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      Use of high-level programming frameworks for data-intensive computation on large-scale 

distributed clusters is prevalent in the parallel programming community, as the complexity of an 

underling cluster can be concealed. However, debugging and optimizing applications in this 

framework often leads to much difficulty and time loss on the part of the programmer. This 

paper presents the Hyracks Console, which is designed to assist Hyracks users in monitoring and 

understanding sets of parallel processes running on the Hyracks partitioned-parallel runtime 

platform. The core challenges involved in creating the Hyracks Console were: identify which 

system data will be most useful to users, gathering this data in real time, and ultimately, 

presenting the data in a visual and scalable representation for the user. 
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1 INTRODUCTION 

 In the past five years, high-level programming frameworks for large-scale parallel 

programs, such as Hadoop [1] from Apache, MapReduce [2] from Google, Dryad [3] from 

Microsoft, Pig [4] from Yahoo!, and Hive [5] from Facebook, have gained a lot of interest and 

attention, both from academic researchers and real world businesses. The ability of these 

frameworks to shield programmers from the complexity of an underlying distributed cluster and 

to provide a simple programming interface allows programmers to create highly scalable 

applications and run them in parallel on large-scale distributed clusters. Despite the success of 

the MapReduce model, the model adds complexity to the computation design process of the 

problem being solved; users need to translate their problems into jobs involving only Map and 

Reduce primitives. In response, an alternative infrastructure called “Hyracks” [6], has been 

proposed by researchers at the University of California, Irvine. Hyracks is an open-source, 

partitioned-parallel platform built to support data-intensive computations on large shared-

nothing clusters.  

 Debugging and monitoring remains a great challenge for these high-level programming 

platforms. To diagnose the cause of a program failure, users have to understand the internal 

structure of their distributed job and the mappings that exist between their fragments of 

sequential source code and their jobs distributed execution. Given that program failures are 

common, this means that the complexity of the distributed system inevitably becomes visible to 

users. Several systems, such as Pig and DryadLINQ [7] provide a local debugging mode which is 

useful for finding some types of bugs, but not for finding failures caused by large scale data. 

Cloudera [8] and Karmasphere [9] provide a rich set of tools to simplify the development 

experience for Hadoop users. In addition, Chukwa, a log collection framework [10], can be used 

to monitor Hadoop clusters (including some visualization tools). Hyracks Users face similar 

difficulties in understanding and analyzing the execution processes of their Hyracks jobs. To 

accelerate the development process and provide better insight into the Hyracks platform, a 

monitoring system is essential. 
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 In this thesis, the design and implementation of a new Hyracks Console is presented. The 

ultimate goal of this component of Hyracks is to reduce the time and effort required for 

understanding, implementing and optimizing Hyracks jobs. Programmers can use the Hyracks 

console both to monitor their clusters’ health and to track the details of their Hyracks jobs’ 

execution. This monitoring system has some important characteristics, including: identifying 

real-time job and system status and supporting large-scale clusters. All source codes for this 

project will be available in a furthering release of Hyracks [11]. While the Hyracks Monitoring 

Console is designed to monitor the Hyracks system, its approach is quite universal and could be 

applied to other popular distributed platform such as MapReduce or Dryad. In Section 2, a quick 

overview of the Hyracks platform is provided. Section 3 delves deeper into the motivations and 

goals of the Hyracks Console. Section 4 presents the Hyracks Console architecture and design. 

Section 5 explains the implementation of the Hyracks Console system. Finally, Section 6 

summarizes the thesis and discusses a few other features that can be added in the future.  

2 HYRACKS OVERVIEW 

 Hyracks is an open-source, partitioned-parallel runtime platform written in the Java 

programming language. Hyracks is designed to support data-intensive computations on large 

shared-nothing distributed clusters. Computations on large collections of data, which are 

distributed across multiple machines, are efficiently divided into smaller computations that 

execute on each partition of the data separately (in parallel). Hyracks is in the same general space 

as the Hadoop and Dryad infrastructures for data-parallel problems. Unlike the Hadoop 

framework, which offers the MapReduce computational paradigm based on user-provided 

functions, Hyracks provides an out-of-the-box set of common operators and connectors for 

creating general data-oriented computation tasks. Hyracks also allows users to build their own 

operator and/or connector types. In addition, Hyracks includes a Hadoop compatibility layer that 

enables users to run existing Hadoop MapReduce jobs without changing their existing code. In 

this section, we provide a quick overview of the Hyracks system architecture and describe the 

steps involved in Hyracks job execution using a simple example of data query. A more extensive 

explanation of Hyracks, along with a first evaluation of its performance, can be found in [6].   
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2.1 Hyracks Architecture 

 Hyracks is designed to work on a shared-nothing cluster of commodity machines with 

local CPUs, memories, and disks. As shown in Figure 1, Hyracks clusters are composed of two 

types of nodes: Hyracks Cluster Controllers (CCs) and Hyracks Node Controllers (NCs). Every 

Hyracks cluster is managed by one-and-only-one Cluster Controller process. In addition, any 

machine in the Hyracks cluster can run one or more Node Controller processes. To setup a 

Hyracks cluster, one machine is designated as a master node and runs the Hyracks Cluster 

Controller. This master machine must be accessible from all worker machines in the cluster as 

well as from the client machines that will be used to submit jobs to Hyracks. Worker machines 

that want to participate in the Hyracks cluster must run a Hyracks Node Controller.  

 

Figure 1: Hyracks Cluster Architecture 

 When clients submit job execution requests by way of the client interface, the Cluster 

Controller is responsible for accepting those requests, setting up their evaluation plans, and then 

scheduling the job-tasks to run on selected machines in the cluster. When any failure occurs, the 

Cluster Controller is also responsible for re-planning and re-executing some or all of the job-

tasks. In addition, the Cluster Controller is used to monitor the overall cluster health and to keep 

track of the resource loads at the worker machines.  

 Each worker machine in a Hyracks cluster has to run a Node Controller process which is 

used to accept task execution requests from the Cluster Controller and which reports its health 
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(e.g., liveness and resource usage levels) periodically via a heartbeat mechanism. Hyracks uses a 

push-mechanism to interact between the Cluster Controller and the Node Controllers: the Cluster 

Controller pushes task execution requests to selected Node Controllers, and each Node 

Controller pushes a notification (either complete or fail) message back to the Cluster Controller 

when a computation at the worker machine is finished. In addition, to handle system failures that 

might occur accidentally during the evaluation of a job, Hyracks provides a built-in mechanism 

for fault detection and recovery through the use of heartbeats. 

 When an NC is started, it gets three required arguments: node-id (which has to be 

unique), cc-host (CC’s IP address) and data-ip-address (NC’s IP address). By default, the 

Cluster Controller listens to communication data from the NCs through port 1099, but users can 

setup a different port by passing optional parameters (port) when users start the Cluster 

Controller. Besides the communication port between the CC and the NCs, there is another port 

called http-port; this is a port for a Jetty web server with the HTTP protocol that runs inside 

the Hyracks cluster. This port number is very important for the Hyracks Monitoring Console, as 

all information displayed on the console is retrieved through this server port. 

2.2 Hyracks Jobs 

 A Hyracks job is started as a directed acyclic graph (DAG) representing a dataflow that 

consists of a set of Hyracks Operator Descriptors (HODs) and Connector Descriptors (CDs). The 

HOD nodes in the graph represent the partitioned computation operators of the job, and the CD 

edges between the HOD nodes represent the data flow paths from one operator to another. CDs 

also provide Hyracks with data-distribution information for shuffling data from the set of input 

operators to the set of output operators. Internally, each HOD consists of one or more sub-

activities or phases called Hyracks Activity Nodes (HANs). Hyracks expands the HOD graph 

into a more detailed HAN graph in order to divide the job into several stages and plan the order 

in which the stage is going to be executed. The HOD graph is also called the Hyracks Job 

Specification, and the corresponding HAN graph is also called the Hyracks Job Plan. At runtime, 

Hyracks decides on the amount of parallelism necessary for each stage and then creates a set of 

that many identical Hyracks Operator Nodes (HONs). These HONs are each clones of a HAN 
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and are responsible for performing their processing on individual partitions of the data coming to 

them. Figure 2 summarizes these concepts. 

 

 

Figure 2: Graph Representations for a Hyracks Job 

 As mentioned earlier, Hyracks provides a standard set of HOD and CD libraries that are 

commonly used in building data-oriented programs so that end users and query compliers can 

simply use those built-in libraries to assemble their jobs. Important operators such as “file scan”, 

“file writer”, “map”, “sort”, “join”, “group”, and “aggregate” operators are included in this core 

library. Connectors such as “1:1”, “M:N Hash-Partition”, “M:N Hash-Partition-Merge”, “M:N 

Range-Partition”, and “M:N Replicator” connectors are also part of the Hyracks core library. 

Besides the core library, Hyracks allows end users to implement additional sets of HODs and 

CDs specialized to their needs. For example, ASTERIX, a data-intensive storage and computing 

platform based on the Hyracks platform [12], has implemented a “limit operator” and an “N:1 

Merge connector” for its special requirements.  

 Throughout this section, we will use a simple query as a Hyracks job example to describe 

the internal processes of job execution from the beginning to the final evaluation step. This 

Hyracks job is based on two files containing CUSTOMER and ORDERS data from the TPC-H 

dataset [13]. This job aims to calculate the number of orders placed by customers belonging to 

various market segments, and the results are sorted by their market segments. The example 

Hyracks job is equivalent to the SQL query in the top of Figure 3. In addition, Figure 3 shows 

the TPC-H schema of the two tables related to the query, namely the CUSTOMER and ORDERS 

tables.   
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Figure 3: SQL Query of the Example Hyracks Job and TPC-H Schema 

2.3 Hyracks Job Specification 

 The simple Hyracks job’s specification can be constructed as shown in Figure 4. Each 

node shows a HOD’s name and argument(s), and each edge between two HODs indicates the 

data distribution logic to be used for routing partitioned data from the set of senders to their 

intended receivers. Additional metadata is provided in the File Scan operators to specify where 

the files are located. Since data collections in Hyracks are partitioned and stored locally on 

different nodes in the cluster, in order to access files using a file scan, the runtime tasks for the 

scans have to be scheduled and executed on the machine(s) where the files are available.      

 For this example, Figure 4 shows that the CUSTOMER data is partitioned into two files 

(customer-part1.tbl and customer-part2.tbl) that are stored locally on nodes NC1 and NC2, 

respectively. The ORDERS data is partitioned into three files (orders-part1.tbl, orders-part2.tbl, 

and orders-part3.tbl), and each partition is two-way replicated. Thus, the first file can be accessed 

on either node NC2 or NC3, the second file on either node NC3 or NC4, and the last file on 

either node NC4 or NC5. This replication information gives Hyracks multiple choices for 

scheduling the file scan HOD’s tasks on ORDERS data.  

CUSTOMER 

C_CUSTKEY     NUMBER(10) 

C_NAME     VARCHAR2(25) 

C_ADDRESS     VARCHAR2(40) 

C_NATIONKEY     NUMBER(10) 

C_PHONE     VARCHAR2(15) 

C_ACCTBAL     NUMBER 

C_MKTSEGMENT VARCHAR2(10) 

ORDERS 

O_ORDERKEY     NUMBER(10) 

O_CUSTKEY     NUMBER(10) 

O_ORDERSTATUS    CHAR(1) 

O_TOTALPRICE     NUMBER 

O_ORDERDATE     VARCHAR2(10) 

O_ORDERPRIORITY    VARCHAR2(15) 

O_CLERK  VARCHAR2(15) 

select C_ MKTSEGMENT, count(O_ORDERKEY) 

from CUSTOMER join ORDERS on C_CUSTKEY = O_CUSTKEY 

group by C_ MKTSEGMENT 

order by C_ MKTSEGMENT 
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Figure 4: Example Hyracks Operator Descriptor 

Graph (Hyracks Job Specification) 

 

Figure 5: Example Hyracks Activity Node Graph 

(Hyracks Job Plan) 

  

Each File Scan HOD in Figure 4 is used to read data from a data source file 

(CUSTOMER or ORDERS) and sends its stream of data to the Hash Join HOD using an M:N 

hash-based partitioning connector. This connector distributes each datum produced by each of 

M senders, using a provided hash function, to one of N receivers. In this case, the number of 

senders (M) is the number of partitioned files in each data source, so M=2 for CUSTOMER data 

and M=3 for ORDERS data. To compute the join in a partitioned manner, we need to ensure that 

CUSTOMER and ORDERS instances that match on the join condition will be routed to the same 
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join task. Therefore, hash partitioning of the CUSTOMER and ORDERS instances is done on 

C_CUSTKEY and O_CUSTKEY, respectively. 

 The Hash Join HOD in Figure 4 receives these two streams of data (one with 

CUSTOMER instances and one with ORDERS instances) and produces a stream of 

CUSTOMER-ORDERS pairs that satisfy the joining condition (C_CUSTKEY = O_CUSTKEY). 

The result is re-distributed to an In-Memory Sort HOD using an M:N hash based partitioning 

connector on the C_MKTSEGMENT field, in order to ensure that all CUSTOMER-ORDERS 

pairs that agree on the that field will be routed to the same sort task. Then, each sort task locally 

sorts the input stream into descending order on the C_MKTSEGMENT field and passes it to a 

Pre-Clustered Group By HOD using a 1:1 connector. This 1:1 connector means that the number 

of sender tasks will equal the number of receiver tasks and that data is routed pair-wise without 

repartitioning. The Pre-Clustered Group By HOD can be used in this example since the input 

data of this grouping HOD is clustered on the grouping field. Aggregation can then be done in a 

partitioned manner, locally at each task, by invoking a COUNT aggregation function to count the 

number of O_ORDERKEY occurrences within each group. Finally, the result from the Pre-

Clustered Group By HOD is sent to a File Writer HOD using, again, a 1:1 connector. 

2.4 Hyracks Job Execution 

 At the beginning of a job’s execution, Hyracks will expand each HOD in the Hyracks Job 

Specification into a set of HANs. For example, Figure 5 shows the Hyracks activity graph for the 

Hyracks job specification in Figure 4. The expansion of each HOD indicates all sub-phases 

involved in each operator along with the sequencing dependency information among phases. In 

our example, the Hash Join HOD is expanded into two HANs; Hash Build and Hash Probe 

activities. The first activity builds a hash table on one input stream (usually the one with the 

smaller amount of data). To produce the result stream of join pairs, the other input stream will 

then be used in the second activity to probe the hash table (the result from Hash Build activity) 

with its value on the hash field. Note that the build phase of the Hash Join HOD needs to finish 

before the probe phase can begin. This sequencing constraint is indicated with the dotted arrow 

(blocking edge) from the Hash Build HAN to Hash Probe HAN in Figure 5.  
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 Continuing with Figure 5, the In-Memory Sort HOD is similarly expanded into two 

HANs: the Generate Sorted Runs and Merge activities. The former activity is used for generating 

a set of sorted runs, and the latter activity is used to produce the sorted result by merging all 

sorted runs generated by the first activity. The merge phase is not able to start until the first 

phase completes; therefore, there is a blocking edge between those two activities. The rest of the 

HODs in Figure 4 consist of a single activity each, so there is only one HAN in Figure 5 for each 

of Figure 4’s HODs.  

 A Hyracks Activity Node graph provides Hyracks with insight into the sequencing 

dependencies of each part of a Hyracks job. Hyracks uses this information to facilitate execution 

planning and coordination, which is why a HAN graph is also called Hyracks Job Plan. All 

HANs that connect to one another with non-blocking edges are grouped together to form a job 

stage. For each stage, the set of activities in it can be co-scheduled (e.g., to run in a pipelining 

manner).  Stages are planned and executed by Hyracks in the order in which they become ready 

to run. A stage is ready to execute when all of its dependent stages have been executed 

completely and successfully. Hyracks decides on the degree of parallelism and location of HAN 

instances based on the job’s resource requirements and node affinities. For example, all File Scan 

HAN tasks/instances have to be assigned to worker machines where the files of partitioned data 

are located.  
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[1]   File Scan (CUSTOMER) 

[2]   File Scan (ORDERS) 

[3.1]  Hash Build 

[3.2]  Hash Probe 

[4.1]  Generate Sorted Run 

[4.2]  Merge 

[5]   Pre-Clustered Group By 

[6]   File Writer 

 

    A’s output is hash distributed to B 

    B is blocked until A is completed 

    A’s output is piped to B directly 

  

Figure 6: Example Hyracks Operator Node Graph at runtime 

 When each stage is scheduled, Hyracks Operator Nodes (HONs) are created at runtime to 

be responsible for the actual computation at each worker machine. In fact, HONs are simply 

clones of HANs. Figure 6 shows an example of a runtime HON graph resulting from stage 

planning. The gray boxes in the figure indicate groups of operator nodes that belong to the same 

stage. In reality, Hyracks will plan the degrees of parallelism and the locations of the HONs for 

each stage just prior to the stage’s execution. At runtime, the three stages in our example will be 

executed stage by stage based on their readiness to run. The first stage consists of two activities: 

the File Scan activity on CUSTOMER data and the Hash Build activity as part of the hash join 

operator. In this example, we assume that CUSTOMER data is partitioned into two files and that 

Hyracks decides to use four nodes to compute the hash join. Hyracks begins to run the two File 



11 
 

Scan HONs along with the four Hash Build HONs to produce hash tables of CUSTOMER data 

in stage 1.  

 After the first stage is run successfully, the next stage, which probes the hash tables using 

ORDERS data and then performs run generation for the sort operator, is planned and executed. 

Here, we assume that ORDERS data is divided into three separate files with two-way replication 

and that Hyracks decides to use three nodes for sorting. Thus, in the second stage, there are three 

clones of the File Scan activity, four clones of the Hash Probe activity, and three clones of the 

Generate Sorted Run activity, as shown in Figure 6. After Hyracks completes the second stage, it 

begins to plan the last stage. This stage is composed of a set of Merge, Group By, and File Writer 

HONs. The (local) Merge HONs receive the sorted runs from the previous stage, and they send 

their sorted output streams to their local Group By HONs. These HONs aggregate their inputs 

using a count aggregation function and produce the final results, which are written to partitions 

of the output file by the File Writer HONs. The execution of this example job is then 

successfully complete and terminated. Note that the 1:1 connectors between the activities in the 

last stage cause the degree of parallelism of the Group By and File Writer activities to be the 

same as the Sort activity.  

 In the current Hyracks version (0.1.3), fault recovery from a node failure is very simple. 

A job has a number indicating the maximum number of attempts for the job to be executed 

before it is aborted by the Hyracks system. Any jobs that are impacted by a node failure will be 

restarted from the beginning. (The Hyracks developers are now developing a more sophisticated 

recovery technique that allows the system to restart a job at the granularity of each stage instead 

of the entire job.) 

3 HYRACKS CONSOLE GOALS 

 The Hyracks platform has two main types of users 

a) Hyracks End Users are users who create Hyracks jobs by assembling Hyracks 

operators and connectors together, subsequently executing their jobs on the Hyracks 

clusters. These users are likely to face the following problems: 
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 When a given job encounters problems during execution, users are given a 

limited indication of what caused the an error; it can be hard for them to 

determine at which stage the job’s error occurred. Consequently, it is often 

hard and time consuming for end users to debug their Hyracks jobs.  

 Users face difficulty in getting an overall picture of which nodes are 

participating in the Hyracks cluster and  how the various tasks in their job 

have been mapped to these nodes by Hyracks.  

 

b) Hyracks Operator Implementers are generally responsible for creating new Hyracks 

operators and connectors, either in the system’s core library or in a user’s additional 

library. These developers may have these following difficulties: 

 Similar to the problems experienced by the end users, operator implementers 

have to spend a significant amount of time implementing and debugging 

Hyracks jobs in order to test their new operators and/or connectors. 

 As mentioned earlier, each HOD in a Hyracks job consists of one or more 

HAN(s). At runtime, each HAN is cloned into a parallel set of HONs. 

Operator implementers often need to examine the internal processes of a 

Hyracks job’s execution to ensure that their operators and/or connectors are 

performing correctly and that input/output data are nicely partitioned and 

distributed across nodes.   

 The Hyracks Console is built to assist both kinds of Hyracks users to deal with the above 

mentioned difficulties. The ultimate goal of the Hyracks console is to reduce the time and effort 

required in monitoring and debugging Hyracks jobs. The different types of users have different 

functional requirements and demands. Fortunately, these needs can be reduced to two major 

domains, which are the Hyracks job’s execution processes and the Hyracks cluster’s 

performance. The Hyracks Console is implemented to collect information needed for analyzing 

the Hyracks system and displays that information on the visualization interface. In addition, the 

console provides the following features. 

 Real-Time Status: the Hyracks Console enables users to immediately detect 
changes in the states of the Hyracks system. It allows users to observe the 
progress of their job’s execution in real-time. 
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 Scalability: Hyracks is designed to run on a large-scale cluster. A production 
cluster may consist of thousands of nodes and may execute thousands of 
complicated Hyracks jobs at the same time. The console is designed to 
efficiently collect, organize and present a large amount of monitored data. 

4 HYRACKS CONSOLE ARCHITECTURE 

 To achieve the stated system requirements and goals, we designed this system based on a 

Representational State Transfer (REST) web-based architecture [14]. It consists of two major 

components, which are web clients and web servers. The REST architecture is used to implement 

the Hyracks console because of its scalability of component interaction, its independence in 

terms of deployment of client and server components, and the simplicity of its interfaces. A 

critical concept of REST is the existence of resources, each of which is referred to with a global 

identifier (e.g., a URI in the HTTP protocol). In our system, these resources include the static 

and dynamic states of both Hyracks Jobs (e.g., each job’s specification, plan, status, current 

state, etc.) and Hyracks Clusters (e.g., the Cluster Controller and the Node Controller 

configurations). To manipulate these resources appropriately, clients and servers are required to 

communicate via a standardized interface such as HTTP and exchange representations of those 

resources. The resources at the server are conceptually separated from the presentations returned 

to the client. 

 For most of the data-interchanges between clients and servers, we decided to use the 

JavaScript Object Notation (JSON) format [15] rather than the Extensible Markup Language 

(XML) format because of several advantages of JSON. JSON is a lightweight alternative to 

XML, and JSON is smaller, faster and thus better for data interchanges. JSON is a text format 

that is completely language independent and compatible with many programming languages 

(e.g., Java, JavaScript, C, C++, C#, Python and many others). JSON objects are built up from 

two structures: name/value pairs and ordered lists of values. These are universal data structures 

found in most modern programming languages, which make the JSON format quite compatible 

with many other programming languages.  
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Figure 7: Hyracks Console System Architecture 

4.1 Hyracks Console Visualization (HCV) 

 As shown in Figure 7, the Hyracks console architecture is conceptually divided into two 

parts: “inside” and “outside” the Hyracks system. On the outside, we have implemented the 

Hyracks Console Visualization (HCV) component to present the current state of the Hyracks 

system in real-time. Hyracks users can access HCV with any web browser (e.g., Chrome, 

Firefox, or IE). This component is totally separate from the Hyracks cluster. Any HCV can 

connect to any cluster, and multiple HCVs can connect to the same cluster provided that the 

user’s machine can reach the web server inside the Hyracks system.  

 The HCV component provides a visualization of the current state of the Hyracks clusters 

and its Hyracks jobs. It has the ability to represent information such that users can easily and 

quickly understand and interpret it. Humans are a visually-oriented species, meaning that they 

prefer images or diagrams over plain text. Therefore, it is vital to have appropriate visualization 

methods available for representing different types of data, such as tables, charts, graphs and data 

flow diagrams, in order to explain and describe the complex information in the simplest possible 

way. This component should not only provide the high-level abstraction of an entire Hyracks 

cluster and Hyracks jobs, but should also allow users to drill-down into the granular details of 

each node in a given cluster and each stage of a given job. To this end, many visual 

representation tools have been used such as GraphViz [16, 20], TimeGlider [17] and DataTables 
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[18]. There were several challenges involved in building this component, including achieving 

scalability (the visualization should be intelligible at a large scale), as well as the ability of the 

system to function dynamically (users should be able to see graphics changing in real-time). 

Further explanation of the visualization issues, together with the set of animation tools 

implemented in the Hyracks console system, can be found in [19]. 

4.2 Hyracks Console Server (HCS) 

 The second component of the Hyracks console is the Hyracks Console Server (HCS) “on 

the inside” of the Hyracks system. The HCS is responsible for collecting and delivering 

monitoring information of the Hyracks system to the first component, Hyracks Console 

Visualization (HCV). In fact, there are two web servers implemented in the Hyracks system to 

support two different techniques for communication between clients and servers.  

4.2.1 Client Pull Mechanism  

 The first communication technique is called a client-pull [21], in which a client initiates a 

request for transmission of information from the server. The server receives the request and calls 

a REST API function to generate the result, mostly in the JSON format. Finally, the result is 

delivered to the client via HTTP protocol. Our goal is to provide the exact data needed when a 

user requests them; no more, no less. To connect to the web server, clients need to know the 

server port number, which has to be setup through the http-port argument when users start the 

Hyracks Cluster Controller process. To implement the Hyracks web server, we decided to use 

Jetty, an open-source project providing an HTTP server, together with the javax.servlet 

container [23], since it is embeddable, extensible, and enterprise scalable. 

 To come up with an appropriate set of useful REST API functions, we first had to 

understand the behavior of the Hyracks platform in fine detail, and estimate what kinds of 

information are both significant and necessary. There have been various existing console systems 

used to support other parallel platforms, which we used as guidelines, for example, Cloudera  

and Karmasphere Studio for the Hadoop platform, Nova workflow manager [24] for Pig and 

Daphne for DryadLINQ programs [25]. Combining the common functionalities of the existing 

console systems with the survey of Hyracks users’ requirements, the set of necessary information 

was eventually finalized.  Our Hyracks console design is also flexible enough to allow users to 
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define their own REST API functions for generating and passing the resulting data through the 

web server inside the Hyracks system. 

 Monitoring information of the Hyracks cluster is gathered from two main sources. First, 

data related to the state of the Hyracks jobs and the health of the Hyracks cluster are collected by 

the CC (Hyracks Cluster Controller) and stored temporarily in the memory of the master node. 

This kind of data is deleted whenever the CC is restarted. The second type of data is time-series 

data stored on the local disk of the master node. Examples of this data are the CPU load, network 

in/out, memory usage and disk consumption of all machines participating in the Hyracks cluster. 

To collect this time-series data, we installed and used Ganglia, a scalable distributed monitoring 

system for high performance computing systems [26, 27]. The Ganglia system uses RRDtool 

(Round-Robin Database) [28] to store and archive all time-series data. Ganglia collects data 

based on the physical view of the cluster, so there is one and only one set of data for each 

machine. Unlike Ganglia, a given machine in a Hyracks cluster can install one or more NCs 

(Hyracks Node Controllers). To map the logical NC nodes to the real physical nodes of the 

cluster, we created an extra file that represents and stores this mapping information (as pairs of a 

machine’s IP address and a path of an RRD table).  

4.2.2 Server Push Mechanism  

 Another technique used for client-server communications in the console is a server-push 

mechanism [22], in which the server sends messages independent from any requests from clients. 

Whenever new information is available, the server “publishes” that information in a specific 

“channel.” To receive a message, clients have to “subscribe” or “listen” to that “channel.” This 

service is used to deliver any dynamic information that should be expressed in advance (without 

any requests), including notification of a new Hyracks job and notification of completed stages 

and/or failure stages of a given Hyracks job. Even though this technique increases the number of 

messages on the server, we adopted this approach to provide real-time support and dynamic 

information for the Hyracks console. We implemented this service using CometD, a scalable 

HTTP-based with a push technology pattern know as Comet over a Bayeux protocol [29, 30]. 

The Bayeux protocol can transport asynchronous messages with low latency between a web 

server and a web client [31]. These messages are routed via named channels and can be delivered 

in many directions (servers to clients, clients to servers, and clients to clients). 
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5 IMPLEMENTATION 

 This section describes the implementation of the Hyracks Console in greater detail. It 

describes the benefits and usages of each type of monitoring data along with actual results 

returned by the console. Throughout this section, we assume that the IP address of the master 

node running the Hyracks Cluster Controller process is “vanilla.ics.uci.edu” and that the 

http-port number is “2099.” All of the URL examples shown here are based on that 

assumption. 

5.1 REST API for Client Pulling Method 

The Jetty HTTP web server is embedded in the Hyracks console architecture to support 

communication between the Hyracks Console Server (HCS) and the outside world including the 

Hyracks Console Visualization (HCV) component. This server is started automatically when 

users start the Hyracks Cluster Controller (CC) process and stopped when users stop the CC 

process. The communication port number is setup based on the optional argument, http-port 

number, when starting the CC process (the default value is 2099). To handle the client-pull 

mechanism in the Jetty server, we simply build server connectors and handlers without using the 

Servlets API. Each handler added in this server is responsible for generating different types of 

results depended on the client requests. The sample code of creating “/state”, “/profile” and 

“/console” handlers is presented in Figure 8. 
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Figure 8: addHandlers() and addHandler() Methods in WebServer.java 

 

The information that typical Hyracks users request for monitoring the Hyracks system can 

be boiled down into two main categories: Hyracks jobs’ execution information and Hyracks 

cluster behavior. Given the REST-style architecture, we create a global URL for each type of 

resource.  Accordingly, the better navigating throughout every resource using the 

RoutingHandler object, we organize the “URL-Request” paths based on the “Tree Structure” 

as depicted in Figure 9 (as well as Figure 21 in Section 5.1.2).  

As we mentioned earlier, most of the data returned from the HCS is in the JSON format. 

Consequently, to provide a simple standard to the system, we build a Java object interface for 

outputting the result, IJSONOutputFunction. Implementing an interface allows a class to 

become more formal about the behavior that it promises to provide. Any classes that claim to 

implement an interface must develop all methods defined by that interface. Interfaces also form a 

contract between the classes and the outside world, and this contract is enforced at build time by 

private final HandlerCollection handlerCollection; 

 

private void addHandlers() { 

ContextHandler handler = new ContextHandler("/state"); 

RoutingHandler rh = new RoutingHandler(); 

rh.addHandler("jobs", new JSONOutputRequestHandler(new JobsRESTAPIFunction(ccs))); 

handler.setHandler(rh); 

addHandler(handler); 

 

handler = new ContextHandler("/profile"); 

handler.setHandler(new AdminConsoleProfileHandler(ccs)); 

addHandler(handler); 

 

handler = new ContextHandler("/console"); 

rh = new RoutingHandler(); 

rh.addHandler("nodes", new JSONOutputRequestHandler(new NodesRESTAPIFunction(ccs))); 

rh.addHandler("cluster", new JSONOutputRequestHandler(new ClusterRESTAPIFunction(ccs))); 

handler.setHandler(rh); 

addHandler(handler); 

} 

 

public void addHandler(Handler handler) { 

handlerCollection.addHandler(handler); 
} 
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the compiler. The Hyracks Console creates three classes from the IJSONOutputFunction 

interface: JobsRESTAPIFunction, NodesRESTAPIFunction and 

ClusterRESTAPIFunction. The first class is used for creating all information related to a 

Hyracks job’s execution, and the rests are responsible for producing results regarding the 

Hyracks cluster’s health. 

5.1.1 Hyracks Jobs 

 To assist Hyracks users monitor and understand the internal actions of each Hyracks 

job’s execution, we provide the following monitoring information via the 

JobsRESTAPIFunction: (1) summary of all jobs submitted to the cluster, as well as each job’s 

(2) specification, (3) plan, (4) profile, and (5) stages. Figure 9 presents the URL paths that can be 

used for requesting different types of information.  

 

 

Figure 9: URL-Request Paths for the Hyracks Jobs Execution Information 

 

 In this section, we are going to examine each type of information found in the Hyracks 

Console and describe its usage based on real examples. Note that most of the data delivered from 

the Hyracks Console Server (HCS) is presented in the JSON format. 

  

/state /jobs /<job ID> 

/spec 

/plan 

/<attempt> 

/stage 

/profile 

 

 

<....…> 

Intermediate Stage of the URL 

End Stage of the URL 

Dynamic Data 
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 Summary of Hyracks Jobs: When a client in the Hyracks Console Visualization (HCV) 

sends a request to the Hyracks Console Server (HCS) through the Job-Summary URL, it 

receives a JSONArray containing all Hyracks jobs that have been submitted to the Hyracks 

system. Each job presents some important job-related entities such as job’s “ID”, job’s 

“display-name”, job’s “application” name, job’s current “status” (i.e., INITIALIZED, 

RUNNING, TERMINATED, or FAILURE), job’s “events” with time-stamp (e.g., job is 

terminated event), and the number of “attempts.” Figure 10 is an example result for a Jobs 

Summary URL request. 

  

URL Path 

 http://<cc-ip-address>:<http-port>/state/jobs 

Example 

 http://vanilla.ics.uci.edu:2099/state/jobs 
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Figure 10: Example Result from Hyracks Jobs Summary URL 

{ 
result: [ 

{ 
id: "a965fe5a-ba0b-4a01-a13d-1b4dcc57adc1" 
application: "tpch" 
display-name: "job00000003" 
status: "TERMINATED" 
events: [ 

{ 
status: "RUNNING" 
system-time: 1305922493368 
date: "2011-05-20 13:14:53.368" 

} 
{ 

status: "INITIALIZED" 
system-time: 1305922493361 
date: "2011-05-20 13:14:53.361" 

} 
{ 

status: "TERMINATED" 
system-time: 1305922494104 
date: "2011-05-20 13:14:54.104" 

} 
] 
attempts: 1 
type: "job-summary" 

} 
{ 

id: "54d395c4-289f-4de9-ab54-c429b006a968" 
application: "btree" 
display-name: "job00000010" 
status: "FAILURE" 
events: [ 

{ 
status: "RUNNING" 
system-time: 1305924975041 
date: "2011-05-20 13:56:15.041" 

} 
{ 

status: "FAILURE" 
system-time: 1305925628659 
date: "2011-05-20 14:07:08.659" 

} 
{ 

status: "INITIALIZED" 
system-time: 1305924975021 
date: "2011-05-20 13:56:15.021" 

} 
] 
attempts: 6 
type: "job-summary" 

} 
] 

} 
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 Job Specification: When a client sends a request to the HCS via the Job-Spec URL to gather 

the job specification for a particular job, it receives a JSONArray containing two types of 

data: a set of Hyracks connectors and a set of Hyracks operators. From that information, 

users are able to recreate a Hyracks jobs’ specification (a DAG dataflow diagram) to ensure 

that their jobs are constructed correctly. For example, in Figure 11 our example job’s 

specification consists of three operators and four connectors. Each connector in the 

connectors JSONArray is used to connect between two operators in the operators 

JSONArray indicated by these two entities: in-operator-id and out-operator-id. 

Figure 12 (left) shows the job’s specification diagram generated from the information in 

Figure 11. 

 

URL Path 

 http://<cc-ip-address>:<http-port>/state/jobs/<job-id>/spec 

Example 

 http://vanilla.ics.uci.edu:2099/state/jobs/54d395c4-289f-

 4de9-ab54-c429b006a968/spec 
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Figure 11: Example Result from Hyracks Job's Specification URL

{ 
result: { 
connectors: [ 
{ 
in-operator-port: 0 
in-operator-id: "ODID:3b93bca7-b93a-4fab-87a6-ede060abb96e" 
connector: { 
id: "f4046a40-e78a-4492-af15-b25ff310994a" 
java-class: "edu.uci.ics.hyracks.dataflow.std.connectors.MToNHashPartitioningConnectorDescriptor" 
type: "connector" 

} 
type: "connector-info" 
out-operator-port: 0 
out-operator-id: "ODID:52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf" 

} 
{ 
in-operator-port: 0 
in-operator-id: "ODID:52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf" 
connector: { 
id: "e865252b-ba52-499f-a789-9084b1329edf" 
java-class: "edu.uci.ics.hyracks.dataflow.std.connectors.OneToOneConnectorDescriptor" 
type: "connector" 

} 
type: "connector-info" 
out-operator-port: 0 
out-operator-id: "ODID:7b34c851-fa5f-4d1b-94c3-cd8fa1ae5ce6" 

} 
] 
operators: [ 
{ 
id: "3b93bca7-b93a-4fab-87a6-ede060abb96e" 
in-arity: 0 
java-class: "edu.uci.ics.hyracks.examples.btree.helper.DataGenOperatorDescriptor" 
out-arity: 1 
type: "operator" 

} 
{ 
id: "52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf" 
in-arity: 1 
java-class: "edu.uci.ics.hyracks.dataflow.std.sort.ExternalSortOperatorDescriptor" 
out-arity: 1 
type: "operator" 

} 
{ 
id: "7b34c851-fa5f-4d1b-94c3-cd8fa1ae5ce6" 
in-arity: 1 
java-class: "edu.uci.ics.hyracks.storage.am.btree.dataflow.BTreeBulkLoadOperatorDescriptor" 
out-arity: 0 
type: "operator" 

} 
] 
type: "job" 

} 
} 
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Figure 12: Example of Job's Specification (left) and Job’s Plan (right) 

 

  

 

ODID: 3b93bca7-b93a-4fab-87a6-ede060abb96e 

Class: DataGenOperatorDescriptor 

 

ODID: 52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf 

Class: ExternalSortOperatorDescriptor 

CDID: f4046a40-e78a-4492-af15-b25ff310994a 

Class: MToNHashPartitioningConnector 

CDID: e865252b-ba52-499f-a789-9084b1329edf 

Class: OneToOneConnector 

 

ODID: 7b34c851-fa5f-4d1b-94c3-cd8fa1ae5ce6 

Class: BTreeBulkLoadOperatorDescriptor 
 

 

ANID: f4a87f9e-16e8-409f-a2eb-7fb753e7c53f 

Class: DataGenOperatorDescriptor 

 

ANID: 889ed6c6-5660-4c6a-b302-bd5c3d065333 

Class: ExternalSortOperatorDescriptor 

$SortActivity 

ANID: 22197d38-7f50-4540-be8e-4bcc583bd2c3 

Class: ExternalSortOperatorDescriptor 

$MergeActivity 

 

ANID: ef47d7c1-46ef-4880-811f-18d18a1acf7a 

Class: BTreeBulkLoadOperatorDescriptor 
 

CDID: f4046a40-e78a-4492-af15-b25ff310994a 

Class: MToNHashPartitioningConnector 

CDID: e865252b-ba52-499f-a789-9084b1329edf 

Class: OneToOneConnector 

Stage 1 

Stage 2 
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 Job Plan: When clients send a Job-Plan URL request, they receive a JSONArray of the job’s 

plan information. This result consists of all of the job’s Hyracks activities, which are 

expanded from the set of the Hyracks operators in the job’s specification. Each activity has a 

set of input and/or output Hyracks connectors that are used to construct the Hyracks Activity 

Node Graph (Hyracks Job Plan). In addition, the depends-on entity in the result shows the 

“ID” of the blocking activities, specifying the dataflow constraint between each activity. All 

activities connected by non-blocking edges are grouped together to form a job’s stage. Recall 

that one Hyracks job is normally divided into many stages, and every stage is executed, one-

by-one, based on its readiness to run. The job’s plan gives insight into the Hyracks job’s 

execution steps. For example, Figure 12 (right) is the plan diagram generated from the 

information in Figure 13. The “ExternalSortOperatorDescriptor” operator in Figure 12 (left) 

has been replaced with two activities, “SortActivity” and “MergeActivity,” that are 

connected to each other by a blocking edge. Consequently, this job’s plan is divided into two 

stages in which the second stage cannot be executed until the first stage is completed. 

 

 

 

 

URL Path 

 http://<cc-ip-address>:<http-port>/state/jobs/<job-id>/plan 

Example 

http://vanilla.ics.uci.edu:2099/state/jobs/54d395c4-289f-

4de9-ab54-c429b006a968/plan 
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Figure 13: Example Result from Hyracks Job's Plan URL 

{ 
 result: { 
  id: "54d395c4-289f-4de9-ab54-c429b006a968" 
  activities: [ 
   { 
    id: "ANID:ef47d7c1-46ef-4880-811f-18d18a1acf7a" 
    owner-id: "ODID:7b34c851-fa5f-4d1b-94c3-cd8fa1ae5ce6" 
    inputs: [ { 
      input-port: 0 
      connector-id: "CDID:e865252b-ba52-499f-a789-9084b1329edf" 
      type: "activity-input" 
      connector-java-class:"edu.uci.ics.hyracks.dataflow.std.connectors. 

OneToOneConnectorDescriptor" 
     } ] 
    java-class: "edu.uci.ics.hyracks.storage.am.btree.dataflow.BTreeBulkLoadOperatorDescriptor" 
    type: "activity" 
   } 
   { 
    id: "ANID:22197d38-7f50-4540-be8e-4bcc583bd2c3" 
    owner-id: "ODID:52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf" 
    java-class: "edu.uci.ics.hyracks.dataflow.std.sort.ExternalSortOperatorDescriptor 

$MergeActivity" 
    outputs: [ { 
      connector-id: "CDID:e865252b-ba52-499f-a789-9084b1329edf" 
      type: "activity-output" 
      connector-java-class: "edu.uci.ics.hyracks.dataflow.std.connectors. 

OneToOneConnectorDescriptor" 
      output-port: 0 
     } ] 
    type: "activity" 
    depends-on: [ "ANID:889ed6c6-5660-4c6a-b302-bd5c3d065333" ] 
   } 
   { 
    id: "ANID:f4a87f9e-16e8-409f-a2eb-7fb753e7c53f" 
    owner-id: "ODID:3b93bca7-b93a-4fab-87a6-ede060abb96e" 
    java-class: "edu.uci.ics.hyracks.examples.btree.helper.DataGenOperatorDescriptor" 
    outputs: [ { 
     connector-id: "CDID:f4046a40-e78a-4492-af15-b25ff310994a" 
     type: "activity-output" 
     connector-java-class: "edu.uci.ics.hyracks.dataflow.std.connectors. 

MToNHashPartitioningConnectorDescriptor" 
     output-port: 0 
     } ] 
    type: "activity" 
   } 
   { 
    id: "ANID:889ed6c6-5660-4c6a-b302-bd5c3d065333" 
    owner-id: "ODID:52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf" 
    inputs: [ { 
      input-port: 0 
      connector-id: "CDID:f4046a40-e78a-4492-af15-b25ff310994a" 
      type: "activity-input" 
      connector-java-class: "edu.uci.ics.hyracks.dataflow.std.connectors. 

MToNHashPartitioningConnectorDescriptor" 
     } ] 
    java-class: "edu.uci.ics.hyracks.dataflow.std.sort.ExternalSortOperatorDescriptor 

$SortActivity" 
    type: "activity" 
   } 
  ] 
  type: "plan" 
 } 
} 
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 Job Stages: Unlike the results of the job’s plan or job’s specification which are static data, 

when users request a job’s Job-Stage URL, they get dynamic data about the progress of the 

job’s stage by stage execution. Here, the result is composed of several important entities; for 

example, the current status of each stage (e.g., pending, in-progress, or completed), 

the set of activities in each stage, the list of nodes assigned to process each activity, and the 

time-stamp of the job’s state change events (e.g., init-time, finish-time, and 

fail-time) on a stage by stage basis. As shown in Figure 14, users can monitor the 

progress of their jobs’ execution by observing each stage’s status. Job execution is terminated 

while there is no “pending” stage. Figure 15 provides the sense of parallelism of each activity 

in the stage. As mentioned in the Hyracks overview, each activity is cloned into a set of tasks 

that are scheduled to run on a set of nodes. The number of nodes at each activity, therefore, 

indicates the degree of parallelism decided by the Hyracks system. In particular, the node-

events presents the actual time that each node spends for executing a Hyracks job at each 

stage. 

 

 

Figure 14: Example Result from Hyracks Job's Stage URL 

{ 
 result: { 
  attempt: 0 
  pending-stage-ids: [ 
   "5ce9c97c-ba11-48e0-8ff0-01f9033d37fa" 
  ] 
  in-progress-stage-ids: [ 
   "079046ee-0e2f-435c-a7ce-578aedfc5bb6" 
  ] 
  completed-stage-ids: [ 
   "5f2a92e5-099f-4a51-978b-54985ab551ee" 
  ] 
  type: "stage-attempt" 
 
 

URL Path 

 http://<cc-ip-address>:<http-port>/state/jobs/<job-id>/ 

 <attempts>/stage 

Example 

http://vanilla.ics.uci.edu:2099/state/jobs/54d395c4-289f-

4de9-ab54-c429b006a968/0/stage 
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Figure 15:  Example Result from Hyracks Job's Stage URL (cont.) 

 
  stages: [ 
   { 
    stage-id: "5f2a92e5-099f-4a51-978b-54985ab551ee" 
    stage-finish-time: 1305924975320 
    stage-init-time: 1305924975053 
    stage-status: "completed" 
    stage-name: "stage_1" 
    activities: [ 
     { 
      activity-id: "ANID:f4a87f9e-16e8-409f-a2eb-7fb753e7c53f" 
      java-class: "edu.uci.ics.hyracks.examples.btree.helper. 

DataGenOperatorDescriptor" 
      operator-id: "ODID:3b93bca7-b93a-4fab-87a6-ede060abb96e" 
      node-names: [ 
       "nc1" 
      ] 
     } 
     { 
      activity-id: "ANID:889ed6c6-5660-4c6a-b302-bd5c3d065333" 
      java-class: "edu.uci.ics.hyracks.dataflow.std.sort. 

ExternalSortOperatorDescriptor$SortActivity" 
      operator-id: "ODID:52c2e2a7-6aef-4fe3-94e3-dfa77ecb4faf" 
      node-names: [ 
       "nc1" 
       "nc2" 
       "nc3" 
       "nc4" 
      ] 
     } 
    ] 
    nodes-events: [ 
     { 
      init-time: 1305924975058 
      finish-time: 1305924975318 
      node-id: "nc1" 
     } 
     { 
      init-time: 1305924975058 
      finish-time: 1305924975319 
      node-id: "nc2" 
     } 
     { 
      init-time: 1305924975058 
      finish-time: 1305924975305 
      node-id: "nc3" 
     } 
     { 
      init-time: 1305924975058 
      finish-time: 1305924975316 
      node-id: "nc4" 
     } 
    ] 
   } 
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 Job Profile: This information represents data movement at the task-execution level. The unit 

of data produced and consumed by Hyracks tasks is called a “Frame.” Each task-runtime 

only operates on one stream of frames (per input), without consideration of any repartitioning 

needed for the output. The repartitioning of the frames is handled separately by a Hyracks 

connector. Each connector-runtime has two sides: the sender and the receiver, which each 

can consist of several instances. A job’s profile provides a counter of how many times each 

sender instance sends a frame to each receiver instance. Figure 16 depicts a sample result 

from a sending job-profile URL request; it can be interpreted into the diagram as shown in 

Figure 17.   

In Figure 16, the format of the profile counters is 

“<connector-id>.sender.<sender-id>.<receiver-id>.nextFrame.” 

To turn on the collection of profiling data, which is disabled by default, Hyracks users 

need to set a profile-dump-period argument (in the millisecond unit) while first starting 

the Hyracks Cluster Controller process (e.g., hyrackscc -profile-dump-period 

10000, which means that the profiling data should be updated every 10 seconds). 

 

 

 

URL Path 

 http://<cc-ip-address>:<http-port>/state/jobs/<job-id>/ 

 <attempts>/profile 

Example 

http://vanilla.ics.uci.edu:2099/state/jobs/54d395c4-289f-

4de9-ab54-c429b006a968/0/profile 
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{ 
 result: {   
  job-id: "54d395c4-289f-4de9-ab54-c429b006a968" 
  attempt: 0 
  joblets: [ 
   { 
    node-id: "nc1" 
    type: "joblet-profile" 
    stagelets: { 
     stage-id: "5f2a92e5-099f-4a51-978b-54985ab551ee" 
     counters: [  
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.0.open" 
       value: 1 
      } 
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.1.open" 
       value: 1  
      }  
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.2.open" 
       value: 1 
      } 
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.3.open" 
       value: 1 
      } 
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.0.nextFrame" 
       value: 33 
      } 
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.1.nextFrame" 
       value: 92 
      } 
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.2.nextFrame" 
       value: 101 
      } 
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.3.nextFrame" 
       value: 190 
      } 
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.0.close" 
       value: 0 
      } 
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.1.close" 
       value: 0 
      } 
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.2.close" 
       value: 0 
      } 
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.sender.0.3.close" 
       value: 0 
      } 

(Note: This figure continues on the next page) 

Indicate that the node-id of the 

sender-id “0” is “nc1” 
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Figure 16: Example Result from Hyracks Job's Profile URL 

      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.receiver.0.open" 
       value: 1 
      } 
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.receiver.0.nextFrame" 
       value: 33 
      } 
      { 
       name: "f4046a40-e78a-4492-af15-b25ff310994a.receiver.0.close" 
       value: 0 
      } 
     ] 
    } 
   } 
   { 
    node-id: "nc2" 
    type: "joblet-profile" 
    stagelets: [ 
     { 
      stage-id: "5f2a92e5-099f-4a51-978b-54985ab551ee" 
      type: "joblet-profile" 
      counters: [ 
       { 
        name: "f4046a40-e78a-4492-af15-b25ff310994a.receiver.1.open" 
        value: 1 
       }        
       { 
        name: "f4046a40-e78a-4492-af15-b25ff310994a.receiver.1.nextFrame" 
        value: 92 
       } 
       { 
        name: "f4046a40-e78a-4492-af15-b25ff310994a.receiver.1.close" 
        value: 0 
       } 
      ] 
     } 
     { 
      stage-id: "079046ee-0e2f-435c-a7ce-578aedfc5bb6" 
      type: "joblet-profile" 
      counters: [ 
       { 
        name: "e865252b-ba52-499f-a789-9084b1329edf.receiver.1.close" 
        value: 0 
       } 
       { 
        name: "e865252b-ba52-499f-a789-9084b1329edf.receiver.1.nextFrame" 
        value: 0 
       } 
       { 
        name: "e865252b-ba52-499f-a789-9084b1329edf.receiver.1.open" 
        value: 0 
       } 
      ] 
     } 
    ] 
   } 

 

Indicate that the node-id of the 

receiver-id “1” is “nc2” 
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Figure 17: Example of Data Movement at the M to N Hash Partitioning Connector  

(This example connector consists of one instance on the sender side and four instances on the receiver side.  

There are 33, 92, 101 and 190 frames of data sent from sender “0” to receiver “0”, “1”, “2” and “3” respectively.) 

 

It is clear from the figure that, this profiling information can become extremely large if 

data is shuffled among thousands of nodes, and users may not be able to get an 

understandable overview of the data movement at each connector from the data at this fine 

granularity. Therefore, another URL path (shown in the box below) is provided to request the 

profiling data at each connector via graphical image of a matrix representing data flow 

between senders and receivers, as displayed in Figure 18 and Figure 19. The optional 

number in the URL path below says that users also want to show the actual number of 

frames, which are moved from senders to receivers, on the profile image.  

 

 

 

ANID: f4a87f9e-16e8-409f-a2eb-7fb753e7c53f 

Class: DataGenOperatorDescriptor 

 

ANID: 889ed6c6-5660-4c6a-b302-bd5c3d065333 

Class: ExternalSortOperatorDescriptor 

$SortActivity 

CDID: f4046a40-e78a-4492-af15-b25ff310994a 

Class: MToNHashPartitioningConnector 

Sender 

“0” 

Receiver 

“0” 

Receiver 

“1” 

Receiver 

“3” 

Receiver 

“2” 

33         92           101         109 

URL Path 

 http://<cc-ip-address>:<http-port>/profile/<job-id>/ 

 <attempts>/<connector-id>/(number) 

Example 

http://vanilla.ics.uci.edu:2099/profile/54d395c4-289f-4de9-

ab54-c429b006a968/0/f4046a40-e78a-4492-af15-b25ff310994a/number 
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High Data Movement

Low Data Movement

Average Data Movement

 

Figure 18: Small Scale Communication Matrix Image and  

the Gradient Scale Representing the Partitioned Data Movement from Low to High 

 

 

Figure 19: Large Scale Communication Matrix Image (30 sender instances and 30 receiver instances) 
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Figure 18 shows a communication matrix image of a given Hyracks connector-runtime of 

a Hyracks job running on a small-scale Hyracks cluster. The data is sent from one sender 

instance to four receiver instances. To assume that the sender instance is operated by the 

node-id “nc1” and each receiver instance is operated by the node-id “nc1”, “nc2”, “nc3” and 

“nc4.” There are 33, 92, 101 and 190 frames sent from the sender node “nc1” to the receiver 

nodes “nc1”, “nc2”, “nc3” and “nc4” respectively. The total number of frames that has been 

sent is 416. Figure 19 shows a communication image of a particular Hyracks connector of a 

Hyracks job running on a large-scale Hyracks cluster where there are 30 instances on the 

sender side and 30 instances on the receiver side. The last column in the matrix image 

presents the total number of frames that each receiver obtains. Moreover, the last row shows 

the total number of frames which each sender delivers.  

The color of each cell in the communication matrix image reflects the number of frames 

that is sent among sender and receiver nodes. The colors range from the light green color 

[RGB: 4 249 200] (low data movement) to the dark purple color [RGB: 80 0 112] (high data 

movement). If data transfer is partitioned equally among all participating nodes, every cell in 

the profile image will have the same color, which is the navy color [RGB: 46 110 151] (the 

middle color in the gradient scale). These colors are being computed by increasing or 

decreasing RBG (Red Green Blue) value of the middle color (navy color) toward high 

(purple) or low (green) color. JHeatChart [32], a simple Java library for generating heat map 

charts, has been modified and used to generate the communication matrix image. 

From Figure 18, the color of the second cell in the matrix image can be computed as 

shown below. The source code to calculate a cell color is also presented in Figure 20. 

1) Calculating an average number of frames transfer from every sender instance to every 

receiver instance. 

E.g.,  avg = (33 + 92 + 101 + 190) / 4 = 104 frames 

2) Finding a minimum and maximum value in the matrix and calculate a different between 

the average value to the minimum value and maximum values.  

E.g.,  rangeDown = avg – min = 104 – 33 = 71  

rangeUp = max - avg = 190 – 104 = 86 

3) Calculating a value distance between a matrix cell’s value and the average value. 

E.g.,  the value of the second cell is 92. Thus, distance = |data – avg| = |92 – 104| = 12  
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4) Finding a proportion distance of the cell’s value toward the minimum or maximum value. 

If the cell’s value is larger or equal to the average value, the rangeUp value (from step 2) 

is used. Otherwise, the rangeDown value will be used.  

E.g.,  value of the second cell, 92, is less than the average value, so 

percentPosition = distance / rangeDown = 12 / 71 = 0.169  

5) If the cell’s value is higher or equal to the average, we calculate the color value distance 

between the navy color [RGB: 46 110 151] (reflects the average value) and the dark 

purple color [RGB: 80 0 112] (reflects the maximum value). If not, the color value 

distance is computed from the distance between the navy color and the light green color 

[RGB: 4 249 200] (reflects the minimum value).  

E.g.,  value of the second cell, 92, is less than the average, so  

colourValueDistance  = |Rnavy - Rgreen| + |Gnavy – Ggreen| + |Bnavy - Bgreen| 

= |46 - 4| + |110 - 249| + |151 - 200| = 42 + 139 + 49 = 230  

6) Calculating a number of times that the color value is required to shift. 

E.g.,  colourPosition = colourValueDistance * percentPosition = 230 * 0.169 ≈ 39 

7) The red (R), green (G) and blue (B) values of a given cell start with same value as the 

red, green and blue values of the average color (in this example, the values are 46, 110, 

and 151 respectively). Then, the cell’s R, G and B values are changed toward either the 

low-end color or the high-end color by decreasing or increasing either R, G or B value 

one-by-one until the number of shifting times reaches the colourPosition number (from 

step 6). In each round, we compute three color distance pairs between the R, G and B of 

the given cell and the R, G and B of the low/high-end color. Then, a color (R, G or B 

color of the given cell) with the largest distance is selected to be added or deducted one 

value at a time.  

E.g.,  toward the low-end color, the distance of the green (G) value between the light 

green and the navy is much larger than the distance of the read (R) and blue (B) 

colors, thus the green value is kept increasing from 110 to 149 (increase one value 

at a time until reach 39 times). 

8) Finally, generating a new color from the Red, Green, and Blue color from setp 7. 

E.g.,  the result color of the second cell (value 92) in the matrix image is  

a dark green color [RGB: 46 149 151] as shown in Figure 18. 
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Figure 20: Source Code for Calculating Cell Color 

 private Color getCellColour(double data, double min, double max, double avg) { 
  
  double rangeUp = max - avg; 
  double rangeDown = avg - min; 
  double distance = Math.abs(data - avg); 
   
  int r = midValueColour.getRed(); 
  int g = midValueColour.getGreen(); 
  int b = midValueColour.getBlue(); 
   
  // What proportion of the way through the possible values is that. 
  double percentPosition; 
  int r2, g2, b2; 
  if(data >= avg){ 
   percentPosition = distance / rangeUp;  
   r2 = highValueColour.getRed(); 
   g2 = highValueColour.getGreen(); 
   b2 = highValueColour.getBlue(); 
  } 
  else{ 
   percentPosition = distance / rangeDown; 
   r2 = lowValueColour.getRed(); 
   g2 = lowValueColour.getGreen(); 
   b2 = lowValueColour.getBlue(); 
  } 
  int colourValueDistance = Math.abs(r - r2) + Math.abs(g - g2) + Math.abs(b - b2); 
  int colourPosition = (int) Math.round(colourValueDistance * percentPosition); 
    
  // Make n shifts of the colour, where n is the colourPosition. 
  for (int i=0; i<colourPosition; i++) { 
   int rDistance = r - r2; 
   int gDistance = g - g2; 
   int bDistance = b - b2; 
    
   if ((Math.abs(rDistance) >= Math.abs(gDistance)) 
      && (Math.abs(rDistance) >= Math.abs(bDistance))) { 
    // Red must be the largest. 
    r = changeColourValue(r, rDistance); 
   } else if (Math.abs(gDistance) >= Math.abs(bDistance)) { 
    // Green must be the largest. 
    g = changeColourValue(g, gDistance); 
   } else { 
    // Blue must be the largest. 
    b = changeColourValue(b, bDistance); 
   } 
  } 
  return new Color(r, g, b); 
 } 

private int changeColourValueDown(int colourValue, int colourDistance) { 
 if (colourDistance < 0) { 
  return colourValue-1; 
 } else if (colourDistance > 0) { 
  return colourValue+1; 
 } else { 
  // This shouldn't actually happen here. 
  return colourValue; 
 } 

 } 
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5.1.2 Hyracks Cluster Health 

Besides the Hyracks jobs’ information, the Hyracks Console allows users to monitor the 

overall Hyracks Cluster Health. Every Hyracks cluster consists of two types of nodes: Hyracks 

Cluster Controllers (CCs) and Hyracks Node Controllers (NCs). In reality, production clusters 

will generally consist of thousands of nodes. At that scale, users will not be able to access each 

physical node, one-by-one, to gather an overview of the current state of the cluster. As a result, 

the following Request-URL paths in Figure 21 are created to assist users retrieving cluster 

monitoring information. The data related to CC and NC(s) in the cluster is very important to 

diagnose the overall cluster health. This data is divided into five main categories: CC 

configuration, NC configuration, NC summary, NC jobs summary, and NC resources. We will 

explain the further details below.   

 

 Figure 21: URL Paths for Monitoring the Hyracks Cluster 

 

 Hyracks Cluster Controller Configuration:  

The Hyracks Cluster Controller (CC) plays a significant role in the Hyracks system. It is 

the main process to handle job control communications between the master node and worker 

nodes in the Hyracks cluster and schedules all jobs’ execution. To ensure that the CC is setup 

correctly, users can check with the cc-config entity which reports all configuration 

variables, including cc-port, http-port, heartbeat-period, max-heartbeat-

lapse-periods, default-max-job-attempts and profile-dump-period. Note 

that the CC configuration values cannot be changed unless users restart the CC process. The 

result of requesting the CC-Config URL also includes significant information about 

applications deployed in the clusters. Shown in Figure 22 is the result of an example result 

 

 

<....…> 

Intermediate Stage of the URL 

Dynamic Data on the URL 

/console 

/cluster 

/<nodeid> 

End Stage of the URL 

/nodes /jobs 

/config 

/<end> /<start> /<step> /<type> /resources 
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for the Hyracks Cluster Controller. There are three applications deployed, which are tpch, 

btree and fuzzyjoin. 

 

 

Figure 22: Example Result from CC Configuration URL 

{ 
 result: { 

   cc-config: { 
    heartbeat-period: 10000 
    default-max-job-attempts: 5 
    profile-dump-period: 100 

max-heartbeat-lapse-periods: 5 
cc-port: 1099 
type: "cc-config" 
http-port: 2099 

   } 
app-name: [ 
"tpch" 
"btree" 
"fuzzyjoin" 

] 
applications: [ 

{ 
 application-root-dir: "edu.uci.ics.hyracks.control.cc. 

ClusterControllerService/applications/tpch" 
 application-name: "tpch" 
 created-at: "2011-05-20 13:12:06.425" 
 initialized-at: "2011-05-20 13:12:09.799" 
} 
{ 
 application-root-dir: "edu.uci.ics.hyracks.control.cc. 

ClusterControllerService/applications/btree" 
 application-name: "btree" 
 created-at: "2011-05-20 13:13:48.735" 
 initialized-at: "2011-05-20 13:13:48.881" 
} 
{ 
 application-root-dir: "edu.uci.ics.hyracks.control.cc. 

ClusterControllerService/applications/fuzzyjoin" 
 application-name: "fuzzyjoin" 
 created-at: "2011-05-20 13:12:59.933" 
 initialized-at: "2011-05-20 13:13:00.580" 
} 

] 
 } 
} 

 

URL Path 

 http://<cc-ip-address>:<http-port>/console/cluster  

Example 

 http://vanilla.ics.uci.edu:2099/console/cluster 
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 Hyracks Node Controller Configuration: 

All node configuration variables and their values for a given node controller are 

returned from the Hyracks Console Server when clients send Node-Config URL request, 

as shown in  

Figure 23. (Note that if users intend to adjust its configuration values, they need to restart 

the Node Controller.) 

 

 

 

Figure 23: Result from Node Configuration URL  

 

 Hyracks Node Controllers Summary: 

When clients send a Node-Summary URL request, they get a JSONArray containing a 

list of all nodes associated with the monitored Cluster Controller, as shown in Figure 24. 

Each node consists of four entities, id, host, load_one and type. The host entity at each 

node indicates the liveness of each node. If the host value of a given node is less than the 

max-heartbeat-lapse-periods value (in CC configuration), the node is still alive. The 

{ 
 result: { 
  id: "nc1" 
  frame-size: 32768 
  cc-host: "127.0.0.1" 

dcache-client-path: "/tmp/dcache-client" 
io-devices: "/tmp" 
data-ip-address: "127.0.0.1" 
cc-port: 1099 
type: "node-config" 
dcache-client-servers: "localhost:54583" 

 } 
 } 

 

URL Path 

http://<cc-ip-address>:<http-port>/console/nodes/ 

<node-id>/config 

Example 

 http://vanilla.ics.uci.edu:2099/console/nodes/nc1/config 
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load_one entity is one-minute load average.1 The load average is recalculated every five 

seconds based on the current system load. The system load is the number of processes that 

are running on the machine plus the number of processes that are waiting to run. On the 

lightly loaded node, the current system load varies between 1 and 0. 

 

 

 

 

Figure 24: Result from Nodes Summary URL  

                                                
1 http://book.opensourceproject.org.cn/enterprise/cluster/linuxcluster/opensource/11021/bbl0140.html 

{ 
 result: [ 
  { 
   id: "nc1" 
   host: 0 
   load_one: "4.3111111111e-01" 
   type: "node-summary" 
  } 
  { 
   id: "nc2" 
   host: 1 
   load_one: "6.0500000000e-01" 
   type: "node-summary" 
  } 
  { 
   id: "nc3" 
   host: 2 
   load_one: "3.1905555556e+00" 
   type: "node-summary" 
  } 
  { 
   id: "nc4" 
   host: 1 
   load_one: "3.8733333333e-01" 
   type: "node-summary" 
  } 
 ] 

 } 

 

URL Path 

 http://<cc-ip-address>:<http-port>/console/nodes 

Example 

 http://vanilla.ics.uci.edu:2099/console/nodes 
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 Hyracks Node Controller Jobs Summary: 

The node controller jobs summary URL represents the list of Hyracks jobs on a given 

node. Each job is classified into four categories based on their current status: INITIALIZED, 

RUNNING, TERMINATED, or FAILURE. This information helps users to understand the 

performance and workload of each node. An example result is presented in Figure 25.  

 

 

Figure 25: Result from Node Jobs Summary URL 

{ 
 result: { 
  failed-jobs: { 

job-id: "54d395c4-289f-4de9-ab54-c429b006a968" 
application: "btree" 
display-name: " job00000010" 
status: "FAILURE" 
attempts: 6 

   start-time: "2011-05-20 13:56:15.041"  
   end-time: "2011-05-20 14:07:08.659" 
  } 
  finish-jobs: [ 
   { 

job-id: "eb444563-311f-469f-9874-2705cf3bccda" 
application: "btree" 
display-name: "job00000005" 
status: "TERMINATED" 
attempts: 1 
start-time: "2011-05-20 13:15:50.536" 
end-time: "2011-05-20 13:15:51.045" 

   } 
   { 

job-id: "17159a0c-0ae9-414d-9553-928a9b42a12d" 
application: "fuzzyjoin" 
display-name: "job00000001" 
status: "TERMINATED" 
attempts: 1 
start-time: "2011-05-20 13:13:26.969" 
end-time: "2011-05-20 13:13:27.962" 

   } 
  ] 
 } 
} 

URL Path 

http://<cc-ip-address>:<http-port>/console/nodes/ 

<node-id>/jobs 

Example 

 http://vanilla.ics.uci.edu:2099/console/nodes/nc1/jobs 
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 Hyracks Node Controller Resources:  

The CC process on the master node is significant for controlling the Hyracks system, but 

information about physical resource consumption at the master node itself is less important, 

since the computation is actually done at the worker nodes that run the NC process. 

Information about the resource usage of each worker machine is beneficial in order to 

monitor the cluster’s health and detect any job execution failures caused by node failures. 

When clients send a request via the NC-Resources URL, they receive the time series data for 

resource consumption at the specified Node Controller nodes.  

The time series data is collected by the Ganglia software and stored in the RRD database. 

By default, there are five main categories of the resource; for example, CPU (cpu_idle, 

cpu_nice, cpu_system, cpu_user and cpu_wio), DISK (disk_free and disk_total), LOAD 

(load_one, cpu_num, proc_run and proc_total), NETWORK (bytes_in, bytes_out, pkts_in 

and pkts_out), and MEM (mem_bufferes, mem_cached, mem_free, mem_shared and 

mem_total). Users can more specify about the desired data by adding these following filters 

at the end of the URL: resource type(s), frequency of data (e.g., every 15 or 90 seconds) and 

a time interval.   

 

 As above display shown the first example URL asks for the memory consumption of the 

node-id “nc1” in the Hyracks cluster. By default, the resolution step of resource data is 

every 15 seconds, and the end-time is “now”. The number of records returned by the web-

server is about 30 records per type of resource. In other words, the default resource usage 

URL returns the resource consumption in the last 450 seconds (= 15 seconds * 30 records). 

The sample result (only the first ten data records) from this URL is shown in Figure 26. The 

type entity represents the resource category and sub-type entity indicates the sub-type of 

URL Path 

http://<cc-ip-address>:<http-port>/console/nodes/ 

<node-id>/resources/<type>/(<step>)/(<start-time>)/(<end-time>)  

Example 

 (1)http://vanilla.ics.uci.edu:2099/console/nodes/nc1/resources/mem 

(2)http://vanilla.ics.uci.edu:2099/console/nodes/nc1/resources/load

/90/1303333720/1303334720 
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the resource data in a given category; for instance, the MEM resource type has mem_buffers 

and mem_cached as a sub-type. Each data record consists of three entities, num, time and 

value to represent a value of resource usage at a specific time. The num entity shows a 

number of machines (always equal to 1 for every NC).  

  
Figure 26: Result from the First Example of Node Controller Resources URL (MEM Category) 

(continue from the left figure) 
 

 
 { 
  type: "mem" 
  sub-type: "mem_cached" 
  count: 30 
  data: [ 

 { 
     num: "1.0000000000e+00" 

  time: "06:51:45 PM" 
     value: "6.1557333333e+04" 

 } 
 { 
  num: "1.0000000000e+00" 
  time: "06:52:00 PM" 
  value: "6.1560000000e+04" 
 } 
 { 
  num: "1.0000000000e+00" 
  time: "06:52:15 PM" 
  value: "6.1560000000e+04" 
 } 
 { 
  num: "1.0000000000e+00" 
  time: "06:52:30 PM" 
  value: "6.1538666667e+04" 
 } 
 { 
  num: "1.0000000000e+00" 
  time: "06:52:45 PM" 
  value: "6.1528000000e+04" 
 } 
 { 
  num: "1.0000000000e+00" 
  time: "06:53:00 PM" 
  value: "6.1528000000e+04" 
 } 
 { 
  num: "1.0000000000e+00" 
  time: "06:53:15 PM" 
  value: "6.1380000000e+04" 
 } 
 { 
  num: "1.0000000000e+00" 

    time: "06:53:30 PM" 
    value: "6.1380000000e+04" 
   } 

{ 
      num: "1.0000000000e+00" 

  time: "06:53:45 PM" 
  value: "6.2880000000e+04" 
} 
{ 

     num: "1.0000000000e+00" 
 time: "06:54:00 PM" 

     value: "6.5880000000e+04" 
} 

   … 
   … 
   … 
  ] 
 } 
] 
} 

 

{ 
 result: [ 
  {  
   type: "mem" 

 sub-type: "mem_buffers" 
 count: 30 

   data: [ 
{ 

num: "1.0000000000e+00" 
time: "06:51:45 PM" 
value: "2.4786666667e+03" 

} 
{ 

num: "1.0000000000e+00" 
time: "06:52:00 PM" 
value: "2.5160000000e+03" 

} 
{ 

num: "1.0000000000e+00" 
time: "06:52:15 PM" 
value: "2.5160000000e+03" 

} 
{ 

num: "1.0000000000e+00" 
time: "06:52:30 PM" 
value: "2.5506666667e+03" 

} 
{ 

num: "1.0000000000e+00" 
time: "06:52:45 PM" 
value: "2.5680000000e+03" 

} 
{ 

num: "1.0000000000e+00" 
time: "06:53:00 PM" 
value: "2.5680000000e+03" 

} 
{ 

num: "1.0000000000e+00" 
time: "06:53:15 PM" 
value: "2.6200000000e+03" 

} 
{ 

num: "1.0000000000e+00" 
time: "06:53:30 PM" 
value: "2.6200000000e+03" 

} 
{ 

num: "1.0000000000e+00" 
time: "06:53:45 PM" 
value: "2.6426666667e+03" 

} 
{ 

num: "1.0000000000e+00" 
time: "06:54:00 PM" 
value: "2.6880000000e+03" 

} 
… 
… 
… 

   ] 
  } 
 
 

(continue on the right figure) 
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The second example URL asks for the system load of the node-id “nc1.” The step is set 

to be 90, so the result will show the resource data in every 90 seconds. The start-time and 

end-time is also set. A time in seconds since epoch (1970-01-01) format is required. The 

time interval is 1,000 seconds (1303334720 – 1303334720 = 1,000 seconds). Thus, the 

number of records returned by the web-server is about 12 records (1,000 / 90 ≈ 12). The 

sample result from this URL is shown in Figure 27. 
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Figure 27: Result from the Second Example of Node Controller Resources URL (LOAD Category) 

(continue from the left figure) 
 
 
{ 
 type: "load" 
 sub-type: "proc_run" 
 count: 12 
 data: [ 

 { 
num: "1.0000000000e+00" 
time: "02:09:00 PM" 
value: "0.0000000000e+00" 

  } 
{ 

num: "1.0000000000e+00" 
time: "02:10:30 PM" 
value: "0.0000000000e+00" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:12:00 PM" 
value: "0.0000000000e+00" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:13:30 PM" 
value: "7.0000000000e-01" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:15:00 PM" 
value: "1.8666666667e+00" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:16:30 PM" 
value: "8.8888888889e-02" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:18:00 PM" 
value: "8.7777777778e-01" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:19:30 PM" 
value: "1.6666666667e-01" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:21:00 PM" 
value: "1.0000000000e+00" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:22:30 PM" 
value: "6.1111111111e-01" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:24:00 PM" 
value: "5.4444444444e-01" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:25:30 PM" 
value: "3.5555555556e-01" 

} 
 ] 
} 

] 
} 

 

{ 
 result: [ 
  { 
   type: "load" 
   sub-type: "load_one" 
   count: 12 
   data: [ 
    { 

num: "1.0000000000e+00" 
time: "02:09:00 PM" 
value: "4.3111111111e-01" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:10:30 PM" 
value: "1.8833333333e+00" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:12:00 PM" 
value: "4.4528888889e+00" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:13:30 PM" 
value: "3.1905555556e+00" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:15:00 PM" 
value: "1.2870000000e+00" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:16:30 PM" 
value: "6.0500000000e-01" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:18:00 PM" 
value: "7.7000000000e-01" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:19:30 PM" 
value: "9.3388888889e-01" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:21:00 PM" 
value: "7.8722222222e-01" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:22:30 PM" 
value: "6.0000000000e-01" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:24:00 PM" 
value: "4.7622222222e-01" 

} 
{ 

num: "1.0000000000e+00" 
time: "02:25:30 PM" 
value: "3.8733333333e-01" 

} 
   ] 

 dsname: "nc1" 
  } 
 

 (continue on the right figure) 
 
 



46 
 

5.2 Publish/Subscribe API for Server Pushing Method 

 One of the most significant features of any monitoring system is its “real-time” support.  

To satisfy this characteristic, we implement an additional web-server in the Hyracks Console 

Server (HCS) to support a server-push mechanism that responds to vital Hyracks events. With 

this server, the system can avoid having clients periodically poll for data. This second server 

initiates communication between the Hyracks Console Server (HCS) and the Hyracks Console 

Visualization (HCV) and publishes messages to a particular “channel” whenever a vital event 

occurs. Any clients that subscribe/listen to that channel will receive the message and perform 

appropriate actions. This web-server is implemented on port number [http-port + 1]. (E.g., 

if the http-port setting is 2099, this web-server communicates over port 2100.)  

The key events in the Hyracks system are handled by messages that flow between the 

Hyracks Cluster Controller (CC) and one or more of the Hyracks Node Controllers (NCs). For 

example, when a stage is ready to run, the CC sends messages to the set of NCs participating in 

that stage’s execution in order to start task activations, and the CC is informed of the failure or 

success of a stage by the NCs. The significant Hyracks events can be classified into three main 

categories; therefore, we create three channels responding to each category: (1) /jobs, (2) 

/stages/<job-id> and (3) /attempts/<job-id> channel. 

 As we mentioned in the system architecture section, the CometD service is employed to 

support server-push communications between clients and servers via the Bayeux protocol. To 

implement this service in the Jetty server, CometdServlet and JobStageServlet objects 

are added to the Jetty servlet container and initiated when the server starts.  The first object is 

responsible for the CometD and Bayeux configuration, and the second object is responsible for 

invoking CometD services in the JobStageService class. This class extends the CometD 

class org.cometd.server.AbstractService, which specifies the Bayeux channels the 

service is interested in. 

When an important event in the Hyracks system occurs, depending on what type of event 

it is, one of these three methods - pushJobs(), pushStages() or pushAttempts()- is 

invoked. Each method requests JobStage Servlet URL along with different parameters and 

values. The servlet then generates the result/message in the JSON format and invokes 
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JobStageService, which then publishes the message on the particular channel. This process 

can be summarized as shown in Figure 28. 

 

 

Figure 28: Server-Push Mechanism 

5.2.1 /jobs channel:  

A message is published to this channel whenever there is an event related to Hyracks 

Jobs, for example: JobCreateEvent, JobStartEvent, JobAbortEvent, 

JobAttemptStartEvent, and JobCleanupEvent.    

 

 

Figure 29: Example of /jobs Channel 
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AbstractService Class 
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JobStage Servlet URL Pattern 

"http://<host>:<port>/jobstage?name=jobs"; 

"http://<host>:<port>/jobstage?name=attempts&jobid=<jobId>"; 

"http://<host>:<port>/jobstage?name=stages&jobid=<jobId>&attempt=<attempt>"; 



48 
 

Figure 29 shows an example action when a new job is submitted to the system. The HCS 

(supporting server-push) calls the pushJobs() method to publish a message to the /jobs 

channel. The HCV, which subscribes to this channel, receives the message and reloads a 

JobBrowser page by sending a new request to HCS (supporting client-pull). The latter server 

processes the client request and responds back with the summary of jobs in the JSON format. In 

this case, the push mechanism is used to trigger a client pull action.  

5.2.2 /stages/<job-id> channel:  

When an event related to some change in the states of a job stage occurs, a message, 

including the current status of each stage, is published to this channel. Some examples of events 

related to job stages are: ScheduleRunnableStagesEvent, StageletFailureEvent, 

JobAttemptStartEvent, JobAbortEvent, and JobCleanupEvent. 

 

 

Figure 30: Example of /stages/<job-id> channel 

Figure 30 depicts an action when the stage of job-id “54d395c4-289f-4de9-ab54-

c429b006a968” is changed. The web-server calls the pushStage() method to publish the 

Hyracks 

Console Server 

(Server push) 

Hyracks 

Console 

Visualization 

 

 

 

  

Push stage message through  

“Channel”: /stages/<job-id> 

Message includes the stages’ status in JSON format 

1 

For example: 

data{ 

 name: “stages”, 

 jobid: “54d395c4-289f-4de9-ab54-c429b006a968”, 

 attempt: 0 

 complete: [ "5f2a92e5-099f-4a51-978b-54985ab551ee" ], 

 progress: [ "079046ee-0e2f-435c-a7ce-578aedfc5bb6" ], 

 pending: [ ], 

 fail: [ ], 

 jobstatus: “RUNNING” 

} 
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message to the /stages/54d395c4-289f-4de9-ab54-c429b006a968 channel. Then, the 

HCV that listens to the channel receives and passes the message to the JavaScript function in 

order to assign the color of each stage in the Job Activity Node Graph (Job Plan) diagram. The 

message includes several entities, e.g., a job’s ID, attempt number, list of completed stages’ ID, 

list of progressing stages’ ID, list of pending stages’ ID, list of failed stages’ ID, and job’s status.  

The color notation of completed, progressing, pending and failed stage is light blue, light green, 

gray, and salmon respectively. Note that this action, unlike the previous one, doesn’t request 

other resources. This is because all needed information is already included in the message. 

5.2.3 /attempts/<job-id> channel:  

When an error occurs during a job’s execution, the Hyracks system will try to restart the 

process again until reaching the maximum number of attempts. This channel is used when a 

specific job begins a new attempt for its execution (JobAttemptStartEvent). The HCS calls 

the pushAttempts() method to publish a message to the /attempts/<job-id> channel. 

When the HCV receives the message, it reloads a JobProfile page as shown in Figure 31. 

 

 

Figure 31: Example of /attempts/<job-id> channel 
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5.3 Sample Web UI 

 Even though data in the JSON format is fairly easy to read and comprehend, typical users 

prefer information represented visually. In addition, when such data becomes large, it is almost 

impossible for the users to gain knowledge by searching through thousands lines of text. In this 

section, we provide some samples of the web interface of our Hyracks Console Visualization 

(HCV) system. The entire sitemap of the HCV is presented in Figure 32. There are four main 

pages: Hyracks Cluster Browser, Hyracks Node Controller Profile, Hyracks Job Browser and 

Hyracks Job Profile. Users can navigate from the Hyracks Cluster Browser page to the Hyracks 

Node Controller Profile page and from the Hyracks Job Browser page to the Hyracks Job Profile 

page. In addition, they can navigate back and forth between the Hyracks Node Controller Profile 

page and the Hyracks Job Profile page. Table 1 shows the list of contents presented on each web 

page.  A full description of the web user interface along with the user manual of the web UI can 

be found in [19].  

Table 1: Hyracks Web Pages Description 

Page Name Description Contents 

Hyracks Cluster Browser Presents overview of a particular 

Hyracks Cluster including both 

Hyracks nodes view and Hyracks 

jobs view. 

 Cluster Controller Configuration 

 Registered Node Controllers & 

Nodes’ Health 

 Hyracks Jobs Execution 

Timeline 

 

Hyracks Node Controller Profile Presents information related to a 

particular Hyracks Node Controller 
 Node Controller Configuration 

 Finished Jobs 

 Running Jobs 

 Machine Resources 

Consumption 

 

Hyracks Job Browser Presents all Hyracks Jobs that have 

been submitted to a particular 

Hyracks cluster  

 Running Jobs 

 Finished Jobs 

 Initialized Jobs 

 Failed Jobs 

 

Hyracks Job Profile Presents more detail of a particular 

Hyracks job  
 Hyracks Job Specification Graph 

 Hyracks Activity Node Graph 

 Time Usage Report in Pie-Chart 

 # of Partitions in Timeline 

 Resources Consumption 

 



51 
 

 

  

Figure 32: Hyracks Console Visualization Sitemap 
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Figure 33: Job Summary in JSON format (left) and Job Browser Screenshot (right) 

Figure 33 compares data presentation methods between the JSON format and the 

visualization web interface. On the left is a (partial) summary of jobs presented in the JSON 

format, and on the right is a corresponding screenshot of “Job Browser” page. This page requests 

the “Jobs-Summary” URL and presents the returned data in the table using the DataTables 

jQuery tool [18], which allows users to search and sort within the contents of the table. The data 

is categorized into four tables based on the job’s status (i.e., initialized, running, 

completed, or failed). To handle the scalability issue, users can limit the number of jobs 

presented by putting a keyword on the search box. In addition, we include the CometD Client 

JavaScript in this page in order to subscribe the client to the “/jobs” channel. Whenever events 

{ 
result: [ 

{ 
id: "a965fe5a-ba0b-4a01-a13d-
1b4dcc57adc1" 
application: "tpch" 
display-name: "job00000003" 
status: "TERMINATED" 
events: [ 

{ 
status: "RUNNING" 
system-time: 1305922493368 
date: "2011-05-20 
13:14:53.368" 

} 
{ 

status: "INITIALIZED" 
system-time: 1305922493361 
date: "2011-05-20 
13:14:53.361" 

} 
{ 

status: "TERMINATED" 
system-time: 1305922494104 
date: "2011-05-20 
13:14:54.104" 

} 
] 
attempts: 1 
type: "job-summary" 

} 
{ 

id: "54d395c4-289f-4de9-ab54-
c429b006a968" 
application: "btree" 
display-name: "job00000010" 
status: "FAILURE" 
events: [ 

{ 
status: "RUNNING" 
system-time: 1305924975041 
date: "2011-05-20 
13:56:15.041" 

} 
{ 

status: "FAILURE" 
system-time: 1305925628659 
date: "2011-05-20 
14:07:08.659" 

} 
{ 

status: "INITIALIZED" 
system-time: 1305924975021 
date: "2011-05-20 
13:56:15.021" 

} 
] 
attempts: 6 
type: "job-summary" 

} 
… 
… 
… 

] 
} 
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related to the Hyracks cluster’s jobs occur (e.g., a new job is submitted to the cluster), the 

Hyracks Console Server will push a message to the “/jobs” channel. Users thus see all changes 

in real-time with low delay.  

 

Figure 34: the Screenshot of One Part of Job Profile Page (bottom) 

 Figure 34 is the screenshot of the one part of the “Job Profile” page that presents a 

Hyracks Job Specification (called JobSpec) and the corresponding Hyracks Activity Node Graph 

(called JobPlan). These diagram representations are generated by the Graphviz tool [16]. From 

the Hyracks Job Specification of the “job00000010”, there are three HODs assembled to perform 

one job: DataGen, ExternalSort, and BTreeBulkLoad. The first two HODs are connected by an 

M:N Hash Partition connector, and the last two HODs are connected by a 1:1 connector. The 

ExternalSort HOD in the job’s specification is expanded into two activities – SortActivity and 

MergeActivity. The MergeActivity cannot be started until the SortActivity is completed, so there 

is a blocking edge (red arrow) between these two activities. This blocking edge is also used to 

divide a job into several job stages. As shown in the figure, the first stage consists of two HANs: 

the DataGen and SortActivity HANs. The second stage consists of the MergeActivity and 

BTreeBulkLoad HANs. The color in the diagram represents the current status of each job’s 
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stage. E.g., a light blue color presents finished stage, a light green color presents running stage, a 

gray color presents pending stage, and a salmon color presents failed stage.    

6 CONCLUSION AND FUTURE THOUGHTS 

To support large-scale data processing and analysis, the Hyracks partitioned-parallel 

platform is being developed at UCI. When users execute a job on Hyracks, the internal processes 

between the input state and the output state can seem like a “black box” to users, in that they are 

not able to see the intermediate steps or individual processes. When an error occurs in their 

program, or its performance is not as expected, users need to understand and analyze the 

execution process of their jobs. To accelerate the development process of data-intensive 

applications and to provide better insight into the runtime state of the Hyracks platform, the 

Hyracks Console has been developed. This thesis has described the design and server-side 

implementation of the Hyracks Console. 

The Hyracks Console has been designed to assist both Hyracks End Users and Hyracks 

Operator Implementers in monitoring the Hyracks system. The system architecture is 

conceptually divided into two main components, the Hyracks Console Server (HCS) and the 

Hyracks Console Visualization (HCV). The HCS is responsible for collecting and delivering 

useful information related to the current state of the Hyracks jobs and the Hyracks clusters. To 

produce the precise, necessary data, clients must send requests to the HCS, and the HCS then 

responds with data related to the request, mostly in the JSON format. This technique is called a 

client-pull communication between client and server. In addition, a server-push mechanism is 

implemented to support real-time monitoring. When significant events occur in the Hyracks 

system, the HCS initiates the communication and sends a message to the clients without requests 

from them. The second component, the Hyracks Console Visualization (HCV), converts and 

presents plain-text data into a visual representation that users can easily and quickly understand. 

Several representation tools available to the HCV have been discussed in this paper. The HCV 

component also allows users to interact freely with the Hyracks Console system. The resulting 

Hyracks Console should greatly aid existing users in their understanding of the execution of their 

Hyracks jobs as well as helping new users overcome the steep learning curve of programming on 

large clusters.  
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There are still a number of ideas and future features that could further increase the 

functionality of the Hyracks Console. It would be nice for programmers if they could deploy 

their applications and execute their jobs via the Hyracks Console interface instead of the 

command line. It would also be beneficial to display more information at the runtime-task level 

to provide better insight about data movement at runtime. The console should also display an 

error log of job failures, and it should show the input/output locations of results of successful 

jobs on the Hyracks Console screen. The Hyracks Console must continue grow in parallel with 

the ongoing evolution of the Hyracks platform. 
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APPENDIX 

In this section, we provide summary information about Cluster Controller Configuration, 

Node Controller Configuration, and the URL-Request paths. 

Table A: Cluster Controller Configuration 

Variable Default Value Usage 

-port 1099 Sets the port to listen for connections from node controllers. 

-http-port 2099 Sets the http port for the Cluster Controller. 

-heartbeat-

period 

10000 Sets the time duration between two heartbeats from each 

node controller in milliseconds. 

-max-heartbeat-

lapse-periods 

5 Sets the maximum number of missed heartbeats before a 

node is marked as dead. 

-profile-dump-

period 

0 Sets the time duration between two profile dumps from each 

node controller in milliseconds. 0 to disable. 

-default-max-

job-attempts 

5 Sets the default number of job attempts allowed if not 

specified in the job specification. 

 

Table B: Node Controller Configuration 

Variable Default Value Usage 

-cc-host - Cluster Controller host name 

-cc-port 1099 Cluster Controller port 

-node-id - Logical name of node controller unique within the cluster 

-data-ip-address - IP Address to bind data listener 

-frame-size 32768 Frame Size to use for data communication 

-iodevices java.io.tmpdir Comma separated list of IO Device mount points 

-dcache-client-

servers 

localhost:54583 Sets the list of DCache servers in the format 

host1:port1,host2:port2,... 

-dcache-client-

server-local 

- Sets the local DCache server, if one is available, in the 

format host:port 

-dcache-client-

path 

/tmp/dcache-

client 

Sets the path to store the files retrieved from the DCache 

server 
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Table C: Summary of URL-Request Path 

URL-Request Path  Usage 

/state/jobs Get a list of Hyracks jobs that have been submitted to a Hyracks cluster 

/state/jobs/<job-id>/spec Request for a particular Hyracks job’s specification 

/state/jobs/<job-id>/plan Request for a particular Hyracks job’s plan (or an activity node graph) 

/state/jobs/<job-id>/<attempts>/stage Get a progress of a Hyracks job in stage by stage basis 

/state/jobs/<job-id>/<attempts>/profile Get a profile counter of a particular Hyracks job 

/profile/<job-id>/<attempts>/<connector-id>/(number) Get a dataflow matrix image of a particular Hyracks connector in a 

specific Hyracks job. Optional “number” at the end of the URL is used 

when users want to show the actual number of dataflow on the image 

/console/cluster Request for a Cluster Controller Configuration 

/console/nodes/<node-id>/config Request for a Node Controller Configuration 

/console/nodes Get a list of all nodes associated with the interested Cluster Controller 

/console/nodes/<node-id>/jobs Get a list of Hyracks jobs on a given node 

/console/nodes/<node-id>/resources/<type> 

/(<step>)/(<start-time>)/(<end-time>) 

Request for physical resource consumption at a given Node Controller 

Note: every URL-Request path starts with “http://<cc-ip-address>:<http-port>” 


