartbeat-

lapse-periods

5 Sets the maximum number of missed heartbeats before a

node is marked as dead.

-profile-dump-

period

0 Sets the time duration between two profile dumps from each

node controller in milliseconds. 0 to disable.

-default-max-

job-attempts

5 Sets the default number of job attempts allowed if not

specified in the job specification.

Table B: Node Controller Configuration

Variable Default Value Usage

-cc-host - Cluster Controller host name

-cc-port 1099 Cluster Controller port

-node-id - Logical name of node controller unique within the cluster

-data-ip-address - IP Address to bind data listener

-frame-size 32768 Frame Size to use for data communication

-iodevices java.io.tmpdir Comma separated list of IO Device mount points

-dcache-client-

servers

localhost:54583 Sets the list of DCache servers in the format

host1:port1,host2:port2,...

-dcache-client-

server-local

- Sets the local DCache server, if one is available, in the

format host:port

-dcache-client-

path

/tmp/dcache-

client

Sets the path to store the files retrieved from the DCache

server

60

Table C: Summary of URL-Request Path

URL-Request Path Usage

/state/jobs Get a list of Hyracks jobs that have been submitted to a Hyracks cluster

/state/jobs/<job-id>/spec Request for a particular Hyracks job’s specification

/state/jobs/<job-id>/plan Request for a particular Hyracks job’s plan (or an activity node graph)

/state/jobs/<job-id>/<attempts>/stage Get a progress of a Hyracks job in stage by stage basis

/state/jobs/<job-id>/<attempts>/profile Get a profile counter of a particular Hyracks job

/profile/<job-id>/<attempts>/<connector-id>/(number) Get a dataflow matrix image of a particular Hyracks connector in a

specific Hyracks job. Optional “number” at the end of the URL is used

when users want to show the actual number of dataflow on the image

/console/cluster Request for a Cluster Controller Configuration

/console/nodes/<node-id>/config Request for a Node Controller Configuration

/console/nodes Get a list of all nodes associated with the interested Cluster Controller

/console/nodes/<node-id>/jobs Get a list of Hyracks jobs on a given node

/console/nodes/<node-id>/resources/<type>

/(<step>)/(<start-time>)/(<end-time>)

Request for physical resource consumption at a given Node Controller

Note: every URL-Request path starts with “http://<cc-ip-address>:<http-port>”

